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Abstract: Within the swiftly evolving domain of neural networks, the discrete Hopfield-SAT model, 

endowed with logical rules and the ability to achieve global minima of SAT problems, has emerged as 

a novel prototype for SAT solvers, capturing significant scientific interest. However, this model shows 

substantial sensitivity to network size and logical complexity. As the number of neurons and logical 

complexity increase, the solution space rapidly contracts, leading to a marked decline in the model's 

problem-solving performance. This paper introduces a novel discrete Hopfield-SAT model, enhanced 

by Crow search-guided fuzzy clustering hybrid optimization, effectively addressing this challenge and 

significantly boosting solving speed. The proposed model unveils a significant insight: its uniquely 

designed cost function for initial assignments introduces a quantification mechanism that measures the 

degree of inconsistency within its logical rules. Utilizing this for clustering, the model utilizes a Crow 

search-guided fuzzy clustering hybrid optimization to filter potential solutions from initial assignments, 

substantially narrowing the search space and enhancing retrieval efficiency. Experiments were 

conducted with both simulated and real datasets for 2SAT problems. The results indicate that the 

proposed model significantly surpasses traditional discrete Hopfield-SAT models and those enhanced 

by genetic-guided fuzzy clustering optimization across key performance metrics: Global minima ratio, 

Hamming distance, CPU time, retrieval rate of stable state, and retrieval rate of global minima, 

particularly showing statistically significant improvements in solving speed. These advantages play a 

pivotal role in advancing the discrete Hopfield-SAT model towards becoming an exemplary SAT solver. 

Additionally, the model features exceptional parallel computing capabilities and possesses the 
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potential to integrate with other logical rules. In the future, this optimized model holds promise as an 

effective tool for solving more complex SAT problems. 

Keywords: Hopfield neural networks; logic programming; 2-SAT; Crow search algorithm; fuzzy 

clustering 

Mathematics Subject Classification: 03B52, 68T27, 68N17, 68W99 

 

1. Introduction 

The SAT problem is a classic NP-complete problem in computer science [1]. The fundamental 

objective of the SAT problem is to determine whether a given Boolean logic expression has a set of 

Boolean variable assignments that make the expression true (satisfiable). This problem holds 

significant importance in both theoretical computer science and practical applications, such as logic 

programming, circuit design, and artificial intelligence. Various methods exist to solve the SAT 

problem, including traditional exhaustive search methods, branch and bound, learning and 

backtracking techniques, specialized SAT solvers, and neural computational approaches. Among these, 

the application of discrete Hopfield Neural Networks (DHNN) for solving the SAT problem has 

garnered widespread attention as an emerging research direction. 

Discrete Hopfield Neural Networks (DHNN) are a classical self-feedback neural network 

model [2]. DHNN acquires the weight matrix of the objective function using Hebbian learning and 

dynamically updates to a stable state based on the principle of energy minimization, which corresponds 

to potential solutions of the objective function. Due to its unique energy minimization characteristics, 

DHNN is often used as a tool for solving combinatorial optimization problems. The SAT problem is 

essentially a combinatorial optimization problem. In recent years, with breakthroughs in neural 

symbolic learning on neural networks and the discovery of the Wan Abdullah learning method, 

researchers have found a suitable way to embed the SAT problem as an objective function in discrete 

Hopfield networks and obtain solutions to the SAT problem. 

In 1992, Wan Abdullah introduced a novel DHNN learning method that successfully 

embedded special logic programming as symbolic rules into discrete Hopfield neural networks [3]. 

This method, equivalent to traditional Hebbian learning, was formally named the Wan Abdullah 

learning method (WA method) in 2011 [4]. In WA method, logic rules of the SAT problem are learned 

in Conjunctive Normal Form (CNF) and stored in the form of an optimal weight matrix. Neurons in 

the neural network store the truth values of atomic propositions, and different combinations of neuron 

states express different logical clauses. A cost function corresponding to the CNF is constructed using 

logic inconsistency theory, and the optimal weight matrix representing the CNF is learned by 

comparing the cost function with the energy function. WA method embeds logic rules into DHNN, 

effectively storing the SAT problem as an objective function in DHNN. Building upon this, an 

Exhaustive search algorithm [5] is applied to retrieve the global minimum of the SAT problem. Starting 

with an initial assignment in the assignment space, neurons calculate local fields based on the optimal 

weight matrix and update to the state of minimum energy following the principle of energy 

minimization. This minimum energy state of the network corresponds to the global minimum of the 

SAT problem, which is also a consistent interpretation to the CNF [6]. This makes all clauses of the 

CNF true, rendering the CNF satisfied with its cost function of 0. The size of the assignment space 
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is 2𝑁, where 𝑁 represents the number of variables in the CNF. 

In 2014, Sathasivam et al. successfully embedded high-order Horn SAT into DHNN [6]. Different 

logic rules typically represent constraints or conditions of different types of real-world scenarios 

related to SAT. Motivated by this, researchers have continued to develop DHNN models with different 

types of logic rules for SAT problems, successfully obtaining the desired solutions. In 2017, 

Kasihmuddin et al. proposed DHNN for 2-SAT problems [5], and subsequently, Mansor et al. 

introduced DHNN for 3-SAT problems with higher-order logic rules [7]. Considering that not all 

combinatorial problems are inherently satisfiable, DHNN models based on maximum K-SAT logic 

rules were proposed in 2018 [8]. In 2020, Sathasivam proposed the DHNN-RAN-2-SAT model 

incorporating first and second-order logic rules [9]. In 2023, DHNN with 3-SAT fuzzy logic was 

introduced by Azizan and Sathasivam [10]. These DHNN-based models for SAT, collectively referred 

to as DHNN-SAT models or DHNN-SAT-WA models, have been applied to solve various constraint 

optimization problems [11–15], owing to the diversity of logic rules they encompass. However, as 

researchers have delved deeper into DHNN-SAT models, they have discovered that due to the inherent 

limitations of discrete Hopfield neural networks, the computational efficiency of DHNN-SAT models 

is not optimal for large-scale problems, and they tend to get trapped in local minima. To mitigate these 

issues, scholars have attempted to incorporate heuristic elements to enhance the accuracy of DHNN-SAT 

models in the optimization process [16–20]. Currently, these studies have shown promising results in 

achieving high global minimum value ratios, representing accuracy, in models with fewer neurons [21]. 

However, the DHNN-SAT model, as a hybrid network integrating discrete Hopfield neural 

networks and SAT problem rules, faces challenges not only due to the limitations of discrete Hopfield 

neural networks but also due to the logical complexity of SAT rules. As the logical complexity of SAT 

rules increases, interference between neurons and the redundancy of neurons also increase, leading to 

a drastic decrease in model computational accuracy and speed. Therefore, addressing how to enhance 

the solving capability, and improve the accuracy, and speed of DHNN-SAT models under the influence 

of both model size and logical complexity is an urgent task. Presently, the literature on this topic is 

notably scarce. In 2011, Sathasivam discussed the use of fuzzy logic to solve logic programs with 

lower logical complexity [22]. In this work, each clause of the CNF contained a positive literal, 

guaranteeing the existence of at least one satisfying solution. This article focuses on binary 

satisfiability problems (2-SAT) with more complex logical relations. In 2-SAT, each clause is 

composed of exactly two literals (Boolean variables or their negations), and the entire Boolean formula 

represents the conjunction (AND operation) of these clauses. 2-SAT, as a fundamental subset of 

Boolean satisfiability problems, holds profound significance in the fields of computational theory and 

algorithm design. Due to its simpler problem representation [23,24], it has gained favor among 

researchers in various domains [25–28]. In traditional DHNN-2SAT models, as the model size and 

logical complexity increase, numerous interferences and redundancies occur among neurons, leading 

to a rapid decrease in the number of global minima and more frequent oscillations. Moreover, the final 

convergence state of the model increasingly depends on its initial configuration, limiting the solution 

of the model to specific problems. As logical complexity continues to increase and enters the realm of 

hard-to-solve areas, 2-SAT problems shift from having many satisfying solutions to being hard to 

satisfy, resulting in poor solution accuracy and speed for the model. 

