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Abstract: This study employed an event-triggered control (ETC) strategy to investigate the problems
of fixed-time stabilization (FTS) and preassigned-time stabilization (PTS) for state-dependent
switching neural networks (SDSNNs) that involved mixed time delays. To enhance the network’s
generalization capability and accelerate convergence stabilization, a more intricate weight-switching
mechanism was introduced, then to mitigate transmission energy consumption, this paper proposed
a tailored event-triggering rule that triggered the ETC solely at predetermined time points. This rule
ensured the stability of the system while effectively reducing energy consumption. Using the Lyapunov
stability theory and various inequality techniques, this paper presented new results for FTS and PTS
of SDSNNs. The validity of these findings was supported by conducting data simulations in two
illustrative examples.
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1. Introduction

Based on research in modern neuroscience [1], neural networks have gained attention due to their
ability to simulate the structural characteristics of the human brain. After being activated by external
stimuli, the synaptic connection weights of neurons can be adjusted to facilitate information
transmission between neurons; therefore, a large number of circuit components are constructed to
support this transmission. When facing practical applications that require processing large-scale
datasets, the complex computations and the transmission of a vast amount of data result in
catastrophic power consumption and storage usage.

Memristors [2, 3], due to their non-volatility and the ability to continuously change their resistance
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states, can effectively exhibit the plasticity of neural synapses. They are gradually replacing
traditional resistors in the design of artificial neural networks and have been widely applied in
simulating the human brain [4]. In the research, memristors are utilized as state switching elements to
achieve internal state switching in neural networks by adjusting the resistance values of memristors.
As a result, the state-dependent switching neural networks (SDSNNs) were constructed [5]. A state
switching system is typically composed of transition rules between several discrete states through
which the system’s behavior and evolution are described. In neural networks, this switching mode
exhibits significant advantages in processing dynamic data and reducing the high power consumption
and storage caused by signal transmission. Consequently, they have found widespread applications in
diverse fields, including speech recognition [6], intelligent control [7], and fault diagnosis [8].

Undoubtedly, the significance of stability in nonlinear systems [9–13] is widely recognized.
Compared to the conventional notion of asymptotic stability, finite-time stability possesses superior
performance advantages, which has attracted extensive research attention from many researchers. The
relevant finite-time stability results of SDSNNs have been presented in [14–16]. However, due to the
dependency of finite-time stability on initial conditions, the precise acquisition of initial conditions
remains a major challenge in practical applications. Therefore, considering this limitation, we
introduce the concept of fixed-time stability (FTS) to address this issue [17].

In FTS, the settling-time is dictated by designing the control strategy and parameters, and is
independent of the initial conditions. The system must converge to a stable state within a fixed time.
Under its own strict and robust stability requirements, FTS has significant application value for
control problems that demand high precision and response speed, such as aerospace engineering,
robot control, and intelligent transportation. The research on FTS has attracted increasing attention
and has become a vital research area in contemporary control theory and applications [18–22].

Nonetheless, FTS sets time as a parameter or hyperparameter in the model, which restricts its
capability to flexibly learn the relationship between time and other features. To address this limitation,
our study proposes the concept of preassigned-time stabilization (PTS), whereby time is considered
an input feature alongside other features provided to the neural network model; thus, time is no longer
considered as a static, immutable parameter but rather as a dynamic factor that allows for future data
prediction. PTS necessitates swift convergence the system to a stable state within a predefined time,
indicating that the control system can achieve fast stabilization at any moment and exhibits stronger
robustness against external disturbances and parameter fluctuations; therefore, PTS offers more
stringent performance guarantees. PTS has been employed in numerous studies on stabilization and
synchronization, showcasing encouraging outcomes [23, 24]. When confronted with requirements for
real-time performance and safety, PTS can present an effective method and guide principles for
devising more efficient, rapid, and precise control systems.

Traditional control methods rely on continuous control inputs to ensure system performance, which
requires a significant amount of communication resources to transmit control signals. In contrast,
event-triggered control (ETC) only triggers sampling and control actions when specific events occur
by monitoring changes in system states or errors. By designing event-triggering rules appropriately, it
is possible to flexibly meet the practical control requirements.

With the increasing attention to ETC, numerous researchers have made significant achievements
around event triggering strategies [5, 20, 21, 25–29]. Among these studies, event-triggering strategies
have been successfully applied to neural networks with state switches in [5, 21, 25–29]. In 2022, Li
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et al. [30] introduced a more concise lemma for demonstrating the FTS of systems. In 2022, Li
et al. [24] examined the fixed and preassigned-time stabilization of SDSNNs incorporating time
delays. In 2023, Zhang [20] developed a novel and effective ETC technique for achieving fixed-time
synchronization and stabilization. Based on the above discussions, the objective of this paper is to
tackle the fixed/preassigned-time stabilization problem of neural networks with mixed delays in state
switches through ETC. The innovations of this paper are summarized as follows:

1) Differing from the models in [23, 28, 29] that employ simple switch of connection weights, the
model proposed in this paper adopts a more complex switching mechanism in the form of differentiable
switches. Results obtained under this switching mode are more generalizable and enable the network
to exhibit superior performance when handling unknown data.

