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Abstract: Vision-based human gesture detection is the task of forecasting a gesture, namely clapping 

or sign language gestures, or waving hello, utilizing various video frames. One of the attractive features 

of gesture detection is that it makes it possible for humans to interact with devices and computers 

without the necessity for an external input tool like a remote control or a mouse. Gesture detection 

from videos has various applications, like robot learning, control of consumer electronics computer 

games, and mechanical systems. This study leverages the Lion Swarm optimizer with a deep 

convolutional neural network (LSO-DCNN) for gesture recognition and classification. The purpose of 

the LSO-DCNN technique lies in the proper identification and categorization of various categories of 

gestures that exist in the input images. The presented LSO-DCNN model follows a three-step 

procedure. At the initial step, the 1D-convolutional neural network (1D-CNN) method derives a 

collection of feature vectors. In the second step, the LSO algorithm optimally chooses the 

hyperparameter values of the 1D-CNN model. At the final step, the extreme gradient boosting 

(XGBoost) classifier allocates proper classes, i.e., it recognizes the gestures efficaciously. To 

demonstrate the enhanced gesture classification results of the LSO-DCNN approach, a wide range of 

experimental results are investigated. The brief comparative study reported the improvements in the 

LSO-DCNN technique in the gesture recognition process. 



9381 

AIMS Mathematics Volume 9, Issue 4, 9380–9393. 

Keywords: human-computer interaction; swarm intelligence; CNN Model; gesture recognition; 

transfer learning 

Mathematics Subject Classification: 11Y40 

 

1. Introduction 

Noncontact gesture recognition has made a significant contribution to human-computer 

interaction (HCI) applications with the enormous growth of artificial intelligence (AI) and computer 

technology [1]. Hand gesture detection systems, with their natural human-computer interaction 

features, enable effective and intuitive communication through a computer interface. Furthermore, 

gesture detection depends on vision and can be broadly implemented in AI, natural language 

communication, virtual reality, and multimedia [2]. Daily, the demand for and the level of services 

essential to people is increasing. Hand gestures are a main component of face-to-face communication 

[3]. Hence, human body language serves a significant part in face-to-face transmission and making 

hand gestures. In interaction, many things are expressed with hand gestures, and this study presents 

few visions into transmission itself [4]. Yet, recent automation in this region does not concentrate on 

using hand gestures in everyday actions. The emerging technology eases the difficulty of processes of 

different user interfaces and computer programs presented to the user. To make this mechanism less 

complex and easy to understand, nowadays image processing is utilized [5]. 

When transmission has to be recognized between a deaf and a normal person, there is a robust 

necessity for hand gestures. To make the system smarter, there comes a necessity to enter hand gesture 

imageries into the mechanism and carry out an examination further to determine their meaning [6]. 

Still, conventional hand gesture detection related to image processing methods was not broadly 

implemented in HCI due to its complex algorithm, poor real-time capability, and low recognition 

accuracy [7]. Currently, gesture detection related to machine learning (ML) has advanced quickly in 

HCI owing to the presentation of AI and image processing graphics processor unit (GPU) [8]. The ML 

methods like neural networks, local orientation histograms, elastic graph matching, and support vector 

machines (SVM) were broadly utilized. Due to its learning capability, the NN does not require manual 

feature setting through simulating human learning processes and can execute training gesture instances 

to form a network classification detection map [9]. Currently, DL is a frequently utilized approach for 

HGR. Recurrent neural networks (RNN), CNNs, and stacked denoising auto encoders (SDAE), and 

are usually utilized in HGR applications [10]. 

This study leverages the Lion Swarm optimizer with deep convolutional neural network (LSO-

DCNN) for gesture recognition and classification. The aim of the LSO-DCNN technique lies in the 

proper identification and categorization of various categories of gestures that exist in the input images. 

Primarily, the 1D-convolutional neural network (1D-CNN) method derives a collection of feature 

vectors. In the second step, the LSO algorithm optimally chooses the hyperparameter values of the 1D-

CNN model. At the final step, the extreme gradient boosting (XGBoost) classifier allocates proper 

classes, i.e., recognizes the gestures efficaciously. To portray the enhanced gesture classification 

results of the LSO-DCNN algorithm, a wide range of experimental results are investigated. A brief 

comparative study reports the improvements in the LSO-DCNN technique in the gesture recognition 

process. 
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2. Literature survey 

Sun et al. [11] suggested a model dependent upon multi-level feature fusion of a two-stream 

convolutional neural network (MFF-TSCNN) which comprises three major phases. Initially, the 

Kinect sensor acquires red, green, blue, and depth (RGB-D) imageries for establishing a gesture dataset. 

