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Abstract: In this three-dimensional steady-state inverse heat transfer problem, we determine the 

magnitude of the spatially dependent volumetric heat source originating from multiple encapsulated 

chips mounted on a printed circuit board (PCB). Prior to the estimations, the functional form of the 

multiple heat sources is treated as unknown, leading to its classification as a function estimation 

challenge within the realm of inverse problems. The utilization of the conjugate gradient method 

(CGM) as an optimization tool is rooted in its distinct advantage of not requiring any a priori 

knowledge regarding the functional form of the unidentified quantities. Furthermore, the CGM 

empowers the simultaneous correction and estimation of multiple unknowns during each iteration, 

thereby ensuring the consistent possibility of precise estimates. 

To affirm the precision of the estimated heat source attributed to multiple chips, a series of 

numerical experiments were conducted. These experiments encompassed varying inlet air velocities 

and introduced measurement errors. Notably, the results revealed that meticulous measurements 

consistently yielded accurate heat generation assessments for the chips, regardless of the prevailing air 

velocity conditions. The findings underscored that the accuracy of chip heat generation estimates 

diminished as measurement errors escalated, predominantly due to the ill-posed nature inherent in the 

inverse problem. 
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1. Introduction 

The realm of heat source estimation concerning encapsulated chips affixed to printed circuit 

boards (PCBs) stands as a vital field of inquiry within the electronics industry. As the dimensions of 

electronic devices consistently shrink while integration escalates, comprehending the intricacies of 

heat generation and dissipation mechanisms within these systems is of paramount importance. The 

pursuit of accurately estimating heat generation on encapsulated chips holds significance for a 

multitude of reasons, encompassing the enhancement of thermal management tactics, mitigation of 

thermal failure risks, and the optimization of overall system performance. 

Multiple factors come into play when considering the influence on heat source in encapsulated 

chips. Among these factors are the electrical and thermal characteristics of both the chip and the 

encapsulating materials, in addition to the design and arrangement of the PCB. Within the realm of 

research, a diversity of methodologies has been employed to estimate heat source in encapsulated chips. 

These approaches span numerical simulation techniques, like the analysis of inverse problems, and 

experimental strategies, such as the utilization of infrared thermal imaging and thermocouple 

measurements. 

Inverse problem techniques have found application within electronics packaging systems for the 

purpose of estimating chip heat sources [1–5]. Leveraging this estimation approach facilitates precise 

quantification of heat source magnitudes, subsequently enhancing the broader realm of electronic 

thermal management. 

As an illustration, Krane et al. [5] employed a least-squares algorithm to ascertain both the 

magnitude and positioning of heat sources within an electronics system. Their investigation revealed 

that the fine-grid method exhibits computational expediency surpassing that of the coarse-grid 

alternative, all while maintaining a negligible compromise on overall accuracy. It's important to note 

that the Inverse Heat Conduction Problem (IHCP) studies cited earlier did not incorporate air velocity 

as a factor in their mathematical models. Consequently, a more lifelike scenario, encompassing the 

coupled heat conduction and convection conditions encountered by chips mounted on a PCB, remains 

an unexplored avenue. 

The CGM [6] stands as an iterative algorithm rooted in gradients and self-regularization. What 

sets it apart from alternative techniques is its lack of necessity for a priori insights into the functional 

structure of the unknown variables, rendering it adept at producing dependable estimates for these 

enigmatic quantities. The robust capabilities of the CGM make it especially fitting for tackling the 

intricacies of function estimation within three-dimensional inverse problems, particularly those 

unfolding in irregular domains. Notably, despite its prowess, such problems have remained relatively 

less explored within the existing literature [7–10]. 

Huang et al. [7] delved into a three-dimensional inverse problem aimed at estimating the heat flux 

applied to the surface of a drilling tool during the drilling process. This estimation was driven by 

simulated time-dependent temperature distributions captured by sensors embedded onto the drilling 

surfaces. The outcomes of this investigation underscore the prowess of the gradient method in 

furnishing dependable estimates, all achieved without the need for foreknowledge regarding the 

functional nature of the enigmatic functions in play. Notably, the analysis revealed an initial increase 

in applied heat flux over time owing to escalating torque, followed by a subsequent decline until the 

point of workpiece penetration. 

