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Abstract: Let G be a connected graph of order n. The representation of a vertex v of G with respect
to an ordered set W = {w1,w2, ...,wk} is the k-vector r(v|W) = (d(v,w1), d(v,w2), ..., d(v,wk)), where
d(v,wi) represents the distance between vertices v and wi for 1 ≤ i ≤ k. An ordered set W is called
a connected local resolving set of G if distinct adjacent vertices have distinct representations with
respect to W, and the subgraph 〈W〉 induced by W is connected. A connected local resolving set of
G of minimum cardinality is a connected local basis of G, and this cardinality is the connected local
dimension cld(G) of G. Two vertices u and v of G are true twins if N[u] = N[v]. In this paper, we
establish a fundamental property of a connected local basis of a connected graph G. We analyze the
connected local dimension of a connected graph without a singleton true twin class and explore cases
involving singleton true twin classes. Our investigation reveals that a graph of order n contains at most
two non-singleton true twin classes when cld(G) = n − 2. Essentially, our work contributes to the
characterization of graphs with a connected local dimension of n − 2.
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1. Introduction

For vertices u and v in a connected graph G, the distance d(u, v) between u and v is the length of the
shortest u−v path in G. A u−v path of length d(u, v) is called a u−v geodesic. Let W = {w1,w2, ...,wk}

be an ordered set of vertices in G. The representation of v with respect to W is the k-vector r(v|W) =

(d(v,w1), d(v,w2), ..., d(v,wk)). If the representations of any two distinct vertices in G with respect to
W are distinct, then W is called a resolving set of G. A minimal cardinality resolving set is referred to
as a minimum resolving set or a basis of G, and this cardinality is referred to as the dimension of G,
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which is denoted by dim(G).
The concept of a resolving set of a connected graph G was introduced by Slater in [16].

The usefulness of the concept was mentioned in [4–6]. Similar concepts were also discovered
independently; see [3, 9]. The connected graphs of order n with dimension n − 2 and n − 3 were
characterized in [2, 17], respectively. The concept of the resolving set lies within the theme of
irregularity of graphs; see [1]. Further studies and applications of resolving sets were presented
in [7, 10, 11, 13].

Some interesting developments in the concept of resolving sets are locality and connectivity. For
any two adjacent vertices u and v of G, if r(u|W) , r(v|W), then W is called a local resolving set of G.
A minimum cardinality local resolving set is called a minimum local resolving set or a local basis of
G, and this cardinality is said to be the local dimension ld(G) of G. For connectivity, a resolving set W
of G is called a connected resolving set of G if the induced subgraph 〈W〉 is connected. The minimum
cardinality of a connected resolving set of G is the connected dimension cd(G) of G, and a resolving
set of G having this cardinality is called a minimum connected resolving set or a connected basis of
G. To illustrate these concepts, consider the graph G of Figure 1. For an ordered set W1 = {u, z}, the
representations of vertices of G with respect to W1 are

r(u|W1) = (0, 2), r(v|W1) = (1, 2), r(w|W1) = (1, 1),
r(x|W1) = (2, 1), r(y|W1) = (2, 1), r(z|W1) = (2, 0).

Hence, W1 is a local resolving set of G since any two adjacent vertices of G have distinct representations
with respect to W1. However, W1 is not a resolving set. Since G contains no local resolving set of
cardinality 1, it follows that W1 is a local basis of G, and so ld(G) = 2. For an ordered set W2 = {u, x},
the representations of vertices of G with respect to W2 are

r(u|W2) = (0, 2), r(v|W2) = (1, 2), r(w|W2) = (1, 1),
r(x|W2) = (2, 0), r(y|W2) = (2, 2), r(z|W2) = (2, 1).

We can see that W2 is a resolving set of G. However, since 〈W2〉 is not connected, it follows that W2 is
not a connected resolving set of G. The idea of a local resolving set was introduced by Okamoto and
others in [14]. They characterized all nontrivial connected graphs of order n with local dimensions 1,
n−1, and n − 2. The concept of a connected resolving set has been described in [15], and the term
connected resolving number has been used to denote what we have referred to as the connected
dimension.

Figure 1. A connected graph G.

The two developments mentioned above lead us to study a local resolving set W of a connected
graph G with the property that the induced subgraph 〈W〉 is connected in G. An ordered set W of
vertices of a connected graph G is said to be a connected local resolving set of G if W is a local
resolving set of G and the induced subgraph 〈W〉 of G is connected. A minimal cardinality connected
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local resolving set of G is called a minimum connected local resolving set or a connected local basis of
G. The cardinality of a connected local basis of G is the connected local dimension, denoted by cld(G).