On one hand, considering that, during the application of the traditional Exhaustive search 

algorithm to retrieve global minima, as the number of neurons and logical complexity increase, 

interference and redundancy affect the logical inconsistency of each CNF of initial assignments in the 
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assignment space. The degree of logical inconsistency determines whether the CNF can successfully 

converge to satisfying solutions. Fortunately, the cost function benefits from its unique structure, which 

enables it to quantify the degree of initial assignment inconsistency of CNFs. Inspired by this, this 

paper employs fuzzy clustering techniques to cluster initial assignments in the assignment space, 

filtering out potential satisfying solutions. Compared to the Exhaustive search algorithm, this 

significantly reduces the search space, improving retrieval speed. On the other hand, considering that, 

in the context of CNFs, only global minima correspond to useful consistent explanations. Fuzzy 

clustering is essentially a local search technique and highly sensitive to the choice of cluster centers. 

To ensure that the model maintains excellent global optimization capability in hard-to-solve areas with 

a large number of neurons and high logical complexity, it is crucial to introduce a global optimization 

algorithm to guide the selection of optimal initial cluster centers for fuzzy clustering. Therefore, this 

paper selects the novel Crow Search Algorithm (CSA) to guide fuzzy clustering in the context of global 

optimization, proposing the DHNN-2SAT model with Crow search algorithm-guided fuzzy 

clustering (DHNN-2SAT-CSAFC model). To comprehensively assess the performance of the proposed 

DHNN-2SAT-CSAFC model, this paper incorporates another renowned global optimization algorithm, 

the Genetic Algorithm. This integration results in the creation of the DHNN-2SAT-GAFC model. In 

order to establish a robust benchmark for comparison, the traditional DHNN-2SAT-WA model, which 

employs the Exhaustive search algorithm, is included alongside the DHNN-2SAT-CSAFC model as a 

control group. 

The remainder of this paper is organized as follows: Section 2 provides the foundational 

knowledge, including an introduction to DHNN models, the Wan Abdullah method, fuzzy C-means 

clustering, and the Crow search algorithm. In Section 3, the implementation and workflow of the 

DHNN-2SAT-CSAFC model, guided by the Crow search algorithm, are described in detail. In 

Section 4, a series of simulation experiments are conducted to solve target 2-SAT problems of 

different scales and logical complexities. The results are analyzed and compared among the proposed 

DHNN-2SAT-CSAFC model and two reference models: the traditional Exhaustive search algorithm-

based DHNN-2SAT-WA model and the Genetic Algorithm-guided fuzzy clustering-based DHNN-2SAT-

GAFC model, using five evaluation metrics. Finally, in Section 5, this work is summarized. 

2. Preliminary knowledge 

2.1. The discrete Hopfield neural network 

The Discrete Hopfield Neural Network (DHNN) is a recursive neural network renowned for its 

proficient associative memory functions. A key distinguishing feature of DHNN is the use of an energy 

function to gauge the stability of the network state. DHNN constitutes a monolayer network 

comprising N neurons, designated as {𝑥1, 𝑥2, ⋯ , 𝑥𝑁} . The state of each neuron is bipolar, 

conventionally denoted as  𝑆𝑖 ∈ {−1,1} . Neurons engage in bidirectional communication, 

transmitting their outputs to other neurons via synaptic connections while concurrently receiving input 

from other neurons, as shown in Figure 1. Synaptic weight 𝑊𝑖𝑗 between neurons 𝑥𝑖 and 𝑥𝑗 undergo 

learning via the Hebbian rule. 

𝑊𝑖𝑗 = ∑(2𝑆𝑖 − 1)(2𝑆𝑗 − 1).        (1) 

The synaptic weights are strictly symmetric. Each neuron maintains full connectivity without self-
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feedback, leading to 𝑊𝑗𝑗 = 𝑊𝑖𝑖 = 0. 

 

Figure 1. Connectivity diagram of discrete Hopfield neural network. 

The input of neuron 𝑥𝑖 at time 𝑡 is referred to as the "local field," denoted as 

ℎ𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑆𝑗𝑗 (𝑡) − 𝑊𝑖,        (2) 

where 𝑆𝑖 is the state of unit 𝑥𝑖; 𝑊𝑖𝑗 is the synaptic weight from 𝑥𝑗 to 𝑥𝑖; and 𝑊𝑖 is the predefined 

threshold for 𝑥𝑖. 

The activated neurons adhere to the well-known McCulloch-Pitts Updating Rule and update their 

states according to the formula (3) based on the local field's magnitude. influenced by minimal energy 

excitation, the network converges to a stable state. In this context, the activation function is typically 

chosen to be a binary sign function, consistent with the Discrete Hopfield Neural Network. 

𝑆𝑖(𝑡 + 1) = 𝑠𝑖𝑔𝑛(ℎ𝑖(𝑡)) = {
1,     ℎ𝑖(𝑡) ≥ 0,

−1,    ℎ𝑖(𝑡) < 0.
      (3) 

The Lyapunov energy function is expressed as follows, 

𝐻𝑃 = −
1

2
∑ ∑ 𝑊𝑖𝑗𝑆𝑖𝑆𝑗𝑗𝑖 − ∑ 𝑊𝑖𝑆𝑖𝑖 .        (4) 

Because the output variation ∆𝐻𝑃  can only be 0 or negative values, energy can only decrease or 

remain constant with each update during the network's dynamic evolution. 

For each stable state, its Lyapunov energy 𝐻 is computed, and it is determined whether this 

stable state is the global minimum based on whether the energy reaches the minimum energy. If the 

conditions specified in Eq (5) are met, then the stable state is considered a global minimum. Otherwise, 

it is deemed a local minimum. 

|𝐻 − 𝐻𝑃
𝑚𝑖𝑛| < 𝜎.          (5) 

Here, 𝐻𝑃
𝑚𝑖𝑛 represents the Lyapunov minimum energy, and 𝜎 represents the user-defined tolerance 

value. 
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2.2. Wan Abdullah method 

The Wan-Abdullah (WA) method leverages principles from logical programming theory to 

construct a cost function, providing a unique perspective on developing a novel learning approach for 

DHNN by uncovering logical relationships among neurons. Recognized as one of the earliest learning 

methods based on logical inconsistency for extracting synaptic weights [3], the WA method has been 

empirically demonstrated to be equivalent to Hebbian learning [4]. 

In the Wan Abdullah method, the rationality and effectiveness of representing various logical rules 

for the SAT problem in the form of Conjunctive Normal Form (CNF) clauses within the framework of 

neural symbol integration have been explicitly demonstrated in [29]. Consequently, various logical 

rules for the SAT problem are expressed in CNF and corresponding cost functions are constructed. 

By comparing these cost functions with energy functions, optimal connection weights 

representing the logical rules are learned. Finally, these optimal weights are stored in the Discrete 

Hopfield Neural Network in the form of the best weight matrix. 

The subsequent section elucidates the precise principles and sequential procedures entailed in 

acquiring synaptic weights via the utilization of the WA method. 

Step 1. For the given 2SAT formula below, associate the Boolean variables 𝑆𝛼  and 𝑆𝛽  with the 

binary neurons 𝑥𝛼 and 𝑥𝛽 of the Hopfield neural network. 

