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1. Introduction and preliminaries

The study of convex functions has become increasingly significant due to their versatile nature.
Recently, this concept has been extended and generalized in different directions. For more details,
see [1-8].

These days the investigation on convexity theory is considered as a unique symbol in the study of
the theoretical conduct of mathematical inequalities. As of late, a few articles have been published
with a special reference to integral inequalities for convex functions. Specifically, much consideration
has been given to the theoretical investigations of inequalities on various kinds of convex functions;
for example, s-type convex functions, Harmonic convex functions, strongly quasi convex function, (p,
h)-convex functions, tgs-convex functions, Exponential type convex functions, GA-convex functions,
MT-convex functions, Exponential s-type convex functions and so on. Many researchers have worked
on the above mentioned convexities in different directions with some innovative applications. One
intriguing feature of these different forms of convex functions is that each definition can be seen as a
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generalization of the other under certain specific conditions. For more details, see [9—-18].

Motivated by ongoing developments and studies in this subject, it has been revealed that there is one
particular type of convexity known as exponential convexity, and lots of researchers are now trying to
enhance it. Dragomir [19] and Antczak [20] presented the concept of exponential type convexity, and
Awan [21] investigated another class of exponential convex function. More recently, Mahir Kadakal
and Iscan [22] introduced another meaning of exponential-type convexity.

The main purpose of the article is to introduce the notion of an a-exponential type convex function
and derive the variants of the classical Hermite-Hadamard and Ostrowski type inequalities by use
of the class of a-exponential type convex functions. We also discuss several new special cases for
the obtained results, which show that our obtained results are generalizations and extensions of some
previously known results.

Researchers have shown a great interest in big data analysis, deep learning and information theory,
utilizing the concept of exponential convex functions. As a result, we anticipate that the introduction of
the concept of @-exponential convex functions could capture the attention of these scientists, leading to
further advancements in the fields of deep learning, data analysis and information theory. Moreover,
many mathematicians have done studies in g-calculus analysis; the interested reader can see [23-26].

Integral inequalities are commonly satisfied by convex functions, including the well-known
Hermite-Hadamard inequality. The Hermite-Hadamard inequality for a convex function @ : 3 — R

on an interval 3J is ”
qj(,“l +,U2) < 1 f Do)y < D) + 45(/12)_
2 Mo = Jy, 2

This inequality holds for all y;, 4, € I with gy < up. Some refinements and generalizations of the H-H
inequality have been obtained by [27] and the references therein.

Let a differentiable function @ : I € R — R be defined on the interior of I along with uy, u, € 3°,
where p; < up and also @ € L{uy, u,]. If |@'(z)| < K for all z € [u;, u»] then the subsequent inequality
satisfies,

Lo ()
D) - —— | D — )| =+ —|.
‘ (2) sy (w)dp| < k(pa ,Ul)[4 + =) ]

The above inequality is a well-known Ostowski inequality. For more details, see [28-31]. Here, we
recall some known concepts. The exponential convex functions are defined as follows.

Definition 1.1. [21] A function @ : 3 C R — R is referred to as an exponential convex function if

@(ﬂl) n (1 _ U) @(/12)

et eH2

P(upy + (1 —v)ur) < v (1.1)

satisfied ¥V uy,1up €3, « € Rand v € [0, 1].

Definition 1.2. [22] A function @ : 3 C R — R is said to be a convex function of exponential type if
D(upy + (1 = v)p) < (¢ = DD(uy) + (€' = D)D) (1.2)

holds for all puy,u; € 3,0 <v < 1.

The present paper is structured in the following way: In section two, we explore the concept of
an a-exponential type convex function and give some of its algebraic properties. In section three, we

AIMS Mathematics Volume 9, Issue 4, 9519-9535.



9521

derive the Hermite-Hadamard inequality for an a-exponential type convex function. In section four,
we establish an Ostrowski type inequality for an @-exponential type convex function. Additionally, in
section five, we provide new estimations for the trapezoidal formula as practical applications. Finally,
in the next section, the conclusion is presented.

2. a-exponential type convex function and its properties:

Now, we introduce an a-exponential type convex function and give some of its algebraic properties
for the newly defined class of function.