Consider the graph G in Figure 1. Observe that W1 = {u, z} is a local resolving set, but it is not a
connected local resolving set. For an ordered set W3 = {u,w, z}, the representations of vertices in G
with respect to W3 are

r(u|W3) = (0, 1, 2), r(v|W3) = (1, 1, 2), r(w|W3) = (1, 0, 1),
r(x|W3) = (2, 1, 1), r(y|W3) = (2, 1, 1), r(z|W3) = (2, 1, 0).

Since the representations of two adjacent vertices are distinct, and 〈W3〉 = P3 is connected, it follows
that W3 is a connected local resolving set of G. Through a case-by-case analysis, it can be shown that
W3 is also a connected local basis of G, and thus cld(G) = 3. Connected local resolving sets were
further studied in [8, 12].

Note that every connected local resolving set of G is a local resolving set of G, but the converse is
not true in general. Furthermore, every connected resolving set of G is a connected local resolving set
of G. Nevertheless, not every connected local resolving set of G is necessarily a connected resolving
set of G. Therefore, we have arrived at the following:

1 ≤ ld(G) ≤ cld(G) ≤ cd(G) ≤ n − 1. (1.1)

In fact, a characterization of local metric dimensions 1, n− 2, and n− 1 in a nontrivial connected graph
of order n was established in [14]. Additionally, all connected graphs G of order n ≥ 2 with cd(G) = 1,
n − 1 were characterized in [15].

For every ordered set W = {w1,w2, . . . ,wk} of vertices of a connected graph G, the only vertex of
G whose representation with respect to W contains 0 in its ith coordinate is wi. Therefore, the vertices
of W necessarily have distinct representations with respect to W. Furthermore, the representations of
vertices of G that do not belong to W have coordinates, all of which are positive. Indeed, to determine
whether an ordered set W is a connected local resolving set of G, we only need to verify that any two
adjacent vertices in V(G) −W have distinct representations with respect to W, and 〈W〉 is connected.

2. Connected local dimension with prescribed true twin classes

First, we present a principal property of a connected local basis of a connected graph G. We then
recall that a vertex v of a connected graph G is a cut-vertex of G if G−v is not connected. Furthermore,
a set U of vertices of G is called a vertex-cut if G − U is not connected.

Proposition 2.1. Let W be a connected local basis of a connected graph G. Then, every vertex v of W
satisfies at least one of the following conditions:

(i) 〈W − {v}〉 is not connected, or

(ii) there are two adjacent vertices x and y in V(G) − (W − {v}) such that d(x,w) = d(y,w) for all
vertices w ∈ W − {v}.

Proof. Let v be a vertex of a connected local basis of a connected graph G. If v is a cut-vertex of 〈W〉,
then (i) holds. Assume that v is not a cut-vertex of 〈W〉. Then, v does not satisfy (i). Hence, 〈W−{v}〉 is
connected. Since W is a connected local basis of G, it follows that 〈W − {v}〉 is not a local resolving set
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of G. In other words, there exist two adjacent vertices x and y in G such that r(x|W−{v}) = r(y|W−{v}).
This implies that d(x,w) = d(y,w) for all w ∈ W − {v}. �

The open neighborhood, or simply the neighborhood, of a vertex u of a connected graph G is defined
as the set of all vertices that are adjacent to u, which is denoted by N(u) = {v ∈ V(G) | uv ∈ E(G)}.
The closed neighborhood N[u] of u is defined as N(u) ∪ {u}. Two vertices u and v of G are true
twins if N[u] = N[v]. Observe that the true twin relation is an equivalence relation on V(G), and as
such, this relation partitions V(G) into equivalence classes, which are called the true twin equivalence
classes or simply the true twin classes on V(G). Observe that if G contains l distinct true twin classes
U1,U2, ...,Ul, then every local resolving set of G must contain at least |Ui| −1 vertices from Ui for each
integer i with 1 ≤ i ≤ l. This observation was presented in [14] as follows.

Proposition 2.2. [14] Let G be a connected graph having l true twin classes U1,U2, ...,Ul. Then,
every local resolving set of G must contain every vertex, except at most one, in each true twin class Ui,

where 1 ≤ i ≤ l. Moreover, ld(G) ≥
l∑

i=1
|Ui| − l.