Simultaneously, data augmentation is accomplished on the datasets of testing and training. Later, a 

MFF-TSCNN model is built and trained. Barioul and Kanoun [12] proposed a new classifying model 

established on an extreme learning machine (ELM) reinforced by an enhanced grasshopper 

optimization algorithm (GOA) as a fundamental for a weight-pruning procedure. Myographic models 

like force myography (FMG) present stimulating signals that can construct the foundation for 

recognizing hand signs. FMG was examined for limiting the sensor numbers to appropriate locations 

and giving necessary signal processing techniques for observable employment in wearable embedded 

schemes. Gadekallu et al. [13] presented a crow search-based CNN (CS-CNN) method for recognizing 

gestures relating to the HCI field. The hand gesture database utilized in the research is an open database 

that is obtained from Kaggle. Also, a one-hot encoding method was employed for converting the 

definite values of the data to its binary system. After this, a crow search algorithm (CSA) for choosing 

optimum tuning for data training by utilizing the CNNs was employed. 

Yu et al. [14] employed a particle swarm optimization (PSO) technique for the width and center 

value optimization of the radial basis function neural network (RBFNN). Also, the authors utilized a 

Electromyography (EMG) signal acquisition device and the electrode sleeve for gathering the four-

channel continuous EMG signals produced by 8 serial gestures. In [15], the authors presented an 

ensemble of CNN-based techniques. First, the gesture segment is identified by employing the 

background separation model established on the binary threshold. Then, the contour section can be 

abstracted and the segmentation of the hand area takes place. Later, the imageries are re-sized and 

given to three distinct CNN methods for similar training.  

Gao et al. [16] developed an effective hand gesture detection model established on deep learning. 

First, an RGB-D early-fusion technique established on the HSV space was suggested, efficiently 

mitigating background intrusion and improving hand gesture data. Second, a hand gesture 

classification network (HandClasNet) was suggested for comprehending hand gesture localization and 

recognition by identifying the center and corner hand points, and a HandClasNet was suggested for 

comprehending gesture detection by employing a similar EfficientNet system. In [17], the authors 

utilized the CNN approach for the recognition and identification of human hand gestures. This 

procedure workflow comprises hand region of interest segmenting by employing finger segmentation, 

mask image, segmented finger image normalization, and detection by utilizing the CNN classifier. The 

segmentation is performed on the hand area of an image from the whole image by implementing mask 

images.  
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Figure 1. Overall process of the LSO-DCNN approach. 

3. Materials and methods 

This study has developed a new LSO-DCNN method for automated gesture recognition and 

classification. The major intention of the LSO-DCNN method lies in the proper identification and 

categorization of various categories of gestures that exist in the input images. The presented LSO-

DCNN model follows a three-step procedure: 

Step 1: The 1D-CNN method derives a collection of feature vectors. 

Step 2: The LSO method optimally chooses the hyperparameter values of the 1D-CNN model. 

Step 3: The XGBoost classifier assigns appropriate classes, i.e., effectively recognizes the gestures. 

3.1. Stage I: 1D-CNN based feature extraction 

First, the 1D-CNN model derives a collection of feature vectors. The CNN can be referred to as 

a neural network that exploits convolutional operations in at least one layer of the network instead of 

normal matrix multiplication operations [18]. Convolution is a special linear operation; all the layers 

of the convolutional network generally consist of three layers: pooling, convolutional, and activation 

layers. In the image detection domain, the 2DCNN can be commonly utilized for extracting features 

from images. The classical CNN models are AlexNet, LeNet, ResNet, VGG, GoogleNet, and so on. 

The 1D-CNN is used for extracting appropriate features of the data. The input of the 1D-CNN is 1D 
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data, hence its convolutional kernel adopts a 1D architecture. The output of every convolutional, 

activation, and pooling layer corresponds to a 1D feature vector. In this section, the fundamental 

structure of the 1DCNN will be introduced. 