2) Despite the extensive results presented in [5, 14, 15, 18–20, 25, 31] on the traditional asymptotic
stability, finite-time or fixed-time stabilization of switched systems, there has been no such study for
the model in this paper. This paper discusses fixed/preassigned-time stabilization, filling this research
gap and enriching the results for achieving stabilization, thereby enhancing the efficiency and precision
of the system.

3) Compared to [32], which only employs mixed delays, this paper proposes an ETC strategy based
on mixed delays. This strategy eliminates the need for the system to remain in a control state at
all times, thus effectively saving communication resources. The proposed control strategy is more
widely applicable and can be easily extended to higher-order, complex-valued, and quaternion-valued
domains.

The remaining parts have the following structures: Section 2 covers the preliminaries. In Section 3,
the main results of this paper about FTS and PTS are disclosed. Simulations and comparisons are
displayed in Section 4. Finally, some conclusions are given in Section 5.

Notation: In this paper, the solutions of all systems are considered in Filippov’s sense [33].
co[δ♭, δ♭♭] denotes the convex hull of {δ♭, δ♭♭}.

ȷs = max{ ȷ♭s, ȷ
♭♭
s }, ȷ

s
= min{ ȷ♭s, ȷ

♭♭
s }, asz = max{a♭sz, a♭♭sz}, asz = min{a♭sz, a♭♭sz},

bsz = max{b♭sz, b♭♭sz}, bsz = min{b♭sz, b♭♭sz}, amax
sz = max{|asz|, |asz|}, bmax

sz = max{|bsz|, |bsz|},

cmax
sz = max{|csz|, |csz|}, cmin

sz = min{|csz|, |csz|}, s, z ∈ W = {1, 2, · · · , ℏ}.

2. Preliminaries

The SDSNNs with mixed delays are

dχs(t)
dt
= − ȷs(χs(t))χs(t) +

ℏ∑
z=1

asz(χs(t))ℑz(χz(t)) +
ℏ∑

z=1

bsz(χs(t))ℑz(χz(t − τz(t)))

+

ℏ∑
z=1

csz(χs(t))
∫ t

t−rz(t)
ℑz(χz(υ))dυ, t ≥ 0, s ∈ W, (1)

with the initial values as

χ(υ) = (χ1(υ), χ2(υ), · · · , χℏ(υ))T ∈ C([−h, 0],R),
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in which
h = max{τ, r}, χ(t) = (χ1(t), · · · , χℏ(t))T ∈ Rn

is state variable, ȷs(χs(t)) is self-feedback weight, asz(χs(t)), bsz(χs(t)), csz(χs(t)) are memristor-based
weights, fs(·) is a nonlinear activation function, τz(·) is discrete time-varying delays, where τz(·) < τz,
τz is a constant, and rz(·) is distributed time-varying delays, 0 ⩽ rz(t) ⩽ rz , ṙz(t) ⩽ h, in which τz, h < 1
are constants above s, z ∈ W.

Based on the previous work [34], it is expected that the state-dependent parameters in (1) fulfill the
following conditions:

ȷs(χs(t)) =

 ȷ♭s, −
dℑs(χs(t))

dt ≤
dχs(t)

dt ,

ȷ♭♭s , −
dℑs(χs(t))

dt > dχs(t)
dt ,

asz(χs(t)) =

 a♭sz, ϱsz
dℑz(χz(t))

dt ≤
dχs(t)

dt ,

a♭♭sz, ϱsz
dℑz(χz(t))

dt > dχs(t)
dt ,

bsz(χs(t)) =

 b♭sz, ϱsz
dℑz(χz(t−τz(t)))

dt ≤
dχs(t)

dt ,

b♭♭sz, ϱsz
dℑz(χz(t−τz(t)))

dt > dχs(t)
dt ,

csz(χs(t)) =

 c♭sz, ϱsz{ℑz(χz(t)) − ℑz(χz(t − rz(t)))} ≤
dχs(t)

dt ,

c♭♭sz, ϱsz{ℑz(χz(t)) − ℑz(χz(t − rz(t)))} >
dχs(t)

dt ,
(2)

where ȷ♭s, ȷ
♭♭
s , a

♭
sz, a

♭♭
sz, b

♭
sz, b

♭♭
sz, c

♭
sz, c

♭♭
sz are constant numbers, s, z ∈ W = {1, 2, · · · , ℏ}, and ϱsz = 1, if s , z

holds; otherwise, -1.
To achieve FTS and PTS of system (3), we consider the following stabilization system:

dχs(t)
dt
= − ȷs(χs(t))χs(t) +

ℏ∑
z=1

asz(χs(t))ℑz(χz(t)) +
ℏ∑

z=1

bsz(χs(t))ℑz(χz(t − τz(t)))

+

ℏ∑
z=1

csz(χs(t))
∫ t

t−rz(t)
ℑz(χz(υ))dυ + us(t), t ≥ 0, s ∈ W. (3)

Remark 1. The switching condition for defining parameters ȷs(χs(t)), asz(χs(t)), bsz(χs(t)), csz(χs(t)) is
determined by the state of the neurons, and us(t) is the controller.