Definition 2.1. A function @ : 3 C R — R is said to be an a-exponential type convex function if

¢(ﬂl) + (el_v _ 1)95(112)

eH1 e

D(vpy + (1 —v)p) < (" = 1) 2.1)

holds true for all @ € R, u,uy € I and v € [0, 1].

Remark 1. By employing a = 0 in the above inequality (2.1), exponential type convexity, which was
investigated by Iscan in [22], is obtained.

We study specific relationships between the class of exponential convex functions and other forms
of convex functions.

Lemma 2.1. The subsequent inequalities hold

eV —1>v, eV —1>1-v (2.2)
forv e [0,1].
Proof. The proof follows directly by expanding the exponential series. O

Proposition 1. Every exponential convex function is an a-exponential type convex function.

Proof. By Lemma 2.1, sincev <e"—land 1 —v < e — 1 forall v € [0,1] and @ € R, we obtain

D(u P(ua) _ PU) | oo 1y P02
apy T

et e e ez

Dy + (1 — V) < v 1‘) +(1-v)

(" - 1)

Theorem 1. Let @,V : [uy, u] — R be an a-exponential type convex function, then
(i) ¥ + @ would be an a-exponential type convex function.
(ii) If k > 0, kD is an a-exponential type convex function.

Proof. (1) Let @ be an a-exponential type convex function

(@ +¥)(vur + (1 —v)pp) = Pl + (1 - v)o) + ¥ + (1 - v)wo)
< (e’ - 1)% + (e - 1)M + (¥ - 1)M + (e - 1)M

ey exHl e
= (¥ — 1)[@(ﬂ1)+ly(ﬂl)]+(€1_u_ 1 @(/J2)+‘I’(,uz)]
e¥h ez
(¢ + ‘P)(ﬂl) (d5 + lP)(/,Q)
= -1)—— 4 (V- 1)—0>F—.
e ez
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(i) Let @ be an a-exponential type convex function and x € R (k > 0), so

@(ﬂl) + (el_v _ I)Qp(ﬂZ)

eH e

kD) (wpr + (1 =v)p) < K[(ev - D

= (¢¥ - 1)—'@5"11) T (el — 1)<Pw)

e e
= (ev — 1)% + (el—u _ 1)(K¢)ﬂ
e ettt

O

Theorem 2. Let @ : 3 —> T be an exponential type convex and ¥ : ] — R be an a-exponential type
convex function and nondecreasing, then Yo® : 3 — ‘R be an a-exponential type convex function.

Proof. Let uj,up; € Iwith0 < v < 1, for @ € R and we get

(FoD)(vu1 + (1 = v)uz) = Y(P(vpy + (1 = v)u2))

< ‘I’(v(p('ul) +(1- u)dﬁ(’”))
e e
< (eﬂ - 1)\{](@(/11)) + (el—U _ 1)\P(¢(/12))
e e
— (eu _ l)(\POQD)(/JI) + (el_v _ 1)(\P0@)('u2)
e(l/.ll e(l/dZ

O

Theorem 3. If @ : [u;, 2] — R is an a-exponential type convex function , then @ will be bounded
on the closed interval [uy, us].

S

Proof. Suppose that » = max{ ef,’jll), f%)} and X € [y, up] 1s any arbitrary point. Also, consider

30 < v < 1such that ¥ = vu; + (1 — v)u,. Thus, since eV < eand e'™ < e, for 0 < v < 1, we have

D) = Blup + (1 - v)),
D) | 1 gy L)

et e
< (¥ = Dr+ (e =1
<(eV+e'V =2

<(e+te—2)x

<2(e—1x=9.

<('-1)

We established that @ is bounded above by the real number B. Similarly, we can show that @ is
bounded below. O
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3. Hermite-Hadamard inequality for a-exponential type convex function

The primary objective of this section is to introduce H-H type inequalities applicable to a-

exponential type convex functions.