3.1.1 Convolution layer 

The convolution layer implements the convolution function on the 1D input signals and the 1D 

convolution filter, and later extracts local features using the activation layer. The data is inputted to 

the convolution layer of the 1D-CNN to implement the convolutional function. 

𝑥𝑘
𝑙 = ∑𝑛

𝑖=1 𝑐𝑜𝑛𝑣(𝑤𝑖𝑘
𝑙−1, 𝑠𝑖

𝑙−1) + 𝑏𝑘
𝑖       (1) 

Here, 𝑥𝑘
𝑙 , 𝑏𝑘

𝑙  correspondingly characterize the output and offset of the 𝑘‐ 𝑡ℎ neurons in layer 𝑙; 𝑠𝑖
𝑙−1 

characterizes the output of 𝑖‐ 𝑡ℎ neurons in layer 𝑙 − 1; 𝑤𝑖𝑘
𝑙−1 characterizes the convolutional kernels 

of 𝑖‐ 𝑡ℎ neurons in the 𝑙 − 1 layer, and the 𝑘‐ 𝑡ℎ neurons in layer 𝑙, 𝑖 = 1,2, …,𝑛, 𝑛 denotes the amount 

of neurons. 

3.1.2 Activation layer 

The activation layer implements a non-linear conversion on the input signal through a non-linear 

function to improve the CNN's expressive power. Currently, the typical activation function is ReLU, 

Sigmoid, and 𝑇𝑎𝑛ℎ. Since the ReLU function may overcome gradient dispersion and converge quickly, 

it is extensively applied. Thus, the ReLU function was applied as the activation function, and its 

equation can be represented as 

𝑦𝑘
𝑙 = 𝑓(𝑥𝑘

𝑙 ) = {0, 𝑥𝑘
𝑙 }        (2) 

where 𝑦𝑘
𝑙  denotes the activation value of layer 𝑙. 

3.1.3 Pooling layer 

The pooling layer can generally be employed after the convolution layer. Downsampling avoids 

over-fitting, decreases the spatial size of parameters and network features, and decreases the 

calculation count. The typical pooling operations are maximum and average pooling. 

𝑧𝑘
𝑙(𝑗)

= {𝑦𝑘
𝑙(𝑡)

}         (3) 

Where 𝑧𝑘
𝑙(𝑗)

 signifies the jth value in the 𝑘‐th neuron of layer 𝑙; 𝑦𝑘
𝑙(𝑡)

 characterizes the 𝑡‐th activation 

value in the𝑘‐th neuron of layer 𝑙; 𝑟 denotes the pooling area's width. 

3.2. Stage II: LSO-based hyperparameter tuning 

In this work, the LSO approach optimally chooses hyperparameter values of the 1D-CNN model. 

This approach is selected for its capacity for effectively navigating the parameter space, adapting the 
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nature of the model to local characteristics, and converging toward optimum settings, making the 

model more appropriate to fine-tune intricate methods. In the LSO algorithm, based on the historical 

optimum solution, the lion king conducts a range search to find the best solutions [19]. The equation 

for updating the location is given below: 

𝑥𝑖
𝑘+1 = 𝑔𝑘(1 + 𝛾‖𝑝𝑖

𝑘 − 𝑔𝑘‖)        (4) 

A lioness arbitrarily chooses an additional lioness to cooperate with, and the equation for location 

updating can be represented as 

𝑥𝑖
𝑘+1 =

𝑝𝑖
𝑘+𝑝𝑐

𝑘

2
(1 + 𝛼𝑓𝛾)         (5) 

Follow the lioness, leave the group, or follow the lion king to find an updated position are the 

three updating approaches for young lions: 

𝑥𝑖
𝑘+1 = {

𝑔𝑘+𝑝𝑖
𝑘

2
(1 + 𝛼𝑐𝛾), 0 ≤ 𝑞 ≤

1

3
 
𝑝𝑚

𝑘 𝑝𝑖
𝑘

2
(1 + 𝛼𝑐𝛾),

1

3
< 𝑞 ≤

2

3
 
𝑔𝑘+𝑝𝑖

𝑘

2
(1 + 𝛼𝑐𝛾),

2

3
< 𝑞 ≤ 1  (6) 

In Eq (6), 𝑥𝑖
𝑘  denotes the 𝑖‐ 𝑡ℎ individuals at the 𝑘𝑡ℎ  generation population; 𝑝𝑖