The following result which appeared in [14] will be useful to us.

Theorem 2.1. [14] If G is a nontrivial connected graph of order n with l true twin classes, none of
which is a singleton set, then ld(G) = n − l.

The following theorem provides the connected local dimension of a connected graph that does not
have a singleton true twin class.

Theorem 2.2. If G is a connected graph of order n with l true twin classes, none of which is a singleton
set, then cld(G) = n − l.

Proof. By Theorem 2.1, it follows that ld(G) = n − l. Consequently, by (1.1), cld(G) ≥ n − l. Next, we
show that there exists a connected local resolving set of G having cardinality n − l. In order to do this,
let W be a local basis of G. By Proposition 2.2 and Theorem 2.1, W = V(G) − {u1, u2, ..., ul}, where
u1, u2, ..., ul belong to distinct true twin classes, resulting in |W | = n−l. We claim that 〈W〉 is connected.
Let x and y represent two distinct vertices of W. Since G is connected, it follows that there is an x − y
path P in G. If V(P) ⊆ W, then x and y are connected in 〈W〉. We therefore assume that V(P) * W.
Then, V(P) contains ui for some integer i with 1 ≤ i ≤ l. Since G contains only non-singleton true
twin classes, there is a vertex vi such that vi and ui belong to the same true twin class. We construct an
x − y path Q from P by replacing ui with vi. If V(Q) ⊆ W, then x and y are connected in 〈W〉. If this
is not the case, we continue the above procedure until finally arriving at x and y are connected in 〈W〉.
Consequently, W is a connected local resolving set of G, that is, cld(G) ≤ n−l. Thus, cld(G) = n−l. �

If a connected graph G contains some singleton true twin classes, then vertices in these true twin
classes may or may not be in a connected local resolving set of G. Next, we investigate the connected
local dimension of G having some singleton true twin classes. To do that, we first establish a definition.
Let G be a connected graph containing at least two true twin classes. For two distinct true twin classes
U and V of G, define the true twin distance d(U,V) between U and V by d(U,V) = d(u, v), where
u ∈ U and v ∈ V . Observe that d(U,V) ≥ 1. Next, we present a useful lemma.
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Lemma 2.1. Let G be a connected graph having l true twin classes, and d(U,V) = l − 1 for some true
twin classes U and V of G. Then, for each u ∈ U and v ∈ V, every u − v geodesic contains exactly one
vertex from each true twin class. Furthermore, every u − v path contains at least one vertex from each
true twin class.

Proof. Let U and V be distinct true twin classes of G with d(U,V) = l − 1, and let u ∈ U and v ∈ V .
Consider a u − v geodesic P = (u = u1, u2, ..., ul = v) in G. Suppose that P contains two vertices ui and
u j from the same true twin class for some integer i, j with 1 ≤ i < j ≤ l. If u j , ul, then deleting the
vertices ui+1, ui+2, ..., u j from P yields the u − v path (u = u1, u2, ..., ui, u j+1, ..., ul = v) with length less
than l − 1, which is impossible. If u j = ul, then deleting the vertices ui, ui+1, ..., u j−1 from P yields the
u − v path (u = u1, u2, ..., ui−1, u j = ul = v) with length less than l − 1, which is also impossible. Thus,
no two vertices of P belong to the same true twin class. Since P contains l vertices, it follows that P
contains exactly one vertex from each true twin class.

Next, let P′ = (u = u′1, u
′
2, ..., u

′
k = v) be a u − v path of length k − 1 ≥ l − 1. Assume that there is

a true twin class U′ of G such that every vertex in U′ does not lie on P′. If P′ contains two vertices u′i
and u′j from the same true twin class for some integer i, j with 1 ≤ i < j ≤ k, then, as in the case of
P, we delete the vertices u′i+1, u

′
i+2, ..., u

′
j or u′i , u

′
i+1, ..., u

′
j−1 from P′, arriving at a u − v path with length

less than k − 1. If there are two vertices of this u − v path belonging to the same true twin class, we
continue the procedure until arriving at a u − v path, Q′, such that no two of its vertices belong to the
same true twin class. Since Q′ contains no vertices of U′, the length of Q′ is less than l − 1, which is a
contradiction. Hence, P′ contains at least one vertex from each true twin class. �

We are now prepared to present the connected local dimension of a connected graph containing
some singleton true twin classes.

Theorem 2.3. Let G be a connected graph having l true twin classes, and d(U,V) = l − 1 for some
non-singleton true twin classes U and V of G. If there are p singleton true twin classes of G, then
cld(G) = n − l + p.