Theorem 4. Let @ : [u;,uz] — R be an a-exponential type convex function. If u; < p, and

@ € Ly, ip), then subsequent H-H inequality holds:

1 + 1 H2 b D ()]
1 @(Ml ,le)S f (X)d < A(w) (ﬂl)+ () (liz)
2(ez - 1) 2 My — i e~
where
1 v 1 1-v
~ (e’ — 1) ~ eV - 1)
AQ) = fo promRELLE Bw) = j; et
Proof. Since
¢(ﬂ1 +,U2) _ ¢((vﬂ1 + (I —v)up) + (v + (1 - U),Ul))
2 2 ’
assume that
Hr = v+ (1 — vy, Ha = vpn + (1 —v)py,

1 1
(M) = o S + (1 = ) + (oma + (1= ).

By definition of an a-exponential type convex function to Eq (3.2), we get

D(vpy + (1 = v)ur)
e +(1-v)ur)

M1+ o 1 D (v + (1 = v)up)
(p( 2 ) =1

e +(1-v)u)

+(e2 = 1)

Integrating above Eq (3.3) w.r.t v € [0, 1] and using the change of variable, we have

1 1 " @
1 (p(lll‘*‘llz)g[ f (u)du].
2(e2 — 1) 2 Ho— 1 Jyy €™

By Definition 2.1,

1- D(u2)
P +(1-vpw) _ (- DGR (- DI
e +(1-v)u) ew(vﬂ1)+(l U)/lz e?uN+(1-vue *

Integrating (3.5) w.r.t v € [0, 1], we obtained

1 fﬂz@d“@(“]) R GaR)) gy s PW) [ =D
M1

= 1Y
Uy — Uy el e e +(1-vuz) o2

0 0

From Egs (3.4) and (3.6), we obtain (3.1).

et +-wp) U

3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

O
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3.1. Some new inequalities for a-exponential type convex function

The objective of this section is to investigate various estimates that enhance the H-H inequality
for functions in which the first derivative in absolute value at certain power is an @ exponential type
convex. Dragomir and Agarwal employed the subsequent lemma in their work [32].

Lemma 3.1. Let @ : 3 C ‘R — ‘R be a differentiable mapping on 3°. Consider uy, > € 3I° with
Uy < po. If @' € Lluy, ua], then the following identity holds:

D) + B) 1 fﬂz(p e B2
2 M2 — 1y <

Theorem 5. Let a differentiable function @ : 3 — ‘R be defined on the interior of 3 along with
Ui, 1o € 3%, where uy < p and also @ € L{uy, uo). If on [uy, u2], | 9’| is an a-exponential type convex
function, then the subsequent inequality satisfied for 0 < v < 1:

0] + @ 1 H — 7
‘ W) + D) f P(xdy| <K (4e% —e-— —)[
" 2 2
Proof. From Lemma 3.1, we have

2 M2 — [
‘<P(,u1) +Puy) 1 fﬂz P(x)dx
2 M2 — M1 Jy,

“1 f (1 = 20)® (v + (1 — VY2)dw. (3.7)

D' (1)

eaH

N '@'(.Uz)

e

] . (3.8)

_ 1
il f (1 = 20)& (upty + (1 — v)a)dv
0

< ‘% fol ‘1 - 2qu5'(1}”1 (- v),uz)'dv.

Using an a-exponential type convexity of @', we get

"15(/11) + P 1 f’“ D)
M2 — [

u] D' (ur)
f|1—2|[ 1)‘ ( 1) o ]dv
- D' (uy) @' (w)| ! G
_ KM [ ! f I(1=2v)|(e” = 1) dv + 2 f I(1 = 2v)|(e'™ = Ddv
2 e¥h 0 0
:u(4e; _e_Z)[ )| | |9 )
2 2 ettt et
Since
1 1 1 7
f '1 _ 2u' € - 1)dv = f ‘1 _ 2U' (¢~ 1)dv =de? e~ 3. (3.10)
0 0 2
by substituting equality (3.10) in (3.9), we get inequality (3.8). O

Remark 2. (i) By letting a = 0, we obtain Theorem 4.1 in [22].

