
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(4): 9394–9418.
DOI: 10.3934/math.2024458
Received: 27 December 2023
Revised: 03 February 2024
Accepted: 20 February 2024
Published: 07 March 2024

Research article

A discrete extension of the Burr-Hatke distribution: Generalized
hypergeometric functions, different inference techniques, simulation
ranking with modeling and analysis of sustainable count data

Khaled M. Alqahtani1, Mahmoud El-Morshedy1,4, Hend S. Shahen2,4 and Mohamed S. Eliwa3,4,*

1 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2 Department of Mathematics, Misr Institute for Computer Science, Egypt
3 Department of Statistics and Operation Research, College of Science, Qassim University, Buraydah

51482, Saudi Arabia
4 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

* Correspondence: Email: m.eliwa@qu.edu.sa.

Abstract: The intertwining relationship between sustainability and discrete probability distributions
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1. Introduction

In the analysis of real-world sustainability data, it is common to utilize continuous random
distributions like the Burr-Hatke exponential (BHE) distribution. However, there are instances where
the measurement of lifetimes is discrete, such as recording survival time in months or weeks. In such
cases, employing a discrete random variable is more suitable. Additionally, practical problems in
engineering and applied sciences often involve count phenomena, like the number of earthquakes in a
year, accidents at a location, doctor visits, or insurance claims. Despite the availability of various
established discrete models, there is a continued need for more flexible distributions that can
effectively capture the diverse characteristics of sustainability datasets. This includes factors like
asymmetry, under or over-dispersion, and variations in the failure rate function. Recognizing the
significance of discrete probability models in our previous survey, we have developed and extensively
explored a discrete probability distribution. This new model serves as the discrete counterpart to the
BHE distribution. The BHE distribution has gained widespread utility in reliability analysis, survival
modeling, and risk assessment due to its versatility in capturing diverse data patterns. Known for its
flexibility in modeling right-skewed and heavy-tailed data, the BHE model is well-suited for
characterizing a broad spectrum of real-world phenomena. Its adaptability extends to applications in
survival analysis, providing a valuable tool for researchers to effectively model complex datasets and
gain a deeper understanding of the underlying mechanisms governing observed events. For additional
information and in-depth details about the BHE distribution, please refer to the citation labeled as [1].
If the expression for the survival function (SF) and probability density function (PDF) of a random
variable X conforms to the following, it is recognized as adhering to the BHE distribution

S (x; λ) =
e−λx

1 + λx
; λ > 0, x > 0, (1.1)

and
g (x; λ) = λe−λx 2 + λx

(1 + λx)2 ; λ > 0, x > 0, (1.2)

respectively, where λ > 0 is a scale parameter. In accordance with survival discretization techniques,
one can derive a discrete BHE (DBHE) distribution. Survival discretization techniques are a set of
statistical methods used to transform continuous probability distributions, such as the BHE distribution,
into discrete versions suitable for practical applications. These techniques are particularly valuable
when dealing with real-world data, which is often recorded in discrete units or intervals. By means of
this process, the probability mass function can be obtained as

Pr (X = x; .) = S (x; .) − S (x + 1; .) ; x = 0, 1, 2, 3, .... (1.3)

Several discrete distributions have been suggested and examined, utilizing the discrete survival
function and other techniques as a foundation, including: Discrete Burr-Hatke [2], discrete linear
exponential [3], discrete Pareto [4], discrete inverse Rayleigh [5], discrete inverse Weibull [6],
discrete Lindley [7], new discrete extended Weibull [8], discrete generalized geometric [9], discrete
Gompertz [10], discrete generalized exponential type II [11], an overview of discrete models for
fitting COVID-19 datasets [12], discrete Ramos-Louzada [13], discrete generalized Rayleigh [14],
and discrete Marshall-Olkinin [15], as well as the references cited within.
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The structure of this article is as follows: In Section 2, we introduce the DBHE distribution,
developed through the survival discretization approach. Section 3 explores a range of statistical
properties. Section 4 delves into the estimation of distribution parameters using various methods. In
Section 5, we present a comprehensive simulation study based on ranking techniques. Section 6
demonstrates the versatility of the DBHE distribution by analyzing different datasets. Finally,
Section 7 offers concluding remarks summarizing the findings presented in this paper.

2. The structural characteristics of the DBHE distribution

Using Eqs (1.1) and (1.3), the SF for the DBHE distribution is expressed as

S (x; β) =
βx+1

1 − (x + 1) ln β
; x ∈ N0, (2.1)

where 0 < β = e−λ < 1 and N0 = 0, 1, 2, 3, .... The behavior of the SF is described by

S (x; β) =
{ β

1−ln β ; x = 0
1; β→ 1.

(2.2)

The associated cumulative distribution function (CDF) and probability mass function (PMF) for (2.1)
can be formulated as follows:

F(x; β) = 1 −
βx+1

1 − (x + 1) ln β
; x ∈ N0, (2.3)

and

Pr (X = x; β) = βx

[
1

1 − x ln β
−

β

1 − (x + 1) ln β

]
; x ∈ N0, (2.4)

respectively, where β controls the shape of the distribution. The behavior of the PMF is given by

Pr (X = x; β) =
{

1 − β

1−ln β ; x = 0
0; β→ 1.

(2.5)

Figure 1 displays the PMF plots for different values of the parameter β.
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Figure 1. The PMF plots of the DBHE model.
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It is worth noting that the PMF is highly effective for modeling unimodal-shaped data. Furthermore,
it can also be applied to analyze asymmetric “positively-skewed” data, showcasing its versatility in
capturing various data patterns. The hazard rate function (HRF) can be formulated as

h (x; β) = 1 −
β (1 − x ln β)

1 − (x + 1) ln β
; x ∈ N0. (2.6)

The reversed hazard rate function (RHRF) is expressed as follows:

r (x; β) =
βx

[
1

1−x ln β −
β

1−(x+1) ln β

]
1 − βx+1

1−(x+1) ln β

; x ∈ N0. (2.7)

The hazard rate is a measure of an item’s death rate at a specific age x and is a component of the
broader hazard function equation. This equation evaluates the probability that an item, having survived
up to a certain time t, will continue to endure beyond that point. In essence, it quantifies the likelihood
that an item surviving one moment will persist to the next one. The hazard rate is particularly relevant
to non-repairable items and is sometimes referred to as the failure rate. Its significance extends to the
design of secure systems in various domains such as commerce, engineering, finance, insurance, and
regulatory industries. It can be expressed as a ratio of probability density to its corresponding survival
function. Conversely, the reversed hazard rate of a random life is defined as the ratio between the
life probability density and its distribution function. This concept holds significance in the analysis of
censored data and finds applications in fields such as forensic sciences. Figure 2 illustrates the HRF
and RHRF plots for varying values of the parameter β.
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Figure 2. The HRF and RHRF of the DBHE distribution.