Proof. Let p be the number of singleton true twin classes in G. Then, 1 ≤ p ≤ l − 2. Let U1,U2, ...,Ul

be true twin classes of G, where |Ui| ≥ 2 for 1 ≤ i ≤ l− p and |Ui| = 1 for l− p+1 ≤ i ≤ l, and let ui ∈ Ui

for 1 ≤ i ≤ l. First, we show that W = V(G) − {u1, u2, ..., ul−p} is a connected local resolving set of G.
Let ui and u j be adjacent vertices in V(G)−W, where 1 ≤ i < j ≤ l− p. As ui and u j belong to distinct
true twin equivalence classes, there exists a vertex v ∈ W that is adjacent to either ui or u j, but not both,
say ui. Consequently, d(ui, v) = 1 < 2 = d(u j, v), implying that W is a local resolving set of G. We now
claim that 〈W〉 is connected. Let x and y be vertices of W. Since G is connected, it follows that there is
an x − y path P in G. If P contains no ui for 1 ≤ i ≤ l − p, then 〈W〉 is connected. If P contains some
vertices ui for 1 ≤ i ≤ l − p, then an x − y path Q is obtained from P by replacing each ui by vi, where
vi is a vertex of Ui for 1 ≤ i ≤ l − p. Thus, 〈W〉 is connected, and so W is a connected local resolving
set of G. Therefore, cld(G) ≤ n − l + p. To demonstrate cld(G) ≥ n − l + p, let W ′ be a connected local
resolving set of G. Since d(U,V) = l − 1 for some non-singleton true twin classes U and V of G, there
exists a u − v path P′ of length l − 1, where u ∈ U and v ∈ V . By Lemma 2.1, P′ contains exactly one
vertex from each true twin class. Consequently, W ′ must contain ui ∈ Ui for l − p + 1 ≤ i ≤ l. Since
|Ui| ≥ 2 for 1 ≤ i ≤ l− p, W ′ must include at least |Ui| − 1 vertices from Ui for 1 ≤ i ≤ l− p. Therefore,
|W ′| ≥ n − l + p, that is, cld(G) ≥ n − l + p. Hence, cld(G) = n − l + p. �

AIMS Mathematics Volume 9, Issue 4, 9435–9446.



9440

3. The characterization of connected graphs with connected local dimension n − 2

Consider a connected graph G with l distinct true twin classes denoted as U1,U2, ...,Ul. The true
twin graph tG of G is defined as a graph having a vertex set {U1,U2, ...,Ul}. In tG, two distinct vertices
Ui and U j are adjacent if and only if d(Ui,U j) = 1 (in G), where 1 ≤ i < j ≤ l. Actually, if each of the
true twin classes of G consists of a single vertex, then tG = G.

For example, the connected graph G given in Figure 2(a) has eight true twin classes U1 = {u1},
U2 = {u2, u10}, U3 = {u3}, U4 = {u4}, U5 = {u5}, U6 = {u6, u7}, U7 = {u8}, and U8 = {u9}. Then, the true
twin graph tG has the vertex set {U1,U2, ...,U8}, and this true twin graph is shown in Figure 2(b).

Figure 2. The connected graph G and its true twin graph tG.

Let u and v be vertices of a connected graph G belonging to distinct true twin classes. Then,
N[u] , N[v], and so there is a vertex w of G that is adjacent to either u or v, but not both. This concept
leads to the following useful result.

Lemma 3.1. Let x, y, and z be vertices belonging to distinct true twin classes of a connected graph G.
Assume that G − {x, y, z} is connected. If

(i) 〈{x, y, z}〉 = K3,

(ii) 〈{x, y, z}〉 = (x, y, z), a path of order 3, where x and z belong to non-singleton true twin classes,

(iii) 〈{x, y, z}〉 = K2 ∪ K1, or

(iv) 〈{x, y, z}〉 = K3,

then V(G) − {x, y, z} is a connected local resolving set of G.

Proof. Let W = V(G) − {x, y, z}. Since G − {x, y, z} is connected, it remains to prove that W is a local
resolving set of G.

(i) Assume that 〈{x, y, z}〉 = K3. For any distinct u, v ∈ {x, y, z}, since u and v belong to distinct true
twin classes, there exists a vertex w of W that is adjacent to either u or v, but not both. Consequently,
r(u|W) , r(v|W), and hence W is a local resolving set of G.