𝑃 = (𝑆𝛼 ∨ 𝑆𝛽) ∧ (𝑆𝛼 ∨ ¬𝑆𝛽) ∧ (¬𝑆𝛼 ∨ 𝑆𝛽) ∧ (¬𝑆𝛼 ∨ ¬𝑆𝛽) ∧ (𝑆𝑇 ∨ 𝑆𝑄).   (6) 

Step 2. Apply De Morgan's law for negation of 𝑃, 

¬𝑃 = (¬Sα ∧ ¬Sβ) ∨ (¬Sα ∧ Sβ) ∨ (Sα ∧ ¬Sβ) ∨ (Sα ∧ Sβ) ∨ (¬ST ∧ ¬SQ).  (7) 

Step 3. Construct the cost function 𝐸𝑝  for ¬𝑃 , where 
1

2
(1 − 𝑆𝑋)  and 

1

2
(1 + 𝑆𝑋)  represent the 

logical values of neurons 𝑋 (𝑋 occurs) and ¬𝑋 (𝑋 does not occur) within ¬𝑃. Here, if 𝑋 is true, 

then 𝑆𝑋 equals 1, and if 𝑋 is false, then 𝑆𝑋 equals -1. Utilize multiplication to denote conjunction 

connectors and addiction to represent disjunction connectors. Therefore, the cost function for Eq (6) is 

as follows: 

𝐸𝑝 =
1

2
(1 − 𝑆𝛼)

1

2
(1 − 𝑆𝛽) +

1

2
(1 − 𝑆𝛼) 

1

2
(1 + 𝑆𝛽) +  

1

2
(1 + 𝑆𝛼) 

1

2
(1 − 𝑆𝛽) 

+
1

2
(1 + 𝑆𝛼) 

1

2
(1 + 𝑆𝛽) +

1

2
(1 − 𝑆𝑇) 

1

2
(1 − 𝑆𝑄).      (8) 

It is worth noting that in this specific construction method, the cost function Ep exhibits a notable 

feature: its value is directly correlated with the quantity of inconsistent clauses. 

Step 4. Seek a consistent interpretation for 𝑃, which involves finding the combination of minimum 

values for ¬𝑃 's inconsistencies. The minimum value of 𝐸𝑝  corresponds to the "most consistent" 

selection for S. Through a comparative analysis of cost function (8) and energy function (5), the 
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specific synaptic weight values can be determined, as outlined in Table 1. The flowchart for the Wan 

Abdullah method can be found in Figure 2. 

Table 1. Synaptic weights for 𝑃 based on the Wan Abdullah method. 

Synaptic Weights Sα ∨ Sβ Sα ∨ ¬Sβ ¬Sα ∨ Sβ ¬Sα ∨ ¬Sβ ST ∨ SQ 

𝑊𝛼 1/4 1/4 -1/4 -1/4 0 

𝑊𝛽 1/4 -1/4 1/4 -1/4 0 

𝑊𝛼𝛽 -1/2 1/2 1/2 -1/2 0 

𝑊𝑇 0 0 0 0 1/4 

𝑊𝑄 0 0 0 0 1/4 

𝑊𝑇𝑄 0 0 0 0 -1/2 

 

Figure 2. Flow chart of Wan Abdullah method. 

2.3. Fuzzy C-means clustering method 

The Fuzzy C-Means (FCM) clustering algorithm, initially introduced by Dunn [30] and 

subsequently advanced by Bezdek [31], stands as a significant cornerstone within the realm of fuzzy 

clustering methodologies. Fuzzy C-Means (FCM) leverages the principles of fuzzy mathematics to 

express the probability of each sample belonging to different clusters as values ranging from 0 to 1. 

This enables each sample to be associated with multiple distinct classes. The clustering process 

involves the minimization of an objective function. 
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Let 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} be the data set and 𝑋 have to be partitioned into C clusters based on 

the features of the data set. Using distance as the metric for similarity evaluation, the membership 

degree of sample 𝑥𝑗 to class 𝑋𝑖 is defined as 

𝜇𝑗𝑖 = 1/ ∑ (
𝑑𝑗𝑖

𝑑𝑗𝑙
)

2

𝑚−1𝐶
𝑙=1 ,   𝑚 ∈ 𝑍, 𝑚 > 1,      (9) 

 𝜇𝑗𝑖 ∈ [0,1] also needs to satisfy equations (10) and (11). 

∑ 𝜇𝑗𝑖
𝐶
𝑖=1 = 1,   𝑗 = 1,2, ⋯ , 𝑛,        (10) 

0 < ∑ 𝜇𝑗𝑖
𝑛
𝑗=1 < 𝑛,   𝑖 = 1,2, ⋯ , 𝐶,        (11) 

m is the fuzzification parameter. It is used to dominate the influence of membership grade and therefore 

the centroids and reduces the noise sensitivity in the computation of the centroids. 

The objective function of FCM is as follows 

𝐽𝑚(𝑈, 𝑉) = ∑ ∑ (𝜇𝑗𝑖)
𝑚

(𝑑𝑗𝑖)
2𝐶

𝑖
𝑛
𝑗 , 𝑚 > 1.      (12) 

The centroids are updated according to the following formula 

𝑣𝑖(𝑘 + 1) =
∑ [(𝜇𝑗𝑖)𝑚∙𝑥𝑗]𝑛

𝑗=1

∑ (𝜇𝑗𝑖)
𝑚𝑛

𝑗=1

, 𝑖 = 1,2, ⋯ , 𝐶.      (13) 

Following the update of all centroids, it is imperative to recompute the fresh membership values. 

This iterative procedure persists until consecutive iterations converge to identical centroid positions 

or until the saturation of the objective function is attained. In culmination, guided by the computed 

membership values across all classes for each individual sample, the assignment of samples to their 

appropriate categories is achieved, thereby automating the process of sample data classification. 

Figure 3 depicts the flowchart for the fuzzy C-means clustering method. 
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Figure 3. Flow chart of fuzzy C-means clustering. 

2.4. Crow search algorithm 

The Crow search algorithm (CSA) is a metaheuristic optimization algorithm inspired by the 

intelligent behavior of Crows. It was introduced by Alireza Askarzadeh in 2016 [32] and achieves a 

balance between local and global search by controlling two key parameters: flight length and 

perception probability. Unlike many other well-known heuristic algorithms, CSA requires fewer 

parameter adjustments and is relatively easy to implement. Consequently, it has found widespread 

applications in diverse optimization problem domains, including power systems [33], healthcare [34], 

image processing [35], and chemical engineering [36], among others. 

In this optimization scheme, each Crow serves as a representative of a potential solution to the 

problem under consideration. The assessment of these solutions hinges on their fitness, a measure 

dictated by the objective function. Assuming there are 𝑛 Crows, each with its food stash hidden in an 

undisclosed location, we operate within a predetermined limit of maximum iterations, denoted as 

𝑇𝑚𝑎𝑥. Within the 𝑡-th iteration, the positions of Crow 𝑘 and its best-remembered location are 𝑥𝑡
𝑘 

and 𝑚𝑒𝑚𝑡
𝑘, respectively. Crow 𝑘 then embarks on a random pursuit of Crow 𝑗, in hopes of unveiling 

the hiding place of Crow 𝑗 's sustenance. Two distinct scenarios unfold in this endeavor: 

(a) Crow 𝑗 remains oblivious to the fact that Crow 𝑘 is tracking it, thereby leading Crow 𝑘 to 

the spot where food is concealed. 
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(b) Crow 𝑗, discerning Crow 𝑘 's tracking intent, endeavors to safeguard the location of its 

sustenance by misleading Crow 𝑘, luring it to an alternate random spot within the search space. 

Using 𝐴𝑃 to represent the perception probability of Crow 𝑗 being tracked. The position update 

equation for Crow 𝑘 manifests as follows: 

𝑥𝑡+1
𝑘 = {

𝑥𝑡
𝑘 + 𝑟𝑘 × 𝑓𝑙 × (𝑚𝑒𝑚𝑡

𝑗
− 𝑥𝑡

𝑘)， 𝑟𝑘 ≥ 𝐴𝑃,

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑟𝑘 < 𝐴𝑃.
     (14) 

Here, 𝑟𝑘 ∈ (0,1) signifies the random probability associated with Crow 𝑘, while 𝑓𝑙 represents the 

flight length. An excessively modest flight length may entrap us within a local minimum, whereas an 

extended flight length may unveil a global minimum. 