In another study, Huang and Lee [8] undertook an IHCP using the CGM. Their focus was on the 
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simultaneous estimation of six hitherto unknown internal surface heat fluxes within a square internal 

combustion chamber. The estimation process hinged on simulated surface temperature measurements. 

The outcomes of their efforts showcased the feasibility of accurate estimations when dealing with 

error-free temperature readings. Notably, the maximum relative error for the estimated heat fluxes 

remained below 3.3%. Furthermore, the study concludes that even in the presence of substantial 

measurement errors, dependable estimates of internal surface heat fluxes are attainable. 

Huang and He [9] undertook the examination of an inverse heat transfer problem, aiming to 

deduce the elusive spatially varying surface heat flux using the conjugate gradient method (CGM). 

The veracity of the inverse solutions was substantiated through an array of numerical simulations, 

encompassing diverse inlet air velocities and plate thicknesses. In addition, an assessment of the impact 

of measurement errors on the inverse solutions was undertaken. The authors arrived at the conclusion 

that due to the ill-posed nature intrinsic to the inverse problem, the precision of the estimated heat flux 

diminishes as the plate thickness increases. 

A recent study by Huang and Zhong [10] has undertaken an exploration of an inverse problem, 

harnessing the potential of the CGM, with the objective of deducing the heat source for a solitary 

encapsulated chip. This endeavor relied on simulated temperature measurements. Notably, their 

investigation revolved around the challenging context of conjugated heat transfer conditions. Their 

study holds the distinction of being the inaugural instance of such an investigation within existing 

literature. Through a series of numerical experiments, their findings illuminated the potency of the 

CGM as a robust optimization tool that is well-suited for addressing the intricacies of the three-

dimensional inverse heat transfer problem. 

In practical scenarios, encapsulated chips are consistently affixed to printed circuit boards (PCBs) 

to serve functional purposes. Consequently, the real-world context demands the simultaneous 

estimation of heat generation across multiple chips. Building upon the groundwork laid by Huang and 

Zhong [10], we aspire to broaden the scope of inquiry. Specifically, our focus lies in extending the 

investigations to encompass the concurrent estimation of numerous spatially dependent heat sources 

attributed to chips mounted on a PCB. 

The ongoing investigation centers around addressing the 3-D steady-state inverse heat transfer 

problem using the CGM algorithm. This approach involves a transformative process that divides the 

problem into two distinct sub-problems, specifically the sensitivity and adjoint problems. The validity 

of using the CGM in this inverse problem will be examined by estimating multiple heat sources with 

various inlet velocities and simulated error temperature measurements. 

2. Materials and methods 

2.1. The direct problem 

Three unknown spatial-dependent volumetric heat generations of encapsulated chips mounted on 

a PCB are estimated in this study based on the technique of inverse problems.  is a domain of 

computational and it consists of eight subdomains i, i = 1 to 8. The solid domains include 1 to 7, 

where 1, 2 and 3 represent three chips, 4, 5 and 6 represent the encapsulation materials for 

three chips, and 7 is a PCB, while the air domain is indicated as 8. The domain of computation 

considered in this work is given in Figure 1(a), while Figure 1(b) and 1(c) indicate the 3-D and side 

view of the physical geometry considered in the present study, respectively. Since conjugate heat 
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transfer is considered in the present inverse model, thus it is classified as an Inverse Heat Conduction-

Convection Conjugated Problem (IHCCCP). 

 

Figure 1. (a) Computational domain, (b) isometric view and (c) side view of a printed circuit board. 

In solid domains, there exist three volumetric heat generations (1), (2) and (3) for three 

chips, and an insulation condition is applied on the bottom surface of the PCB, Sbottom. An 

incompressible inlet air enters the computational domain  with velocity uin and ambient temperature 

T
 and a perfect thermal contact condition applied to all interfacial surfaces of . 