𝑘  represents the 

prior optimum location of the 𝑖‐ 𝑡ℎ individuals from the 1st to 𝑘𝑡ℎ generation; 𝛾 shows the uniform 

distribution random number 𝑁(0,1) 𝑝𝑐
𝑘 is randomly chosen from the 𝑘𝑡ℎ generation lioness group; 𝑔𝑘 

shows the optimum location of the 𝑘𝑡ℎ  generation population; 𝑞  denotes the uniform distribution 

random number 𝑈[0,1] 𝑔 = 𝑙𝑜𝑤 + 𝑢𝑝 − 𝑔𝑘 , 𝑝𝑚
𝑘  is arbitrarily chosen from the 𝑘𝑡ℎ  generation lion 

group; 𝛼𝑓  and 𝛼𝑐  denotes the disturbance factor, 𝑙𝑜𝑤  and 𝑢𝑝  indicates the minimal and maximal 

values of all the dimensions within the range of lion activity space 

𝛼𝑓 = 0.1 (𝑢𝑝 − 𝑙𝑜𝑤) ×  𝑒𝑥𝑝 (−
30𝑡

𝑇
)

10
       (7) 

𝛼𝑐 = 0.1 (𝑢𝑝 − 𝑙𝑜𝑤) × (
𝑇−𝑡

𝑇
)       (8) 

where 𝑇 shows the maximal amount of iterations and 𝑡 denotes the existing amount of iterations. 

The fitness selection becomes a vital component in the LSO method. Solution encoding can be 

used to evaluate the candidate solution's aptitude. Here, to design a fitness function, the accuracy value 

is the main condition used. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑚𝑎𝑥 (𝑃)         (9) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (10) 

From the expression, FP means the false positive value and TP denotes the true positive. 

3.3. Stage III: XGBoost classification 

Finally, the XGBoost classifier allocates proper classes, i.e., recognizes the gestures efficaciously. 

XGBoost is an ensemble ML technique, a gradient boost method utilized for improving the efficiency 

of a predictive model, which integrates a series of weak methods as a strong learning approach [20]. 
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The ensemble methods offer optimum outcomes related to a single model. Figure 2 defines the 

architecture of XGBoost. The steps involved are given as follows. 

 

Figure 2. Structure of XGBoost. 

Step 1: Initialize 

To solve a binary classifier problem, where 𝑦𝑗 is the actual label denoted as 1 or 0. Consequently, 

the commonly exploited log loss function is assumed during this case and is demonstrated as 

𝑙(𝑦𝑖′𝑦̂𝑖
𝑡) = −(𝑦𝑖 𝑙𝑜𝑔 (𝑃𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑃𝑖)    (11) 

where 

𝑝𝑖 =
1

1+𝑒−𝑦̂𝑖
𝑡.         (12) 

Based on the 𝑃𝑖 , 𝑦𝑖, and 𝑝 values, the 𝑔𝑖 and ℎ𝑗 values are evaluated. 

𝑔𝑖 = 𝑃𝑖 − 𝑦𝑖 , ℎ𝑖 = 𝑝(1 − 𝑝𝑖).     (13) 

From the (𝑡 − 1)𝑡ℎ tree of instance 𝑥𝑖 , the evaluated forecasted value is projected as 𝑦̂𝑖
(𝑡−1)

, in 

which the actual value of 𝑥𝑖 is 𝑦𝑖. But, the predictive value is 0 for the 0𝑡ℎ tree, which implies 𝑦̂𝑖
(0)

= 0. 

Step 2: The Gain value of features required for traverse and is computed for determining the splitting 

mode for the present root node. The Gain value is support to evaluate the feature node with maximal 

Gain score. 

Step 3: During this step, the establishment of the Current Binary Leaf Node setup is performed. Based 

on the feature with maximal Gain, the sample set can be categorized as 2 parts for obtaining 2 leaf 

nodes. Moreover, the second step can repeat to 2 leaf nodes assuming a negative gain score and end 

criteria, correspondingly. This step establishes the entire tree. 

Step 4: Whole Leaf Node forecast values are computed in this step. Leaf node 𝜔𝑗 forecast values are 

computed as 
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𝜔𝑗 = −
𝐺𝑗

𝐻𝑗+𝜆
         (14) 

and the second tree forecast outcomes are expressed as 

𝑦𝑖
(2)

= 𝑦𝑖
(1)

+ 𝑓2(𝑥𝑖)      (15) 

Afterward, this will result in establishing the second tree. 