By utilizing the theory of differential inclusion [33] and set-valued mapping, we know that

dχs(t)
dt
∈ − co[ ȷs(χs(t))]χs(t) +

ℏ∑
z=1

co[asz(χs(t))]ℑz(χz(t)) +
ℏ∑

z=1

co[bsz(χs(t))]ℑz(χz(t − τz(t))

+

ℏ∑
z=1

co[csz(χs(t)]
∫ t

t−rz(t)
ℑz(χz(υ))dυ + co[us(t)], for a.e. t ≥ 0, s ∈ W, (4)

where

co[ ȷs(χs(t))] =


ȷ♭s, −

dℑs(χs(t))
dt ≤

dχs(t)
dt ,[

ȷ
s
, ȷs
]
, −

dℑs(χs(t))
dt =

dχs(t)
dt ,

ȷ♭♭s , −
dℑs(χs(t))

dt > dχs(t)
dt ,
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co[asz(χs(t))] =


a♭sz, ϱsz

dℑz(χz(t))
dt ≤

dχs(t)
dt ,[

asz, asz

]
, ϱsz

dℑz(χz(t))
dt =

dχs(t)
dt ,

a♭♭sz, ϱsz
dℑz(χz(t))

dt > dχs(t)
dt ,

co[bsz(χs(t))] =


b♭sz, ϱsz

dℑz(χz(t−τz(t)))
dt ≤

dχs(t)
dt ,[

bsz, bsz

]
, ϱsz

dℑz(χz(t−τz(t)))
dt =

dχs(t)
dt ,

b♭♭sz, ϱsz
dℑz(χz(t−τz(t)))

dt > dχs(t)
dt ,

co[csz(χs(t))] =


c♭sz, ϱsz{ℑz(χz(t)) − ℑz(χz(t − rz(t)))} ≤

dχs(t)
dt ,[

csz, csz

]
, ϱsz{ℑz(χz(t)) − ℑz(χz(t − rz(t)))} =

dχs(t)
dt ,

c♭♭sz, ϱsz{ℑz(χz(t)) − ℑz(χz(t − rz(t)))} >
dχs(t)

dt .

(5)

By using measurable selection theory [33], we know that there exist

ȷs(t) ∈ co[ ȷsz(χs(t))], asz(t) ∈ co[asz(χs(t))], bsz(t) ∈ co[bsz(χs(t))], csz(t) ∈ co[csz(χs(t))]

and
ŭs(t) ∈ co[us(t)],

such that

dχs(t)
dt
= − ȷs(t)χs(t) +

ℏ∑
z=1

asz(t)ℑz(χz(t)) +
ℏ∑

z=1

bsz(t)ℑz(χz(t − τz(t))

+

ℏ∑
z=1

csz(t)
∫ t

t−rz(t)
ℑz(χz(υ))dυ + ŭs(t), for a.e. t ≥ 0, s ∈ W. (6)

Assumption 1. The feedback function ℑz(·), z = 1, 2, · · · , ℏ is bounded, there exists a number M such
that |ℑz(·)| ≤ M, and it satisfies the condition ℑz(0) = 0.

Definition 1. [28] For any χ0 = χ(0) ∈ Rn, let

T (χ0) = {t∗ : χ(t) = 0,∀t > t∗}

be the settling time function. If there exists a constant Tmax > 0, such that T (χ(0)) ≤ Tmax for any
χ(0) ∈ Rn, and if

lim
t→Tmax

∥χ(υ)∥ = 0

holds, then the system (3) is called FTS and Tmax is called setting-time.

Definition 2. [35] If there exists a preassigned constant Tp > 0, such that the function T (χ(0)) ≤ Tp

for any χ(0) ∈ Rn, and if
lim
t→Tp
∥χ(υ)∥ = 0

holds, then the system (3) is called PTS and Tp is called preassigned-time.
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For deriving the main results, the following lemmas are needed.

Lemma 1. [36] Let πs ≥ 0, (s = 1, 2, · · · , ℏ), 0 < p1 ≤ 1, and p2 ≥ 1; one has
ℏ∑

s=1

πp1
s ≥ (

ℏ∑
s=1

πs)p1 ,

ℏ∑
s=1

πp2
s ≥ ℏ

1−p2(
ℏ∑

s=1

πs)p2 .

Lemma 2. [30, 37] There exists a continuous, positive-definite, and radically unbounded function

V(y(t)) : Rn → R, y(t) = 0⇔ V(y(t)) = 0,

such that any solution y(t) of system (6) satisfies the inequality

dV(y(t))
dt

≤

 −ζV(y(t)) −ℜ1Vω(y(t)), i f V(y(t)) ∈ (0, 1),

−ζV(y(t)) −ℜ2Vω(y(t)), i f V(y(t)) ≥ 1,

where

ζ > 0, ℜ1 > 0, ℜ2 > 0, ζ < min{ℜ1,ℜ2}, ω = λ + sign(V(y(t)) − 1), 1 < λ < 2.

The settling-time of FTS is

Tmax =
1

ζ(λ − 2)
ln
ℜ1

ℜ1 + ζ
−

1
λζ

ln
ℜ2

ℜ2 + ζ
.

Lemma 3. If there exists a continuous, positive-definite, and radically unbounded function

V(y(t)) : Rn → R, y(t) = 0⇔ V(y(t)) = 0,

such that any solution y(t) of system (6) satisfies the inequality
dV(y(t))

dt
≤

Tmax

Tp
(−ζV(y(t)) −ℜVω(y(t))),

then the origin of SDSNNs (3) is PTS within setting-time Tmax and preassigned-time Tp, in which

Tmax =
1

ζ(λ − 2)
ln
ℜ

ℜ + ζ
−

1
λζ

ln
ℜ

ℜ + ζ
,

where other parameters are the same as in Lemma 2.