We subsequently compute the fitness value 𝑓(𝑥𝑡+1
𝑘 )  pertaining to the novel position. If the 

fitness value of this newfound location surpasses that of the previously remembered position, update 

the memory of Crow 𝑘. 

𝑚𝑒𝑚𝑡+1
𝑘 = {

𝑥𝑡+1
𝑘 ， 𝑓(𝑥𝑡+1

𝑘 ) < 𝑓(𝑚𝑒𝑚𝑡
𝑘)

𝑚𝑒𝑚𝑡
𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

,      (15) 

The iteration terminates when the termination criterion is met, and the global optimal solution is 

output. Figure 4 illustrates the flowchart of the Crow search algorithm. 

 

Figure 4. Flow chart of the CSA. 
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3. Development of the DHNN-2SAT model integrated with the Crow search-guided fuzzy 

clustering hybrid optimization algorithm 

3.1. Designing the Crow search algorithm-guided fuzzy clustering hybrid optimization algorithm for 

enhancing the DHNN-2SAT model 

The conventional DHNN-2SAT-WA model utilizes an exhaustive search algorithm in the 

retrieval phase, tasked with updating, ensuring convergence, and evaluating each random initial 

assignment within the assignment space of size '2𝑁 '. Its goal is to search for consistent interpretations 

satisfying 2-SAT clauses. However, as the network's size and logical complexity increase, interference 

and redundancy between neurons intensify, leading to a rapid contraction of the solution space. More 

and more random initial assignments experience a staggering increase in their corresponding cost 

functions due to the growing number of inconsistent clauses. These initial assignments tend to exhibit 

significant oscillations during subsequent updates, making the model susceptible to local minima, 

prolonged convergence cycles, or even convergence failure. 

Addressing these challenges posed by the traditional DHNN-2SAT-WA model, this paper 

introduces a novel solution: Crow Search-guided Fuzzy Clustering-based Hybrid Optimization 

DHNN-2SAT model, abbreviated as DHNN-2SAT-CSAFC. In the DHNN-2SAT-CSAFC model, the 

initial assignments within the assignment space are subjected to fuzzy clustering based on the cost 

function, as its size directly relates to the number of inconsistent clauses. This process identifies 

potential solutions, significantly reducing the search space and improving retrieval efficiency. 

However, fuzzy clustering inherently represents a local search technique and is highly sensitive 

to cluster center selection. Concurrently, the 2-SAT problem mandates stringent quality criteria for 

solutions. In the context of CNF, only the global minimum corresponds to consistent interpretations. 

Therefore, incorporating the Crow Search method, one of the latest global optimization metaheuristics, 

to guide fuzzy clustering for optimal initial cluster center selection can substantially enhance global 

optimization capabilities. CSA has been proven to have a significant advantage in various optimization 

domains, particularly when integrated with FCM. References [37–43] highlight CSA's effectiveness 

in a variety of optimization fields, especially its integration with FCM [44–46]. 

3.2. Workflow of the DHNN-2SAT-CSAFC model  

The DHNN-2SAT-CSAFC model represents an innovative amalgamation of the DHNN-2SAT 

framework with the Crow Search Fuzzy Clustering Hybrid Optimization Algorithm. Its primary 

objective is convergent to a set of Boolean variable assignments that adhere to the CNF formula 

associated with the 2SAT problem. During the model's initialization phase, a fundamental mapping is 

established: each neuron within the Hopfield network is linked to a specific Boolean variable within 

the CNF. In practice, neurons serve as repositories for preserving the truth values of atomic variables, 

while synaptic weights serve as a representation of the intricate relationships that exist between 

variables and clauses. 

Subsequent to initialization, the operational workflow of this model unfolds through two pivotal 

phases: the learning phase and the retrieval phase. During the learning phase, the acquisition of 

synaptic weight matrices is orchestrated through the utilization of the WA learning methodology. As 

the model progresses to the retrieval phase, activated neurons undertake iterative updates, adjusting 
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their local fields and states in alignment with predefined update rules. This iterative process continues 

until the network converges to a stable equilibrium, during which the dynamic energy function 

undergoes a consistent monotonic descent. 

Ultimately, the pivotal role of the energy function is in determining whether this stabilized 

equilibrium corresponds to the global minimum of the 2SAT problem. The identification of the global 

minimum signifies a coherent interpretation of the CNF. The specific implementation steps of the 

DHNN-2SAT-CSAFC model are outlined as follows: 

Step 1. Model initialization. 

For a given 2SAT problem, translate into the corresponding CNF formula, denoted as 𝑃. Let 𝑃 

contain 𝑛  Boolean variables and 𝑚  clauses. The initialization of various parameters within the 

optimization algorithm is also carried out. 

Step 2. Neuron assignment. 

Each Boolean variable is uniquely assigned a Hopfield neuron, with neurons used to store the 

truth values of individual atoms. Consequently, the Hopfield network is configured with 𝑛 neurons 

{𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, and their corresponding states at time 𝑡 are denoted as {𝑆1(𝑡), 𝑆2(𝑡), ⋯ , 𝑆𝑛(𝑡)}. 

Step 3. Learning phase. 

During this phase, the model acquires synaptic weights using the WA method. The cost function 

𝐸𝑃 for the negation of ¬𝑃 is derived, followed by the computation of synaptic weights through a 

comparison between the cost function 𝐸𝑃 and the energy function 𝐻. 

Step 4. Retrieval phase. 

A batch of 𝑀 random initial assignments {𝑃1, 𝑃2, ⋯ , 𝑃𝑀} is generated during this phase, where 

𝑃𝑖 = 𝑃𝑖(𝑆(𝑡)) = 𝑃𝑖(𝑆1(𝑡), 𝑆2(𝑡), ⋯ , 𝑆𝑛(𝑡)), 1 ≤ 𝑖 ≤ 𝑀. These assignments may or may not constitute 

consistent interpretations of the CNF formula. The cost function 𝐸𝑃 = {𝐸𝑃1
, 𝐸𝑃2

, ⋯ , 𝐸𝑃𝑀
} for these 

initial assignments is computed based on Eq (7). 

Step 5. Fuzzy clustering with Crow search guidance. 

Leveraging the cost function, a fuzzy clustering algorithm guided by Crow search is employed to 

cluster {𝑃1, 𝑃2, ⋯ , 𝑃𝑀}. Pre-select a subset of random initial assignments with favorable cost functions, 

denoted as 𝐴𝑘 = 𝐴𝑘(𝑆(𝑡)) = 𝐴𝑘(𝑆1(𝑡), 𝑆2(𝑡), ⋯ , 𝑆𝑛(𝑡)), 𝑘 ∈ 𝑍, 𝑡 = 0 . Initially, the Crow search 

algorithm minimizes an objective function 𝐽𝑚  identical to that of the fuzzy clustering algorithm, 

resulting in optimal centroid solutions 𝑉𝑏𝑒𝑠𝑡 = {𝑣1, 𝑣2, ⋯ , 𝑣𝐶} . Subsequently, fuzzy clustering is 

carried out. Importantly, the minimization process of the objective function is guided by CSA, rather 

than an iterative steepest descent process. 

Step 6. Local field calculation. 

For each 𝐴_𝑘(𝑆(𝑡)) = 𝐴_𝑘(𝑆1(𝑡), 𝑆2(𝑡), ⋯ , 𝑆𝑛(𝑡)), 𝑘 = 0, 𝑡 = 0 , calculates its local field 

𝐴_𝑘(ℎ(𝑡)) = 𝐴_𝑘(ℎ1(𝑡), ℎ2(𝑡), ⋯, ℎ𝑛(𝑡)). 

Step 7. State updating and stability determination. 