Step 5: The next step is to repeat steps 1 and 2 to set up further trees until a sufficient count of trees 

can be introduced. The predictive values of model 𝑦𝑖
(𝑡)

 are expressed as 𝑦̂𝑖
(𝑡)

= 𝑦̂𝑖
(𝑡−1)

+ 𝑓2(𝑥𝑖) , 

whereas 𝑦𝑖
(𝑡)

 refers to the predictive value of 𝑡 trees on instance 𝑥𝑖. This procedure creates the 𝑡𝑡ℎ tree. 

𝑝𝑖 =
1

1+𝑒−𝑦̂       (16) 

Step 6: This equation that is utilized for determining the classifier outcome of an instance is to attain 

the probability by changing the last forecast value 𝑦̂ of the instance. If 𝑝𝑖 ≥ 0.5, the probability of the 

instance is 1; else, it is 0. 

4. Results and discussion  

In this section, the results of the LSO-DCNN technique are validated using two benchmark 

datasets: the sign language digital (SLD) dataset and the sign language gesture image (SLGI) dataset. 

In Table 1 and Figure 3, the overall comparative recognition results of the LSO-DCNN technique 

are examined on the SLD dataset [21]. Based on 𝑎𝑐𝑐𝑢𝑦 , the LSO-DCNN technique reaches an 

increased 𝑎𝑐𝑐𝑢𝑦 of 91.32%, while the RF, LR, KNN, XGBoost, and MobileNet-RF models obtain 

decreased 𝑎𝑐𝑐𝑢𝑦  of 90.19%, 89.29%, 85.79%, 90.18%, and 90.55%, respectively. Next, based on 

𝑝𝑟𝑒𝑐𝑛, the LSO-DCNN approach reaches an increased 𝑝𝑟𝑒𝑐𝑛 of 91.18%, while the RF, LR, KNN, 

XGBoost, and MobileNet-RF techniques obtain decreased 𝑝𝑟𝑒𝑐𝑛  of 45.77%, 50.59%, 35.53%, 

49.26%, and 80.97%, correspondingly.  At the same time, based on 𝑟𝑒𝑐𝑎𝑙, the LSO-DCNN algorithm 

attained an increased 𝑟𝑒𝑐𝑎𝑙  of 91.31%, while the RF, LR, KNN, XGBoost, and MobileNet-RF 

approaches obtained decreased 𝑟𝑒𝑐𝑎𝑙 of 48.67%, 44.55%, 35.83%, 50.12%, and 81.13%, respectively. 

Finally, based on 𝐹1𝑠𝑐𝑜𝑟𝑒, the LSO-DCNN method reaches an increased 𝐹1𝑠𝑐𝑜𝑟𝑒 of 91.78%, while the 

RF, LR, KNN, XGBoost, and MobileNet-RF models obtain decreased 𝐹1𝑠𝑐𝑜𝑟𝑒 of 46.75%, 44.56%, 

34.07%, 49.31%, and 80.10%, correspondingly. 

Table 1. Comparative analysis of the LSO-DCNN approach with other systems on the SLD dataset. 

Sign Language Digital Dataset  

Methods Accuracy Precision Recall F1 score 

Random Forest 90.19 45.77 48.67 46.75 

Logistic Regression 89.29 50.59 44.55 44.56 

K-Nearest Neighbor 85.79 35.53 35.83 34.07 

XGBoost 90.18 49.26 50.12 49.31 

MobileNet-RF 90.55 80.97 81.13 80.10 

LSO-DCNN 91.32 91.18 91.31 91.78 
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Figure 3. Comparative outcome of LSO-DCNN approach on the SLD dataset. 

Figure 4 inspects the accuracy of the LSO-DCNN method in the training and validation of the 

SLD dataset. The figure notifies that the LSO-DCNN method has greater accuracy values over higher 

epochs. Furthermore, the higher validation accuracy over training accuracy portrays that the LSO-

DCNN approach learns productively on the SLD dataset.  

 

Figure 4. Accuracy curve of LSO-DCNN approach on the SLD dataset. 