The observation of decreasing HRF and RHRF carries significant implications across multiple
disciplines. This includes reliability engineering, where it signifies a decrease in system failure rates
over time, healthcare, where it indicates improving survival probabilities, finance, where it suggests
decreasing default probabilities, environmental sciences, where it hints at slowed environmental
degradation, manufacturing, where it implies improved product quality, and public policy, where it
informs safety measures and disaster preparedness, highlighting the importance of statistical analysis
and hazard rate modeling for informed decision-making and process optimization in risk assessment
and reliability domains.
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3. Some statistical features

3.1. Statistical moments and associated notions

The moment generating function (MGF) and cumulant generating function (CGF) are essential
tools in probability theory and statistics, offering valuable insights and advantages in various aspects
of statistical analysis and probability modeling. Consider X as a random variable conforming to the
DBHE distribution. The MGF, denoted as ΠX (t), and the CGF, denoted as KX (t), can be represented
in terms of generalized hypergeometric functions as follows:

ΠX (t; β) =
∞∑

x=0

etx Pr (X = x; β)

= (1 −
β

1 − ln β
) hypergeom([1, λ1, λ2] , [λ3, λ4] , etβ), (3.1)

and

KX (t; β) = ln (ΠX (t; β))

= ln
(
1 −

β

1 − ln β

)
+ ln

(
hypergeom([1, λ1, λ2] , [λ3, λ4] , etβ)

)
, (3.2)

where λ1 =
−1
ln β , λ2 =

(β−2) ln β+1−β
(−1+β) ln β , λ3 =

−1+2 ln β
ln β , and λ4 =

1−ln β−β
(−1+β) ln β . The equation represented by (3.1)

can be derived using the Maple software, utilizing the hypergeom(.) function, which is a generalized
hypergeometric function. This mathematical function finds applications across diverse fields such as
complex analysis, differential equations, and statistical mechanics. Renowned for its role as a solution
to the hypergeometric differential equation, it is extensively employed in expressing solutions to
problems characterized by symmetry, particularly those featuring spherical or cylindrical symmetry.
The initial four moments of the DBHE distribution can be formulated as follows:

E (X) = A hypergeom ([2, B,C] , [D, E] , β) , (3.3)

E
(
X2

)
= A hypergeom ([2, 2, B,C] , [1,D, E] , β) , (3.4)

E
(
X3

)
= A hypergeom ([2, 2, 2, B,C] , [1, 1,D, E] , β) , (3.5)

and

E
(
X4

)
= A hypergeom ([2, 2, 2, 2, B,C] , [1, 1, 1,D, E] , β) , (3.6)

where A = β[(−2+β) ln β+1−β]
1+2(ln β)2−3 ln β , B = −1+ln β

ln β , C = (−3+2β) ln β+1−β
(−1+β) ln β , D = −1+3 ln β

ln β , E = (−2+β) ln β+1−β
(−1+β) ln β . Let

n = [n1, n2, ...], p = nops(n), d = [d1, d2, ...], and q = nops(d). The hypergeom(n, d, z) calling
sequence is the generalized hypergeometric function F(n, d, z). This function is frequently denoted by
pFq(n, d, z). For the variable z, the pFq(n, d, z) can be formulated as

pFq(n, d, z) =
∞∑

k=0

zn.a(ni, k)
k!.b(d j, k)

,
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where

a(ni, k) =
p∏

i=1

pochhammer(ni, k) and b(d j, k) =
q∏

j=1

pochhammer(d j, k).

The Pochhammer symbol can be listed as

pochhammer(z, n) = z(z + 1)...(z + n − 1).

For additional information, please refer to the Maple software’s library. Using Eqs 3.3–3.6, the
variance, skewness and kurtosis can be derived as

var(X) = E(X2) − [E(X)]2 , (3.7)

skewness(X) =
E(X3) − 3E(X2)E(X) + 2 [E(X)]3

[Var(X)]3/2 , (3.8)

and

kurtosis(X) =
E(X4) − 4E(X)E(X3) + 6E(X2) [E(X)]2 − 3 [E(X)]4

[Var(X)]2 . (3.9)

Table 1 provides a compilation of numerical descriptive measures that serve as valuable tools for
gaining insights into the attributes of the DBHE distribution. These measures aid researchers and
analysts in comprehending aspects like central tendency, variability, shape, and other critical
properties. The choice of which measures to emphasize may vary depending on the specific analysis
and application.

Table 1. Numerical descriptors for characterizing the DBHE distribution.

Measure ↓ β −→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean 0.0322 0.0876 0.1702 0.2906 0.4697 0.7499 1.2305 2.2094 5.1776
Var 0.0350 0.1062 0.2299 0.4458 0.8399 1.6249 3.4397 8.9575 40.5734

Skewness 6.3536 4.3745 3.5841 3.1582 2.9003 2.7370 2.6342 2.5731 2.5420
Kurtosis 49.4831 27.1804 20.3660 17.1898 15.4389 14.4014 13.7775 13.4179 13.2383

Based on the information in Table 1, it’s evident that as β approaches 1, the mean and variance of
the DBHE distribution exhibit an increase, whereas the skewness and kurtosis experience a decrease.
Moreover, the presented model demonstrates its capability to effectively model distributions that are
positively skewed and leptokurtic in nature. Leptokurtic is a statistical term used to describe a
distribution that has heavier tails and a sharper peak (higher kurtosis) compared to a normal
distribution. This indicates that the distribution has more extreme values or outliers than a normal
distribution, leading to a higher concentration of data points in the center and in the tails. In simple
terms, a leptokurtic distribution has a more peaked and less spread-out shape than a normal
distribution.

3.2. Dispersion index and variation coefficient

The index of dispersion (IOD) quantifies the absolute spread of data, while the coefficient of
variation (COV) gauges the relative spread. Both metrics are valuable across diverse fields like
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epidemiology, finance, and quality control, where understanding data variability is crucial for
decision-making. An IOD below 1 suggests underdispersion, indicating data points cluster closely
around the mean. In contrast, values exceeding 1 signal overdispersion, revealing greater variability
than expected by the assumed model. An IOD of 1 suggests a random distribution where spread is
proportional to the mean. When interpreting the COV, a low COV indicates minor relative variability
compared to the mean, while a high COV suggests significant relative variability. These measures
offer essential insights for effective analysis and decision-making in various domains. Consider X as a
random variable conforming to the DBHE distribution, then the IOD and the COV can be formulated
as

IOD (X; β) =
hypergeom ([2, 2, B,C] , [1,D, E] , β)

hypergeom ([2, B,C] , [D, E] , β)
− A hypergeom ([2, B,C] , [D, E] , β) , (3.10)

and

COV (X; β) =

√
hypergeom ([2, 2, B,C] , [1,D, E] , β)
A (hypergeom ([2, B,C] , [D, E] , β))2 − 1. (3.11)

The statistics for the DBHE distribution, including the IOD and COV can be reported in Table 2.

Table 2. The IOD and COV of the DBHE distribution.

Measure ↓ β −→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IOD 1.0964 1.2097 1.3505 1.5342 1.7881 2.1664 2.7955 4.0542 7.8363
COV 5.8351 3.7128 2.8165 2.2978 1.9512 1.6997 1.5073 1.3546 1.2302

Based on the information in Table 2, it’s evident that as β approaches 1, the IOD increases while the
COV decreases. Additionally, the proposed model is best suited for modeling data with overdispersion
characteristics.