Theorem 6. Let a differentiable function @ : 3 —> ‘R be defined on the interior of 3 along with
Ui, Uy € J° where uy; < pp. Additionally, suppose that the derivative @' is integrable on the interval
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(i1, 2] If on [y, po] the function |@'|7 exhibits an a-exponential type convexity, then the subsequent
inequality satisfied for 0 < v < 1:

1 1
Pu) +Puy) 1 fm B(0)d < Mo — g (e - 2)5 1\ [|e ] N D ()| 3.11)
2 M2 = Jy, 2 p+1 e evH2 ’
where p~' + g7 = 1.
Proof. From Lemma 3.1, we have
|<P(,u1) +Py) 1 fﬂz B(x)dx
2 M2 = M1 Ty,
_ 1
=B [ 200+ (1 - oy
0
_ 1
< ‘%f ‘1 - 2qu5'(va (- v),uz)‘dv.
0
Applying Holder’s integral inequality, we find
_ 1
’%f '1 —2UH<15/(W1 +d —U),uz)'dv
o L : (3.12)
— P P q q
< u(f |1-2] dv) (f | @ oy + (1= w)o) a’v) .
2 0 0
Since |®|? is an a-exponential type convex function, we get
! q
[ o+ = v aw
0
1 q q
v P() - D' (u2)
< fo [(e - 1)l | =)= v (3.13)
14 q 04 q
:(6_2)[ (11) N (12) ]
et eH2

Since

1 1
f (e” — l)dv:f (e‘-v— 1)dv:e—2. (3.14)
0 0

fl'l—Zv‘pdv: L (3.15)
0 p+1

using (3.13)—(3.15) in (3.12), we get (3.11).
Remark 3. (i) By letting a = 0, we obtain Theorem 4.2 in [22].

O
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Theorem 7. Let a differentiable function @ : 3 — ‘R be defined on the interior of 3 along with
Ui, o € 3J° where puy < o and g > 1 and also @ € L{uy, ). If on [y, uz] |97 is a convex function
of an a-exponential type then the subsequent inequality satisfied for 0 < v < 1:

@ @ 1 2 - 7\
(u) + P(ua) f @(x)dx‘ Py :Ul [(4@5 e _)]
2 o — 1 Jy, 72 2

D' (1)

eH

D' (ur)

e

q
+

q
]' (3.16)

Proof. From Lemma 3.1, we have

'@wom(m)_ 1 fﬂZ P(x)dx
2 M2 — M1 Jy,

_t—m
2

1
f (1 =20)® (yuy + (1 — V)u2)dy
0

< 'L% L] ‘1 - 2vH¢'(v,ul +(1 - v),uz)‘dv.

Applying the power mean inequality, we find

‘% fol ‘1 - 2vH<D’(v,u1 +(1 - U),Uz)'dv

1 -1, 1 (3.17)
—_ q q q
< u(f ‘1 —ZU‘dU) (f ‘1 —2qub'(W1 L —U),uz)' dv) .
2 0 0
Since |P|? is an a-exponential type convex function, we get
! q
f ‘1 - 2qu§’(u,11 (- u)uz)] dv
0
1 q q
v (1) -y P (1)
sfo 1-2y [(e - 1)‘ | (e )| (v (3.18)
’ q ’ q
:(46% _e_Z)[ D)l | P k) ]
2 et ez
Since
! 1
f |1 - 20fav =, (3.19)
0 2
by substituting inequality (3.18) and equality (3.19) in (3.17), we get inequality (3.16). O

Remark 4. (i) By letting a = 0, we obtain Theorem 4.3 in [22].
4. Refinements of Ostrowski type inequality for an a-exponential type convex functions

Here, we introduced several improvements to the Ostrowski type inequality applicable to
differentiable a-exponential type convex functions. Cerone and Dragomir employed the subsequent

lemma in their work [33].
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Lemma 4.1. Let a differentiable function @ : 3 C R —> R be defined on the interior of 3. Take
Ui, o € I° where py < pp. If @ € L{uy, o), then the subsequent identity satisfied:

1 2
P(z) - f B(x)dx
M2 — M “

PRC I
:Mf v® (vz + (1 — vy )dv —
H2—H1 Jo

forall 7 € [uy, 1zl

Theorem 8. Let a differentiable function @ : 3 — R be defined on the interior of 3. Take u;, u, € 3°
where u; < pp. Also, assume that @ € Lluy, uy]. If on the interval [u,, uz] the absolute value of the
derivative |@'| is an a-exponential type convex function and satisfies |@'| < K for all z € [uy, p2], then
the subsequent inequality satisfied for 0 < v < 1:

1 112
f D(x)dx
M2 = M1 Ty,
for each z € [uy, us].