The loss analysis of the LSO-DCNN technique in the training and validation is given on the SLD 

dataset in Figure 5. The results indicate that the LSO-DCNN approach attained adjacent values of 

training and validation loss. The LSO-DCNN approach learns productively on the SLD database. 
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Figure 5. Loss curve of LSO-DCNN approach on the SLD dataset. 

In Table 2 and Figure 6, the overall comparative recognition outcomes of the LSO-DCNN 

technique are examined on the SLGI dataset. Based on 𝑎𝑐𝑐𝑢𝑦, the LSO-DCNN technique reaches an 

increased 𝑎𝑐𝑐𝑢𝑦 of 99.09%, while the RF, LR, KNN, XGBoost, and MobileNet-RF approaches gain 

decreased 𝑎𝑐𝑐𝑢𝑦 of 97.93%, 97.93%, 93.40%, 98.25%, and 98.31%, correspondingly. Next, based on 

𝑝𝑟𝑒𝑐𝑛, the LSO-DCNN methodology reaches an increased 𝑝𝑟𝑒𝑐𝑛 of 98.86%, while the RF, LR, KNN, 

XGBoost, and MobileNet-RF approaches obtain decreased 𝑝𝑟𝑒𝑐𝑛  of 29.08%, 20.49%, 27.34%, 

31.15%, and 98.12%, correspondingly. Simultaneously, based on 𝑟𝑒𝑐𝑎𝑙 , the LSO-DCNN method 

reaches an increased 𝑟𝑒𝑐𝑎𝑙 of 99.15%, while the RF, LR, KNN, XGBoost, and MobileNet-RF models 

obtain decreased 𝑟𝑒𝑐𝑎𝑙  of 30.33%, 23.37%, 27.98%, 31.78%, and 98.11%, correspondingly. 

Eventually, based on 𝐹1𝑠𝑐𝑜𝑟𝑒, the LSO-DCNN technique reaches an increased 𝐹1𝑠𝑐𝑜𝑟𝑒 of 99.03%, 

while the RF, LR, KNN, XGBoost, and MobileNet-RF approaches obtain decreased 𝐹1𝑠𝑐𝑜𝑟𝑒  of 

29.10%, 19.77%, 27.30%, 30.03%, and 97.89%, correspondingly. 

Table 2. Comparative analysis of the LSO-DCNN approach with other methods on the SLGI dataset. 

Sign Language Gestures Image Dataset 

Methods Accuracy Precision Recall F1 score 

Random Forest 97.93 29.08 30.33 29.10 

Logistic Regression 97.93 20.49 23.37 19.77 

K-Nearest Neighbor 93.40 27.34 27.98 27.30 

XGBoost 98.25 31.15 31.78 30.03 

MobileNet-RF 98.31 98.12 98.11 97.89 

LSO-DCNN 99.09 98.86 99.15 99.03 
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Figure 6. Comparative outcome of LSO-DCNN approach on the SLGI dataset. 

Figure 7 portrays the accuracy of the LSO-DCNN method in the training and validation of the 

SLGI database. The result shows that the LSO-DCNN technique has higher accuracy values over 

greater epochs. Moreover, the higher validation accuracy over training accuracy shows that the LSO-

DCNN technique learns productively on the SLGI database.  

 

Figure 7. Accuracy curve of LSO-DCNN approach on the SLGI dataset. 

The loss analysis of the LSO-DCNN approach in the training and validation is shown on the SLGI 

dataset in Figure 8. The results indicate that the LSO-DCNN method reaches adjacent values of 

training and validation loss. The LSO-DCNN method learns productively on the SLGI database. 
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Figure 8. Loss curve of LSO-DCNN approach on the SLGI dataset. 

5. Conclusions 

This study developed a new LSO-DCNN technique for automated gesture recognition and 

classification. The major intention of the LSO-DCNN approach lies in the proper identification and 

categorization of various categories of gestures that exist in the input images. The presented LSO-

DCNN model follows a three-step procedure, namely 1D-CNN based feature extraction, LSO-based 

hyperparameter tuning, and XGBoost classification. In this work, the LSO method optimally chooses 

the hyperparameter values of the 1D-CNN model and it helps to recognize the gestures efficaciously. 

To prove the enhanced gesture classification results of the LSO-DCNN approach, a wide range of 

experimental results are investigated. The brief comparative study reported the improvements in the 

LSO-DCNN technique in the gesture recognition process. In the future, multimodality concepts can 

enhance the performance of the LSO-DCNN technique. 
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