(ii) Assume that 〈{x, y, z}〉 = P3 = (x, y, z), where x and z belong to non-singleton true twin classes.
Then, there are two vertices x′ and z′ such that both x and x′ belong to the same true twin class and
both z and z′ belong to the same true twin class. Since d(x, z′) = 2 > 1 = d(y, z′) and d(z, x′) = 2 > 1 =

d(y, x′), r(x|W) , r(y|W) and r(z|W) , r(y|W), respectively. Therefore, W is a local resolving set of G.
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(iii) Assume that 〈{x, y, z}〉 = K2∪K1. Without loss of generality, let V(K2) = {x, y}, and V(K1) = {z}.
Since x and y belong to distinct true twin classes, there is a vertex w of W such that w is adjacent to
either x or y, but not both. Therefore, r(x|W) , r(y|W), implying that W is a local resolving set of G.

(iv) Assume that 〈{x, y, z}〉 = K3. Since {x, y, z} is independent, it follows that W is a local resolving
set of G. �

As we mentioned earlier, every connected local resolving set of a connected graph G must contain
at least |U | − 1 vertices from U, where U is a true twin class of G. This implies that a connected graph
G of order n contains at most two non-singleton true twin classes if cld(G) = n− 2, as we present next.

Theorem 3.1. Let G be a connected graph of order n. If cld(G) = n − 2, then G contains at most two
non-singleton true twin classes.

Proof. Suppose, to the contrary, that there are three non-singleton true twin classes denoted as U1,
U2, and U3. For 1 ≤ i ≤ 3, let ui ∈ Ui. Observe that G − {u1, u2, u3} is connected. There are
four possibilities of each induced subgraph 〈{u1, u2, u3}〉 of G: 〈{u1, u2, u3}〉 = K3, 〈{u1, u2, u3}〉 = P3,
〈{u1, u2, u3}〉 = K2 ∪ K1, or 〈{u1, u2, u3}〉 = K3. That V(G) − {u1, u2, u3} is a connected local resolving
set of G is an immediate consequence of Lemma 3.1. Therefore, cld(G) ≤ n − 3, which contradicts the
fact that cld(G) = n − 2. �

Theorem 3.1 gives a necessary condition for a connected graph G of order n with cld(G) = n − 2.
However, a connected graph G of order n containing at most two non-singleton true twin classes is
not a sufficient condition for a graph G having cld(G) = n − 2. For example, when n ≥ 4, a path Pn

contains no non-singleton true twin class, but cld(Pn) = 1 , n− 2. Furthermore, Theorem 3.1 provides
an important point for investigating a connected graph G of order n with the connected local dimension
n−2. To characterize all such graphs G, it suffices to consider connected graphs containing at most two
non-singleton true twin classes. We first present the characterization of connected graphs G of order n
that do not contain non-singleton true twin classes satisfying cld(G) = n − 2.

Theorem 3.2. Let G be a connected graph of order n containing no non-singleton true twin class.
Then, cld(G) = n − 2 if and only if tG = P3.

Proof. If tG = P3, then G = P3 since G contains only singleton true twin classes. It can be shown that
cld(P3) = 1. To verify the converse, assume that cld(G) = n − 2. For n = 3, only the graph G = P3 has
the desired property. For n = 4, all connected graphs of order 4 having only singleton true twin classes
are P4, K1,3, and C4. It is routine to verify that all of them have connected local dimensions of 1. This
implies that there is no connected graph of order 4 with the connected local dimension 2. We therefore
assume that n ≥ 5. Then, there are three vertices x, y, and z of G such that G−{x, y, z} is connected. Let
W = {x, y, z}. If 〈W〉 = K3, 〈W〉 = K2 ∪ K1, or 〈W〉 = K3, then V(G) −W is a connected local resolving
set of G by Lemma 3.1(i), (iii), and (iv), respectively. Therefore, cld(G) ≤ n − 3, which contradicts
the fact that cld(G) = n − 2. Assume that 〈W〉 = P3 = (x, y, z). Since cld(G) = n − 2, it follows that
V(G) − W is not a local resolving set of G. Thus, we may assume, without loss of generality, that
r(x|W) = r(y|W). Then, N[x] = N[y] − {z}. Let G′ = G − {x, y}. We consider two cases.
Case 1. z is adjacent to some vertex in G′.

