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Abstract: The soft idea has a crucial impact on facing uncertainty, but extending soft, fuzzy soft, and
vague soft settings is more comprehensive in expressing the problem ambiguity parameters than the
soft set. Despite this advancement, the vague soft set falls short in addressing certain decision-making
issues. This occurs when we have some external factors that can impact our final decision. These
external factors can be represented in the effective parameter set. So, the objective of the current article
is to incorporate the new concept of effectiveness into the concept of vague sets. This approach leads
the researchers to create a novel and expanded framework for effective decision-making, surpassing any
previously introduced methods in applicability. The article also provides an exploration of the types,
concepts, and operations of effective vague soft sets, each illustrated with examples. Furthermore,
the study delves into the examination of properties like De Morgan’s laws, distributive, commutative,
absorption, and associative properties for those new sets. Moreover, the framework of effective vague
soft sets is used to develop a decision-making methodology. This technique simplifies the process of
determining whether a student meets the requirements for a particular level of education or if a patient
has a specific disease, among other applications. Additionally, to clarify the proposed algorithm, a
detailed case study representing how to classify students toward specializations is examined in detail.
Using matrix processes in this example, in addition to Wol f ram Mathematica®, not only renders
computations simpler and quicker but also results in more precise optimum effective decisions. In the
end, a detailed comparison with existing techniques is performed and summed up in a chart to illustrate
the difference between them and the present one.
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1. Introduction

In 1937, Black [4] first introduced the concept of vagueness as follows: The vagueness of a term
becomes evident through the creation of “borderline cases”, which are individuals for whom it appears
equally challenging to either apply or not apply the term. Consequently, a term’s vagueness is typically
conveyed, to varying degrees, through statements suggesting that there are conceivable situations in
which its usage becomes “doubtful” or “ill-defined”, situations in which “no one would know how
to use it”, or situations in which it becomes “impossible” to either affirm or deny its applicability. A
proposition is considered vague when there exist potential states of affairs for which it is inherently
uncertain whether, when considered by the speaker, they would have been categorized as either
permitted or excluded by the proposition. When we say “intrinsically uncertain”, we are not referring
to the uncertainty resulting from any lack of knowledge on the part of the interpreter, but rather, it
stems from the speaker’s language habits being indeterminate.

For instance, we can envision an exhibition within an improbable museum dedicated to applied
logic, showcasing a collection of “chairs” that differ in quality by the tiniest, barely perceptible
increments. At one end of this extensive display, which might encompass thousands of items, you could
find an exquisite Chippendale chair, while at the opposite end, there might be a small, unremarkable
piece of wood. Any typical observer examining this array encounters significant challenges when
attempting to distinctly demarcate what constitutes a chair and what doesn’t. The request to make
such a determination is considered fundamentally inappropriate. Responses like “chair can not be
considered as the type of word that allows for such a sharp division” are commonly provided. If it
were, and we were prohibited from using it for any object that deviated most slightly from the ideal
term, it would be less valuable to us. This is a practical perspective, but it poses logical difficulties.

Any ordinary set includes items that have a specific characteristic or satisfy a strict condition. This
means that if the item satisfies the condition, then it takes membership value equals 1, and then it
belongs to the set. Conversely, if this item doesn’t satisfy this condition, then it takes membership
value equals 0, and then it doesn’t belong to the set. However, the challenge occurred when we had
some characteristics that their satisfaction couldn’t be described specifically by 1 and 0 only because
the criterion is relatively different from one circumstance to another or from time to another time.
For example, intelligent students can’t be described as an ordinary set. To face this challenge, Zadeh
[43] developed, in 1965, a novel expansion of the well-defined set theory, known as fuzzy set theory,
designed to address uncertainty. Similar to how a crisp set over a universal set X can be naturally
defined through its normal characteristic function mapping from the set X to the set {0, 1}, a fuzzy set
over a domain X can also be defined by its membership (characteristic) function that maps from the set
X to the interval [0, 1]. It’s essential to note that this new concept of the fuzzy set, initiated by Zadeh, is
entirely devoid of statistical elements. Fuzzy set theory serves as a highly valuable new mathematical
method to manage uncertainty. However, the sole value (characteristic function or membership degree)
used in this context amalgamates the evidence supporting an element’s inclusion and the evidence
countering it, all without specifying the relative weight of each. In other words, this single number
doesn’t provide any information about its accuracy.

So, there was still a challenge which was how to express any vague value. In many situations, one
can face problems, where vague expressions must be used like some medical measurements or some
evaluations when the degree is ranging or lies between two different values. To address this limitation,
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in 1993, Gau and Buehrer [20] introduced a novel generalization of both the crisp set theory and the
fuzzy set theory known as the vague set theory, building upon Black’s initial definition of vagueness.
This innovation aimed to address the challenges that occurred when using the fuzzy set theory. Instead
of assigning just a single value, they attributed to every element a membership grade in the form of a
subinterval within the interval [0, 1]. This subinterval effectively captures both the supporting evidence
as well as the conflicting evidence. However, it’s worth noting that all these aforementioned theories
encounter their unique challenges due to limitations in the parametrization tools they employ.

In real-life scenarios, complexity in making judgments predominantly stems from ambiguity and
uncertainty. The presence of uncertain data is a fundamental and widespread phenomenon across
various critical domains, such as environmental research, sociology, economics, medical science,
corporate management, engineering, and numerous others. This uncertainty arises from various
sources, including missing data updates, insufficient information, random data variations, limitations of
measurement devices, and so forth. Given the substantial volume of uncertain data being collected and
stored, coupled with the significance of these applications, there has been a growing interest in recent
years in researching effective techniques for representing uncertain data and managing uncertainties.
Nonetheless, this endeavor remains challenging. Consequently, numerous complex challenges persist
in these fields and others. Conventional mathematical methods are insufficient to address the difficulties
arising from uncertainties in such cases.

Decision-making, as a process utilized within a company’s managerial echelon, serves the purpose
of identifying and selecting choices depending on personal preferences. Each decision’s surroundings
can be officially characterized as a compilation of data, alternatives, substituting options, and some
other values that can be easily accessible when a decision must be made. Given that the effort and
time involved in gathering data or exploring alternatives impose limitations on either knowledge or its
substitutes, we can frame any reached conclusions within this limited context. Decision-making has
gained paramount significance in recent years, primarily due to its close association with achievement
and efficiency. Successful individuals attain their work and life objectives using productive adept
decision-making techniques. Decision-makers often draw upon their perspectives, values, attitudes,
concepts, and ideas to steer their choices.

While various principles can underpin decision-making, the selection of a productive approach that
enhances overall performance should be executed with care. It’s worth noting that these theories are
designed to be an assistant for individuals in improving their decision-making skills in the real world. In
recent years, there has been a rapidly growing focus on the current important issue of decision-making
in uncertain environments. In the existing body of research and practical applications, numerous
specialized mathematical tools have been extensively explored. These tools encompass fuzzy sets
[43] and vague sets [20], as well as probability theory, and various other existing mathematical
methodologies, all of which serve as valuable means for modeling uncertain data and facilitating the
formulation of effective decisions. However, each of these approaches encounters distinct challenges
when it comes to dealing with uncertainty. Probability theory, for instance, is a well-established and
effective strategy for addressing uncertainty. Nonetheless, it is limited in its applicability to situations
involving stochastic processes or events that are entirely governed by chance. One can learn more
about decision-making techniques and see more applications using multi-attribute decision-making by
referring to [22, 24, 33, 34, 39].

If we had some ordinary, fuzzy, or even vague information, then the lack of the parameterization
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tool would confuse us when dealing with some problems that require it. So, there was still a critical
need for a new extension of the ordinary set that could address this limitation. So, the innovative notion
encapsulated within the concept of the theory of the soft sets was initially formalized by Molodtsov
in 1999 [31]. One of the motivating factors for the introduction of soft set theory was a contention
that arose, suggesting that the inadequacies in the parameterization methods of preceding established
frameworks might have been a significant source of challenges and complications. The newly created
idea of the soft set theory, introduced through the softness definition framework, represents a novel and
practical mathematical tool that is unburdened by the aforementioned issues. As a result, it has been
employed for a substantial period to facilitate the management of uncertainties.

Subsequently, in 2002, Maji et al. (as documented in [29] and [30]) thoroughly investigated
and assessed Molodtsov’s soft set novel environment. In addition, they delved into various notions
pertaining to soft sets, constructed an extensive conceptual framework for this knowledge, and
subsequently incorporated it into a real-world decision-making context. Subsequently, Maji et al. [28],
in 2001, incorporated the previously-introduced idea of the fuzzy set into the softness term to create the
novel idea of fuzzy soft settings. Furthermore, a decision-making approach grounded in the fuzzy soft
set theory was developed by Roy and Maji et al. [35] to facilitate any needed selection of the optimal
item from a range of choices.

In addition, Yang et al. [42] established a matrix formulation for the fuzzy soft set theory, relying on
the underlying fuzzy soft set theory. Moreover, Çağman et al. [6] conducted an extensive exploration
of fuzzy soft matrices, as well as performing several algebraic operations and philosophical studies
in the wide new field of the fuzzy soft set environments. In that research concerning fuzzy soft
matrices, Basu et al. [3], as well as Kumar and Kaur et al. [25], introduced novel concepts as well
as their new related operations. For additional knowledge on the extended fuzzy soft settings and their
new associated properties, one could consult [9–15, 17] to access a wealth of theorems, results, and
illustrative examples.

Moreover, Alkhazaleh [1] has recently observed a constraint within the fuzzy soft set environment.
In this theory, in presented decision-making scenarios, the final resulting decision can just rely usually
on conventional parameters, with no regard for external factors. To address this limitation, Alkhazaleh
introduced a novel concept, the “effective parameter set”, as a means to represent these external
variables. Additionally, he devised another new concept which is the “effective fuzzy soft sets”, a newly
created idea based on the novel concept of effective sets. Furthermore, he specified the operations
that applied to the effective fuzzy soft sets environment as well as checked several related properties.
Alkhazaleh also demonstrated the usage of the effective fuzzy soft setting at some given decision-
making concerns. Ultimately, Alkhazaleh illustrated the utility of this innovative theory in the context
of medical diagnosis, providing a hypothetical case study to showcase the methodology.

Notwithstanding this advancement, in practical situations, the mapping can often be too imprecise,
rendering the fuzzy soft set concept inadequate for handling it. Thus, there is a need for another broader
extension. To meet this need, in 2010, Xu et al. [41] introduced the concept of the vague soft set theory
and outlined its fundamental properties. The vague soft set theory, in essence, enhances the precision,
practicality, and realism of descriptions in the world of objects, creating it as an adaptable instrument,
even in specific scenarios. More recently, Wang [40] has contributed a multitude of findings related to
the vague soft set environment, examining its linked novel properties and exploring prospective uses.
At present, Faried et al. [8], as well as Inthumathi and Pavithra [23], have presented the novel concept
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of vague soft matrices, delving into their general properties, and discussing innovative applications.
For further insights into these subjects and numerous other intriguing, interrelated topics, one can refer
to [7, 16, 18, 36, 37].