Each neuron state within 𝐴_𝑘(𝑆1(𝑡), 𝑆2(𝑡), ⋯ , 𝑆𝑛(𝑡)) is updated according to the McCulloch-

Pitts Updating Rule, with 𝑆𝑖(𝑡 + 1) = 𝑠𝑖𝑔𝑛(ℎ𝑖(𝑡)) = {
1,     ℎ𝑖(𝑡) ≥ 0

−1,    ℎ𝑖(𝑡) < 0
, until a stable state is reached. 
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If, after five consecutive runs, the neuron states remain consistent (i.e., 𝐴_𝑘(𝑆(𝑡)) = 𝐴_𝑘(𝑆(𝑡 −

1))=𝐴_𝑘(𝑆(𝑡 − 2))=𝐴_𝑘(𝑆(𝑡 − 3))=𝐴_𝑘(𝑆(𝑡 − 4))), the final state 𝐴_𝑘(𝑆(𝑡)) is defined as the stable 

state.  

Step 8. Global minimum energy assessment  

The stability state's energy 𝐻𝐴_𝑘
 is assessed using the Lyapunov energy criteria. If the following 

condition (5) is met |𝐻𝐴_𝑘
− 𝐻𝑃

𝑚𝑖𝑛| < σ. Where 𝐻𝑃
𝑚𝑖𝑛 represents the global minimum energy, and σ  

is the tolerance value predetermined by the user, then the stability state 𝐴_𝑘(𝑆(𝑡)) is recognized as 

the global minimum and is stored. Otherwise, if it does not meet this condition, it is considered a local 

minimum, and 𝑘 = 𝑘 + 1, leading to a repeat of Step 6. 

Step 9. Calculation of metrics  

This final step involves calculating metrics such as the global minima ratio, Hamming distance, 

CPU time, retrieval rate of stable state, and retrieval rate of global minima. Figure 5 presents the 

flowchart of the DHNN-2SAT-CSAFC model. 

 

Figure 5. Flow chart of DHNN-2SAT-CSAFC model. 

4. Experiments on simulated datasets 

4.1. Introduction to the experiments 

To accurately assess the performance of the proposed DHNN-2SAT-CSAFC model and enhance 

the robustness of experimental results, this experiment encompasses two control group models: the 
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traditional DHNN-2SAT-WA model, which employs the exhaustive search algorithm, and another 

model, DHNN-2SAT-GAFC, guided by genetic algorithms for fuzzy clustering-based hybrid 

optimization. 

Considering the high precision requirements for SAT problem solutions and the significant impact 

of the chosen optimization algorithm on the success rate and efficiency of consistent interpretations' 

search, it was crucial to examine whether the selection of CSA as the global optimization algorithm to 

guide fuzzy clustering, was a prudent choice. Despite several studies [47–51] suggesting that CSA 

requires relatively few parameter adjustments compared to other metaheuristic algorithms such as 

Particle Swarm Optimization (PSO), Shark Algorithm (SA), Genetic Algorithm (GA), Weed 

Algorithm (WA), Grey Wolf Optimizer (GWO), Sine Cosine Algorithm (SCA), Bat Algorithm (BA), 

Firefly Algorithm (FA), Moth Flame Optimization (MFO), Whale Optimization Algorithm (WOA), 

Invasive Weed Optimization (IWO), and Electromagnetic Mechanism-based Algorithm (EM), which 

have demonstrated superior performance in specific application domains. However, adhering to 

rigorous scientific research principles, this experiment additionally introduces another control group 

model, DHNN-2SAT-GAFC, guided by genetic algorithms for fuzzy clustering-based hybrid 

optimization. In this DHNN-2SAT-GAFC model, another classic global optimization algorithm, 

Genetic Algorithm, was chosen to guide the fuzzy clustering process. Genetic Algorithm (GA), initially 

proposed by John Holland in 1975 [52], serves as an early heuristic algorithm embedded within the 

Fuzzy Clustering method (GAFC), and it has found wide applications across domains such as 

transportation and classification problems [53–56]. 

In this simulation experiment for solving the 2-SAT problem, we utilized MATLAB R2021b, 

running on a laptop equipped with the Windows 11 operating system, an AMD Ryzen R7-5800H 

processor, and 16GB of RAM. During the experiment, we optimized the relevant parameters, as 

detailed in Tables 2–4, through iterative adjustments based on trial and error. The logical complexity 

of a propositional formula is measured by the ratio of the number of clauses to the number of Boolean 

variables, known as the constraint rate coefficient or constraint density. The number of neurons ranged 

from 10 to 100 in increments of 10, while the constraint ratio coefficient varied from 0.1 to 2.0 in steps 

of 0.1. To mitigate statistical errors, we conducted 100 trials with different neuron combinations for 

each level of logical complexity, with each combination undergoing 250*NN experiments. Simulated 

datasets were employed to evaluate the performance of the DHNN-2SAT-WA, DHNN-2SAT-GAFC, 

and DHNN-2SAT-CSAFC models using five performance evaluation metrics: global minima ratio, 

Hamming distance, CPU time, retrieval rate of stable states, and retrieval rate of global minima. 

Table 2. Parameters of DHNN-2SAT-WA. 

Parameter Parameter Value 

Number of neurons Between 10 and 100, in steps of 10 

Constraint density Between 0.1 and 2.0, in steps of 0.1 

CPU time threshold 3 hours 

Tolerance of DHNN-2SAT 0.001 
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Table 3. Parameters of DHNN-2SAT-GAFC. 

Parameter Parameter Value 

Population size 50 

Crossover rate 0.9 
Selection rate 0.9 

Fuzziness parameter 2 

Maximum number of iterations 100 

Mutation rate 0.05 

Number of clusters 5 
Convergence threshold 0.001 

Table 4. Parameters of DHNN-2SAT-CSAFC. 

Parameter Parameter Value 

Population size 50 

Flight length 0.2 

Number of clusters 5 

Convergence threshold 0.001 

Maximum number of iterations 100 
Perceived probability 0.1 

Fuzziness parameter 2 

4.2. Results and discussion 

4.2.1. Global minima ratio 

The Global Minima Ratio (GMR) is a metric defined as the ratio of global minima count to 

the total number of solutions [57]. For example, if the GMR value equals 0.9605, it signifies that 

out of 10,000 simulated results, 9,605 correspond to global minima, while the remaining 395 represent 

local minima solutions. GMR is a dependable measure of algorithm efficiency, with a value near 1 

indicating model robustness [58]. 

 

Figure 6. Global minima ratio of DHNN-2SAT-WA model, DHNN-2SAT-GAFC model 

and DHNN-2SAT-CSAFC model. 
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Figure 7. Global minima ratio of DHNN-2SAT-WA model, DHNN-2SAT-GAFC model 

and DHNN-2SAT-CSAFC model. 

Figures 6 and 7 illustrate the GMR results concerning diverse logical complexities and varying 

numbers of neurons. At lower logical complexities, all three models benefit from the robust global 

search capability of the discrete Hopfield neural network model with SAT. Every neuron converges 

toward the global optimal solution, yielding a GMR of 1. 

However, as the constraint ratio coefficient escalates from 0.1 to 2.0 while maintaining a constant 

number of neurons, logical complexity surges. Different logical clauses start to interfere with each 
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other due to sharing the same atomic elements [4]. Coupled with a significant amount of logical 

redundancy, this leads to a rapid reduction in the solution space, making it increasingly challenging 

for models to retrieve satisfying solutions. Consequently, the GMR also declines swiftly. Notably, even 

in such scenarios, the DHNN-2SAT-CSAFC and DHNN-2SAT-GAFC models, incorporating 

optimization methods, consistently demonstrate significantly higher GMR values than the 

conventional DHNN-2SAT-WA model. 

According to Table 5, as the number of neurons increases from 10 to 100, the average GMR for 

the HNN-2SAT-CSAFC model is 1.173 times that of the HNN-2SAT-WA model and 1.053 times that 

of the HNN-2SAT-GAFC model. This can be attributed to the Crow search algorithm-guided fuzzy 

clustering, which preselects initial assignments with strong logical consistency, effectively directing 

the reduction of network energy. 