3.3. Order statistics and L-moment statistics

Consider a scenario where we have a set of n random variables, denoted as X1, X2,..., Xn, which
are arranged in nondecreasing order and expressed as X1:n ≤ X2:n ≤ ... ≤ Xn:n. In the context of order
statistics, it’s important to note that there are no constraints placed on whether these X,is are independent
or identically distributed. However, many well-established results pertaining to order statistics are
derived under the classical assumption that the X,is are independent and identically distributed (iid).
The CDF of the ith order statistic is expressed as follows:

Fi:n (x; β) =
n∑

k=i

(
n
k

) [
Fi (x; β)

]k [1 − Fi (x; β)
]n−k

=

n∑
k=i

n−k∑
j=0

Φ(n,k)
m

[
Fi (x; β)

]k+ j , (3.12)

where Φ(n,k)
m = (−1) j

(
n
k

)(
n−k

j

)
. Moreover, the associated PMF of the ith order statistic is given by
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fi:n (x; β) = Fi:n (x; β) − Fi:n (x − 1; β)

=

n∑
k=i

n−k∑
j=0

Φ(n,k)
m

[
fi (x; β)

]k+ j . (3.13)

Thus, the rth moments of Xi:n can be expressed as

E
(
Xr

i:n
)
=

∞∑
x=0

n∑
k=i

n−k∑
j=0

Ψ(n,k)
m xr [ fi (x; β)

]k+ j . (3.14)

L-moments are statistical summary measures for probability distributions, introduced by [11]. They
share similarities with ordinary moments but are calculated using linear functions applied to the ordered
data values. The L-moment of a random variable X is expressed as follows:

λδ =
1
δ

δ−1∑
i−0

(−1)i
(
δ − 1

i

)
E (Xδ−i:δ) . (3.15)

Using (3.15), several statistical measures based on L-moment statistics can be computed, including:
mean =λ1, coefficient of skewness =λ3

λ2
, and coefficient of kurtosis.=λ4

λ2
. In summary, order statistics

help organize and analyze data by arranging it in a specific order, while L-moment statistics provide
robust and efficient tools for estimating distribution parameters and understanding the shape and
characteristics of a distribution. Higher-order L-moments provide information about the shape and
tail characteristics of the distribution. Both concepts play important roles in various statistical
applications, particularly when dealing with nonparametric or nonstandard distributions.

4. Various estimation approaches

4.1. Maximum product of spacings estimator (MPSE)

In this section, we delve into the estimation of DBHE parameter through the MPSE method,
utilizing a complete sample. Consider a random sample X1, X2, . . . , Xn drawn from the DBHE
distribution. For j = 1, 2, . . . ,m + 1, let

W j(β) = F
(
x( j)|β

)
− F

(
x( j−1)|β

)
,

be the uniform spacings of a random sample from the DBHE model, where F
(
x(0)|β

)
= 0, F

(
x(m+1)|β

)
=

1 and
∑m+1

j=1 W j(β) = 1. The MPSE of β, say β̂MPS , can be derived by maximizing the geometric mean
of the spacings

V (β) =

m+1∏
j=1

W j(β)


1

m+1

, (4.1)

with respect to the parameter β.
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4.2. Anderson-Darling and right-tail Anderson-Darling estimators

Assume a random sample X1, X2, . . . , Xn drawn from the DBHE model. The Anderson-Darling
estimator (ADE) is another type of minimum distance estimator. The ADE of the DBHE parameter,
say β̂AD, is derived by minimizing

AD(β) = −m −
1
m

m∑
j=1

(2 j − 1)
[
log F

(
x( j)|β

)
+ log

(
1 − F

(
x( j)|β

))]
. (4.2)

Concerning the parameter β, the model is subject to optimization, while the right-tail Anderson-Darling
estimator (RADE) of the model parameter is achieved through minimization

RAD(β) =
m
2
− 2

m∑
j=1

F
(
x( j:m)|β

)
−

1
m

m∑
j=1

(2 j − 1)
[
log

(
1 − F

(
x(m+1− j:m)|β

))]
, (4.3)

with respect to the parameter β.

4.3. Maximum likelihood estimation (MLE)

Consider a random sample X1, X2, . . . , Xn drawn from the DBHE model. The log-likelihood
function (L) for the DBHE distribution can be represented as follows:

L(x|β) = ln β
n∑

i=1

xi +

n∑
i=1

ln
[(

1
1 − xi ln β

−
β

1 − (xi + 1) ln β

)]
. (4.4)

Taking the derivative of the log-likelihood with respect to β and equating it to zero, we obtain

∂L(x|β)
∂β

=
1
β

n∑
i=1

xi +

n∑
i=1

xi
β

(1 − xi ln β)−2
− (xi + 1) (1 − (xi + 1) ln β)−2

− (1 − (xi + 1) ln β)−1

(1 − xi ln β)−1
− β (1 − (xi + 1) ln β)−1 . (4.5)

Finding an analytical solution for this equation is not possible. Therefore, it requires the application
of a numerical iterative method, like the Newton-Raphson method, within the R software, or other
optimization techniques.

4.4. Weighted (least-squares) estimators

Consider a random sample from the DBHE model, with order statistics X(1), X(2), · · · , X(m). The
least-squares estimator (LSE) of the DBHE parameter, denoted as β̂LS , can be obtained by solving the
nonlinear equation defined as follows:

m∑
j=1

[
F

(
x( j)|β

)
−

j
m + 1

]
∆β

(
x( j)|β

)
= 0, (4.6)

with respect to the parameter β, where

∆β
(
x(i)|β

)
=
∂

∂β
F

(
x( j)|β

)
. (4.7)

AIMS Mathematics Volume 9, Issue 4, 9394–9418.



9403

Note that the solution of ∆β
(
x( j)|β

)
can be obtained numerically. The weighted LSE (WLSE), say β̂WLS ,

can be derived by solving the nonlinear equation defined by

m∑
j=1

(m + 1)2 (m + 2)
j (m − j + 1)

[
F

(
x( j)|β

)
−

j
m + 1

]
∆β

(
x( j)|β

)
= 0, (4.8)

with respect to the parameter β.

4.5. Cramer-Von-Mises estimator (CVME)

The CVME arises as the disparity between the estimated CDF and the empirical CDF. Estimating
the CVME of the DBHE parameter involves solving the non-linear equation defined as follows:

m∑
j=1

[
F

(
x( j)|β

)
−

2 j − 1
2m

]
∆β

(
x( j)|α, β

)
= 0, (4.9)

with respect to the parameter β, where ∆β
(
x( j)|α, β

)
is defined in Eq (4.7).

4.6. Percentile estimator (PCE)

Consider z j = j/ (m + 1) to be an unbiased estimator of F
(
x( j)|β

)
. Hence, the PCE of the parameter

β, denoted by β̂PC, can be reported by minimizing

P(β) =
m∑

j=1

(
x( j) − D

(
z j

))2
,

with respect to the parameter β where D
(
z j

)
= F−1

(
x( j)|β

)
is the quantile function of the DBHE model.