Remark 2. Based on the FTS lemma provided in [30], this paper establishes Lemma 2 while ensuring
the condition -ζ < 0 in the inequality

dV(y(t))
dt

≤ −ζV(y(t)) −ℜVω(y(t)).

Building upon this lemma, the paper extends its findings and introduces a new PTS lemma, namely
Lemma 3.

Remark 3. Many previous studies have focused on FTS [18–24], with some PTS results provided in the
researches [23,24,35]. However, these systems often do not involve state switching, and the controllers
do not utilize ETC. In comparison to the main systems incorporating state switching [4,14,15,18,19],
this paper optimizes the model’s state switching by employing derivative-enhanced complex switching,
resulting in more general outcomes. Additionally, an ETC strategy is implemented to reduce power
consumption. For the model in this paper, FTS and PTS results have not been studied yet, therefore,
this paper will supplement the following content.
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3. Main results

3.1. FTS of SDSNNs (3)

Let controller ŭs(t), s ∈ W in system (6) be

ŭ1s(t) = − ρsχs(tι) − σs[χ2
s(tι)]

ω−1χs(tι) − κsϕs(tι), t ∈ [tι, tι+1), ι = 1, 2, · · · , (7)

in which ρs, σs, κs are all positive constants,

ω = λ + sign(V(t) − 1)

for t ∈ [tι, tι+1), 1 < λ < 2,
ϕs(t) ∈ co[(sign(χs(t))]

and

V(t) =
ℏ∑

s=1

χ2
s(t).

Let
Ŭ1s(t) = −ρsχs(t) − σs[χ2

s(t)]
ω−1χs(t) − κsϕs(t).

The measure error is
E1s(t) = Ŭ1s(t) − ŭ1s(t)

and event-triggering is

tι+1 = {t|t > tι, |E1s(t)| ≥ ςs|χs(t)| + αsσs|χ
2ω−1
s (t)| + γs(1 − ϑs)t}, (8)

where αs, ϑs ∈ (0, 1), ςs, γs > 0, and tι (ι = 0, 1, 2, · · · , s ∈ N) is the ι th triggering instant.
Let

κs ≥

ℏ∑
z=1

amax
sz M +

ℏ∑
z=1

bmax
sz M +

ℏ∑
z=1

cmax
sz Mrz + γs, (9)

ζs = 2( ȷmin
s + ρs − ςs), s ∈ W. (10)

The main results of this subsection are presented as follows.

Theorem 1. Under Assumption 1, Lemma 2, and ETC (7) and (8), if (9) and ζs > 0 (s ∈ W) hold,
SDSNNs (3) get FTS and the settling-time is Tmax.

Proof. Now, we construct a Lyapunov functional:

V(t) =
ℏ∑

s=1

χ2
s(t). (11)

AIMS Mathematics Volume 9, Issue 4, 9211–9231.



9218

For t ∈ [tι, tι+1), ι = 1, 2, · · · , by using the properties of C-regular functions [38] and taking the
derivative of V(t) with respect to any solutions of (6), we obtain

dV(t)
dt
=2

ℏ∑
s=1

χs(t) ·
dχs(t)

dt

=2
ℏ∑

s=1

χs(t)[− ȷs(t)χs(t) +
ℏ∑

z=1

asz(t)ℑz(χz(t)) +
ℏ∑

z=1

bsz(t)ℑz(χz(t − τz(t))

+

ℏ∑
z=1

csz(t)
∫ t

t−rz(t)
ℑz(χz(υ))dυ + ŭ1s(t)]

≤2
ℏ∑

s=1

[− ȷs(t)χ2
s(t) +

ℏ∑
z=1

asz(t)|χs(t)||ℑz(χz(t))| +
ℏ∑

z=1

bsz(t)|χs(t)||ℑz(χz(t − τz(t))|

+

ℏ∑
z=1

csz(t)|χs(t)|
∫ t

t−rz(t)
|ℑz(χz(υ))|dυ + ŭ1s(t)χs(t)]. (12)

From (7) and (12), one obtains

dV(t)
dt
≤2

ℏ∑
s=1

[− ȷmin
s χ

2
s(t) +

ℏ∑
z=1

amax
sz M|χs(t)| +

ℏ∑
z=1

bmax
sz M|χs(t)|

+

ℏ∑
z=1

cmax
sz rzM|χs(t)| + ϕs(t)χs(t)(Ŭ1s(t) − E1s(t))]

≤2
ℏ∑

s=1

(− ȷmin
s − ρs + ςs)χ2

s(t) + 2
ℏ∑

s=1

|χs(t)|[
ℏ∑

z=1

amax
sz M +

ℏ∑
z=1

bmax
sz M

+

ℏ∑
z=1

cmax
sz rzM − κs + γs] − 2

ℏ∑
s=1

[χ2
s(t)]

ω(σs − αsσs)

+ 2
ℏ∑

s=1

|χs(t)|[|E1s(t)| − ςs|χs(t)| − αsσs|χ
2ω−1
s (t)| − γs(1 − ϑs)t]. (13)

By using conditions (8)–(10), one knows that

dV(t)
dt
≤

ℏ∑
s=1

(−ζsχ2
s(t) − 2(1 − αs)σs[χ2

s(t)]
ω). (14)

Utilizing Lemma 1 in [36], one can derive

(1) If V(t) ∈ (0, 1),

−

ℏ∑
s=1

2(1 − αs)σs[χ2
s(t)]

ω ≤ −ℜ1

ℏ∑
s=1

[χ2
s(t)]

ω

= −ℜ1Vω(t), (15)
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9219

in which
ℜ1 = mins∈W{2(1 − αs)σs}.