Table 5. Geometric mean of GMR ratio. 

Number of neurons 

Geometric Mean 

DHNN-2SAT-GAFC / 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC / 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC / 

DHNN-2SAT-GAFC 

10 1.087 1.101 1.012 

20 1.091 1.106 1.013 

30 1.104 1.132 1.025 

40 1.107 1.139 1.029 

50 1.117 1.169 1.046 

60 1.169 1.245 1.065 

70 1.171 1.266 1.082 

80 1.132 1.225 1.082 

90 1.142 1.286 1.126 

100 1.019 1.081 1.061 

10 ~ 100 1.113 1.173 1.053 

4.2.2. Hamming distance 

Hamming distance serves as a metric to gauge the precision of model solutions by quantifying 

the disparity in bits between stable states and global minimum values. A Hamming distance nearing 

zero signifies a more precise convergence of stable states toward the global minimum. 

 

Figure 8. Hamming distance of DHNN-2SAT-WA model, DHNN-2SAT-GAFC model and 

DHNN-2SAT-CSAFC model. 
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Figure 9. Hamming distance of DHNN-2SAT-WA model, DHNN-2SAT-GAFC model and 

DHNN-2SAT-CSAFC model. 

Figures 8 and 9 illustrate that at lower constraint ratio coefficients, all three models, with varying 

numbers of neurons, exhibit Hamming distances that are essentially zero. When the number of neurons 

remains constant and the constraint ratio coefficient gradually increases to 2.0, the network's memory 

capacity diminishes, leading to a reduced solution space. Although the Hamming distance gradually 

increases under these conditions, it still maintains a relatively low level. 

With the number of neurons expanding from 10 to 100, even though an increase in redundant and 

duplicated variables may introduce some interference to the weights, the connections among neurons 
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become more intricate and closely interconnected. As a result, the models' learning capabilities not only 

remain unimpaired but also encourage a further convergence of final states toward the global minimum 

Hamming distance. Table 6 reveals that the average Hamming distance for the DHNN-2SAT-CSAFC 

model is 0.668 times that of the DHNN-2SAT-WA model and 0.898 times that of the DHNN-2SAT-

GAFC model. This indicates that all three models perform exceptionally well in terms of precision 

when solving the 2-SAT problem. Notably, the HNN-2SAT-CSAFC model excels in conducting more 

precise global searches. 

Table 6. Geometric mean of the ratio of Hamming distance. 

Number of 

neurons 

Geometric Mean 

DHNN-2SAT-GAFC / 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC / 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC / 

DHNN-2SAT-GAFC 

10 0.567 0.494 0.872 

20 0.655 0.609 0.929 

30 0.692 0.507 0.734 

40 0.726 0.699 0.963 

50 0.803 0.774 0.964 

60 0.748 0.678 0.907 

70 0.795 0.736 0.925 

80 0.836 0.756 0.904 

90 0.774 0.680 0.878 

100 0.826 0.755 0.914 

10 ~ 100 0.744 0.668 0.898 

4.2.3. CPU time 

CPU time refers to the average time required for each model to achieve a global minimum value. 

Smaller average CPU times indicate higher computational efficiency for the models. 

Figures 10 and 11 provide insights that when the number of neurons is relatively low, neither the 

DHNN-2SAT-CSAFC model nor the DHNN-2SAT-GAFC model exhibits a notable advantage. This is 

because utilizing the Crow search algorithm or Genetic Algorithm to guide the optimal centroids 

consumes time. 

 

Figure 10. CPU time of DHNN-2SAT-WA model, DHNN-2SAT-GAFC model and 

DHNN-2SAT-CSAFC model. 
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Figure 11. CPU time of DHNN-2SAT-WA model, DHNN-2SAT-GAFC model and 

DHNN-2SAT-CSAFC model. 

However, with an increase in the number of neurons and constraint rate coefficient, due to the 

fully connected nature of DHNN where each neuron is connected to every other neuron, the 

computational cost grows exponentially. The traditional HNN-2SAT-WA model, which employs the 

Exhaustive search algorithm, needs to retrieve randomly generated initial assignments from the 
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assignment space within a given time threshold, incurring significant time costs. In contrast, the 

HNN-2SAT-CSAFC and HNN-2SAT-GAFC models benefit from the integration of different 

optimization algorithms, implementing directed filtering of random assignments within the assignment 

space, significantly reducing the search space and thus greatly decreasing computational time. 

Furthermore, as shown in Table 7, when the number of neurons increases from 10 to 100, the 

computational speed of the HNN-2SAT-CSAFC model is 0.131 times that of the HNN-2SAT-WA 

model and 0.414 times that of the HNN-2SAT-GAFC model. Moreover, as the constraint ratio 

coefficient increases, the speed advantage of HNN-2SAT-CSAFC exhibits a noticeable linear growth 

trend. This indicates that within the same given time frame, the number of consistent interpretations 

obtained using the proposed HNN-2SAT-CSAFC model is 7.6334 times and 2.415 times that of the 

other two control models, respectively. Clearly, Crow Search-guided fuzzy clustering, due to its fewer 

parameters and simpler implementation, is more effective in reducing the computational complexity 

of the 2-SAT problem and accelerating global search compared to the other two models. 

Table 7. Geometric mean of the ratio of CPU time. 

Number of 

neurons 

Geometric Mean 

DHNN-2SAT-GAFC/ 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC/ 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC/ 

DHNN-2SAT-GAFC 

10 2.220 0.447 0.201 

20 0.570 0.233 0.410 

30 0.446 0.164 0.367 

40 0.251 0.129 0.513 

50 0.572 0.117 0.205 

60 0.391 0.096 0.245 

70 0.117 0.089 0.763 

80 0.209 0.092 0.441 

90 0.095 0.080 0.840 

100 0.175 0.113 0.647 

10~100 0.316 0.131 0.414 

4.2.4. Retrieval rate of stable state and retrieval rate of global minimum  

With the increase in network capacity and logical complexity, the solution space contracts, 

making it increasingly difficult for models to discover the global minimum within specified timeframes. 

Especially when network capacity and logical complexity reach a certain threshold, the 2-SAT problem 

enters the region of difficulty in solving, where extensive search efforts during the retrieval phase often 

end in vain. At this point, the focus of model improvement is to maximize the success rate of locating 

the global minimum and even local minima within each retrieval task. To assess the success rate of 

model retrieval efforts, we introduce two novel evaluation criteria: the retrieval rate of stable states 

and the retrieval rate of the global minimum. Specifically, the retrieval rate of stable states is defined 

as the ratio of the number of stable states to the total number of retrievals, while the retrieval rate of 

the global minimum is defined as the ratio of the number of global minima to the total number of 

retrievals. 

Figures 12 to 15 illustrate that both the DHNN-2SAT-CSAFC model and the DHNN-2SAT-GAFC 
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model effectively leverage optimization algorithms to identify potential solutions, substantially 

enhancing the model's success rate. Data presented in Tables 8 and 9 indicate that as the number of 

neurons increases from 10 to 100, the retrieval rate of stable states and the retrieval rate of the global 

minimum for the DHNN-2SAT-CSAFC model are 2.423 and 2.726 times that of the DHNN-2SAT-WA 

model, respectively, and 1.105 and 1.157 times that of the DHNN-2SAT-GAFC model. When the 

search region enters the challenging zone, the retrieval rates of stable states and the retrieval rates of 

the global minimum experience a sharp decline, almost approaching zero. In such circumstances, the 

DHNN-2SAT-CSAFC model effectively boosts the retrieval rate of stable states and the retrieval rate 

of the global minimum to approximately four times that of the traditional model. 

 

Figure 12. Retrieval rate of stable state of DHNN-2SAT-WA model, DHNN-2SAT-GAFC 

model and DHNN-2SAT-CSAFC model. 

Table 8. Geometric mean of the ratio of steady state retrieval rate. 