As already indicated in the discussion above, we have defined four different previously introduced
types of sets; the fuzzy set, the vague set, as well as the soft set, and the effective set. In addition, there
are composite sets that combine the aforementioned, such as the fuzzy soft set, as well as the vague
soft set, along with the newly created idea of the effective fuzzy soft set. Nevertheless, there remains a
requirement to expand the definition of the novel concept of the effective fuzzy soft set to another wider
domain, which is the effective vague soft environment, particularly to address issues characterized by
a high degree of vagueness. For instance, this high degree of vagueness occurs when all types of the
issue information we have are vague. This means that the problem inputs can include one or more
vague soft sets along with a vague effective set. In addition, the resulting sets or the outputs are also
vague such as the effective vague soft set or the matrices, etc.

In essence, the motivation for this research stems from the necessity to provide a comprehensive
framework that encompasses all the preceding types of sets. This need becomes apparent when we
encounter situations involving vague, soft data and the inclusion of effective parameters. The effective
vague soft set is ideally suited to fulfill this need by consolidating all the relevant conditions within
a unified, generalized definition. In detail, the actual need for this research occurs when we have a
decision-making problem that contains some vague soft information along with some external factors
that impact the problem. These external factors are very important and should be considered because
of their impact on the final decision. These external factors are the effective parameters. For instance,
if we have students with some marks, then we can’t use only their marks to specify their future track,
but also their life skills, etc. can be very important factors in the final decision of their life. The vague
soft set theory falls short in addressing this type of decision-making problem. So, we need to introduce
the effective vague soft theory.

Consequently, this current article presents the concept of the effective vague soft set, delineating its
various categories, properties, operational rules, and practical applications in the realm of educational
science. The subsequent sections of this work are structured as the following: Section (2) is dedicated
to providing the necessary foundational concepts and definitions. In addition, the aim of section (3)
is to delve into the concept of the effective vague soft set, elucidate its various types, and introduce
several innovative related concepts. Additionally, section (4) elucidates the operations associated with
these sets, such as union and intersection. Moving forward, section (5) consolidates various pertinent
properties, including De Morgan’s laws, associative properties, commutative properties, distributive
laws, and absorption properties. Furthermore, the primary objective of section (6) is to develop an
algorithm of decision-making relying on the framework of the effective vague soft set.

This algorithm facilitates the process of determining, for instance, whether a patient is afflicted with
a specific ailment or if a student meets the qualifications to enroll in a particular educational program.
The procedural steps involved in this algorithm are introduced, and matrices are employed to streamline
the computational aspects. The article also presents a detailed example that illustrates how to
categorize college students into specialized fields based on their academic performance and life skills.
Moreover, the Wol f ram Mathematica® software is employed for executing both matrix addition
and multiplication operations, facilitating the derivation of effective sets and expediting calculations
with precision and ease. Additionally, towards the end of section (6), we conduct a comprehensive
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comparative analysis. This detailed examination serves to underscore the differences between the
current methodology and existing approaches. The outcomes of this comparative assessment are also
succinctly presented in a chart. In the end, section (7) is designated for presenting concluding important
remarks as well as delineating potential future avenues of research. To outline the paper content, Figure
1 shows the structural organization of the paper’s content.

Figure 1. Paper content.

2. Preliminaries

The following part discusses the essential basic definitions that are required in the results that follow.
This section contains definitions for the fuzzy set, the vague set, and the soft set, as well as the vague
soft set, the effective fuzzy set, and the effective fuzzy soft set. Moreover, the arithmetic operations on
closed intervals and some methods to transform vague sets into fuzzy sets are discussed. One can refer
to [1, 20, 21, 26, 27, 31, 32, 38, 41, 43] to find more detailed results, explanations and examples about
those above concepts.

Definition 2.1. (Fuzzy set) [43] Suppose we have an initial universe denoted as Ξ. In such a scenario,
we can define a fuzzy class (or set) 𭟋 over Ξ as a set characterized by a characteristic function χ𭟋 :
Ξ→ [0, 1]. The term χ𭟋 can also be referred to as the indicator function or the membership function of
the fuzzy set 𭟋. Additionally, χ𭟋(u) is recognized as the degree of membership or the membership grade
value of an element ξ in Ξ within the fuzzy set 𭟋. In this context, the fuzzy set 𭟋 over the initial universal
set Ξ can be expressed through one of the sequel two forms: 𭟋 = {(χ𭟋(ξ)/ξ) : ξ ∈ Ξ, χ𭟋(ξ) ∈ [0, 1]},
or 𭟋 = {(ξ, χ𭟋(ξ)) : ξ ∈ Ξ, χ𭟋(ξ) ∈ [0, 1]}.

Definition 2.2. (Vague set) [20] Suppose we have the universal set Ξ represented as ξ1, ξ2, ..., ξn. In
this context, a vague set V over Ξ is defined by two functions: a truth membership function denoted
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as τV and a false membership function referred to as ηV . The precise membership grade of an element
ξ ∈ Ξ (noted as ζV(ξ)) falls within an interval [τV(ξ), 1 − ηV(ξ)], which is a subset of the range [0, 1].
Essentially, this means that ζV(ξ) might not be precisely determined, but it is constrained within the
bounds of τV(ξ) ≤ ζV(ξ) ≤ 1 − ηV(ξ). It’s important to note that τV(ξ) + ηV(ξ) ≤ 1, and the functions
τV and ηV are both defined as mappings from Ξ to the interval [0, 1]. We can represent the vague
set V in one of two forms: either as V = ([τV(ξ), 1 − ηV(ξ)]/ξ) : ξ ∈ Ξ, ; τV(ξ), ηV(ξ) ∈ [0, 1], or as
V = (ξ, [τV(ξ), 1 − ηV(ξ)]) : ξ ∈ Ξ, ; τV(ξ), ηV(ξ) ∈ [0, 1].

Remark 2.1. [20] Interval containment happens naturally as follows: [a, b] ≤ [c, d] ⇔ a ≥ c and
b ≤ d.

Definition 2.3. (Arithmetic operations on closed intervals)( [21, 32]) Let ⋆ represent any of
the four basic arithmetic operations applied to closed intervals: addition “+”, subtraction “−”,
multiplication (or product) “·”, (or “×”), and division “/”. Consequently, [a, b] ⋆ [c, d] =
x ⋆ y : a ≤ x ≤ b, c ≤ y ≤ d. This is a fundamental property that applies to all arithmetic operations
on closed intervals, with the exception that [a, b]/[c, d] is not defined if 0 ∈ [c, d]. In other words,
the outcome of an arithmetic operation involving closed intervals remains a closed interval. The four
basic arithmetic operations on closed intervals are formally defined, using the endpoints of the two
intervals, as the following:

1. Addition operation: [a, b] + [c, d] = [a + c, b + d].

2. Subtraction operation: [a, b] − [c, d] = [a − d, b − c].

3. Multiplication operation: [a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)].

4. Division operation: Provided that 0 < [c, d], we have:
[a, b]/[c, d] = [a, b] · [1/d, 1/c] = [min(a/c, a/d, b/c, b/d),max(a/c, a/d, b/c, b/d)].

Remark 2.2. The multiplication (or product) operation for vague values takes the following form:
[a, b] · [c, d] = [ac, bd] since all values lie between zero and one. In addition, the formula of the
division operation for vague values is as follows: [a, b]/[c, d] = [a/d, b/c], provided that c, d , 0.

Lemma 2.1. (Converting vague sets to fuzzy sets) If V(Ξ) represents the collection of all vague sets
across the universe Ξ, then, for every V ∈ V(Ξ), as well as for each ξ ∈ Ξ and its associated vague
value [τV(ξ), 1 − ηV(ξ)], the fuzzy membership function ηVF (ξ) can be defined. Here, VF denotes the
fuzzy set corresponding to the vague set V. This fuzzy membership function is expressed as follows:

Method (1) : ηVF (ξ) =
1 + τV(ξ) − ηV(ξ)

2
. (2.1)

Method (1) ( [26]) was created using the median concept. The fuzzy set membership value (the
corresponding vague set membership value) can be determined by calculating the corresponding
median membership value of the corresponding true and false membership values. In other words,
the fuzzy value is defined as the total amount of evidence incorporated in a vague value represented by
the median membership value.

Method (2) : ηVF (ξ) =
τV(ξ)

τV(ξ) + ηV(ξ)
. (2.2)
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Method (2) ( [26]) is derived using the defuzzification function. The fuzzy set membership value can
be obtained by calculating the related defuzzification value of the relevant true and false membership
values.

Method (3) : ηVF (ξ) = τV(ξ) +
1
2
× [1 +

τV(ξ) − ηV(ξ)
τV(ξ) + ηV(ξ) + 2

][1 − τV(ξ) − ηV(ξ)]. (2.3)

Method (3) ( [27]) investigates the mapping between the elements of imprecise sets and points on
a plane. It is discovered that the transition of a vague set into a fuzzy set is a many-to-one mapping
relation. It is also discovered to be a generic transformation model for converting fuzzy set membership
values to vague set membership values.
For more information on the distinctions between Methods (1), (2), and (3) and what they represent,
see [26, 27, 38].

Definition 2.4. (Soft set) [31] Consider an initial universe denoted as Ξ, a collection of attributes (or
parameters) labeled as Υ, and a subset Λ of Υ. In addition, we have the power set of Ξ constructed
from P(Ξ) = 2Ξ. In this context, a pair denoted as (ℶ,Λ), or simply ℶΛ, is defined as a soft set over the
universal set Ξ, with the understanding that ℶ is a mapping symbolized as ℶ : Λ→ P(Ξ). Furthermore,
ℶΛ can be articulated as a collection of ordered pairs: ℶΛ = (λ,ℶΛ(λ)) : λ ∈ Λ,ℶΛ(λ) ∈ P(Ξ). In this
context, Λ is referred to as the support of ℶΛ, and it’s important to note that ℶΛ(λ) , ϕ for any λ ∈ Λ
and ℶΛ(λ) = ϕ for any λ < Λ. This essentially implies that a soft set (ℶ,Λ) over Ξ can be viewed as a
parameterized collection of subsets of Ξ.

Definition 2.5. (Vague soft set) [41] Let’s consider a scenario where Ξ represents the universal set, Υ
is the parameter set, and Λ is a subset of Υ. In this context, we define a pair denoted as (ℶ,Λ), which
is expressed as ℶΛ = (λ,ℶΛ(λ)) : λ ∈ Λ,ℶΛ(λ) ∈ V(Ξ). This combination is referred to as a vague soft
set over the universal set Ξ. Here, ℶ is a mapping, defined as ℶ : Λ → V(Ξ), and V(Ξ) represents
the power set of vague sets on Ξ, which essentially encompasses the entire family of vague subsets of
Ξ following the definition outlined previously in Definition (2.2).

Definition 2.6. (Effective fuzzy set) [1] An effective fuzzy set is characterized as a fuzzy set ℸ defined
over the universal set ∆, with ℸ represented by the mapping ℸ : ∆ → [0, 1]. Here, ∆ encompasses
the collection of all effective attributes or parameters capable of influencing the membership value of
each element. It exerts a positive impact on the membership values of the elements once it’s applied to
them. It’s worth noting that, in certain instances, a few membership values stay unaltered even after
the application. ℸ can be expressed using the sequel formulation: ℸ = (δ, ϱℸ(δ)), δ ∈ ∆, where ϱℸ(δ)
signifies the effective membership value for a given δ ∈ ∆.