(2) If V(t) ≥ 1,

−

ℏ∑
s=1

2(1 − αs)σs[χ2
s(t)]

ω ≤ −ℜ2

ℏ∑
s=1

[χ2
s(t)]

ω

= −ℜ2Vω(t), (16)

whereℜ2 = ℜ1ℏ
−λ. From (13)–(16), one obtains

dV(y(t))
dt

≤

 −ζV(y(t)) −ℜ1Vω(y(t)), i f V(y(t)) ∈ (0, 1),

−ζV(y(t)) −ℜ2Vω(y(t)), i f V(y(t)) ≥ 1,
(17)

where
ζ = mins∈W{ζs}, ζ < min{ℜ1,ℜ2}.

From Definition 1 and Lemma 2, we get SDSNNs (3) to achieve FTS at the settling-time Tmax. The
proof is finished. □

Theorem 2. The system (6) does not have Zeno-behavior with ETC (7) and (8).

Proof. When t ∈ [tι, tι+1), ι = 1, 2, · · · ,

d|E1s(t)|
dt

≤
d|U1s(t)|

dt

≤ [ρs + (2ω − 1)σsχ
2ω−2
s (t)]|

dχs(t)
dt
|. (18)

From systems (6), one has

dχs(t)
dt
≤ ȷmin

s |χs(t)| +
ℏ∑

s=1

amax
sz M +

ℏ∑
s=1

bmax
sz M +

ℏ∑
s=1

cmax
sz σzM + |ŭ1s(t)|. (19)

Due to
dV(t)

dt
< 0,

thus,
|χs(t)| ≤ V(0),

then

dχs(t)
dt
≤ ȷmin

s V(0) +
ℏ∑

s=1

amax
sz M +

ℏ∑
s=1

bmax
sz M +

ℏ∑
s=1

cmax
sz σzM + |ŭ1s(t)|

= 𭟋s(tι)
> 0. (20)
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Let
Ψs = max

t∈[tι,tι+1)
[ρs + (2ω − 1)σsχ

2ω−2
s (t)],

and by using (17), one gets

d|E1s(t)|
dt

≤ Ψs𭟋s(tι). (21)

Because |E1s(tι)| = 0, then

|E1s(t)| ≤
∫ t

tι
Ψs𭟋s(tι)ds = Ψs𭟋s(tι)(t − tι). (22)

From ETC (8), one derives

|E1s(tι+1)| ≥ ςs|χs(tι+1)| + αsσs|χ
2ω−1
s (tι+1)| + γs(1 − ϑs)tι+1

≥ γs(1 − ϑs)tι+1

> 0. (23)

From (22) and (23), one has

tι+1 − tι ≥
γs(1 − ϑs)tι+1

Ψs𭟋s(tι)
> 0. (24)

The proof is finished. □

The subsequent discussion is the exceptional case of the FTS model for system (3) under rz(t) = 0.
If rz(t) = 0, ℑs(0) = 0, and (1) appears to have prolonged oscillation or chaotic behaviors, the

stabilization model on SDSNNs (3) is

dχs(t)
dt
= − ȷs(χs(t))χs(t) +

ℏ∑
z=1

asz(χs(t))ℑz(χz(t)) +
ℏ∑

z=1

bsz(χs(t))ℑz(χz(t − τz(t))) + U1s(t), t ≥ 0, s ∈ W, (25)

in which U1s(t) (s ∈ W) is

U1s(t) = − ρ̃sχs(tι) − σ̃s[χ2(tι)]ω̃−1χs(tι) − κ̃sϕs(tι), t ∈ [tι, tι+1), ι = 1, 2, · · · , (26)

where ρ̃s, σ̃s, κ̃s are all positive constants,

ω̃ = λ̃ + sign(V(t) − 1), 1 < λ̃ < 2.

For t ∈ [tι, tι+1), let
U
∗
1s(t) = −ρ̃sχs(t) − σ̃s[χ2(t)]ω̃−1χs(t) − κ̃sϕs(t).

The measure error is
E1s(t) = U∗1s(t) − U1s(t),

and event-triggering is

tι+1 = {t|t > tι, |E1s(t)| ≥ ς̃s|χs(t)| + α̃sσ̃s|χ
2ω̃−1
s (t)| + γ̃s(1 − ϑ̃s)t}, (27)
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where α̃s, ϑ̃s ∈ (0, 1), ς̃s, γ̃s > 0, and tι (ι = 0, 1, 2, · · · , s ∈ N) is the ι th triggering instant.
Let

κ̃s ≥

ℏ∑
z=1

amax
sz M +

ℏ∑
z=1

bmax
sz M + γ̃s. (28)

ζ̃s = 2( ȷmin
s + ρ̃s − ς̃s), s ∈ W.

The following Corollary 1 of Theorem 1 can be derived from above.

Corollary 1. Under Assumption 1, Lemma 2, ETC (26) and (27), if (28) and ζ̃s > 0, rz(t) = 0
(s, z ∈ W) hold, then SDSNNs (3) achieve FTS, and the settling-time is Tmax.