Since G′ is connected, it follows that there is a vertex u , z in G′ such that G′ − u is connected.
Thus, G − {x, y, u} is connected. We observe that the induced subgraph 〈{x, y, u}〉 of G is either K3 or

AIMS Mathematics Volume 9, Issue 4, 9435–9446.



9442

K2 ∪ K1. Nevertheless, 〈{x, y, u}〉 is a connected local resolving set of G by Lemma 3.1(i) and (iii),
respectively. Therefore, cld(G) ≤ n − 3, establishing a contradiction.
Case 2. z is not adjacent to every vertex in G′.

Since G is connected and N[x] = N[y]− {z}, it follows that there is a vertex in G′ − z that is adjacent
to both x and y, so G − {x, z} remains connected. Thus, there is a vertex v , y in G − {x, z} such that
G − {x, z, v} is connected. We now obtain that the induced subgraph 〈{x, z, v}〉 of G is either K2 ∪ K1 or
K3. However, 〈{x, z, v}〉 is a connected local resolving set of G by Lemma 3.1(iii) and (iv), respectively.
Thus, cld(G) ≤ n − 3, which is impossible.

Hence, for n ≥ 5, there is no connected graph G of order n containing only singleton true twin
classes such that cld(G) = n − 2. This implies that G = tG = P3. �

Next, we will identify all connected graphs G of order n containing exactly one non-singleton true
twin class such that cld(G) = n − 2. To do this, we first introduce some key notation. The eccentricity
e(u) of a vertex u in a connected graph G is the distance between u and a vertex farthest from u in G.
The following lemma is useful.

Lemma 3.2. Let G be a connected graph of order n containing exactly one non-singleton true twin
class U. If cld(G) = n − 2, then e(u) ≤ 2, where u ∈ U.

Proof. Assume, to the contrary, that e(u) ≥ 3. Then, there is a vertex v of G such that d(u, v) = k =

e(u) ≥ 3. Let (u = u0, u1, u2, ..., uk = v) be a u − v geodesic in G. For the set V(G) − {u, uk−1, uk},
if G − {u, uk−1, uk} is connected, then V(G) − {u, uk−1, uk} is a connected local resolving set of G, and
so cld(G) ≤ n − 3, contradicting the fact that cld(G) = n − 2. Assume that G − {u, uk−1, uk} is not
connected. In other words, {u, uk−1, uk} is a vertex-cut. Since u belongs to a non-singleton true twin
class, {uk−1, uk} is also a vertex-cut. Let G1 be a component of G − {uk−1, uk} that contains u. We claim
that every vertex x ∈ V(G) − (V(G1) ∪ {uk−1, uk}) is adjacent to uk−1 in G. Suppose, contrary to our
claim, that such a vertex x is not adjacent to uk−1 in G. Consequently, there exists a u − x geodesic in
G containing u1, u2, ..., uk−1, uk. This implies that G contains a u − x path of length at least k + 1, which
contradicts the fact that e(u) = k. Hence, every vertex x ∈ V(G)−(V(G1)∪{uk−1, uk}) is adjacent to uk−1.
Therefore, G − {u, x, uk} is connected. Since the induced subgraph 〈{u, x, uk}〉 of G is either K2 ∪ K1 or
K3, it follows by Lemma 3.1(iii) and (iv) that V(G) − {u, x, uk} is a connected local resolving set of G,
that is, cld(G) ≤ n − 3, which is impossible. Thus, e(u) ≤ 2. �

Theorem 3.3. Let G be a connected graph of order n containing exactly one non-singleton true twin
class. Then, cld(G) = n − 2 if and only if tG = P3.

Proof. Assume that the true twin graph tG of G is the path P3 = (X,Y,Z). Since G contains three
true twin classes, it follows by Proposition 2.2 that ld(G) ≥ n − 3, and so cld(G) ≥ n − 3. If either
X or Z is a non-singleton true twin class of G, say X, then X is a connected local resolving set of
G, that is, cld(G) ≤ n − 2. Indeed, G contains no connected local resolving set of cardinality n − 3.
Otherwise, a connected local resolving set W of G consists of |X| − 1 vertices of X. This implies that
there are two vertices x and y, where x ∈ X −W and y ∈ Y with r(x|W) = r(y|W), which is impossible.
If Y is a non-singleton true twin class of G, then Y is a connected local resolving set of G, and so
cld(G) ≤ n − 2. Similarly, G contains no connected resolving set of cardinality n − 3. Therefore,
cld(G) = n − 2. Conversely, assume that cld(G) = n − 2. Let U be the non-singleton true twin class
of G. For a vertex u in U, we have that e(u) ≤ 2 by Lemma 3.2. We therefore consider two cases
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according to the eccentricity of u.
Case 1. e(u) = 1.