5. Simulation ranking techniques: different estimators

In this segment, we assess the effectiveness of MPSE, ADE, MLE, LSE, RADE, PCE, CVME,
and WLSE concerning the sample size ‘n’, and utilizing the R software with DEHB parameters. The
process of generating a random variable X from the DEHB distribution begins by generating the value
Y from the continuous distribution. Subsequently, the obtained Y value undergoes discretization to
produce X, where X is defined as the greatest integer less than or equal to Y . To replicate this, we
perform Markov Chain Monte Carlo (MCMC) simulations using various schemes. The assessment is
carried out through a simulation study:

(1) Generate N = 10000 samples of various sizes “ni; i = 1, 2, 3, 4, 5” from the DBHE model as
follows:

• Scheme I: β = 0.2 | n1 = 50, n2 = 150, n3 = 300, n4 = 700, n5 = 1000.
• Scheme II: β = 0.4 | n1 = 50, n2 = 150, n3 = 300, n4 = 700, n5 = 1000.
• Scheme III: β = 0.7 | n1 = 50, n2 = 150, n3 = 300, n4 = 700, n5 = 1000.
• Scheme III: β = 0.9 | n1 = 50, n2 = 150, n3 = 300, n4 = 700, n5 = 1000.
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(2) Compute the MPSE, ADE, MLE, LSE, RADE, PCE, CVME, and WLSE for the 10000 samples,
say β̂k for k = 1, 2, ..., 10000.

(3) Caculate the bias, mean squared errors (MSE), and mean relative errors (MRE) for N = 10000
samples as

|Bias(β)| =
1
N

N∑
k=1

∣∣∣∣β̂k − βk

∣∣∣∣ , MSE(β) =
1
N

N∑
k=1

(β̂k − βk)2, MRE(β) =
1
N

N∑
k=1

∣∣∣∣β̂k − βk

∣∣∣∣
βk

.

The MSE measures the average squared difference between predicted and actual values, with a
lower MSE indicating closer predictions to actual values. On the other hand, MRE expresses the
average relative difference as a percentage, offering insights into accuracy and normalization
across varying data magnitudes. MSE emphasizes precision by squaring errors, while MRE
considers the relative magnitude of errors. MSE can be sensitive to outliers, while MRE, in
percentage terms, may be less influenced. Despite MSE being less interpretable due to squared
units, MRE, as a percentage, provides a standardized measure of error. The choice between MSE
and MRE depends on data characteristics and the desired focus on precision or accuracy in
predictions.

(4) The empirical results of simulation are reported in the Tables 3–7.

Table 3. Simulation outcomes for Scheme I.
n Est. MPSE ADE MLE LSE RADE PCE CVME WLSE
50 |Bias| 0.349733 0.296181 0.465246 0.501757 0.378084 0.527738 0.342602 0.426185

MSE 0.455382 0.442731 0.527776 0.541797 0.475314 0.584608 0.460153 0.503785

MRE 0.151792 0.147561 0.175926 0.180607 0.158444 0.194878 0.153383 0.167935

Sum of Ranks 72 31 186 217 124 248 83 155

150 |Bias| 0.103242 0.100211 0.140977 0.140166 0.113513 0.190098 0.114744 0.132465

MSE 0.254011 0.255962 0.299677 0.297346 0.268944 0.351378 0.268083 0.285865

MRE 0.084671 0.085322 0.099897 0.099116 0.089654 0.117128 0.089363 0.095295

Sum of Ranks 41 52 217 186 114 248 103 155

300 |Bias| 0.049401 0.050652 0.072097 0.068486 0.055314 0.096018 0.054493 0.065835

MSE 0.179051 0.181592 0.214757 0.206736 0.188754 0.245358 0.184643 0.203975

MRE 0.059681 0.060532 0.071587 0.068916 0.062924 0.081788 0.061553 0.067995

Sum of Ranks 31 62 217 186 124 248 93 155

500 |Bias| 0.027821 0.027832 0.042086 0.042107 0.030833 0.056718 0.031354 0.039265

MSE 0.131901 0.133422 0.162476 0.163547 0.141354 0.191518 0.139933 0.158535

MRE 0.043971 0.044472 0.054166 0.054517 0.047124 0.063848 0.046643 0.052845

Sum of Ranks 31 62 186 217 114 248 103 155

700 |Bias| 0.023182 0.020301 0.029917 0.029496 0.024254 0.041888 0.024003 0.029385

MSE 0.123103 0.112981 0.137557 0.136685 0.123234 0.164438 0.123022 0.136796

MRE 0.041033 0.037661 0.045857 0.045565 0.041084 0.054818 0.041012 0.045606

Sum of Ranks 83 31 217 165 124 248 72 176

1000 |Bias| 0.014562 0.014041 0.019807 0.019265 0.016493 0.029098 0.016554 0.019516

MSE 0.095782 0.090161 0.112597 0.110845 0.102593 0.134868 0.104204 0.111056

MRE 0.031932 0.030051 0.037537 0.036955 0.034203 0.044958 0.034734 0.037026

Sum of Ranks 62 31 217 155 93 248 124 186
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Table 4. Simulation outcomes for Scheme II.
n Est. MPSE ADE MLE LSE RADE PCE CVME WLSE
50 |Bias| 0.806284 0.474461 1.117876 1.258808 0.769853 1.012145 0.748912 1.208837

MSE 0.613262 0.559571 0.719975 0.772037 0.640104 0.786798 0.632233 0.769586

MRE 0.204422 0.186521 0.239995 0.257347 0.213374 0.262268 0.210743 0.256536

Sum of Ranks 82.5 31 165 228 114 217 82.5 196

150 |Bias| 0.172462 0.153641 0.252855 0.260106 0.199764 0.389138 0.187983 0.299367

MSE 0.322652 0.313311 0.390585 0.392616 0.350634 0.503748 0.335733 0.416637

MRE 0.107552 0.104441 0.130195 0.130876 0.116884 0.167918 0.111913 0.138887

Sum of Ranks 62 31 155 186 124 248 93 217

300 |Bias| 0.078442 0.073871 0.123506 0.120355 0.090514 0.201408 0.089083 0.137827

MSE 0.220912 0.216361 0.278156 0.268765 0.234243 0.360168 0.235934 0.292167

MRE 0.073642 0.072121 0.092726 0.089595 0.078083 0.120058 0.078644 0.097397

Sum of Ranks 62 31 186 155 103 248 114 217

500 |Bias| 0.045882 0.044081 0.073876 0.072065 0.052174 0.125208 0.050473 0.080707

MSE 0.168772 0.164551 0.213156 0.212115 0.180044 0.287658 0.177033 0.222557

MRE 0.056262 0.054851 0.071056 0.070705 0.060014 0.095888 0.059013 0.074187

Sum of Ranks 62 31 186 155 124 248 93 217

700 |Bias| 0.036222 0.031341 0.051026 0.050535 0.039164 0.094518 0.038333 0.057157