3.2. PTS of SDSNNs (3)

In this part, we build some results on PTS about SDSNNs (3) first, then the following controller is
proposed:

ŭ2s(t) = − [
Tmax

Tp
(ρs + ηs) − ηs]χs(tι) − [

Tmax

Tp
(σs − αsσs) + αsσs][χ2

s(tι)]
ω−1χs(tι)

− κsϕs(tι), t ∈ [tι, tι+1), ι = 1, 2, · · · . (29)

Here, ρs, σs, κs are all positive constants,

ω = λ + sign(V(t) − 1)

for t ∈ [tι, tι+1), 1 < λ < 2 and ηs = ȷ
min
s − ςs, Tp is preassigned-time and Tmax is defined in Theorem 2.

Let

Ŭ2s(t) = −[
Tmax

Tp
(ρs + ηs) − ηs]χs(t) − [

Tmax

Tp
(σs − αsσs) + αsσs][χ2

s(t)]
ω−1χs(t) − κsϕs(t). (30)

The measure error is
E2s(t) = Ŭ2s(t) − ŭ2s(t).

The event-triggering is

tι+1 = {t|t > tι, |E2s(t)| ≥ ςs|χs(t)| + αsσs|χ
2ω−1
s (t)| + γs(1 − ϑs)t}, (31)

where αs, ϑs ∈ (0, 1), ςs, γs > 0, and tι (ι = 0, 1, 2, · · · , s ∈ N) is the ιth triggering instant.
Let

κs ≥

ℏ∑
z=1

amax
sz M +

ℏ∑
z=1

bmax
sz M +

ℏ∑
z=1

cmax
sz Mrz + γs, (32)

ηs = ȷ
min
s − ςs, (33)

ζs = 2( ȷmin
s + ρs − ςs), s ∈ W, (34)

The main results of this subsection are presented as follows.
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Remark 4. Differing from studies on asymptotic stability in [5, 25, 31] and finite-time stability
in [14, 15, 27, 28], the fixed/preassigned-time stability performance ensures that the settling time is
independent of initial conditions. In [18, 19, 21–24, 30, 35], the control methods commonly used are
feedback control, requiring continuous system control. However, the ETC strategy adopted in this
paper, ETC (7), (8), (30) and (31), can reduce the frequency of control operations, thereby decreasing
system energy consumption.

Theorem 3. Under Assumption 1, Lemma 3, and ETC (30) and (31), if (32), (33), and ζs > 0 (s ∈ W)
hold, SDSNNs (3) get PTS, the settling-time is Tmax, and the preassigned-time is Tp.

Proof. Introduce a Lyapunov function

V(t) =
ℏ∑

s=1

χ2
s(t). (35)

Similar to the proof of Theorem 1, one has

dV(t)
dt
≤ − 2

ℏ∑
s=1

ȷmin
s χ

2
s(t) + 2

ℏ∑
s=1

ℏ∑
z=1

amax
sz M|χs(t)| + 2

ℏ∑
s=1

ℏ∑
z=1

bmax
sz M|χs(t)|

+ 2
ℏ∑

s=1

ℏ∑
z=1

cmax
sz rzM|χs(t)| + 2

ℏ∑
s=1

ϕs(t)χs(t)(Ŭ2s(t) − E2s(t))

≤ − 2
ℏ∑

s=1

ȷmin
s χ

2
s(t) + 2

ℏ∑
s=1

ℏ∑
z=1

amax
sz M|χs(t)| + 2

ℏ∑
s=1

ℏ∑
z=1

bmax
sz M|χs(t)|

+ 2
ℏ∑

s=1

ℏ∑
z=1

cmax
sz rzM|χs(t)| + 2

ℏ∑
s=1

ϕs(t)χs(t){−[
Tmax

Tp
(ρs + ηs) − ηs]χs(t)

− [
Tmax

Tp
(σs − αsσs) + αsσs][χ2(t)]ω−1χs(t) − κsϕs(t)}

≤ − 2
ℏ∑

s=1

[ ȷmin
s − ςs − ηs +

Tmax

Tp
(ρs + ηs)]χ2

s(t)

+ 2
ℏ∑

s=1

|χs(t)|[
ℏ∑

z=1

amax
sz M +

ℏ∑
z=1

bmax
sz M +

ℏ∑
z=1

cmax
sz rzM − κs + γs]

− 2
ℏ∑

s=1

[χ2
s(t)]

ω[
Tmax

Tp
(σs − αsσs) + αsσs − αsσs]

+ 2
ℏ∑

s=1

|χs(t)|[|E2s(t)| − ςs|χs(t)| − αsσs|χ
2ω−1
s (t)| − γs(1 − ϑs)t]

≤

ℏ∑
z=1

Tmax

Tp
{−ζsχ

2
s(t) − 2(1 − αs)σs[χ2

s(t)]
ω}. (36)
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By using conditions (31)–(34), one knows

dV(t)
dt
≤

ℏ∑
s=1

Tmax

Tp
{−ζsχ

2
s(t) − 2(1 − αs)σs[χ2

s(t)]
ω}. (37)

Utilizing Lemma 1 in [36], one can derive:

(1) If V(t) ∈ (0, 1),

−

ℏ∑
s=1

2(1 − αs)σs[χ2
s(t)]

ω ≤ −ℜ1

ℏ∑
s=1

[χ2
s(t)]

ω

= −ℜ1Vω(t), (38)

in which
ℜ1 = mins∈W{2(1 − αs)σs}.