Definition 2.7. (Effective fuzzy soft set) [1] Given an initial universal set Ξ, the collection of all fuzzy
subsets of Ξ can be denoted as F(Ξ). Let’s assume that υi ∈ Υ represents the conventional parameters,
along with considering that ∆ represents the set of effective parameters, as well as ℸ represents the
effective set over ∆. In this context, we refer to the pair (Ψℸ,Υ) as an effective fuzzy soft set over Ξ,
with the understanding that the mapping Ψ : ∆ → F(Ξ) is defined according to the sequel expression:
Ψ(δi)ℸ = (ξ j, χΨ(ξ j)ℸ), ξ j ∈ Ξ, δi ∈ ∆. The following holds true for all δk ∈ ∆,

χΨ(ξ j, υi)ℸ =


χΨ(ξ j, υi) +

(1−χΨ(ξ j,υi))
∑

k ϱℸξ j
(δk)

|∆|
, i f χΨ(ξ j, υi) ∈ (0, 1),

χΨ(ξ j), otherwise.

(2.4)
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In this above context, |∆| represents the count of elements within the provided effective parameter set
∆, χΨ(ξ j, υi) denotes the membership degree value of the item ξ j concerning the parameter υi, as well
as
∑

k ϱℸξ j
(δk) signifies the total of all effective parameter values associated with ξ j.

Example 2.1. Suppose starting with an initial universal set Ξ containing elements ξ1, ξ2, and ξ3, and
a parameter set Υ consisting of υ1, υ2, and υ3. Let’s consider the fuzzy soft set for the parameter υ1:
(Ψ,Υ)(υ1) = {(ξ1, 0.3), (ξ2, 0.7), (ξ3, 0.5)}. To determine the effective membership value for the first
element ξ1, which has a membership value of 0.3 for the first parameter υ1, we need to consider the
given effective set ℸ for ξ1: ℸ(ξ1) = {(δ1, 0.8), (δ2, 1), (δ3, 0), (δ4, 0.2)}, Here, δ1, δ2, δ3, and δ4 represent
the effective parameters provided. We calculate the effective membership value using Formula 2.4 from
Definition (2.7) as follows:

χΨ(ξ1, υ1)ℸ = 0.3 +
(1 − 0.3)(0.8 + 1 + 0 + 0.2)

4
= 0.3 +

0.7 × 2
4

= 0.3 + 0.35 = 0.65.

In a similar way, we can compute the effective membership values for the remaining membership values
of ξ1 for the other two parameters, υ2 and υ3, and also for the other two elements, ξ2 and ξ3. For a
more detailed example illustrating this definition, please refer to [1], page 3.

Remark 2.3. For the sake of simplicity, in place of detailing the entire complex Formula 2.4 stated
in Definition 2.7, we may represent the effective membership value χΨ(ξ j, υi)ℸ corresponding to
the membership value χΨ(ξ j, υi) of a particular element ξ j for a given parameter υi as χℸ. This
abbreviation is especially applicable when we are solely referring to the fuzzy soft set Ψ. Furthermore,
we can streamline ϱµξ j

as ϱµ. However, if we are dealing with two or more fuzzy soft sets, such as Ψ1

and Ψ2, we should utilize the complete formulas χΨ1(ξ j, υi) and χΨ2(ξ j, υi) to distinguish between them,
respectively.

3. Effective vague soft sets

The main purpose of this section is to define the effective vague set and the effective vague soft set,
as well as to illustrate them with examples. Additionally, some kinds and several related concepts of
effective vague soft sets are conducted.

Definition 3.1. (Effective vague set) An effective vague set is characterized as a vague set µ defined
over the universal set ∆, with µ being determined by the mapping µ : ∆ → [0, 1]. It can be affirmed
that ∆ represents the collection of all pertinent parameters or attributes capable of influencing the
truth membership function τ and the false membership function η of each element. This influence
manifests positively in the truth and false membership values of the elements subsequent to its
application. It is worth noting that in certain scenarios, certain truth and false membership values
remain unaltered even after this application. µ can be expressed through the subsequent formula:
µ = (δ, [αµ(δ), 1 − βµ(δ)]), δ ∈ ∆, where αµ(δ) and βµ(δ) denote the effective truth membership value
and the effective false membership value for a given δ ∈ ∆, respectively.

Definition 3.2. (Effective vague soft set) Given an initial universal set Ξ, we can represent the
collection of all vague subsets on Ξ as V(Ξ). Let’s assume that Υ denotes the parameter set, ∆
signifies the effective parameter set, and µ is the effective set defined over ∆. In this context, we refer
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to the pair (Ψµ,Υ) as an effective vague soft set over Ξ, and this nomenclature takes into consideration
that the mapping Ψ : ∆→V(Ξ) can be defined using the following formula:

Ψ(δi)µ = {(ξ j, [τΨ(ξ j)µ, 1 − ηΨ(ξ j)µ], ξ j ∈ Ξ, δi ∈ ∆},

taking into account that, for each δk ∈ ∆, the following are satisfied:

τµ =

 τ + (1−τ)
∑

k αµ(δk)
|∆|

, i f τ ∈ (0, 1),
τ, otherwise,

(3.1)

and

1 − ηµ =
 1 − η + η

∑
k 1−βµ(δk)
|∆|

, i f η ∈ (0, 1),
η, otherwise,

(3.2)

regarding that |∆| represents the count of elements within the provided ∆, the set of the effective
parameters.

Example 3.1. If we are given an initial universal set Ξ comprising elements ξ1, ξ2, and ξ3, and a
parameter set Υ containing elements υ1, υ2, and υ3, then consider the vague soft set associated with
the parameter υ1 as follows:

(Ψ,Υ)(υ1) = {(ξ1, [0.1, 0.3]), (ξ2, [0.6, 0.7]), (ξ3, [0.4, 0.5])}.

Next, in order to determine the effective membership value for the initial item ξ1, given a membership
value of 0.3 for the initial parameter υ1, and the provided effective set µ for ξ1:

µ(ξ1) = {(δ1, [0.6, 0.8]), (δ2, [0.8, 1]), (δ3, [0, 0.1]), (δ4, [0.2, 0.3])},

where δ1, δ2, δ3 and δ4 are the provided effective parameters, we perform the following calculation
using Formula 3.1 and Formula 3.2 from Definition (3.2):

[τΨ, 1 − ηΨ](ξ1, υ1)µ = [0.1, 0.3] +
([1, 1] − [0.1, 0.3])([0.6, 0.8] + [0.8, 1] + [0, 0.1] + [0.2, 0.3])

4

= [0.1, 0.3] +
[0.9, 0.7] × [1.6, 2.2]

4
= [0.1, 0.3] + [0.36, 0.385] = [0.46, 0.685].

Likewise, we can compute the effective membership values for the remaining membership values of ξ1
concerning the two other parameters, υ2 and υ3, and also extend this computation to the other two
items, ξ2 and ξ3.

Example 3.2. Consider a universal set of houses denoted as Ξ, consisting of properties like ξ1, ξ2,
and ξ3, all of which are being considered for purchase. The set of attributes used to describe these
properties includes Υ, where Υ is defined as υi, i = 1, 2, · · · , 6. In this context, υ1 represents proximity
to the city center, υ2 indicates a green surrounding, υ3 signifies a high cost, υ4 relates to a large
size, υ5 pertains to being within a stacked apartment complex, and υ6 refers to a luxurious design.
Furthermore, let’s assume that ∆ = δ j, j = 1, 2, 3, 4 represents a set of parameters with an impact on
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the properties, where δ1 relates to the property having had previous occupants, δ2 signifies the presence
of a broker fee, δ3 relates to the absence of an elevator, and δ4 indicates that the property lacks the
necessary licensing. According to expert evaluations, the effective vague set for each of the houses in
Ξ (ξk, k = 1, 2, 3) can be described as follows:

µ(ξ1) = {(δ1, [0.5, 0.6]), (δ2, [0.7, 0.8]), (δ3, [0.1, 0.2]), (δ4, [0.9, 1])},

µ(ξ2) = {(δ1, [0.3, 0.4]), (δ2, [0.8, 0.9]), (δ3, [0.6, 0.7]), (δ4, [0.4, 0.5])},

µ(ξ3) = {(δ1, [0.1, 0.2]), (δ2, [0.2, 0.3]), (δ3, [0, 0.1]), (δ4, [0.3, 0.4])}.

Moreover, the appeal of the mentioned houses in line with the buyer’s inclinations can be represented
through a vague soft set (Ψ,Υ) within the universal set Ξ in the following manner:

(Ψ,Υ) = {(υ1, {(ξ1, [0.3, 0.4]), (ξ2, [0.8, 0.9]), (ξ3, [0.6, 0.7])}),
(υ2, {(ξ1, [0.5, 0.6]), (ξ2, [0.1, 0.2]), (ξ3, [0.9, 1])}),
(υ3, {(ξ1, [0.7, 0.8]), (ξ2, [0.4, 0.5]), (ξ3, [0.2, 0.3])})
(υ4, {(ξ1, [0.9, 1]), (ξ2, [0.6, 0.7]), (ξ3, [0.8, 0.9])})
(υ5, {(ξ1, [0, 0.1]), (ξ2, [0.3, 0.4]), (ξ3, [0.5, 0.6])})
(υ6, {(ξ1, [0.8, 0.9]), (ξ2, [0.2, 0.3]), (ξ3, [0.7, 0.8])})}.

Then, by using Formula 3.1 and Formula 3.2 from Definition (3.2), We possess the effective vague soft
set (Ψµ,Υ) across the universal set Ξ, effectively portraying the appeal of the aforementioned houses
as follows:

(Ψµ,Υ) = {(υ1, {(ξ1, [0.685, 0.79]), (ξ2, [0.905, 0.9625]), (ξ3, [0.66, 0.775])}),
(υ2, {(ξ1, [0.775, 0.86]), (ξ2, [0.5725, 0.7]), (ξ3, [0.915, 1])}),
(υ3, {(ξ1, [0.865, 0.93]), (ξ2, [0.715, 0.8125]), (ξ3, [0.32, 0.475])})
(υ4, {(ξ1, [0.955, 1]), (ξ2, [0.81, 0.8875]), (ξ3, [0.83, 0.925])})
(υ5, {(ξ1, [0.55, 0.685]), (ξ2, [0.6675, 0.775]), (ξ3, [0.575, 0.7])})
(υ6, {(ξ1, [0.91, 0.965]), (ξ2, [0.62, 0.7375]), (ξ3, [0.745, 0.85])})}.

(3.3)

The description provided by (Ψµ,Υ) can assist the buyer in making an informed decision regarding the
most suitable house for their needs and preferences.

Remark 3.1. The above effective vague soft set (Ψµ,Υ) 3.3 from Example (3.2) is easier to handle
when represented in a matrix form as follows:

A =

υ1 υ2 υ3 υ4 υ5 υ6


ξ1 [0.68, 0.79] [0.77, 0.86] [0.86, 0.93] [0.95, 1] [0.55, 0.68] [0.91, 0.96]

ξ2 [0.9, 0.96] [0.57, 0.7] [0.71, 0.81] [0.81, 0.88] [0.66, 0.77] [0.62, 0.73]

ξ3 [0.66, 0.77] [0.91, 1] [0.32, 0.47] [0.83, 0.92] [0.57, 0.7] [0.74, 0.85]

,
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We can call A the effective vague soft matrix that is associated with the effective vague soft set (Ψµ,Υ).