MSE 0.152282 0.136281 0.178475 0.179556 0.156784 0.248248 0.155293 0.188637

MRE 0.050762 0.045431 0.059495 0.059856 0.052264 0.082758 0.051763 0.062887

Sum of Ranks 62 31 163 174 124 248 93 217

1000 |Bias| 0.023972 0.021641 0.034126 0.033045 0.025943 0.064498 0.026564 0.039887

MSE 0.122222 0.107241 0.147746 0.144515 0.128613 0.202688 0.131174 0.157387

MRE 0.040742 0.035751 0.049256 0.048175 0.042873 0.067568 0.043724 0.052467

Sum of Ranks 62 31 186 155 93 248 124 217

Table 5. Simulation outcomes for Scheme III.
n Est. MPSE ADE MLE LSE RADE PCE CVME WLSE
50 |Bias| 0.276313 0.231451 0.367346 0.397147 0.298334 0.419418 0.270062 0.330115

MSE 0.403712 0.391951 0.468076 0.481017 0.421394 0.521448 0.408013 0.442605

MRE 0.161482 0.156781 0.187236 0.192417 0.168554 0.208588 0.163203 0.177045

Sum of Ranks 72 31 186 217 124 248 83 155

150 |Bias| 0.080842 0.078441 0.110957 0.110356 0.089253 0.152368 0.090254 0.102425

MSE 0.224561 0.226722 0.265747 0.263646 0.238374 0.314448 0.237573 0.251255

MRE 0.089831 0.090692 0.106297 0.105466 0.095354 0.125788 0.095033 0.100505

Sum of Ranks 41 52 217 186 114 248 103 155

300 |Bias| 0.038811 0.039742 0.056697 0.053896 0.043444 0.076918 0.042803 0.050815

MSE 0.158651 0.161152 0.190367 0.183336 0.167234 0.219778 0.163583 0.179175

MRE 0.063461 0.064462 0.076147 0.073336 0.066894 0.087918 0.065433 0.071675

Sum of Ranks 31 62 217 186 124 248 93 155

500 |Bias| 0.021831 0.022032 0.033096 0.033127 0.024193 0.045488 0.024614 0.030295

MSE 0.116871 0.119372 0.144036 0.145037 0.125174 0.171718 0.123953 0.139215

MRE 0.046751 0.047752 0.057616 0.058017 0.050074 0.068698 0.049583 0.055685

Sum of Ranks 31 62 186 217 114 248 103 155

700 |Bias| 0.018172 0.016041 0.023507 0.023206 0.019064 0.033698 0.018843 0.022685

MSE 0.108922 0.100941 0.121927 0.121216 0.109214 0.147608 0.109003 0.120185

MRE 0.043572 0.040381 0.048777 0.048496 0.043694 0.059048 0.043603 0.048075

Sum of Ranks 62 31 217 186 124 248 93 155

1000 |Bias| 0.011402 0.011251 0.015577 0.015136 0.012963 0.023388 0.013004 0.015065

MSE 0.084732 0.081891 0.099797 0.098236 0.090943 0.121028 0.092334 0.097545

MRE 0.033892 0.032761 0.039927 0.039296 0.036383 0.048418 0.036934 0.039025

Sum of Ranks 62 31 217 186 93 248 124 155
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Table 6. Simulation outcomes for Scheme IV.
n Est. MPSE ADE MLE LSE RADE PCE CVME WLSE
50 |Bias| 0.484534 0.300921 0.674745 0.758988 0.470833 0.677046 0.463832 0.724477

MSE 0.483862 0.446101 0.566575 0.605667 0.505024 0.646498 0.500893 0.602646

MRE 0.193542 0.178441 0.226635 0.242277 0.202014 0.258608 0.200353 0.241056

Sum of Ranks 82.5 31 155 227.5 114 227.5 82.5 196

150 |Bias| 0.107622 0.097611 0.157305 0.161356 0.125184 0.266018 0.117323 0.184887

MSE 0.255402 0.250701 0.308925 0.309806 0.278024 0.417018 0.266213 0.328597

MRE 0.102162 0.100281 0.123575 0.123926 0.111214 0.166808 0.106483 0.131447

Sum of Ranks 62 31 155 186 124 248 93 217

300 |Bias| 0.049512 0.046801 0.077156 0.074985 0.056624 0.137268 0.055823 0.085597

MSE 0.175492 0.173501 0.220036 0.212505 0.185593 0.297488 0.187214 0.230617

MRE 0.070192 0.069401 0.088016 0.085005 0.074243 0.118998 0.074884 0.092247

Sum of Ranks 62 31 186 155 103 248 114 217

500 |Bias| 0.029012 0.028301 0.046226 0.045035 0.032894 0.085738 0.031733 0.050247

MSE 0.134272 0.134111 0.168776 0.167685 0.142964 0.237878 0.140403 0.175767

MRE 0.053712 0.053641 0.067516 0.067075 0.057184 0.095158 0.056163 0.070307

Sum of Ranks 62 31 186 155 124 248 93 217

700 |Bias| 0.022822 0.020171 0.031966 0.031635 0.024614 0.065178 0.024093 0.035417

MSE 0.120792 0.111761 0.141345 0.142096 0.124384 0.206318 0.123223 0.148667

MRE 0.048322 0.044711 0.056545 0.056846 0.049754 0.082528 0.049293 0.059467

Sum of Ranks 62 31 165 176 124 248 93 217

1000 |Bias| 0.015172 0.014161 0.021406 0.020735 0.016323 0.044408 0.016744 0.024847

MSE 0.097292 0.090461 0.117016 0.114385 0.102053 0.168278 0.104134 0.124307

MRE 0.038922 0.036181 0.046806 0.045755 0.040823 0.067318 0.041654 0.049727

Sum of Ranks 62 31 186 155 93 248 124 217

Table 7. Ranking of estimation methods based on simulation results.
n MPSE ADE MLE LSE RADE PCE CVME WLSE

Schema I 50 2 1 6 7 4 8 3 5
150 1 2 7 6 4 8 3 5
300 1 2 7 6 4 8 3 5
500 1 2 6 7 4 8 3 5
700 3 1 7 5 4 8 2 5
1000 2 1 7 5 3 8 4 5

Schema II 50 2.5 1 5 8 4 7 2.5 6
150 2 1 5 6 4 8 3 7
300 2 1 6 5 3 8 4 7
500 2 1 6 5 4 8 3 7
700 2 1 3 4 4 8 3 7
1000 2 1 6 5 3 8 4 7

Schema III 50 2 1 6 7 4 8 3 5
150 1 2 7 6 4 8 3 5
300 1 2 7 6 4 8 3 5
500 1 2 6 7 4 8 3 5
700 2 1 7 6 4 8 3 5
1000 2 1 7 6 3 8 4 5

Schema IV 50 2.5 1 5 7.5 4 7.5 2.5 6
150 2 1 5 6 4 8 3 7
300 2 1 6 5 3 8 4 7
500 2 1 6 5 4 8 3 7
700 2 1 5 6 4 8 3 7
1000 2 1 6 5 3 8 4 7

Sum of Ranks 44 30 144 141.5 90 190.5 76 142
Overall Rank 2 1 7 5 4 8 3 6
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From Tables 3 to 7, it is evident that as the sample size ‘n’ increases, the bias of the parameter β
tends to decrease toward zero. Similarly, both the MSE and MRE of the DBHE parameter also decrease
toward zero with increasing sample size ‘n’. These findings indicate the consistent performance of
the derived estimators. Furthermore, all estimation methods demonstrate good performance across
different sample sizes, with Table 7 highlighting that the ADE method performs the best.