Number of 

neurons 

Geometric Mean 

DHNN-2SAT-GAFC/ 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC/ 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC/ 

DHNN-2SAT-GAFC 

10 1.576 1.614 1.024 

20 1.831 1.901 1.038 

30 1.869 2.001 1.071 

40 2.070 2.214 1.070 

50 2.167 2.386 1.101 

60 2.401 2.676 1.115 

70 2.426 2.661 1.097 

80 2.486 2.973 1.196 

90 2.562 2.879 1.124 

100 2.718 3.314 1.219 

10~100 2.192 2.423 1.105  
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Figure 13. Retrieval rate of stable state of DHNN-2SAT-WA model, DHNN-2SAT-GAFC 

model and DHNN-2SAT-CSAFC model. 
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Figure 14. Retrieval rate of global minima of DHNN-2SAT-WA model, DHNN-2SAT-

GAFC model and DHNN-2SAT-CSAFC model. 

Table 9. Geometric mean of the ratio of global minima retrieval rate 

Number of 

neurons 

Geometric Mean 

DHNN-2SAT-GAFC / 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC / 

DHNN-2SAT-WA 

DHNN-2SAT-CSAFC / 

DHNN-2SAT-GAFC 

10 1.662  1.717  1.033  

20 1.890  1.978  1.046  

30 1.902  2.088  1.098  

40 2.141  2.322  1.085  

50 2.255  2.770  1.228  

60 2.610  3.064  1.174  

70 2.633  2.963  1.125  

80 2.851  3.456  1.212  

90 2.907  3.431  1.180  

100 3.055  4.314  1.412  

10 ~ 100 2.357  2.726  1.157  
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Figure 15. Retrieval rate of global minima of DHNN-2SAT-WA model, DHNN-2SAT-

GAFC model and DHNN-2SAT-CSAFC model. 

5. Experiments on real-world datasets 

In Chapter 4, we exhaustively demonstrated the significant advantages of the HNN-2SAT-CSAFC 

model over traditional HNN-2SAT-WA and HNN-2SAT-GAFC models in solving 2-SAT problems of 

varying logical complexities and model scales through the application on simulated datasets. The 
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experimental results on the simulated datasets not only validated the effectiveness of the HNN-2SAT-

CSAFC model but also laid a solid foundation for further research. However, to comprehensively 

evaluate the HNN-2SAT-CSAFC model's capability in addressing real-world application issues, we 

believe it is necessary to conduct further tests on real-world datasets. Chapter 5 aims to bridge this 

research gap by applying the HNN-2SAT-CSAFC model and traditional HNN-2SAT-WA model to 

specific 2-SAT problem instances, exploring their performance in solving practical problems. 

5.1．Experimental design for 2-SAT instances 

Due to the absence of a renowned dataset exclusively containing 2-SAT problems, we utilized the 

JNH dataset from the DIMACS benchmark instances available on SATLIB (https: // www. cs. ubc.ca/ 

~hoos/SATLIB/benchm.html). This dataset comprises 16 satisfiable instances and 34 unsatisfiable 

instances, provided by John Hooker, generated through a hard generator, presenting random problems 

with certain challenging characteristics, such as the absence of single-literal clauses and hard density. To 

construct a representative set of 2-SAT instances, we selected 16 problem instances (𝑗𝑛ℎ𝑖 − 2𝑆𝐴𝑇, 1 ≤

𝑖 ≤ 16) that contain only clauses with two literals from these 16 satisfiable instances (𝑗𝑛ℎ𝑖, 1 ≤ 𝑖 ≤ 16). 

This ensured that our experimental dataset maintained a clear 2-SAT structure, consistent with real-

world application problems, where each clause contains precisely two literals. 

In the subsequent experiments, the traditional HNN-2SAT-WA model and the HNN-2SAT-

CSAFC model proposed in this paper were applied to solve these 16 2-SAT instances. During the 

retrieval phase, the HNN-2SAT-WA model directly searches among 10,000 different combinations of 

neuron initial assignments, whereas the HNN-2SAT-CSAFC model employs Crow-guided fuzzy 

clustering to preprocess these 10,000 combinations of neuron initial assignments, picking out a subset 

of potential solutions for retrieval. This significantly narrows the actual search space and reduces 

computational efforts. To minimize statistical errors, each combination of neurons will undergo 100 

repeated experiments to calculate an average value. Specific parameters are detailed in Tables 10 and 11. 

We will comprehensively document the performance of the HNN-2SAT-CSAFC model and the 

HNN-2SAT-WA model in solving these 16 2-SAT instances across the following five performance 

metrics: Global minima ratio, Hamming distance, CPU time, retrieval rate of stable states, and retrieval 

rate of global minima, as shown in Table 12. Through this experiment, we will objectively assess the 

performance advantage of the HNN-2SAT-CSAFC model over the traditional HNN-2SAT-WA model 

in solving practical application problems, thereby providing valuable insights for future research and 

applications. 

Table 10. Parameters of DHNN-2SAT-WA 

Parameter Parameter Value 

Number of initial assignments 10000 

CPU time threshold 4h 

Tolerance of DHNN-2SAT 0.001 
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Table 11. Parameters of DHNN-2SAT-CSAFC 

Parameter Parameter Value Parameter Parameter Value 

Number of initial 

assignments 
10000 Population size 50 

Flight length 0.2 maximum number of iterations 100 

Number of clusters 4 perceived probability 0.1 

Convergence threshold 0.001 Fuzziness parameter 2 

Table 12. Experimental results for sixteen instances 

Instances of 2-

SAT 

Global Minima 

Ratio 
Hamming Distance CPU Time (s) 

Retrieval Rate of 

Stable State (%) 

Retrieval Rate of 

Global Minima (%) 

HNN-

2SAT-

WA 

HNN-

2SAT-

CSAFC 

HNN-

2SAT-

WA 

HNN-

2SAT-

CSAFC 

HNN-

2SAT-

WA 

HNN-

2SAT-

CSAFC 

HNN-

2SAT-

WA 

HNN-

2SAT-

CSAFC 

HNN-

2SAT-

WA 

HNN-

2SAT-

CSAFC 

Jnh1-2SAT 0.6667 0.7308 0.0061 0.0049 591.7 69.8 0.0750 0.2600 0.0500 0.1900 

Jnh2-2SAT 0.8335 0.8889 0.0030 0.0018 1490.9 28.2 0.0300 0.1333 0.025 0.1185 

Jnh3-2SAT 0.1667 0.2593 0.0230 0.0190 1491.0 24.4 0.1500 0.5703 0.025 0.1477 

Jnh4-2SAT 0.6250 0.6364 0.0047 0.0080 595.2 20.6 0.1000 0.4797 0.0625 0.3053 

Jnh5-2SAT 1 1 0 0 42.2 4.1 0.6000 1.2420 0.6000 1.2420 

Jnh6-2SAT 0.5455 0.5600 0.0062 0.0060 385.7 33.4 0.1375 0.4523 0.075 0.2533 

Jnh7-2SAT 0.3800 0.4444 0.0224 0.0096 1300.5 30.0 0.1625 0.2595 0.0625 0.1153 

Jnh8-2SAT 0.9908 0.9915 0.0001 0.0001 13.4 5.5 1.3625 3.4544 1.3500 3.4250 

Jnh9-2SAT 0.4100 0.4348 0.0217 0.0116 346.3 53.0 0.1500 0.3966 0.0625 0.1724 

Jnh10-2SAT 0.9286 0.9454 0.0014 0.0013 139.0 9.0 0.1750 0.6342 0.1625 0.5996 

Jnh11-2SAT 0.7000 0.7083 0.0039 0.0033 478.1 37.1 0.1250 0.3453 0.0875 0.2446 

Jnh12-2SAT 1 1 0 0 330.3 13.0 0.0875 0.2737 0.0875 0.2737 

Jnh13-2SAT 1 1 0 0 54.4 5.7 0.6500 1.1886 0.6500 1.1886 

Jnh14-2SAT 0.7143 0.7778 0.0034 0.0034 2179.9 45.7 0.0875 0.1042 0.0625 0.0810 

Jnh15-2SAT 0.1325 0.2571 0.0188 0.0153 3198.2 46.6 0.1625 0.8070 0.0125 0.2075 

Jnh16-2SAT 0.1250 0.1852 0.0200 0.0198 3393.1 145.7 0.1000 0.3508 0.0125 0.0650 

5.2. Results and discussion 

As depicted in Figures 16 to 20, the DHNN-2SAT-CSAFC model outperforms the DHNN-2SAT-