Definition 3.3. (Complete effective vague soft set) Let’s consider an initial universe denoted as Ξ,
and let’s also assume the presence of a set of parameters Υ. Therefore, we can refer to any effective
vague soft set (Ψµ,Υ) defined over the initial universe Ξ and constructed using an effective set µ as an
absolute (or complete) vague soft set, represented as (Cµ,Υ). This absolute set is defined as follows:
for each υ ∈ Υ, it holds that ΨΥ(υ)µ = BMF(Ξ), meaning that τΨΥ(υ)(ξ)µ = 1 and ηΨΥ(υ)(ξ)µ = 0
for all υ ∈ Υ. In other words, for each υ ∈ Υ and every ξ ∈ Ξ, the absolute set is represented as
(Cµ,Υ) = (υ, ξ, [1, 1]) : υ ∈ Υ, ξ ∈ Ξ.

Definition 3.4. (Null effective vague soft set) Let’s consider that Ξ serves as the initial universal set,
and assuming the existence of a parameter set Υ, any effective vague soft set denoted as (Ψµ,Υ) in
this initial universe Ξ, constructed with the aid of an effective set µ, is termed as an empty (or null)
vague soft set, denoted as (Φµ,Υ). This empty set is characterized by the following property: for each
υ ∈ Υ, one can find that ΨΥ(υ)µ = ϕ. In other words, τΨΥ(υ)(ξ)µ = 0 and ηΨΥ(υ)(ξ)µ = 1 for
every υ ∈ Υ. This signifies that for each υ ∈ Υ and every ξ ∈ Ξ, the empty set is represented as
(Φµ,Υ) = (υ, ξ, [0, 0]) : υ ∈ Υ, ξ ∈ Ξ.

4. Effective vague soft operations

The primary goal of this section is to present operations on effective vague soft sets. Union,
intersection, complement, subset, and many other operations are established. Furthermore, for each
operation, an example is provided to demonstrate how this operation can be performed.

Definition 4.1. (Union of two effective vague soft sets) Supposing that Ξ serves as an initial universal
set, letting Υ1 and Υ2 represent two sets of parameters, as well as considering µ1 and µ2 as two sets
of effective parameters defined over ∆, one can have the operation of the union for two effective vague
soft sets denoted as (Ψ1µ1 ,Υ1) and (Ψ2µ2 ,Υ2), over the initial universal set Ξ can be represented as
a new resulting effective vague soft set, labeled as (ΨUµU ,ΥU). The effective set µU is described as
(δ, [αU(δ), 1 − βU(δ)]), δ ∈ ∆. The effective truth membership union value, αU , and the effective false
membership union value, βU , are characterized by [αU , 1−βU] = [α1, 1−β1]∪̃[α2, 1−β2], where α1, α2,
β1, and β2 represent the effective truth membership values and the effective false membership values
associated with µ1 and µ2, respectively. Furthermore, in the case of two vague soft sets, denoted as
(Ψ1,Υ1) and (Ψ2,Υ2), we find that (Ψ,Υ)U = (ΨU ,ΥU) = (Ψ1,Υ1)∪̃(Ψ2,Υ2). It’s important to note
that this operation takes into consideration that ΥU = Υ1 ∪ Υ2. The following formulas can be used to
calculate αU and βU for every ξ ∈ Ξ:

αµU
ξ
(δ) =


αµ1ξ(δ), i f δ ∈ µ1 − µ2,

αµ2ξ(δ), i f δ ∈ µ2 − µ1,

max{αµ1ξ(δ), αµ2ξ(δ)}, i f δ ∈ µ1 ∩ µ2,

(4.1)

βµU
ξ
(δ) =


βµ1ξ(δ), i f δ ∈ µ1 − µ2,

βµ2ξ(δ), i f δ ∈ µ2 − µ1,

min{βµ1ξ(δ), βµ2ξ(δ)}, i f δ ∈ µ1 ∩ µ2,

(4.2)
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for each δ ∈ ∆. In addition, for all ξ ∈ Ξ and for all υ ∈ ΥU , we can determine the formula that
compute (ΨU ,ΥU) = (Ψ1,Υ1)∪̃(Ψ2,Υ2) as follows:

(ΨU ,ΥU) =


{(υ, {ξ, [τΨ1(υ)(ξ)µ, 1 − ηΨ1(υ)(ξ)µ]}), ξ ∈ Ξ}, i f υ ∈ Υ1 − Υ2,

{(υ, {ξ, [τΨ2(υ)(ξ)µ, 1 − ηΨ2(υ)(ξ)µ]}), ξ ∈ Ξ}, i f υ ∈ Υ2 − Υ1,

{(υ, {ξ, [max{τΨ1(υ)(ξ)µ, τΨ2(υ)(ξ)µ},
min{ηΨ1(υ)(ξ)µ, ηΨ1(υ)(ξ)µ}]}), ξ ∈ Ξ}, i f υ ∈ Υ1 ∩ Υ2.

(4.3)

Example 4.1. Under assumptions of Example (3.2), one can define two effective sets µ1 and µ2 over
∆ = {δ1, δ2, δ3, δ4}, for ξ1 and ξ2, as follows:

µ1(ξ1) = {(δ1, [0.4, 0.5]), (δ2, [0.2, 0.3]), (δ3, [0.7, 0.8]), (δ4, [0.6, 0.7])},

µ1(ξ2) = {(δ1, [0.5, 0.6]), (δ2, [0.1, 0.2]), (δ3, [0.9, 1]), (δ4, [0.8, 0.9])},

µ2(ξ1) = {(δ1, [0.6, 0.7]), (δ2, [0.3, 0.4]), (δ3, [0.4, 0.5]), (δ4, [0.5, 0.6])},

µ2(ξ2) = {(δ1, [0.1, 0.2]), (δ2, [0, 0.1]), (δ3, [1, 1]), (δ4, [0, 0])},

respectively, associated with the following two vague soft sets (Ψ1,Υ1) and (Ψ2,Υ2), over a universal
set Ξ:

(Ψ1,Υ1) = {(υ1, {(ξ1, [0.7, 0.8]), (ξ2, [0, 0.1]), (υ2, {(ξ1, [0.9, 1]), (ξ2, [0.6, 0.7]),
(υ3, {(ξ1, [0.1, 0.2]), (ξ2, [0, 0])})},

(Ψ2,Υ2) = {(υ1, {(ξ1, [0.5, 0.6]), (ξ2, [0.3, 0.4]), (υ2, {(ξ1, [1, 1]), (ξ2, [0.8, 0.9]),
(υ3, {(ξ1, [0.4, 0.5]), (ξ2, [0.2, 0.3])})}.

Then, one can calculate the union of the two effective sets µU , applying Formula 4.1 and Formula 4.2
from Definition (4.1), as follows:

µU(ξ1) = {(δ1, [0.6, 0.7]), (δ2, [0.3, 0.4]), (δ3, [0.7, 0.8]), (δ4, [0.6, 0.7])},

µU(ξ2) = {(δ1, [0.5, 0.6]), (δ2, [0.1, 0.2]), (δ3, [1, 1]), (δ4, [0.8, 0.9])}.

In addition, compute the union of the two vague soft sets (Ψ1,Υ1) and (Ψ2,Υ2), namely (Ψ,Υ)U =

(ΨU ,ΥU), where ΥU = Υ1 ∪ Υ2, by making use of Formula 4.3 from Definition (4.1), as shown below:

(ΨU ,ΥU) = {(υ1, {(ξ1, [0.7, 0.8]), (ξ2, [0.3, 0.4]), (υ2, {(ξ1, [1, 1]), (ξ2, [0.8, 0.9]),
(υ3, {(ξ1, [0.4, 0.5]), (ξ2, [0.2, 0.3])})}.

Finally, computing effective union of vague soft sets, namely (ΨU
µU ,Υ

U) using Formula 3.1 and Formula
3.2 from Definition (3.2), results in the following:

(ΨU
µU ,Υ

U) = {(υ1, {(ξ1, [0.865, 0.93]), (ξ2, [0.72, 0.805]), (υ2, {(ξ1, [1, 1]), (ξ2, [0.92, 0.9675]),

(υ3, {(ξ1, [0.73, 0.825]), (ξ2, [0.68, 0.7725])})}.
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Definition 4.2. (Restricted union of two effective vague soft sets) Assuming that Ξ serves as an
initial universal set and considering the presence of two sets of parameters, namely, Υ1 and Υ2,
along with two sets of effective parameters, namely, µ1 and µ2 defined over ∆, one can define
the operation of the restricted union of two effective vague soft sets (Ψ1µ1 ,Υ1) and (Ψ2µ2 ,Υ2) on
the given initial universal set Ξ as a new resulting effective vague soft set (ΨUR

µUR
,ΥUR), taking

into account that µUR = {(δ, [αUR(δ), 1 − βUR(δ)]), δ ∈ ∆}. The effective truth membership union
value αUR : ∆ → [0, 1] and the effective false membership union value βUR : ∆ → [0, 1] are
then determined by [αUR , 1 − βUR] = [α1, 1 − β1]∪̃R[α2, 1 − β2], in which α1, α2, β1 and β2 are,
respectively, the effective truth membership values and the effective false membership values related
to µ1 and µ2. Furthermore, for two vague soft sets (Ψ1,Υ1) and (Ψ2,Υ2), One can obtain that
(Ψ,Υ)UR = (ΨUR ,ΥUR) = (Ψ1,Υ1)∪̃R(Ψ2,Υ2), where ΥUR = Υ1 ∩ Υ2 , ϕ and µ1 ∩ µ2 , ϕ.
For each ξ ∈ Ξ, the following formulas can be used to calculate αUR and βUR as the following:
α
µ

UR
ξ

(δ) = max{αµ1ξ(δ), αµ2ξ(δ)} and β
µ

UR
ξ

(δ) = min{βµ1ξ(δ), βµ2ξ(δ)}, for each δ ∈ ∆. Additionally, the

formula that compute (ΨUR ,ΥUR) = (Ψ1,Υ1)∪̃R(Ψ2,Υ2) can be calculated, for each υ ∈ ΥUR and ξ ∈ Ξ
as the following: (ΨUR ,ΥUR) = {(υ, {ξ, [max{τΨ1(υ)(ξ)µ, τΨ2(υ)(ξ)µ},min{ηΨ1(υ)(ξ)µ, ηΨ1(υ)(ξ)µ}]}), ξ ∈ Ξ}.