Proof. Using Lemma 4.1, since |@’| is an a@-exponential type convex function and |@’| < K,

4.1
(2 — 2)* D

1
f v®' (vz + (1 — v)uy)du,
M2 —H1 Jo

< M[(Z _/JI)Z + (IJZ — Z)Z]’ (4.2)
H2 — [

'dﬁ(z) -

1 M2
‘@(z) - f D(x)dx
M2 — M1 Jy,

_ a2l _ 2 ol
Sl f o]z + (1= wpldv+ 27 [0 gz + (1 - vyl
H2 = M1 Jo H2 = Hi Jo
2 1 ’ ’
— D b
o I L <C R
s — [ 0 e et
2 1 ’ ’
- ) )
L Ge-2) f - NCACTRPN (llz)|}dv
Ha = f1 Jo e e
_ 2 104 1 1% 1
L G-m) [| @ f e — Dy 120 f el MU]
Ho—py [ e Jo e 0
v Q’ 1 @’ 1
+ b2 ~2) [l @) f v(e’ — duv + (o) f (e - 1)dv]
Moo= | e™ Jo et Jo
KGz—u)? (1 K(u, —2)* (1
< M{_+e_§}+u{_+e_§}
Ho— 1 |2 2 Ho— 1 |2 2
K(z—m)? K(u, — 2)°
< M[e_2]+u[e_2]
M2 — H2 —
K(e-2)
< —[(z — ) + (2 = Z)2]~
M2 — [
O
Corollary 4.1. (1) By assuming z = ’% in Theorem 8 yields the subsequent midpoint inequality:
+ 1 H K(up —
‘qs(“l Hay _ f B(x)dx| < M[e - 2]. 4.3)
2 Mo = M1 Jy, 2
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(2) By assuming z = p; in Theorem 8 yields the subsequent inequality:

1 M2
D(uy) — f D(x)dx
H2 — Hi Jy,

< K(uo — )| e —2]. (4.4)
(3) By assuming z = u, in Theorem 8 yields the subsequent inequality:

1 M2
D(us) — f D(x)dx| < K(uy — )| e - 2| (4.5)
M2 — M1 Iy,

Theorem 9. Suppose a mapping ® : 3 — R, which is differentiable on 3°. Take u,u; € 3I° with
Uy < po. Additionally, suppose @' € Lluy, u;] and consider g > 1 such that 1 — é =g . If on the
interval [y, o) | 9’| is an a-exponential type convex function and |®'| < K for all 7 € [uy, u;], then the
subsequent inequality holds true for 0 < v < 1:

1 2
'@(z) - f D(x)dx
Mo — Mt Jy,

S %K’(l y7Q_Mf(@;2)+@—2uq+w2_@%w—z)+w—zu1’
M2 = pi\p+1 e e

evH e
for each z € [uy, ua].

Proof. Utilizing both well-known Holder’s inequality and Lemma 4.1 given that |@’|? is an a-
exponential type convex function and |®’'(z)|Y < K, we deduce:

(4.6)

1 H2
&(2) — f D(x)dx
M2 — M1 Iy,
< eom) f v|<15'(vz +(1- U)M1)|dv + =2 f U|q§/(vZ +(1 - U)ﬂ2)|dv
M2 — M1 Jo H2=HJo

AN S sl 2
< G- (f vdv) (f |Q'>/(vz+ (1 —v),u1)|dv)
M2 — My 0

_ ) s g
y =) v) ( f |€D’(vz+(1—v)u2)|dv)

.Uz — M1 (
-y , |@@w N L T
< o _/111 (P 1) f ( - v+j; (e1 - 1) e"/‘? dv)
N2 117 ’ 1 / é
(2 - 2) @un@@%m-(wug@www
p+ 1 0 ex: 0 et