Since G is not complete, and U is the only non-singleton true twin class of G, it follows that there
are at least two vertices x and y that do not belong to U. Since e(u) = 1, it follows that u is adjacent
to both x and y. We claim that |V(G) − U | = 2. Suppose, contrary to our claim, that there are at
least three vertices of V(G) − U. Then, there are two adjacent vertices in G − U. Otherwise, there is
a set S of three independent vertices in V(G) − U such that G − S is connected, and 〈S 〉 = K3. By
Lemma 3.1(iv), S is a connected local resolving set of G, that is, cld(G) ≤ n− 3, a contradiction. Let x
and y be two adjacent vertices in G−U. Since G− {u, x, y} is connected, and 〈{u, x, y}〉 = K3, it follows
by Lemma 3.1(i) that {u, x, y} is a connected local resolving set of G, and so cld(G) ≤ n − 3, which is
impossible. Thus, as claimed, |V(G)−U | = 2. Since the two vertices in V(G)−U are not true twins, it
follows that |V(tG)| = 3, and so tG = P3.
Case 2. e(u) = 2.

Then, there is a vertex v < U with d(u, v) = 2. Let (u, x, v) be a u − v geodesic in G. We first prove
the following claim.
Claim. Every vertex in V(G) − (U ∪ {x, v}) must be adjacent to u.

Suppose, contrary to our claim, that there is a vertex z ∈ V(G)− (U ∪ {x, v}) that is not adjacent to u.
Then, d(u, z) = 2, that is, G−{v, z} is connected, so is G−{u, v, z}. Since the induced subgraph 〈{u, v, z}〉
is either K2 ∪ K1 or K3, it follows by Lemma 3.1(iii) and (iv) that V(G) − {u, v, z} is a connected local
resolving set of G, which is impossible. Thus, every vertex in V(G) − (U ∪ {x, v}) must be adjacent to
u.

Next, we show that V(G) − U = {x, v}. Assume, to the contrary, that there is a vertex z ∈ V(G) −
(U ∪ {x, v}). By the claim, we obtain that z is adjacent to u. If x is not adjacent to z, then V(G)− {u, v, z}
is a connected local resolving set of G. This is a contradiction. Thus, x and z are adjacent. Assume
that z is not adjacent to v. Since 〈{u, v, z}〉 = K2 ∪ K1, it follows by Lemma 3.1(iii) that V(G) − {u, v, z}
is a connected local resolving set of G, producing a contradiction. Therefore, z is adjacent to v. Since
〈{v, x, z}〉 = K3, it follows by Lemma 3.1(i) that V(G) − {v, x, z} is a connected local resolving set of
G. This is a contradiction. Hence, V(G) − U = {x, v}. Since x and v are not true twins, it follows that
|V(tG)| = 3, and hence tG = P3. �

Last, we investigate all connected graphs G containing two non-singleton true twin classes such that
cld(G) = n − 2.

Theorem 3.4. Let G be a connected graph of order n containing exactly two non-singleton true twin
classes. Then, cld(G) = n − 2 if and only if

tG =

{
P3, if d(U,V) = 1,
Pk+1, if d(U,V) = k ≥ 2,

where U and V are two distinct non-singleton true twin classes of G.

Proof. For k ≥ 2, if tG = Pk+1, then G has k + 1 true twin classes. Since U and V are non-singleton
true twin classes and d(U,V) = k, it follows by Theorem 2.3 that cld(G) = n − 2. For d(U,V) = 1, if
tG = P3, then G has three true twin classes. Without loss of generality, consider tG = (U,V, {x}) and
let u ∈ U and v ∈ V . Since G contains no connected local resolving set of cardinality n − 3, it follows
that cld(G) ≥ n − 2. It can be shown that V(G) − {u, v} is a connected local resolving set of G. This
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implies that cld(G) = n − 2. We now verify the converse. Assume that cld(G) = n − 2. Let u ∈ U and
v ∈ V . We consider two cases.
Case 1. d(U,V) = 1.