Definition 4.3. (Intersection of two effective vague soft sets) Assuming that Ξ serves as an initial
universal set, with supposing that Υ1 and Υ2 serve as two sets of parameters, and also letting µ1 and
µ2 represent two sets of effective parameters over ∆, we have the intersection operation of two effective
vague soft sets (Ψ1µ1 ,Υ1) and (Ψ2µ2 ,Υ2) on an initial universal set Ξ as another resulting effective
vague soft set (ΨI

µI ,Υ
I), keeping into account that µI = {(δ, [αI(δ), 1−βI(δ)]), δ ∈ ∆}. The effective truth

membership intersection value αI : ∆ → [0, 1] as well as the effective false membership intersection
value βI : ∆→ [0, 1] can be determined by [αI , 1 − βI] = [α1, 1 − β1]∩̃[α2, 1 − β2], taking into account
that α1, α2, β1 and β2 represent the effective truth membership values as well as the effective false
membership values associated with µ1 and µ2, respectively. Moreover, for two vague soft sets (Ψ1,Υ1)
and (Ψ2,Υ2), we have (Ψ,Υ)I = (ΨI ,ΥI) = (Ψ1,Υ1)∩̃(Ψ2,Υ2), where ΥI = Υ1 ∪ Υ2. For each ξ ∈ Ξ,
the following formulas can be used to calculate αI as well as βI , as follows:

αµI
ξ
(δ) =


αµ1ξ(δ), i f δ ∈ µ1 − µ2,

αµ2ξ(δ), i f δ ∈ µ2 − µ1,

min{αµ1ξ(δ), αµ2ξ(δ)}, i f δ ∈ µ1 ∩ µ2,

(4.4)

βµI
ξ
(δ) =


βµ1ξ(δ), i f δ ∈ µ1 − µ2,

βµ2ξ(δ), i f δ ∈ µ2 − µ1,

max{βµ1ξ(δ), βµ2ξ(δ)}, i f δ ∈ µ1 ∩ µ2,

(4.5)

for all δ ∈ ∆. Moreover, the formula used to compute (ΨI ,ΥI) = (Ψ1,Υ1)∩̃(Ψ2,Υ2) can be determined,
for all ξ ∈ Ξ and for all υ ∈ ΥI as the following:

(ΨI ,ΥI) =


{(υ, {ξ, [τΨ1(υ)(ξ)µ, 1 − ηΨ1(υ)(ξ)µ]}), ξ ∈ Ξ}, i f υ ∈ Υ1 − Υ2,

{(υ, {ξ, [τΨ2(υ)(ξ)µ, 1 − ηΨ2(υ)(ξ)µ]}), ξ ∈ Ξ}, i f υ ∈ Υ2 − Υ1,

{(υ, {ξ, [min{τΨ1(υ)(ξ)µ, τΨ2(υ)(ξ)µ},
max{ηΨ1(υ)(ξ)µ, ηΨ1(υ)(ξ)µ}]}), ξ ∈ Ξ}, i f υ ∈ Υ1 ∩ Υ2.

(4.6)
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Example 4.2. One can compute the intersection of the two effective sets stated in Example (4.1), say
µI = µ1∩̃µ2, by applying Formula 4.4 and Formula 4.5 from Definition (4.3), as the following:

µI(ξ1) = {(δ1, [0.4, 0.5]), (δ2, [0.2, 0.3]), (δ3, [0.4, 0.5]), (δ4, [0.5, 0.6])},

µI(ξ2) = {(δ1, [0.1, 0.2]), (δ2, [0, 0.1]), (δ3, [0.9, 1]), (δ4, [0, 0])}.

Also, compute the intersection of the two vague soft sets (Ψ1,Υ1) and (Ψ2,Υ2) stated in Example 4.1,
say (Ψ,Υ)I = (ΨI ,ΥI), where ΥI = Υ1 ∪ Υ2, by making use of Formula 4.6 from Definition (4.3), as
shown below:

(ΨI ,ΥI) = {(υ1, {(ξ1, [0.5, 0.6]), (ξ2, [0, 0.1]), (υ2, {(ξ1, [0.9, 1]), (ξ2, [0.6, 0.7]),
(υ3, {(ξ1, [0.1, 0.2]), (ξ2, [0, 0])})},

Then, computing effective intersection of vague soft sets (ΨI
µI ,Υ

I) using Formula 3.1 and Formula 3.2
from Definition (3.2), results:

(ΨI
µI ,Υ

I) = {(υ1, {(ξ1, [0.6875, 0.79]), (ξ2, [0.25, 0.3925]), (υ2, {(ξ1, [0.9375, 1]),

(ξ2, [0.7, 0.7975]), (υ3, {(ξ1, [0.13, 0.2]), (ξ2, [0, 0])})}.

Definition 4.4. (Restricted intersection of two effective vague soft sets) By letting the set Ξ represent
the initial universal set, as well as assuming that Υ1 and Υ2 are two sets of parameters, along
with considering that µ1 and µ2 are two sets of effective parameters over ∆, one can determine
the operation of the restricted intersection of two effective vague soft sets (Ψ1µ1 ,Υ1) and (Ψ2µ2 ,Υ2)
on the initial universal set Ξ as another resulting effective vague soft set (ΨIR

µIR
,ΥIR), in which

µIR = {(δ, [αIR(δ), 1 − βIR(δ)]), δ ∈ ∆}. The effective truth membership union value αIR : ∆ → [0, 1]
as well as the effective false membership union value βIR : ∆ → [0, 1] can be determined by
[αIR , 1 − βIR] = [α1, 1 − β1]∩̃R[α2, 1 − β2], keeping into account that α1, α2, β1 and β2 are the
effective truth membership values as well as the effective false membership values related, respectively,
with µ1 and µ2. Furthermore, for two vague soft sets (Ψ1,Υ1) and (Ψ2,Υ2), one has (Ψ,Υ)IR =

(ΨIR ,ΥIR) = (Ψ1,Υ1)∩̃R(Ψ2,Υ2), where ΥIR = Υ1 ∩ Υ2 , ϕ and µ1 ∩ µ2 , ϕ. One can present
the formulas for computing αIR and βIR , for each ξ ∈ Ξ, as follows α

µ
IR
ξ

(δ) = min{αµ1ξ(δ), αµ2ξ(δ)}
and β

µ
IR
ξ

(δ) = max{βµ1ξ(δ), βµ2ξ(δ)}, for each δ ∈ ∆. Moreover, the formula that can be used to

compute (ΨIR ,ΥIR) = (Ψ1,Υ1)∩̃R(Ψ2,Υ2) may be given, for each υ ∈ ΥIR and ξ ∈ Ξ, by the following:
(ΨIR ,ΥIR) = {(υ, {ξ, [min{τΨ1(υ)(ξ)µ, τΨ2(υ)(ξ)µ},max{ηΨ1(υ)(ξ)µ, ηΨ1(υ)(ξ)µ}]}), ξ ∈ Ξ}.

Definition 4.5. (Subset of effective vague soft set) Letting Ξ represents an initial universal set,
considering that Υ1 and Υ2 are two sets of parameters, supposing that µ1 and µ2 are two effective
sets of parameters over ∆, and assuming that (Ψ1µ1 ,Υ1) and (Ψ2µ2 ,Υ2) are two effective vague soft sets
on a universal set Ξ, one can call (Ψ1µ1 ,Υ1) an effective vague soft subset of (Ψ2µ2 ,Υ2) if, for all ξ ∈ Ξ,
the following conditions hold:

1. µ1 ⊆ µ2, i.e., αµ1ξ(δ) ≤ αµ2ξ(δ) and βµ2ξ(δ) ≤ βµ1ξ(δ), for all δ ∈ ∆,

2. Υ1 ⊆ Υ2, that is to say that the ordinary inclusion (usual subset) is satisfied, and

3. For every υ ∈ Υ1, Ψ1(υ) ⊆ Ψ2(υ), i.e., τΨ1(υ)(ξ) ≤ τΨ2(υ)(ξ) as well as ηΨ2(υ)(ξ) ≤ ηΨ1(υ)(ξ).
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In this context, the following formula can be written (Ψ1µ1 ,Υ1)⊆̃(Ψ2µ2 ,Υ2). In addition, one can call
(Ψ2µ2 ,Υ2) an effective vague soft superset of (Ψ1µ1 ,Υ1), labeled as (Ψ2µ2 ,Υ2)⊇̃(Ψ1µ1 ,Υ1).

Definition 4.6. (Equality of two effective vague soft sets) Assuming that Ξ represents the initial
universal set, with considering that Υ1 and Υ2 are two sets of parameters, and supposing that µ1

and µ2 are two sets of effective parameters over ∆, one can call the two effective vague soft sets
(Ψ1µ1 ,Υ1) and (Ψ2µ2 ,Υ2) on an initial universe Ξ effective vague soft equal provided that each one of
them is effective vague soft subset of the other one in the same manner showed in Definition (4.5), i.e.,
(Ψ1µ1 ,Υ1)⊆̃(Ψ2µ2 ,Υ2) and (Ψ2µ2 ,Υ2)⊆̃(Ψ1µ1 ,Υ1).

Definition 4.7. (Complement of effective vague soft set) If we have the set of parameters, namely Υ,
and the set of effective parameters, namely ∆, then we can obtain the operation of the complement of
any effective vague soft set (Ψµ,Υ) on an initial universal set Ξ symbolized by (Ψµ,Υ)c = (Ψc

µc ,Υ).
One can have µc = {(δ, [αc(δ), 1 − βc(δ)]), δ ∈ ∆}, keeping into account that αc : ∆ → [0, 1] and
βc : ∆ → [0, 1]. The following two formulas can determine αc and βc, respectively, as follows:
αµc
ξ
(δ) = βµξ(δ) as well as βµc

ξ
(δ) = αµξ(δ), for every ξ ∈ Ξ and for every δ ∈ ∆. This means that,

µc = {(δ, [β(δ), 1 − α(δ)]), δ ∈ ∆}. Moreover, one can determine Ψc : Υ → V(Ξ) by the following
two formulas: τΨc

Υ
(υ)(ξ)µc = ηΨΥ(υ)(ξ)µc as well as ηΨc

Υ
(υ)(ξ)µc = τΨΥ(υ)(ξ)µc , for each ξ ∈ Ξ and for each

υ ∈ Υ. That is to say that, (Ψµ,Υ)c = {(υ, {ξ, [ηΨΥ(υ)(ξ)µc , 1 − τΨΥ(υ)(ξ)µc]}) : υ ∈ Υ, ξ ∈ Ξ}.

Remark 4.1. The aforementioned definitions can be expanded to include a family of sets in addition
to the scenario of just two sets. The formulas describing those definitions are readily deduced, and an
example can be provided for each.

5. Effective vague soft properties

Many important properties of effective vague soft sets are discussed in this section, including
distributive, absorption, commutative, associative, and De Morgan’s properties. In this context, the
following theorems can be proved by making use of formulas and operations declared in Definitions
(3.3), (3.4), (4.1), (4.3), (4.4), (4.5) and (4.7) of section (4).

Theorem 5.1. Assuming that Ξ represents the initial universal set, along with supposing that Υ serves
as a set of parameters, as well as considering that (Ψµ,Υ) is an effective vague soft set on the initial
universal set Ξ, produced by an effective set µ, and assuming that (Φµ,Υ) and (Cµ,Υ) are the null
effective vague soft set and the absolute effective vague soft set, respectively, on a common initial
universal set Ξ, we can find the following hold:

1. (Ψµ,Υ)∪̃(Ψµ,Υ) = (Ψµ,Υ)∩̃(Ψµ,Υ) = (Ψµ,Υ).

2. (Ψµ,Υ)∩̃(Cµ,Υ) = (Ψµ,Υ)∪̃(Φµ,Υ) = (Ψµ,Υ).

3. (Ψµ,Υ)∪̃(Cµ,Υ) = (Cµ,Υ)∪̃(Φµ,Υ) = (Cµ,Υ).

4. (Ψµ,Υ)∩̃(Φµ,Υ) = (Cµ,Υ)∩̃(Φµ,Υ) = (Φµ,Υ).