6. Sustainability data analysis: goodness-of-fit

In this section, we will delve into the significance of the proposed distribution by analyzing various
datasets from different domains. We will evaluate how well the DBHE distribution fits these datasets
in comparison to several other competing distributions, including the discrete Pareto (DP), discrete
Rayleigh (DR), discrete inverse Rayleigh (DIR), discrete Burr-Hatke (DBH), Poisson (Poi), and
discrete Burr-XII (DB-XII) distributions. To assess the goodness-of-fit (GOF), we will employ
various criteria, which encompass the negative log-likelihood (−L), Akaike information criterion
(AIC), Bayesian information criterion (BIC), corrected Akaike information criterion (CAIC),
Hannan-Quinn information criterion (HQIC), and the Kolmogorov-Smirnov (KS) test, along with its
associated P-value. In the interpretation of AIC, CAIC, BIC, and HQIC, lower values indicate a better
balance between model fit and simplicity. Consequently, the model with the lowest AIC, CAIC, BIC,
and HQIC is considered the most suitable among the available options. BIC imposes a stricter penalty
on complex models in comparison to AIC and CAIC, displaying a more conservative preference for
selecting simpler models, especially in scenarios with smaller sample sizes. On the other hand, since
there is a limited number of frequencies for each observation in datasets I, II, and IV the Pearson’s
Chi-square statistic cannot be employed for an inference test. Therefore, the KS measure is adequate
in this case.

6.1. Dataset I: Failure times

The first dataset pertains to the time until failure of 15 electron components during an accelerated
life test (refer to [16]). To explore the characteristics of dataset I, we have created nonparametric
plots, which include box plots, normal quantile-quantile (Q-Q) plots, violin plots, and strip plots. For
additional details and visual representations, please refer to Figure 3.
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Figure 3. Nonparametric plots for dataset I.
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The MLEs along with their respective SE, C.I for the parameter(s), and GOF test results for this
dataset can be found in Tables 8 and 9. Notably, the values of −L, AIC, BIC, CAIC, HQIC, and KS
are all lower, and the P-value is higher for the DBHE distribution in comparison to the values obtained
for the other models. As a result, based on this analysis of the real dataset, it appears that the proposed
distribution is a highly competitive model.

Figure 4 depicts the probability-probability (P-P) plot for dataset I, while Figure 5 showcases the
estimated CDFs and the profile of the L for the parameter β in dataset I. Figure 5 reinforces our
empirical findings, supporting the conclusion that the DBHE distribution is a more suitable fit for
analyzing this data. Additionally, it highlights that the estimator for β is indeed unique.

Table 10 provides a compilation of various estimation methods applied to dataset I within the
framework of the proposed model.

The analysis revealed that all estimation methods perform satisfactorily for data fitting, with the
WLSE approach emerging as the most effective among them.

0.0 0.4 0.8

0
.0

0
.4

0
.8

DBHE

obs

E
X

P

0.0 0.4 0.8

0
.0

0
.4

0
.8

DP

obs

E
X

P

0.0 0.4 0.8

0
.0

0
.4

0
.8

DIW

obs

E
X

P

0.0 0.4 0.8

0
.0

0
.4

0
.8

DB−XII

obs

E
X

P

0.0 0.4 0.8

0
.0

0
.4

0
.8

DBH

obs

E
X

P

0.0 0.4 0.8

0
.0

0
.4

0
.8

DR

obs

E
X

P

0.0 0.4 0.8

0
.0

0
.4

0
.8

DIR

obs

E
X

P

0.0 0.4 0.8

0
.0

0
.4

0
.8

Poi

obs

E
X

P

Figure 4. The P-P plot for dataset I.
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Table 8. The MLEs, standard error (SE), and confidence interval (C.I) for dataset I.

β α

Model ↓ Parameter−→ MLE SE C.I MLE SE CI

DBHE 0.9801 0.0057 [0.9692, 0.9915] − − −

DR 0.9991 2.581 × 10−4 [0.9980, 0.9993] − − −

DIR 1.801 × 10−7 0.0552 [0, 0.1075] − − −

DBH 0.9992 0.0076 [0.9843, 1.0142] − − −

DPa 0.7201 0.0611 [0.6004, 0.8398] − − −

Poi 27.5332 1.3553 [24.8781, 30.1892] − − −

DIW 2.212 × 10−4 7.751 × 10−4 [0, 0.0013] 0.8752 0.1642 [0.5542, 1.1964]
DB-XII 0.9756 0.0512 [0.8743, 1] 13.3676 27.7857 [0, 67.8244]

Table 9. The GOF test for dataset I.

Statistic ↓ Parameter−→ DBHE DR DIR DBH DPa Poi DIW DB-XII

−L 65.5581 66.3943 89.0961 91.3684 77.4023 151.2064 68.7037 75.7245
AIC 133.1174 134.7880 180.192 184.7368 156.8047 304.4129 141.4063 155.4483

CAIC 133.4247 135.0961 180.4994 185.0445 157.1124 304.7206 142.4068 156.4480
BIC 133.8256 135.4967 180.8990 185.4448 157.5127 305.1209 142.8223 156.8645

HQIC 133.1094 134.7814 180.1841 184.7292 156.7971 304.4053 141.3919 155.4334
KS 0.1896 0.2161 0.6984 0.7917 0.4051 0.3812 0.2092 0.3887

P-value 0.5886 0.4330 < 0.0001 < 0.0001 0.0094 0.0258 0.4827 0.0152

Table 10. Various estimators for dataset I.

Method→ MLE MPSE LSE CVME WLSE PCE ADE RADE

β 0.9801 0.9818 0.9836 0.9834 0.9828 0.9772 0.9831 0.9818
KS 0.1896 0.1609 0.1569 0.1542 0.1452 0.1932 0.1487 0.1597

P-Value 0.5886 0.7756 0.8004 0.8166 0.8664 0.5144 0.8479 0.7833

6.2. Dataset II: Leukemia remission times

This dataset pertains to leukemia remission times, measured in weeks, for a total of 20 patients,
as described in [17], utilizing the concept of discretization. In order to delve into the characteristics
of dataset II, we have generated nonparametric plots, including box plots, normal Q-Q plots, violin
plots, and strip plots. For more comprehensive information and visual representations, please consult
Figure 6.