Since u and v are not true twins, it follows that there is a vertex x ∈ V(G) − (U ∪ V) such that
x is adjacent to every vertex in either U or V , but not both, say V . We claim that G have only three
true twin classes U, V , and {x}. Suppose, contrary to our claim, that G contains another true twin
class. If e(v) = 1, then there is a vertex y ∈ V(G) − (U ∪ V ∪ {x}) that is adjacent to v. Since every
vertex in G is adjacent to v, it follows that G − y is connected, and so is G − {u, v, y}. Since u, v,
and y are not true twins, it follows that V(G) − {u, v, y} is a connected local resolving set of G and so
cld(G) ≤ n− 3, contradicting the fact that cld(G) = n− 2. We may assume that e(v) ≥ 2. Then, there is
a vertex z ∈ V(G) − (U ∪ V ∪ {x}) with d(v, z) = e(v) ≥ 2. Notice that G − {u, v, z} is connected. Thus,
V(G) − {u, v, z} is a connected local resolving set of G, and so cld(G) ≤ n − 3, which is impossible.
Hence, G has only three true twin classes U, V , and {x}, that is, tG = P3.
Case 2. d(U,V) = k ≥ 2.

Let P = (u = u0, u1, ..., uk = v) be a u − v geodesic of G. Then, every internal vertex of P belongs to
a singleton true twin class. We claim that V(G) − (U ∪ V) = {u1, u2, ..., uk−1}. Suppose, contrary to our
claim, that there is a vertex x in V(G) − (U ∪ V ∪ V(P)). We consider two subcases.
Subcase 2.1. Neither u nor v is adjacent to x.

If x is not a cut-vertex of G, then G − {u, v, x} is connected. Since 〈{u, v, x}〉 = K3, it follows by
Lemma 3.1(iv) that V(G) − {u, v, x} is a connected local resolving set of G, producing a contradiction.
We may assume that x is a cut-vertex of G. Then, there are at least two components G1 and G2 of G− x.
Suppose that G1 contains U and V . Thus, there is a vertex x′ of G2 such that G − x′ is connected, that
is, G − {u, v, x′} is also connected. Since 〈{u, v, x′}〉 = K3, it follows that V(G)− {u, v, x′} is a connected
local resolving set of G, which is impossible.
Subcase 2.2. Either u or v is adjacent to x, say u.

Similarly, if x is not a cut-vertex of G, then G − {u, v, x} is connected. Since 〈{u, v, x}〉 is K2 ∪ K1

or P3, it follows by Lemma 3.1(ii) and (iii), respectively, that V(G) − {u, v, x} is a connected local
resolving set of G. This is a contradiction. We therefore assume that x is a cut-vertex of G. Thus, there
is a vertex x′ in a component of G − x not containing U and V such that G − {u, v, x′} is connected.
Observe that 〈{u, v, x′}〉 = K3. Consequently, V(G)− {u, v, x′} is a connected local resolving set of G by
Lemma 3.1(iv). This is also a contradiction.

Hence, as claimed, V(G) − (U ∪ V) = {u1, u2, ..., uk−1}, and so tG = Pk+1. �

All connected graphs of order n with connected local dimension n − 2 are characterized by
Theorems 3.2–3.4. The following result is a consequence of these theorems.

Corollary 3.1. Let G be a connected graph of order n. Then, cld(G) = n − 2 if and only if one of the
following holds:

(i) tG = P3, and G contains at most two non-singleton true twin classes.

(ii) tG = Pk+1, and G contains exactly two non-singleton true twin classes U and V, with d(U,V) =

k ≥ 3.

Some examples of graphs with connected local dimension n − 2 are shown in Figure 3. Vertices in
the same non-singleton true twin class in each graph are enclosed by a dashed circle. The true twin
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graphs of the graphs G1 and G2 are P3, as seen Figure 3(a) and (b). In Figure 3(c), the true twin graph
of the graph G3 is P5, and the distance between the two non-singleton true twin classes of G3 is 4.

Figure 3. Graphs with connected local dimension n − 2.

4. Conclusions

In this paper, we have established a principal property of a connected local basis of a connected
graph G. In our analysis, we determined that for a connected graph G of order n with l true twin
classes, none of which is a singleton set, the connected local dimension is given by cld(G) = n − l.
Extending our investigation to involve a connected graph G with l true twin classes and d(U,V) = l− 1
for some non-singleton true twin classes U and V of G, and if there are p singleton true twin classes in
G, then cld(G) = n − l + p. We demonstrated that, in a connected graph G of order n with a connected
local dimension cld(G) = n−2, there exist at most two non-singleton true twin classes. Ultimately, our
research significantly contributes to the characterization of graphs with a connected local dimension of
n − 2.
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