.Uz—,ul
S(ﬂ@w@—mf( 1 Y (6—%+}e—3f}+QK@km—zY( 1)5(@—2)+@—2ﬁ1
ex et /-12 _ ,ul p + 1 e e
((e—2>+<e—2>)$}+23'1<<u2—z>2( I )é

Ho — H p+l
(e=2) (=2
ew et /12 _ ,Lt] p + 1 ez e

ey (e 2) (e_zuq+Q”_Zf(w;f)+(e_2“qr

e ey

<2‘1’K(z—u1)2( 1 )P
e p+l

231K( 1 ),',
<
Mo —p\p+1
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Corollary 4.2. (1) By assuming z = ’% in Theorem 9 yields the subsequent midpoint inequality:

‘@(“1 tray 1 fm B(x)dx

1 1
1 1 P q
< 24 Ky, - (_) (2) 47
> i J (12 ﬂl)p+1

(2) By assuming z = u, in Theorem 9 yields the subsequent inequality:

1

1 1 \r 7
<2iK(u, _M)(m) (e - 2) . (4.8)

1 2
‘@(ﬂl) - f D(x)dx
M2 —

Hi

(3) By assuming z = u, in Theorem 9 yields the subsequent inequality:

1 1

1 1 P q
< 25Ky — ‘“)(ﬁ) (e _ 2) | 4.9)

1 2
‘@(,uz) - f D(x)dx
H2 —

Hi

Theorem 10. Let a differentiable function @ : 3 — R be defined on the interior of I along with
Ui, o € 3% where py < up and also @ € L{uy, wp). If on [uy, up] |D'| is an a-exponential type convex
Jfunction and |®?'| < K for all 7 € [uy, 4] then the subsequent inequality satisfied for 0 < v < 1:

_1

1 2
‘@(Z) - f D(x)dx
M2 — M I
| (4.10)
S (> — )24 ]
(up — p1)2'

1 2¢—5 : 1 2e — 5\\¢
(Z_”l)z((zeaz)Jr(zewl )) +(’J2_Z)2((Ze‘“)+(2e"“2 )) '

for each z € [uy, us].

Proof. Employing from both Lemma 4.1 and the power mean inequality and considering that |@’|? is
an - exponential type convex function while |@(z)| < K, we arrive at the following result:

1 i
‘@(Z) — f D(x)dx
/12 - :ul 1

N2
< (z—pm1)
Ho — M

— 2 =3/ i 0
M2 — 0 0

_ 2/ ! =3/ pl i
+ 2= 2) (f vdv) (f v|€D'(vZ +(1 - v),u2)|dv)
M2 — My 0 0
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_ 2 1- é ’ q 1 ’ q é
< (z—p)” (1 1 |gD (Z)| +f v(el_” B 1) 1D (1) dv
M2 =1 \2 0 e

Y -4 / 1 , 7
4 (U2 —2) (l) (f v(e’ = 1) |® (Z)lqdv +f v(el—v B 1) |P (/lz)|qdv)
Mo — 1 \2 0 e 0 et

1

K(z — 2 1 l_é 1 v_ 1 Iy el_U -1 9
e DN (=) (-
Ho—p1 \2 0 e 0 et
K 2 1 1‘% 1 v_q 1y el_U -1
L K -2 (_) f v(e )dv+f ( )dv
Ho— 1 \2 0 e 0 et

oo ) () | e o )
o —uyp \2 2e% 2e o —uyp \2 2e® 2et

Q1

1 1
K 1 2e — 5 1 2e —5\\¢
st () () o () (55 |
2~ M1
O
Corollary 4.3. (1) By assuming z = “522 1+“ 2 in Theorem 10 yields the subsequent midpoint inequality:
+ Iz 20 K(uy — i
o) f B < ZHEZIL, o) (“.11)
2 M2 — 4
(2) If we choose z = uy in Theorem 10 it yields the subsequent inequality:
T 20 K(uy - :
‘qb(,ll)— f (x)dx]| < M[e—Z] . (4.12)
M2 — py Jy, 2
(3) If we choose z = u, in Theorem 10 it yields the subsequent inequality:
1 1
1 H 20K (uy — q
90 - f B < ZTHEH, o) (4.13)