The MLEs along with their corresponding SE, C.I for the parameter(s), and the results of the GOF
tests for this dataset are provided in Tables 11 and 12. Importantly, it’s noteworthy that the values of −L,
AIC, BIC, CAIC, HQIC, and KS all exhibit lower values, while the P-value is higher when considering
the DBHE distribution in comparison to the values obtained for the other models. Consequently, based
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on this comprehensive analysis of the real dataset, it is evident that the proposed distribution stands out
as a highly competitive model.
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Figure 6. Nonparametric plots for dataset II.

Table 11. The MLEs, SE, and C.I for dataset II.

β α

Model ↓ Parameter −→ MLE SE C.I MLE SE C.I

DBHE 0.9603 0.0097 [0.9412, 0.9794] − − −

DR 0.9971 0.0007 [0.9961, 0.9982] − − −

DIR 3.374 × 10−7 − − −

DBH 0.9972 0.0124 [0.9734, 1.0213] − − −

DPa 0.6552 0.0619 [0.5342, 0.7770] − − −

Poi 13.7545 0.8292 [12.1267, 15.3887] − − −

DIW 0.0039 0.0072 [0, 0.0184] 1.0073 0.1751 [0.6640, 1.3501]
DB-XII 0.9943 0.0113 [0.9765, 1.0132] 158.3545 35.4094 [0, 3395.9312]

Table 12. The GOF test for dataset II.

Statistic↓ Parameter−→ DBHE DR DIR DBH DPa Poi DIW DB-XII

-L 73.5159 79.3092 85.0865 94.6355 84.5822 145.4324 74.7965 79.9804
AIC 149.0318 160.6175 172.1711 191.2695 171.1659 292.8652 153.5932 163.9614

CAIC 149.2541 160.8401 172.3944 191.4917 171.3876 293.0870 154.2997 164.6671
BIC 150.0275 161.6136 173.1672 192.2652 172.1613 293.862 155.5851 165.9527

HQIC 149.2262 160.8124 172.3665 191.4639 171.3596 293.0598 153.9824 164.3511
KS 0.1471 0.2541 0.4822 0.6691 0.3721 0.3799 0.1966 0.2913

P-value 0.7800 0.1323 < 0.0001 < 0.0001 0.008 0.006 0.4221 0.0671

Figure 7 illustrates the P-P plot for dataset II, while Figure 8 presents the estimated CDFs and the
profile of the L for the parameter β in dataset II. Figure 8 reaffirms our empirical observations, providing
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further support for the suitability of the DBHE distribution in analyzing this dataset. Furthermore, it
underscores the uniqueness of the estimator for β.
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Figure 7. The P-P plot for dataset II.

Figure 8. The estimated CDFs (left panel) and L profile of β̂ (right panel) for dataset II.

Table 13 presents an overview of diverse estimation techniques applied to dataset II under the
proposed model framework.

Table 13. Various estimators for dataset II.
MPSE ADE MLE LSE RADE PCE CVME WLSE

β 0.9686 0.9703 0.9652 0.9710 0.9681 0.9641 0.9708 0.9661
KS 0.1233 0.1119 0.1550 0.1146 0.1280 0.1642 0.1128 0.1462

P-Value 0.9307 0.9670 0.7531 0.9600 0.9106 0.6839 0.9649 0.8106

The examination indicated that all estimation methods demonstrate satisfactory performance in
terms of fitting the data, with the ADE approach emerging as the most effective among the available
methods.
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6.3. Dataset III: Carious teeth

The third dataset pertains to the count of carious teeth among the four deciduous molars. Detailed
information regarding this dataset can be referenced in the work of Krishna and Pundir, as cited in [4].
In order to investigate the attributes of dataset III, we have generated nonparametric plots, which
encompass box plots, normal Q-Q plots, violin plots, and strip plots. For more comprehensive
information and visual representations, see consult Figure 9.
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Figure 9. Nonparametric plots for dataset III.

The MLEs along with their corresponding SE, C.I for the parameter(s), and the results of the GOF
tests for this dataset are available in Tables 14–16. Remarkably, it is evident that the DBHE distribution
shows lower values for the chi-squared (χ2) statistic while yielding higher p-values in comparison to
the values obtained for the other models. As a result, this comprehensive analysis of the real dataset
strongly suggests that the proposed distribution is a highly competitive model.

Table 14. The MLEs, SE and C.I for dataset III.
β α

Model ↓ Parameter −→ MLE SE C.I MLE SE C.I
DBHE 0.5767 0.0372 [0.5042, 0.6495] − − −

DR 0.6651 0.0290 [0.6081, 0.7225] − − −

DIR 0.6259 0.0491 [0.5292, 0.7214] − − −

Geo 0.5988 0.0379 [0.5242, 0.6738] − − −

DPa 0.1842 0.0325 [0.1207, 0.2479] − − −

Poi 0.6700 0.0819 [0.5096, 0.8304] − − −

PoiLi 1.9982 0.2636 [1.4812, 2.5146] − − −

DLi 1.2942 0.1042 [1.0901, 1.4987] − − −

DLogL 0.7455 0.1016 [0.5462, 0.9449] 1.7682 0.2671 [1.2440, 2.2921]
DIW 0.6338 0.0492 [0.5375, 7293] 1.5764 0.2515 [1.0843, 2.0676]
DW 0.3745 0.0496 [0.2782, 0.4706] 0.8951 0.1192 [0.6627, 1.1282]

EDLi 0.3791 0.0651 [0.2527, 0.5063] 0.5437 0.1587 [0.2343, 0.8529]
DLi-II 0.4012 0.2695 [0, 0.9281] 0.4782 0.5293 [0, 1.5147]
GGeo 0.4676 0.0892 [0.2932, 0.6414] 0.6784 0.3027 [0.0863, 1.2705]

DGE-II 0.4681 0.0728 [0.3270, 0.6092] 0.7181 0.2062 [0.3146, 1.1222]
DLFR 0.4013 0.0560 [0.2912, 0.5115] 1.0000 0.0449 [0.9132, 1]
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Table 15. The GOF test for dataset III.
X Ob. Fr. DBHE DR DIR Geo DPa DLi PoiLi Poi
0 64 62.8037 33.5000 62.5034 59.8802 69.0678 57.1253 37.5183 51.1709
1 17 21.3654 46.9437 26.4176 24.0238 15.3611 26.8834 25.0582 34.2845
2 10 8.5966 17.0130 5.9918 9.6383 6.0031 10.4459 15.6336 11.4853
3 6 3.7795 2.3970 2.1903 3.8669 3.0100 3.7068 9.3877 2.5650
≥ 4 3 3.4548 0.6463 2.9126 2.5908 6.5579 1.8385 12.4902 0.4943
Total 100 100 100 100 100 100 100 100 100
χ2 1.5748 48.2769 9.0561 3.3515 3.2416 6.6322 30.8894 13.2954
df 2 1 2 2 2 2 2 1

P-value 0.4550 < 0.001 0.0113 0.188 0.199 0.0362 < 0.001 < 0.001

Table 16. The GOF test for dataset III part II.
Expected Frequences (Ex. Fr.)