Proof. Our mission is to prove (4). By following the same method, we can prove (1), (2) and
(3). For (4) now, we want to prove that (Cµ,Υ)∩̃(Φµ,Υ) = (Φµ,Υ). In addition, (Ψµ,Υ)∩̃(Φµ,Υ) =
(Φµ,Υ) can be proved by using the same technique. Depending on Definitions (3.3) and (3.4), we
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have (Cµ,Υ) = {(υ, {ξ, [1, 1]}) : υ ∈ Υ, ξ ∈ Ξ} as well as (Φµ,Υ) = {(υ, {ξ, [0, 0]}) : υ ∈ Υ, ξ ∈ Ξ},
respectively. Let’s suppose, for Υ = Υ ∪ Υ = Υ, that

(Cµ,Υ)∩̃(Φµ,Υ) = (Ψµ,Υ)
= {(υ, {ξ, [τΨ(υ)(ξ)µ, 1 − ηΨ(υ)(ξ)µ]}) : υ ∈ Υ, ξ ∈ Ξ}
= {(υ, {ξ, [min{1, 0}µ,min{1, 0}µ]}) : υ ∈ Υ, ξ ∈ Ξ}
= {(υ, {ξ, [0, 0]}) : υ ∈ Υ, ξ ∈ Ξ} = (Φµ,Υ).

Therefore, the third case in Definition (4.3) is true depending on satisfying for υ ∈ Υ∩Υ = Υ. But, for
the first case as well as the second case, because of υ ∈ Υ − Υ = ϕ, we have no parameters.

Theorem 5.2. Supposing that Ξ serves as an initial universal set, along with considering that Υ1 and
Υ2 represent two sets of parameters, as well as assuming that (Ψ1µ,Υ1) and (Ψ2µ,Υ2) are two effective
vague soft sets, for a common effective set µ, on a universal set Ξ, one obtains the absorption properties
satisfied as follows:

1. (Ψ1µ,Υ1)∪̃((Ψ1µ,Υ1)∩̃R(Ψ2µ,Υ2)) = (Ψ1µ,Υ1).

2. (Ψ1µ,Υ1)∩̃R((Ψ1µ,Υ1)∪̃(Ψ2µ,Υ2)) = (Ψ1µ,Υ1).

Proof. In order to prove (1), suppose first that

(Ψ1µ,Υ1) = {(υ, {ξ, [τΨ1(υ)(ξ)µ, 1 − ηΨ1(υ)(ξ)µ]}) : υ ∈ Υ1, ξ ∈ Ξ},

(Ψ2µ,Υ2) = {(υ, {ξ, [τΨ2(υ)(ξ)µ, 1 − ηΨ2(υ)(ξ)µ]}) : υ ∈ Υ2, ξ ∈ Ξ}.

According to Definition (4.1), we have to show that (1) is satisfied for all sequel three cases:
(i) Given υ ∈ Υ1 − Υ2, therefore, from Definition (4.4), we have:

(Ψ3µ,Υ3) = (Ψ1µ,Υ1)∩̃R(Ψ2µ,Υ2)
= {(υ, {ξ, [τΨ3(υ)(ξ)µ, 1 − ηΨ3(υ)(ξ)µ]}) : υ ∈ Υ1 − Υ2, ξ ∈ Ξ} = ϕ.

(ii) If υ ∈ Υ2 − Υ1, then we obtain from Definition (4.4) that:

(Ψ3µ,Υ3) = (Ψ1µ,Υ1)∩̃R(Ψ2µ,Υ2)
= {(υ, {ξ, [τΨ3(υ)(ξ)µ, 1 − ηΨ3(υ)(ξ)µ]}) : υ ∈ Υ2 − Υ1, ξ ∈ Ξ} = ϕ.

Then, for (i) and (ii), by using (3) from Theorem (5.1), we have:

(Ψ4µ,Υ4) = (Ψ1µ,Υ1)∪̃(Ψ3µ,Υ3) = (Ψ1µ,Υ1)∪̃ϕ = (Ψ1µ,Υ1).

(iii) When υ ∈ Υ1 ∩ Υ2, then we obtain from Definition (4.4) that:

(Ψ3µ,Υ3)
= (Ψ1µ,Υ1)∩̃R(Ψ2µ,Υ2)
= {(υ, {ξ, [τΨ3(υ)(ξ)µ, 1 − ηΨ3(υ)(ξ)µ]}) : υ ∈ Υ1 ∩ Υ2, ξ ∈ Ξ}

= {(υ, {ξ, [min{τΨ1(υ)(ξ)µ, τΨ2(υ)(ξ)µ},max{ηΨ1(υ)(ξ)µ, ηΨ2(υ)(ξ)µ}]}) : υ ∈ Υ1 ∩ Υ2, ξ ∈ Ξ}.
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Thus, from Definition (4.1), one can obtain:

(Ψ4µ,Υ4) = (Ψ1µ,Υ1)∪̃(Ψ3µ,Υ3)
= {(υ, {ξ, [max{ηΨ1(υ)(ξ)µ,min{ηΨ1(υ)(ξ)µ, ηΨ2(υ)(ξ)µ}},

min{ηΨ1(υ)(ξ)µ,max{ηΨ1(υ)(ξ)µ, ηΨ2(υ)(ξ)µ}}]}) : υ ∈ Υ1 ∩ Υ2, ξ ∈ Ξ}

= (Ψ1µ,Υ1).

In this context, (2) can be proved directly as (1).

Corollary 5.1. Considering that Ξ is an initial universal set, as well as supposing that Υ1 and Υ2 are
two sets of parameters, we get, for two effective vague soft sets generated by a common effective set µ
on a common initial universal set (Ψ1µ,Υ1) and (Ψ2µ,Υ2), that:

(Ψ1µ,Υ1)∪̃((Ψ1µ,Υ1)∩̃R(Ψ2µ,Υ2)) = (Ψ1µ,Υ1)∩̃R((Ψ1µ,Υ1)∪̃(Ψ2µ,Υ2)) = (Ψ1µ,Υ1).

Proof. It can easily be proved by following the same steps of proofing of Theorem (5.2).

Theorem 5.3. Given that Ξ serves as an initial universal set, along with considering that Υ1 and Υ2

represent two sets of parameters, as well as assuming that there is a common effective set µ, related
to two effective vague soft sets, namely (Ψ1µ,Υ1) and (Ψ2µ,Υ2), we have the commutative property is
satisfied as the following:

1. (Ψ1µ,Υ1)∩̃(Ψ2µ,Υ2) = (Ψ2µ,Υ2)∩̃(Ψ1µ,Υ1).

2. (Ψ1µ,Υ1)∪̃(Ψ2µ,Υ2) = (Ψ2µ,Υ2)∪̃(Ψ1µ,Υ1).

Proof. It is easy using Definitions (4.1) and (4.3) similar to Theorem (5.2).

Proposition 5.1. Assuming that Ξ represents an initial universal set, as well as considering that Υ1

and Υ2 serve as two sets of parameters, along with supposing that there is a common effective set µ,
related to two effective vague soft sets, namely (Ψ1µ,Υ1) and (Ψ2µ,Υ2), and if (Ψ1µ,Υ1)⊆̃(Ψ2µ,Υ2), we
have:

1. (Ψ1µ,Υ1)∩̃R(Ψ2µ,Υ2) = (Ψ1µ,Υ1).

2. (Ψ1µ,Υ1)∪̃(Ψ2µ,Υ2) = (Ψ2µ,Υ2).

Proof. It is direct like Theorem (5.2) applying Definitions (4.2) and (4.4).

Theorem 5.4. Given that Ξ serves as an initial universal set, along with supposing that Υ1, Υ2 and
Υ3 represent three sets of parameters, as well as assuming that (Ψ1µ,Υ1), (Ψ2µ,Υ2) and (Ψ3µ,Υ3) are
effective vague soft sets, for a common effective set µ, on a common initial universal set Ξ, one obtain
the associative laws as well as the distributive laws are satisfied, respectively, as below:

1. (Ψ1µ,Υ1)∩̃((Ψ2µ,Υ2)∩̃(Ψ3µ,Υ3)) = ((Ψ1µ,Υ1)∩̃(Ψ2µ,Υ2))∩̃(Ψ3µ,Υ3).

2. (Ψ1µ,Υ1)∪̃((Ψ2µ,Υ2)∪̃(Ψ3µ,Υ3)) = ((Ψ1µ,Υ1)∪̃(Ψ2µ,Υ2))∪̃(Ψ3µ,Υ3).

3. (Ψ1µ,Υ1)∩̃((Ψ2µ,Υ2)∪̃(Ψ3µ,Υ3)) = ((Ψ1µ,Υ1)∩̃(Ψ2µ,Υ2))∪̃((Ψ1µ,Υ1)∩̃(Ψ3µ,Υ3)).

4. (Ψ1µ,Υ1)∪̃((Ψ2µ,Υ2)∩̃(Ψ3µ,Υ3)) = ((Ψ1µ,Υ1)∪̃(Ψ2µ,Υ2))∩̃((Ψ1µ,Υ1)∪̃(Ψ3µ,Υ3)).
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Proof. Like Theorem (5.2), using Definitions (4.1) and (4.3), it can be proved.

Theorem 5.5. The following De Morgan’s laws are satisfied for any two effective vague soft sets
(Ψ1µ,Υ1) and (Ψ2µ,Υ2), for a common effective set µ, on a common universal set Ξ, where Υ1 and Υ2

represent two sets of parameters:

1. ((Ψ1µ,Υ1)∪̃(Ψ2µ,Υ2))c = (Ψ1µ,Υ1)c∩̃(Ψ2µ,Υ2)c.

2. ((Ψ1µ,Υ1)∩̃(Ψ2µ,Υ2))c = (Ψ1µ,Υ1)c∪̃(Ψ2µ,Υ2)c.

Proof. It can be proved using Theorem (5.2), and Definitions (4.3), (4.1) and (4.7).

6. Decision-making techniques

The purpose of this section is to address a practical issue related to diagnosis, whether it’s in the
medical or educational domain. We introduce an algorithm for diagnosis that leverages the effective
vague soft set. This technique can be implemented using matrix operations and their associated
properties to make accurate diagnoses. These diagnoses involve determining which individuals,
whether they are students or patients, are suitable for a particular education level or are afflicted by
a specific ailment, respectively.
Furthermore, we provide a detailed case study that exemplifies the process of medical diagnosis.
We’ve organized the steps of this method within a framework of matrix operations, simplifying
the computational aspects. Additionally, to expedite and enhance the accuracy of tasks such as
matrix multiplication and effective membership calculations, we utilize the Wol f ram Mathematica®

program. This choice of tool helps ensure that these computations are not only faster but also more
precise and easier to perform.