5. Applications

Assuming that d represents a partition of the interval [uy, up] such thatd : yu; = wop < wy < -+ <
Wn-1 < Wp, = Ma, the trapezoidal formula can be expressed as follows:

m—1
O T L R L T
n=0

It has been clear that if @ : [u;,u;] — R is twice differentiable on the open interval (u;,u,) and
M = max,,e, u) |P(W)| < oo, then

fﬂz d(w)dw = T(P,d) + R(D, d). (5.1)

M1
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The remainder term R(®, d) satisfies the inequality
m—1
M 3
R(®.d)| < 7= nzz(;(wnﬁ — W), (5.2)
If either the second derivative of @ does not exist or is unbounded, then (5.1) cannot be used. However,
Dragomir and Wang [34-36] demonstrated that R(®, d) can be calculated using only the first derivative,
which can have several practical applications.

Proposition 2. Suppose @ : 3 C R® — R is a differentiable function defined on 3°. Let u;, 1, € I with
Uy < pa. If the absolute value of @ is an a-exponentially convex on the interval [u,,u>], then for any
partition d of the interval [uy, 1], the following holds in Eq (5.1):

¢/(ﬂn ¢’(,un+l)
R(@.0)| <3 Z (st — )’ (462 .- 5)[ )] |2 ]
(5.3)
D (pn) | | P (1)
< MCIX[ o eaﬂnjl—l —€—- = Z (ﬂn+l _/-ln)
Proof. Applying Theorem 5 on the sub interval [w,, u,+1] (n =0, 1,. .., m— 1) of the partition d, we
obtain
M1 = My, M2 = Hny1s
D(u,) + DP(u, 1 Hnsl
‘ (11)2(M+1)_ f D)
Mn+1 — Mn ’/1,, / (54)
< Mn+1 — Hn 4 L 7 P (ﬂn) @ (/Jn+l)
<———|4e? —e— = + .
2 2 e%Hn eHn+1
By summing over the range of n from zero to m-1, we get
)
@~ [ owdd
Hi
1 AN 1 7 Q/(/'ln) @/(ﬂn 1)
5 Z (et — ) (462 —e-— 5) [ o + ewn; ] (5.5)
n=0
m—1
D' (uy)| | D (12) 1 7 2
< Max[ o o 4e? — e — 5 ; (Mns1 — Hn)” .
O

Proposition 3. Let a differentiable function @ : 3 C Ry — R be defined on the interior of 3, along
with uy, U, € I where uy < pp. Assuming that |D|? is an a-exponentially convex function on the interval
[u1, 12, and given that p,q > 1 such that % + é = 1, then within the context of (5.1), for any partition
d of the interval [uy, i), it follows that:

-2 Z m-1 @’ n D’ n+ é
'R (@,d)‘ < (e D) ) Z (/’ln+1 _/ln)2|: (El:i) + egljnﬂl) ]
1n=0 ] (5.6)
()| |2 @) || =27 (1 VP
= Max[ on eHn+1 ] (p + 1) Zo Ganst = p)”

AIMS Mathematics Volume 9, Issue 4, 9519-9535.



9532

Proof. By employing Theorem 6 and employing analogous reasoning as presented in Proposition 2,
we obtained the desired result. O

6. Conclusions

This paper focused on examining the notion of a-exponential type convex functions, which appears
to be as an extension of the traditional exponential type convex functions. The study included
establishing the Hermite-Hadamard inequality for a-exponential type convex functions. Moreover,
novel Ostrowski type inequalities were derived specifically for a-exponential type convex functions.
The research also explored applications derived from these findings. As far as our understanding
goes, these outcomes are original contributions that have not been previously documented in existing
literatures. The concept of a-exponential convexity typically applies to functions with specific domains
and mathematical forms. Functions with complex or irregular domains may not exhibit exponential
convexity. The upcoming researchers can establish similar inequalities by using different types of
convexities in their future works. Additionally, it will be an interesting problem to prove similar
inequalities for the functions of two variables.
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