WA model across all five metrics. Notably, a significant advantage of the DHNN-2SAT-CSAFC model 

is observed in terms of CPU time. CPU time is a crucial factor in measuring algorithm efficiency, as it 

directly reflects the average time required by the model to obtain a satisfactory solution for a 2SAT 

instance. Given the early stages of the HNN-SAT model as an emerging SAT processor and the current 

context of precious computing resources, reducing the CPU time needed for algorithm operation not 

only saves valuable computing resources but also enhances the feasibility and appeal of the algorithm 

in practical applications. Therefore, we decided to conduct a more in-depth statistical analysis on the 

CPU time metric. 



9259 

 

AIMS Mathematics  Volume 9, Issue 4, 9232–9266. 

 

Figure 16. Global minima ratio of DHNN-2SAT-WA model and DHNN-2SAT-CSAFC 

model. 

 

Figure 17. Hamming distance of DHNN-2SAT-WA model and DHNN-2SAT-CSAFC 

model. 

 

Figure 18. CPU time of DHNN-2SAT-WA model and DHNN-2SAT-CSAFC model. 



9260 

 

AIMS Mathematics  Volume 9, Issue 4, 9232–9266. 

 

Figure 19. Retrieval rate of stable state of DHNN-2SAT-WA and DHNN-2SAT-CSAFC. 

 

Figure 20. Retrieval rate of global minima of DHNN-2SAT-WA and DHNN-2SAT-CSAFC. 

As shown in Tables 13 and 14, with the significance level set at 0.05, the p-values of the Jarque-

Bera test for the DHNN-2SAT-WA model and the DHNN-2SAT-CSAFC model are 0.0406 and 0.0401, 

respectively, both of which are less than 0.05. Thus, the CPU times for both models do not follow a 

normal distribution. Further analysis using the Wilcoxon signed-rank test reveals a significant 

difference in the median CPU times between the two models. This indicates that the DHNN-SAT-Dy-

Ev model proposed in this paper has a significant improvement over the traditional DHNN-2SAT-WA 

model in terms of CPU time, highlighting its enhanced performance and potential for practical 

application. 

Table 13. Results of Jarque-Bera test 

Null Hypothesis (H0) CPU time follows a normal distribution. 

Alternative Hypothesis (Ha) CPU time does not follow a normal distribution. 

P 

HNN-2SAT-WA  0.0406 
Reject the null hypothesis, indicating that CPU 

time does not follow a normal distribution. 

HNN-2SAT-CSAFC 0.0401 
Reject the null hypothesis, indicating that CPU 

time does not follow a normal distribution. 
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Table 14. Results of Wilcoxon signed-rank test 

Null Hypothesis (H0) 
There is no significant difference in the median CPU times 

between the two models. 

Alternative Hypothesis (Ha) 
There is a significant difference in the median CPU times 

between the two models. 

P 0.0004 

Reject the null hypothesis, indicating that there 

is a significant difference in the median CPU 

times. 

6. Conclusions 

The HNN-SAT model, developed in recent years as a prototype of emerging SAT solvers, focuses 

on a crucial research direction: improving the model to achieve faster solving speeds and higher 

precision in addressing SAT problems. The previous studies predominantly focused on the impact of 

model scale. This study comprehensively investigates both the scale of the model and its logical 

complexity, along with their impacts on HNN-2SAT. With the model scale and logical complexity 

gradually increasing, HNN-2SAT evolves from having multiple satisfiable solutions to becoming 

challenging to solve, or even unsolvable. 

Grounded on the discovery that "the cost function can serve as a quantification tool for the 

degree of inconsistency in logical rules," this establishes a basis for fuzzy clustering. The proposed 

HNN-2SAT-CSAFC model integrates the advantages of CSA and fuzzy clustering, effectively 

mitigating this issue. Compared to the traditional HNN-2SAT-WA and another heuristic-integrated 

model, HNN-2SAT-GAFC, the HNN-2SAT-CSAFC model features fewer parameters, simpler 

implementation, and leverages a Crow search-guided fuzzy clustering hybrid optimization method for 

batch processing of search objects. This approach pre-selects potential solutions, narrows the search 

space, and significantly enhances computational speed. Additionally, two new evaluation criteria are 

defined, namely the retrieval rate of stable state and retrieval rate of global minima, effectively 

assessing the model's success rate. 

In Chapter 4, we employ a simulation dataset of 2 SAT problems to experiment with our solution 

model. Within the simulated environment for solving a series of 2SAT problems with gradually 

increasing model scale and logical complexity, we meticulously observe the differing patterns 

exhibited by the HNN-2SAT-WA, HNN-2SAT-GAFC, and HNN-2SAT-CSAFC solution models 

across five metrics: global minima ratio, Hamming distance, CPU time, retrieval rate of stable state, 

and retrieval rate of global minima. The experimental results on the simulation dataset not only validate 

the effectiveness of the HNN-2SAT-CSAFC model but also lay a solid foundation for further research. 

In this simulation experiment, as the constraint rate coefficient increased from 0.1 to 2.0 and the 

number of neurons grew from 10 to 100, the HNN-2SAT-CSAFC model consistently achieved the best 

performance in terms of global minima ratio, Hamming distance, CPU time, retrieval rate of stable 

state, and retrieval rate of global minima. Compared to the HNN-2SAT-WA and HNN-2SAT-GAFC 

models, the HNN-2SAT-CSAFC model exhibited superior results, with an average GMR being 1.173 

times and 1.053 times higher, an average Hamming distance being 0.668 times and 0.898 times lower, 

an average CPU time being 0.131 times and 0.414 times less, a number of consistent interpretations 

obtained within the same time frame being 7.6334 times and 2.415 times greater, a stable state retrieval 

rate being 2.423 times and 1.105 times higher, and a global minimum retrieval rate being 2.726 times 
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and 1.157 times greater, respectively. This signifies that the HNN-2SAT-CSAFC model not only 

enhances the quality of solutions in terms of accuracy and precision but also increases the quantity of 

solutions retrieved, even in regions where finding solutions is challenging. Notably, the HNN-2SAT-

CSAFC model demonstrates a notable improvement in computational efficiency. Furthermore, the 

model's advantages across five evaluation metrics are expected to exhibit a linear growth trend with 

increasing network size and logical complexity. Evidently, the HNN-2SAT-CSAFC model is better 

suited for handling large-scale, highly logically complex 2-SAT problems.  

In Chapter 5, the application of the solving models to 2SAT problem instances from real datasets 

was explored, demonstrating the superior capability of the proposed HNN-2SAT-CSAFC model over 

traditional models in addressing practical application issues. This is the first time in the field where the 

DHNN-SAT model has been applied to solve real dataset instances. Experimental results indicate that 

the HNN-2SAT-CSAFC model outperforms the DHNN-2SAT-WA model across five evaluation 

metrics. Notably, it exhibits statistically significant improvements in CPU time. This signifies that the 

DHNN-2SAT-CSAFC model is more efficient in solving practical SAT problems. 

Although there is room for improvement in the scale and speed of solving compared to other SAT-

solving tools, the HNN-2SAT-CSAFC model offers advantages such as parallel computing, ease of 

integration with other logical rules, and the absence of preprocessing for duplicates and redundancies. 

Looking ahead, with continued exploration and refinement, this model holds great potential to evolve 

into an outstanding SAT-solving tool. 
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