6.1. Methodology

Let’s assume we have a set of n individuals, which could be students, patients, or similar, denoted
as Π = π1, π2, ..., πn. Additionally, there is a set of m exams, symptoms, or similar factors, referred
to as Υ = υ1, υ2, ..., υm. These factors relate to a well-defined set of k levels, diseases, or similar
conditions, designated as Ξ = ξ1, ξ2, ..., ξk. Furthermore, ∆ = δ1, δ2, ..., δr can be considered as a set of
r effective attributes or parameters specifically designed for any issue. In this context, the effective set
µ is established based on the input and responses from the individuals (students, patients, etc.).
Moreover, the vague soft set (Ψ,Υ) is constructed through a process involving questioning individuals
and subjecting them to analyses or tests done by experts. Additionally, based on expert documentation,
the description of the levels or diseases and, respectively, their related exams or symptoms is created
approximately by the vague soft set (ℶ,Υ). With these assumptions in place, the algorithm proceeds to
determine which individuals are succeeding at what level of education or diagnosed with what disease.
In this context, the first step involves computing the effective vague soft set (Ψµ,Υ) using Formula
3.1 and Formula 3.2 from Definition (3.2). This is done by combining the given vague soft set
(Ψ,Υ) along with the provided effective set µ for the individuals. Subsequently, as a second step, we
need to extract the matrix corresponding to the effective vague soft set, which consists of the interval
values of membership of the relevant items, denoted as Ψ̃µ. As a similar step, extracting the matrix
corresponding to the given vague soft set, referred to as ℶ̃ represents the third step. The fourth step
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involves multiplying Ψ̃µ by ℶ̃ (or by the transpose of ℶ̃ if the problem conditions require it), resulting
in the diagnosis matrix D̃. This matrix serves as a link between the individuals (students, patients, etc.)
and the levels, diseases, etc.
Finally, the fifth step is to determine the diagnosis for each individual from the diagnosis matrix D̃.
The best diagnosis for each individual is identified to be the maximum value in their respective row. In
addition, Figure 2, for simplicity, provides a concise visual representation of the algorithm’s steps in
the form of a basic flowchart.

Figure 2. The proposed algorithm’s steps.

6.2. Case study

The following part discusses an applied example to classify students into specializations
(specialized sections). In this example, the aforementioned algorithmic steps are used to choose the
most appropriate specialization at the next level for every student at a certain level. These students
already have some grades in the subjects they have studied at the current level in college. In addition,
we consider that every student may have some additional life skills that can make him/her qualified
to study a certain specialization at the next level. This consideration makes the decision-making
process more effective. Additionally, we utilize the Wol f ram Mathematica® program to carry out
any calculations required in each step, such as matrix multiplication and effective value computations.

Example 6.1. Assume that we have a group of five students from the Architecture Department in the
Faculty of Engineering representing the universal set Π = {π1, π2, π3, π4, π5}. They have passed the
second year and they will be in the third year. Each student has to study subjects of only one specialized
branch (section) from three offered sections that represent another universal set Ξ = {ξ1, ξ2, ξ3}, where
ξ1 = Public Buildings, ξ2 = Housing, ξ3 = Urban Design according to their subject grades in the
second year as well as their life skills. Let the five vital subjects they have studied in the second
year representing the set of attributes be as follows: Υ = {υ1, υ2, υ3, υ4, υ5}, where υ1 = Theory of
structures, υ2 = Architectural Design, υ3 = Execution Design, υ4 = Technical systems in buildings,
and υ5 = History of Islamic Architecture. The following vague soft set (Ψ,Υ) represents second year
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subject grades of the students:

(Ψ,Υ) = {(υ1, {(π1, [0.9, 1]), (π2, [0.6, 0.7]), (π3, [0.5, 0.6]), (π4, [0.8, 0.9]), (π5, [0.7, 0.8])}),
(υ2, {(π1, [0.5, 0.6]), (π2, [0.8, 0.9]), (π3, [0.7, 0.8]), (π4, [1, 1]), (π5, [0.9, 1])}),
(υ3, {(π1, [1, 1]), (π2, [0.5, 0.6]), (π3, [0.8, 0.9]), (π4, [1, 1]), (π5, [0.9, 1])})
(υ4, {(π1, [0.6, 0.7]), (π2, [0.8, 0.9]), (π3, [0.5, 0.6]), (π4, [0.7, 0.8]), (π5, [1, 1])})
(υ5, {(π1, [0.7, 0.8]), (π2, [0.5, 0.6]), (π3, [0.8, 0.9]), (π4, [0.9, 1]), (π5, [0.5, 0.6])})}.

In addition, one can have, depending on expert documentation, another vague soft set (ℶ,Υ) that
shows a preliminary explanation of the relation between the three sections (specialized branches) and
the pre-studied subjects as follows:

(ℶ,Υ) = {(υ1, {(ξ1, [0.5, 0.6]), (ξ2, [0.3, 0.4]), (ξ3, [0.1, 0.2])}),
(υ2, {(ξ1, [0.2, 0.3]), (ξ2, [0.7, 0.8]), (ξ3, [0.4, 0.5])}),
(υ3, {(ξ1, [0.8, 0.9]), (ξ2, [0.2, 0.3]), (ξ3, [0.6, 0.7])}),
(υ4, {(ξ1, [0.6, 0.7]), (ξ2, [0.4, 0.5]), (ξ3, [0.2, 0.3])}),
(υ5, {(ξ1, [0.4, 0.5]), (ξ2, [0.2, 0.3]), (ξ3, [0.8, 0.9])})}.

Moreover, suppose that ∆ = {δ1, δ2, δ3, δ4} is a set of effective parameters, where δ1 = the student has
flexibility skill, δ2 = the student has problem solving skills, δ3 = the student has good communication
skills, and δ4 = the student has creativity. After talking to the students and subjecting them to some
tests by experts, the effective set µ over ∆ can be created, for πi, i = 1, 2, 3, 4, 5, as the following:

µ(π1) = {(δ1, [0.3, 0.4]), (δ2, [0.6, 0.7]), (δ3, [0.2, 0.3]), (δ4, [0.8, 0.9])},

µ(π2) = {(δ1, [0.5, 0.6]), (δ2, [0.4, 0.5]), (δ3, [0.1, 0.2]), (δ4, [0.7, 0.8])},

µ(π3) = {(δ1, [0.8, 0.9]), (δ2, [0.5, 0.6]), (δ3, [0.4, 0.5]), (δ4, [0.2, 0.3])},

µ(π4) = {(δ1, [0.4, 0.5]), (δ2, [0.2, 0.3]), (δ3, [0.6, 0.7]), (δ4, [0.3, 0.4])},

µ(π5) = {(δ1, [0.7, 0.8]), (δ2, [0.1, 0.2]), (δ3, [0.8, 0.9]), (δ4, [0.4, 0.5])}.

What is the most appropriate section for each student?

Solution. S tep(1): Compute the effective vague soft set (Ψµ,Υ), that determines the cases of the
above students, as a first step, depending on calculations extracted from both Formula 3.1, as well as
Formula 3.2 from Definition (3.2), as follows:

(Ψµ,Υ) = {(υ1, {(π1, [0.9475, 1]), (π2, [0.77, 0.8575]), (π3, [0.7375, 0.83]), (π4, [0.875, 0.9475]),
(π5, [0.85, 0.92])}), (υ2, {(π1, [0.7375, 0.83]), (π2, [0.885, 0.9525]), (π3, [0.8425, 0.915]),
(π4, [1, 1]), (π5, [0.95, 1])}), (υ3, {(π1, [1, 1]), (π2, [0.7125, 0.81]), (π3, [0.895, 0.9575]),
(π4, [1, 1]), (π5, [0.95, 1])}), (υ4, {(π1, [0.79, 0.8725]), (π2, [0.885, 0.9525]),
(π3, [0.7375, 0.83]), (π4, [0.8125, 0.895]), (π5, [1, 1])}), (υ5, {(π1, [0.8425, 0.915]),
(π2, [0.7125, 0.81]), (π3, [0.895, 0.9575]), (π4, [0.9375, 1]), (π5, [0.75, 0.84])})}.

S tep(2): Extract the matrix Ψ̃µ representing the students’ grades corresponding to the effective vague
soft set (Ψµ,Υ) as follows:
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Ψ̃µ =

υ1 υ2 υ3 υ4 υ5



π1 [0.9475, 1] [0.7375, 0.83] [1, 1] [0.79, 0.8725] [0.8425, 0.915]

π2 [0.77, 0.8575] [0.885, 0.9525] [0.7125, 0.81] [0.885, 0.9525] [0.7125, 0.81]

π3 [0.7375, 0.83] [0.8425, 0.915] [0.895, 0.9575] [0.7375, 0.83] [0.895, 0.9575]

π4 [0.875, 0.9475] [1, 1] [1, 1] [0.8125, 0.895] [0.9375, 1]

π5 [0.85, 0.92] [0.95, 1] [0.95, 1] [1, 1] [0.75, 0.84]

.

S tep(3): In addition, extract the matrix ℶ̃ representing the section-subject relations from the
membership values of the vague soft set (ℶ,Υ) as follows:

ℶ̃ =

υ1 υ2 υ3 υ4 υ5


ξ1 [0.5, 0.6] [0.2, 0.3] [0.8, 0.9] [0.6, 0.7] [0.4, 0.5]

ξ2 [0.3, 0.4] [0.7, 0.8] [0.2, 0.3] [0.4, 0.5] [0.2, 0.3]

ξ3 [0.1, 0.2] [0.4, 0.5] [0.6, 0.7] [0.2, 0.3] [0.8, 0.9]

.

S tep(4): To obtain the student-section matrix (the diagnosis matrix), we take the transpose for ℶ̃, then
find the product Ψ̃µ × ℶ̃T as the following:

D̃ = Ψ̃µ × ℶ̃T =

ξ1 ξ2 ξ3



π1 [2.23225, 2.81725] [1.485, 2.07475] [1.82175, 2.40025]

π2 [1.948, 2.601] [1.4895, 2.06725] [1.6055, 2.2295]

π3 [2.05375, 2.694] [1.464, 2.0535] [1.81125, 2.4045]

π4 [2.3, 2.895] [1.675, 2.2265] [2, 2.558]

π5 [2.275, 2.872] [1.66, 2.22] [1.835, 2.44]

.

S tep(5): Finally, to arrive at a final diagnosis from the above resulting final diagnosis matrix D̃, it is
evident from Definition 2.1 that the first value, in each row, is the maximum value. This means that
the values [2.23225, 2.81725], [1.948, 2.601], [2.05375, 2.694], [2.3, 2.895] and [2.275, 2.872] are the
maximum values for the students π1, π2, π3, π4 and π5, respectively, corresponding to the first section
ξ1.
Then, we conclude that this group of students (π1, π2, π3, π4 and π5) is expected to be qualified to
study the subjects of the first section ξ1, which is “Public Buildings” section. If more than one student
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is expected to be qualified to study the subjects of exactly the same section, just like received in the
example at hand, one can determine which student is more qualified to study the subjects of this section
than the others.
The final resulting diagnosis matrix D̃ above indicates the following order of students (considered as
alternatives): π4 > π5 > π1 > π3 > π2. This order can be obtained by ordering the values of the first
column (the column of the first section) from the greatest to the lowest value.
This shows that we must follow that priority if we need less than five students in this section. For
other students, we can take the second maximum value in each row in the diagnosis matrix D̃. For
example, if there is no need for the last student (by priority) which is the second student π2 in the
“Public Buildings” section, then he/she can study in the third section ξ3, which is “Urban Design”
section. This is because [1.6055, 2.2295] > [1.4895, 2.06725] according to Definition 2.1.
Additionally, the ranking of the students, according to priority, for the second section ξ2 (Housing
section) is π4 > π5 > π2 > π1 > π3. Moreover, the students in this third section ξ3 (Urban Design
section) are arranged as follows, with priority: π4 > π5 > π1 > π3 > π2.