(2) If V(t) ≥ 1,

−

ℏ∑
s=1

2(1 − αs)σs[χ2
s(t)]

ω ≤ −ℜ2

ℏ∑
s=1

[χ2
s(t)]

ω

= −ℜ2Vω(t), (39)

whereℜ2 = ℜ1ℏ
−λ. From (36)–(39), one obtains

dV(y(t))
dt

≤
Tmax

Tp
[−ζV(y(t)) −ℜVω(y(t))], (40)

where
ℜ = min{ℜ1,ℜ2}, ζ = mins∈W{ζs}, ζ < {ℜ1,ℜ2}.

From Definition 2 and Lemma 3, we get SDSNNs (3) to achieve PTS at the preassigned-time Tp.
The proof is finished. □

Remark 5. The system (6) can also avoid Zeno-behavior under ETC (30) and (31) and its proof process
is the same as Theorem 2.

The subsequent discussion is the exceptional case of the PTS model for system (3) under rz(t) = 0.
If rz(t) = 0, ℑs(0) = 0, and (1) appears to have prolonged oscillation or chaotic behaviors, the

stabilization model on SDSNNs (3) is

dχs(t)
dt
= − ȷs(χs(t))χs(t) +

ℏ∑
z=1

asz(χs(t))ℑz(χz(t)) +
ℏ∑

z=1

bsz(χs(t))ℑz(χz(t − τz(t))) + U2s(t), t ≥ 0, s ∈ W, (41)

in which U2s(t) (s ∈ W) is

U2s(t) = −[
Tmax

Tp
(ρ̃s + η̃s) − η̃s]χs(tι) − [

Tmax

Tp
(σ̃s − α̃sσ̃s) + α̃sσ̃s][χ2(tι)]ω̃−1χs(tι) − κ̃sϕs(tι), (42)
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where t ∈ [tι, tι+1), ι = 1, 2, · · · . Here, ρ̃s, σ̃s, κ̃s are all positive constants,

ω̃ = λ̃ + sign(V(t) − 1)

for t ∈ [tι, tι+1) and 1 < λ̃ < 2.
Let

U
∗
2s(t) = −[

Tmax

Tp
(ρ̃s + η̃s) − η̃s]χs(t) − [

Tmax

Tp
(σ̃s − α̃sσ̃s) + α̃sσ̃s][χ2(t)]ω̃−1χs(t) − κ̃sϕs(t). (43)

The measure error is
E2s(t) = U∗2s(t) − U2s(t),

and event-triggering is

tι+1 = {t|t > tι, |E2s(t)| ≥ ς̃s|χs(t)| + α̃sσ̃s|χ
2ω̃−1
s (t)| + γ̃s(1 − ϑ̃s)t}, (44)

where α̃s, ϑ̃s ∈ (0, 1), ς̃s, γ̃s > 0, and tι (ι = 0, 1, 2, · · · , s ∈ N) is the ι th triggering instant.
Let

κ̃s ≥

ℏ∑
z=1

amax
sz M +

ℏ∑
z=1

bmax
sz M + γ̃s, (45)

η̃s = ȷ
min
s − ς̃s, (46)

and
ζ̃s = 2( ȷmin

s + ρ̃s − ς̃s), s ∈ W.

The following Corollary 2 of Theorem 3 can be derived from the above.

Corollary 2. Under Assumption 1, Lemma 3, and ETC (43) and (44), if (45), (46), ζs > 0, and rz(t) = 0
(s, z ∈ W) hold, SDSNNs (3) achieve PTS and the preassigned-time is Tp.

Remark 6. In recent years, there have been several studies on finite and FTS with state switching
(see [14, 15, 18, 19]). Unfortunately, these studies did not consider PTS results and lacked flexibility
in the controllers, leading to higher power consumption for the systems. Additionally, [18, 20] only
considered systems with time-varying delays and could not adapt to the multiple delays present in some
complex systems. This paper optimizes the state switching mechanism, introduces an ETC scheme,
and enriches the existing stability results for this model; therefore, the SDSNNs presented in this work
exhibit greater flexibility and applicability.

Remark 7. The control mechanism and state switching mechanism used in this study can be further
expanded through the integration with various models, allowing for more complex research. With
its performance advantages, they can also be extended to fields such as financial prediction, medical
diagnosis, computer vision, etc., thus possessing the ability for broader dissemination and application.

4. Numerical example

Now, a numerical simulation example is used to demonstrate the FTS and PTS results separately.
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Consider the following 2-neuron SDSNNs as the FTS system

dχs(t)
dt
= − ȷs(χs(t))χs(t) +

2∑
z=1

asz(χs(t))ℑz(χz(t)) +
2∑

z=1

bsz(χs(t))ℑz(χz(t − τz(t)))

+

2∑
z=1

csz(χs(t))
∫ t

t−rz(t)
ℑz(χz(υ))dυ + ŭ1s(t), t ≥ 0, s ∈ W, (47)

where we take the activation function as

f1(·) = f2(·) = sin(·),

the time-varying delay as
τz(t) = 0.4 − 0.1sin(t),

and the distributed delay as
rz(t) = 0.65 − 0.15sin(t), z = 1, 2.