X Ob. Fr. DLogL DW DIW GGeo EDLi DLi-II DGE-II DLFR
0 64 62.7253 62.6000 63.3000 62.7335 63.5850 59.8817 63.5630 59.9011
1 17 22.4187 21.3414 22.4805 21.3633 19.7546 24.0262 20.1733 24.0136
2 10 7.0053 8.8439 6.4429 8.7638 9.0954 9.6448 8.7926 9.6362
3 6 2.9774 3.8811 2.7621 3.8645 4.1898 3.8710 4.0029 3.8667
≥ 4 3 4.8734 3.3337 5.0143 3.2749 3.3752 2.5928 3.4682 2.6084

Total 100 100 100 100 100 100 100 100 100
χ2 2.78403 1.50736 3.5001 1.5760 0.7490 3.3470 0.9809 3.3401
d f 1 1 1 1 1 1 1 1

P − value 0.0952 0.2195 0.06137 0.2094 0.3868 0.0672 0.3219 0.0685

Figure 10 illustrates the observed and expected PMFs for dataset III. Figure 11 displays the L profile
of the DBHE model parameters for dataset III, and it’s noteworthy that the estimators are distinct and
singular.

Table 17 offers a consolidated overview of diverse estimation techniques employed for dataset III
within the context of the proposed model.
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Figure 10. The observed and expected PMFs for dataset III.
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Figure 11. The L profile of β̂ for dataset III.

Table 17. Various estimators for dataset III.
MPSE ADE MLE LSE RADE PCE CVME WLSE

β 0.8543 0.8654 0.7990 0.8687 0.8512 0.7656 0.8663 0.8086
KS 0.2620 0.2817 0.3593 0.2902 0.2669 0.4173 0.2842 0.3411

P-Value 0.8056 0.7347 0.4361 0.7021 0.7885 0.3501 0.7255 0.5030

The analysis has shown that all the estimation methods perform well in terms of fitting the data,
with the MPSE approach being the most effective among them.

6.4. Dataset IV: COVID-19 pandemic

The forth dataset comprises the number of deaths attributed to coronavirus in the Punjab region
during the period from March 24, 2020, to April 30, 2020. The dataset is as follows: 1, 2, 3, 5, 5, 6, 9,
9, 11, 11, 11, 12, 15, 15, 16, 17, 18, 19, 21, 23, 24, 28, 34, 36, 37, 41, 42, 45, 51, 58, 65, 73, 81, 83,
91, 100, 103, 106. To examine the attributes of dataset IV, we have generated non-parametric plots,
encompassing box plots, normal Q-Q plots, violin plots, and strip plots. For more in-depth information
and visual representations, please consult Figure 12.
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Figure 12. Nonparametric plots for dataset III.
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The MLEs along with their corresponding SE, C.I for the parameter(s), and the results of the GOF
tests for this dataset can be located in Tables 18 and 19. Significantly, it is evident that for the DBHE
distribution, the values of −L, AIC, BIC, CAIC, HQIC, and KS all show lower values, while the P-
value is higher when compared to the values obtained for the other models. Consequently, based on
this comprehensive analysis of the real dataset, it is clear that the proposed distribution emerges as a
highly competitive model.

Table 18. The MLEs, SE, and C.I for dataset IV.
β α

Model ↓ Parameter−→ MLE SE C.I MLE SE C.I
DBHE 0.9838 0.0029 [0.9781, 0.9891] − − −

DR 0.9996 0.00007 [0.9994, 0.9997] − − −

DIR 1.634 × 10−10 − − − − −

DBH 0.9996 0.0035 [0.9927, 1.0064] − − −

DPa 0.7298 0.0373 [0.6567, 0.8031] − − −

Poi 34.9211 0.9586 [33.0423, 36.7999] − − −

DIW 0.00005 0.0001 [0, 0.0003] 0.8969 0.1070 [0.6874, 1.1067]
DB-XII 0.9960 0.0041 [0.9892, 1.0028] 79.5877 82.3391 [0, 2153.0236]

Table 19. The GOF test for dataset IV.

Statistic DBHE DR DIR DBH DPa Poi DIW DB-XII

−L 174.1947 186.7001 226.3555 241.3062 202.5788 594.7516 179.1153 198.7273
AIC 350.3893 375.4005 454.7092 484.6124 407.1552 1191.5021 362.2356 401.4544

CAIC 350.5005 375.5113 454.8201 484.7235 407.2676 1191.6130 362.5713 401.7976
BIC 352.0269 377.0386 456.3476 486.2534 408.7931 1193.1432 365.5042 404.7292

HQIC 350.9723 375.9832 455.2923 485.1951 407.7384 1192.0851 363.3955 402.6197
KS 0.1124 0.3089 0.6442 0.7786 0.3793 0.5193 0.1388 0.3667

P-value 0.7227 0.00142 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.4564 < 0.0001

Figure 13 presents the P-P plot for dataset IV, whereas Figure 14 exhibits the estimated CDFs and
the profile of the L for the parameter β in dataset IV. Figure 14 further reinforces our empirical
observations, providing additional support for the appropriateness of the DBHE distribution in
analyzing this dataset. Additionally, it emphasizes the uniqueness of the estimator for β.

Table 20 offers a comprehensive compilation of various estimation techniques applied to dataset IV
within the context of the proposed model framework.

Table 20. Various estimators for dataset IV.

MPSE ADE MLE LSE RADE PCE CVME WLSE

β 0.9862 0.9871 0.9855 0.9874 0.9865 0.9848 0.9873 0.9852
KS 0.1027 0.1046 0.1165 0.1091 0.0974 0.1328 0.1079 0.1208

P-Value 0.8426 0.8267 0.7180 0.7875 0.8829 0.6224 0.7972 0.6771
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Figure 13. The P-P plot for dataset IV.

Figure 14. The estimated CDFs (left panel) and L profile of β̂ (right panel) for dataset IV.

The examination indicated that all estimation techniques adequately achieve data fitting, with the
WLSE method standing out as the most efficient among them.

7. Concluding remarks and future work

This article centers on a discrete distribution with one parameter, developed using the survival
discretization approach, referred to as the DBHE distribution. The statistical properties of the DBHE
model have been derived and expressed in terms of generalized hypergeometric functions. It has been
established that the DBHE model is particularly suitable for modeling right-skewed datasets
characterized by leptokurtic shapes. The presented discrete distribution can serve as a valuable
statistical tool for modeling a decreasing HRF in the presence of outlier observations. The DBHE
parameter has been estimated using various approaches, including MPSE, ADE, MLE, LSE, RADE,
PCE, CVME, and WLSE. Simulation studies conducted across different sample sizes, revealed that
all these techniques are effective in estimating the DBHE parameter, with the ADE approach
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performing best. Furthermore, the study includes the analysis of four real datasets to demonstrate the
effectiveness of the DBHE distribution. It was observed that the DBHE distribution outperforms all
other competing distributions across all aspects of the analysis. Looking ahead, the article hints at
future directions, including the proposal and detailed discussion of bivariate extensions of the DBHE
models, as well as the exploration of regression models and the integer-valued autoregressive of order
one process along with their applications.
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