6.3. Comparative analysis

To compare decision-making in the effective vague soft set environment with earlier models or
environments, a comparative analysis is carried out. We address the identical Example (6.1) using the
previously established variations. The following is an overview of the comparative analysis’s findings:

1. If we take the final determination under the fuzzy soft set, supplied by Yang et al. [42] employing
algorithm stages of development, the results are shown below. The final diagnosis matrix D
appears in the following manner:

D =

ξ1 ξ2 ξ3



π1 2.14 1.33 1.73

π2 1.74 1.36 1.34

π3 1.8 1.31 1.7

π4 2.31 1.71 2.03

π5 2.27 1.6 1.69

.

So, from the final determined diagnosis matrix D, the greatest number for every student is the
first value in each row, which is 2.14, 1.74, 1.8,2.31 and 2.27, for students π1, π2, π3, π4, and π5,
respectively. Then, We infer that this set of students (π1, π2, π3, π4, and π5) are thought to be ready
to study the subjects of the first section ξ1, which is “Public Buildings” section.
Furthermore, the order of the students in the first section ξ1, according to priority, is π4 > π5 >

π1 > π3 > π2. Furthermore, for the second section ξ2 (Housing section), the students are ranked
as follows in order of priority: π4 > π5 > π2 > π1 > π3. Additionally, the students are grouped
with priority in this third section ξ3 (Urban Design section) in the following order: π4 > π1 >

π3 > π5 > π2.
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2. When the conclusion is made under the vague soft set described by Faried et al. [8] applying the
procedure steps, we get the following findings. The final diagnosis matrix D is provided by:

D =

ξ1 ξ2 ξ3



π1 [1.99, 2.57] [1.2, 1.77] [1.57, 2.13]

π2 [1.54, 2.16] [1.26, 1.81] [1.24, 1.82]

π3 [1.65, 2.28] [1.16, 1.72] [1.55, 2.14]

π4 [2.18, 2.8] [1.6, 2.16] [1.94, 2.52]

π5 [2.05, 2.68] [1.52, 2.1] [1.57, 2.2]

.

Then, based on the final diagnosis matrix D shown above, it can be determined that the first
value in each row represents the maximum value for each of the students; π1, π2, π3, π4, and π5

as follows: [1.99, 2.57], [1.54, 2.16], [1.65, 2.28], [2.18, 2.8] and [2.05, 2.68], respectively. We,
then, conclude that the students in this group (π1, π2, π3, π4, and π5) are supposed to be able to
study the topics covered in the first section ξ1, which is the section on “Public Buildings”.
The students in the first section ξ1 are then arranged as follows, with priority: π4 > π5 > π1 > π3 >

π2. Further, the students are prioritized as follows for the second section ξ2 (Housing section):
π4 > π5 > π2 > π1 > π3. In addition, in this third section ξ3 (the Urban Design section), the
students are prioritized according to the following order: π4 > π5 > π1 > π3 > π2.

3. The outcomes are as follows if the final choice is reached utilizing the process steps and the
effective fuzzy soft set, as proposed by Alkhazaleh [1]. The final diagnosis matrix D is obtained
as follows:

D =

ξ1 ξ2 ξ3



π1 2.36 1.59 1.95

π2 2.13 1.58 1.72

π3 2.2 1.59 1.93

π4 2.41 1.76 2.08

π5 2.43 1.73 1.94

.

Therefore, we have the largest value for each student, the first value, from this final diagnosis
matrix D, which is respectively as 2.36, 2.13, 2.2, 2.41, and 2.43 for students π1, π2, π3, π4, and
π5. Subsequently, we deduce that this group of students (π1, π2, π3, π4, and π5) is deemed prepared
to study the topics addressed in the first section ξ1, titled “Public Buildings”.
Furthermore, the ranking of the students in the first section ξ1 is π5 > π4 > π1 > π3 > π2. In
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addition, for the second section ξ2 (Housing section), the students are ranked according to the
following order: π4 > π5 > π1 = π3 > π2. Moreover, the students are ranked in the following
order in this third section ξ3, which is the Urban Design section: π4 > π1 > π5 > π3 > π2.

We conclude that there is an agreement from the above methods that the section nominated first
for each student is the first section, but the priorities vary according to the needs of the sections for
a certain number of students, and then we move to the next priority for each student according to the
order of alternatives resulting from the different methods used.

We have for Example (6.1), Tables 1 and 2 summarize, respectively, the diagnosis values and the
ranking order of the students for the first section; Public Buildings Section (ξ1), using the four different
models. In addition, Tables 3 and 4, respectively, describe the diagnosis values and the student ranking
order for the second section; Housing section (ξ2), using the four alternative models. Furthermore,
Tables 5 and 6, which utilize the four different models, detail the diagnosis values and the student
ranking order, respectively, for the third section; Urban Design section (ξ3).

Table 1. Diagnosis values for the first section using different models on Example (6.1).
Models Yang et al. [42] Faried et al. [8] Alkhazaleh [1] Proposed model
π1 2.14 [1.99,2.57] 2.36 [2.23225,2.81725]
π2 1.74 [1.54,2.16] 2.13 [1.948,2.601]
π3 1.8 [1.65,2.28] 2.2 [2.05375,2.694]
π4 2.31 [2.18,2.8] 2.41 [2.3,2.895]
π5 2.27 [2.05,2.68] 2.43 [2.275,2.872]

Table 2. Students’ order for the first section using different models on Example (6.1).
Models Public Buildings Section (ξ1)

Yang et al. [42] π4 > π5 > π1 > π3 > π2

Faried et al. [8] π4 > π5 > π1 > π3 > π2

Alkhazaleh [1] π5 > π4 > π1 > π3 > π2

Proposed model π4 > π5 > π1 > π3 > π2

Table 3. Diagnosis values for the second section using different models on Example (6.1).
Models Yang et al. [42] Faried et al. [8] Alkhazaleh [1] Proposed model
π1 1.33 [1.2,1.77] 1.59 [1.485,2.07475]
π2 1.36 [1.26,1.81] 1.58 [1.4895,2.06725]
π3 1.31 [1.16,1.72] 1.59 [1.464,2.0535]
π4 1.71 [1.6,2.16] 1.76 [1.675,2.2265]
π5 1.6 [1.52,2.1] 1.73 [1.66,2.22]

Table 4. Students’ order for the second section using different models on Example (6.1).
Models Housing Section (ξ2)

Yang et al. [42] π4 > π5 > π2 > π1 > π3

Faried et al. [8] π4 > π5 > π2 > π1 > π3

Alkhazaleh [1] π4 > π5 > π1 = π3 > π2

Proposed model π4 > π5 > π2 > π1 > π3
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Table 5. Diagnosis values for the third section using different models on Example (6.1).
Models Yang et al. [42] Faried et al. [8] Alkhazaleh [1] Proposed model
π1 1.73 [1.57,2.13] 1.95 [1.82175,2.40025]
π2 1.34 [1.24,1.82] 1.72 [1.6055,2.2295]
π3 1.7 [1.55,2.14] 1.93 [1.81125,2.4045]
π4 2.03 [1.94,2.52] 2.08 [2,2.558]
π5 1.69 [1.57,2.2] 1.94 [1.835,2.44]

Table 6. Students’ order for the third section using different models on Example (6.1).
Models Urban Design Section (ξ3)

Yang et al. [42] π4 > π1 > π3 > π5 > π2

Faried et al. [8] π4 > π5 > π1 > π3 > π2

Alkhazaleh [1] π4 > π1 > π5 > π3 > π2

Proposed model π4 > π5 > π1 > π3 > π2

Moreover, conversely to the above, one can also determine the priority order of sections for each
student. This order can be obtained also from the diagnosis matrix by ordering the values of the row
corresponding to each student from the greatest to the lowest value. That is to say that the best ranking
of the three sections; Public Buildings Section (ξ1), Housing Section (ξ2), and Urban Design Section
(ξ3) as alternatives for each student can be found in Table 7.

Table 7. Sections’ order for each student using different models on Example (6.1).
Models Yang et al. [42] Faried et al. [8] Alkhazaleh [1] Proposed model
π1 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2
π2 ξ1 > ξ2 > ξ3 ξ1 > ξ2 > ξ3 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2
π3 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2
π4 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2
π5 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2 ξ1 > ξ3 > ξ2

Finally, Figure 3 summarizes the diagnosis values of Table 1, Table 3, and Table 5 in a chart (after
converting the vague values to fuzzy values to be comparable with others on the chart). It is clear
from the above tables and Figure 3 that the proposed method is more general and accurate than other
methods. For instance, when applying the proposed model, if the first section needs only two students,
then the fourth and the fifth students will join it. In addition, if the second section needs only one
student, then he/she will be the second student. Moreover, if the third section needs two students, they
will be the first and the third students. When applying Alkhazaleh model, there is a contradiction,
which is that the first and the third students have the same value and then the same order for the second
section students’ order, but the second section in this assumed case needs only one student. For Yang
and Faried, it is clear that they neglected the external factors (effective parameters), which can impact
the decision on many other issues when the scores vary.
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Figure 3. Different models’ comparative results.

7. Final conclusions and upcoming studies

The present research aims to develop an innovative hybrid expansion extending the standard crisp
set concept, referred to as the effective vague soft set. It encompasses a discussion of the various
types and newly introduced essential concepts and operations. Additionally, it explores De Morgan’s
laws, as well as distributive laws. In addition, it presents absorption properties, and commutative
properties, along with associative properties. The article additionally presents a decision-making
strategy that relies on effective vague soft sets. A comprehensive example illustrates the classification
of college students into specializations based on their subject grades and life skills, demonstrating
the practical application of the proposed technique. To streamline the decision-making process and
enhance clarity, matrix representations of the technique steps replace set extensions. To ensure accurate
and efficient results, the article utilizes Wol f ram Mathematica® to perform matrix multiplications and
other computations throughout. This methodology streamlines the process of determining whether a
patient is suffering from a particular disease or whether a student is eligible for a specific education
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level. Furthermore, the article includes a comparison with other existing algorithms to highlight the
advantages of the proposed algorithm.

One of the key benefits of the suggested framework is its generality, encompassing and generalizing
previous models such as fuzzy soft sets, effective fuzzy soft sets, and vague soft sets. This means that
the fuzzy soft set, effective fuzzy soft set, and vague soft set are all special cases of the effective vague
soft set. For instance, when all effective parameter values for the effective vague soft set are all zeros,
then the effective set has no impact on the vague soft set values (can be considered as an empty set).
Then, this effective vague soft set coincides with the vague soft set as a special case. Moreover, this
vague soft set can be reduced to a fuzzy soft set, if all membership interval values are reduced to single
values (by using the methods that transform the vague values into fuzzy values). Furthermore, again
for the effective vague soft set, if all membership interval values are reduced to single values, then the
effective vague soft set coincides with the effective fuzzy soft set.

However, it’s important to acknowledge that, the suggested approach, like any technique or
framework, may have inherent drawbacks or limitations. Specifically, it may face challenges when
dealing with a substantial number of attributes or items, resulting in a high volume of computations.
To address this limitation, mathematical programs like Wol f ram Mathematica® or MAT LAB® can be
employed to efficiently process large amounts of data. Furthermore, the article acknowledges that the
effective vague soft model may not be suitable for addressing scenarios involving bipolarity or a multi-
attribute environment with vague soft data, which are common in real-world situations. As a direction
for future work, the authors may consider extending their ideas to encompass effective bipolar-valued
vague soft sets, or effective multi-vague soft sets, as well as effective bipolar-valued multi-vague soft
sets.
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