The initial conditon of the master system is

χ1(υ) = −2, χ2(υ) = 3.5, υ ∈ (−0.8, 0].

Without ETC, the oscillation state χ1(t), χ2(t) is shown in Figure 1.
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Figure 1. State trajectory diagram for (47) and (48) without ETC.

On the basis of satisfying the constraints of parameters in (7) and (8), we randomly select, ρ1 =

ρ2 = 27, ς1 = 28.85, ς2 = 29, 6, γ1 = γ2 = 0.1, α1 = α2 = 0.97, σ1 = σ2 = 4, ϑ1 = ϑ2 = 0.8, λ = 1.1,
then, by using (9) and (10), we get κ1 = 16.74, κ2 = 17.22, ζ = 0.1. The values ofℜ1 andℜ2 obtained
from (15) and (16) can be easily calculated to yieldℜ1 = 0.24,ℜ2 = 0.112.

According to Lemma 2, Tmax = 9.671 is calculated, and Figure 2 demonstrates that the system (47)
can reach stability within Tmax.
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Figure 2. State trajectory of FTS for χ1(t) and χ2(t) under ETC (7) and (8).

Combining the notation section in the introduction and (2), the master system parameters are
specified as follows:

ȷ∗1(t) = 1.1, ȷ∗∗1 (t) = 1.2, ȷ∗2(t) = −0.21, ȷ∗∗2 (t) = −0.2,

a∗11 = 0.01, a∗∗11 = 0.2, a∗12 = 6, a∗∗12 = 5.8, a∗21 = 5.8, a∗∗21 = 5.5, a∗22 = −2, a∗∗22 = −1,

b∗11 = −3, b∗∗11 = −3, b∗12 = 4, b∗∗12 = 4, b∗21 = 5.9, b∗∗21 = 5.9, b∗22 = 1.5, b∗∗22 = 1.5,

c∗11 = −4.1, c∗∗11 = −3.9, c∗12 = −0.2, vc∗∗12 = −0.15, c∗21 = −1.1, c∗∗21 = −1.2, c∗22 = 1.2, c∗∗22 = 1.19.

By utilizing Theorem 1 under the conditions of ETC (7) and (8), we randomly selected 30 starting
values. χ1(t), χ2(t) of SDSNNs (47) are shown in Figure 2 and they clearly indicate that FTS is achieved
independently of the system’s initial values, and the 30 control signals corresponding ŭ1s(t) to Figure 2
are shown in Figure 3. The time intervals between events of ETC are shown in Figure 4; therefore, we
can observe that the controller only performs control operations when specific events occur, thereby
reducing computational and communication overhead. From Figures 1–4, it can be concluded that the
ETC (7) and (8) proposed in this paper are very effective in achieving the FTS in SDSNNs (47).
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Figure 3. Control signals for stabilizing states χ1(t) and χ2(t) in Figure 2.
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Figure 4. ETC (7) and (8) transmission time interval.

Consider a 2-neuron SDSNNs as the PTS system

dχs(t)
dt
= − ȷs(χs(t))χs(t) +

2∑
z=1

asz(χs(t))ℑz(χz(t)) +
2∑

z=1

bsz(χs(t))ℑz(χz(t − τz(t)))

+

2∑
z=1

csz(χs(t))
∫ t

t−rz(t)
ℑz(χz(υ))dυ + ŭ2s(t), t ≥ 0, s ∈ W. (48)

From (48), we keep all other parameters the same as those shown in the above FTS, and additionally
set prescribed-time Tp = 9 < Tmax = 9.671, which does not depend on any master system and the initial
values. Under the influence of the preassigned-time Tp = 9, the master system can achieve PTS by
using the controller described in (48).

By utilizing Theorem 3 under the conditions of ETC (30) and (31), we randomly selected 30
starting values and state χ1(t), χ2(t) of SDSNNs (48), as shown in Figure 5. The 30 control signals
corresponding ŭ2s(t) to Figure 5 are shown in Figure 6, and the time intervals between events of ETC
are presented in Figure 7. From Figures 1 and 5–7, it can be concluded that the ETC (30) and (31)
proposed in this paper are very effective in achieving the PTS in SDSNNs (48).
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Figure 5. State trajectory of PTS for χ1(t) and χ2(t) under ETC (30) and (31).
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Figure 6. Control signals for stabilizing states χ1(t) and χ2(t) in Figure 5.
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Figure 7. ETC (30) and (31) transmission time interval.

5. Conclusions

This paper considered a kind of SDSNNs architecture that incorporates mixed time delays. The
state switching mechanism used here is a complex switching with derivatives, which facilitates a
faster adjustment of network parameters and speeds up convergence. Furthermore, an ETC strategy is
employed to effectively reduce the frequency of control operations, thereby reducing power
consumption. The main system achieves FTS and PTS results, allowing the system’s settling time to
be free from initial condition control and enriching the stability results of this model.

As we know, the necessity of studying the synchronicity of neural networks lies in gaining a deeper
understanding of the coordination and interactions between neurons in the brain, which is crucial for
cognitive functions such as information processing, learning, and memory. Additionally, complex
numbers and quaternions have significant applications in information processing within neural systems.
Therefore, we plan to discuss the synchronization issues of SDSNNs in future works and expand our
research to address problems related to complex numbers and quaternions.
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