The partial differential equations for the considered direct problem can be given below: 

(I) Solid domains (i, i = 1 to 7 and s = 1 to 3): 

2
i i sk T( ) ( ) (i s) 0  +    − = ,        (1) 

where ki denotes the thermal conductivity of the solid regions, and (s) is the heat source in s. Here 

( ) • is the Dirac delta function, and s = 1 to 3 indicates the number of source positions. 

An insulation condition is plied to the bottom wall of the PCB. 

7
7

T( )
k 0

n

 
− =


 ; on Sbottom.        (2) 

Therefore, seven equations are in solid domains i. 

(II) Air domain (8): 

In 8, the differential equations for continuity, momentum and energy equations can be obtained 

as: 

0 =U ,          (3) 

( ) ( )2 1
g

3
  = − +  +   + U U P U U ,      (4) 
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 2
8 8 p 8k T( ) C T( )  =   U ,        (5) 

where U = {u,v,w} with Uin = uin and T8,in = T and k8 represents the thermal conductivity of air.  

(III) Interface conditions (
i j

S ,i j   ): 

A perfect thermal contact condition is applied to all the interface surfaces of   

ji
i j i j

T( )T( )
k k  and  T( )=T( )

n n

  
− = −  

 
, on 

i j
S ,i j   .    (6) 

The commercial package CFD-ACE+ (by ESI-CFD Inc., 2020). is utilized to compute the 

solutions of the above direct problem. 

2.2. The inverse problem 

For the inverse problem examined in this work, volumetric heat sources (1), (2), and (3) 

are considered unknown and are functions of space. In addition, temperature readings for S4,1, S5,2, and 

S6,3 are considered available. These surfaces are the perpendicular projection areas of chips  1, 2, 

and  3 on the top surfaces of S4, S5 and S6, respectively, and they are illustrated in Figure 1(c). 

Let the simulated temperature measurements on Ss+3,s, s = 1 to 3, be denoted by Ym(Ss+3,s), m = 1 

to M. The procedure for this IHCCCP is as follows: by utilizing the abovementioned temperature 

measurements Ym(Ss+3,s), predict the three unknown volumetric heat sources (1), (2) and (3). 

The following cost function is thus defined and minimized for obtaining the estimation of three 

sources: 

  ( ) ( )

( ) ( )
s 3,s

23 M

s m s 3,s m s 3,s
s 1m 1

3 2

s 3,s s 3,s m m s 3,s
s 1S

J ( ) = T S Y S

 = T S Y S (x x ) (y y )dS ,

+

+ +
= =

+ + +
=

   −   

 −  −  −   

    (7) 

where Tm(Ss+3,s) are the computed temperatures on Ss+3,s with estimated sources for the exact sources. 

2.3. The conjugate gradient method for minimization 

The following CGM [11] is used to minimize the cost function ( )sJ    
and then to estimate 

unknown volumetric heat generations ( )s  : 

( ) ( )n 1 n n n
s s s s( ) P+  =   −   for s = 1 to 3 and n=0,1,2,…, (8) 

( ) ( ) ( )n 'n n n 1
s s s sP J P − =  +   ,        (9) 
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( )

( )
s

s

2
'n

sn
s 2

'n 1
s

J d

J d



−



 =



 with 0
s 0 = ,       (10) 

where n
s   and 'n

sJ ( )  can be obtained based on the solutions of the following sensitivity and 

adjoint problems. 

2.3.1. The sensitivity problem 

Given that the predicament at hand entails three enigmatic volumetric heat sources, denoted as 

(s), where s ranges from 1 to 3, the derivation of the sensitivity problem necessitates a sequential 

approach. This involves perturbing a solitary unknown heat source at a time, enabling the isolation and 

analysis of each distinct unknown in the context of the larger conundrum. 

The sensitivity problems are derived from the foundational direct problem as delineated by 

Eq (1), employing the subsequent approach. For s = 1, it is assumed that when (1) undergoes a 

variation (1), while (2) and (3) remain unchanged, and T(i) is perturbed by T1(i). Then, 

replacing (1) by (1)+(1) and T(i) by T()+ T1(i) in the direct problem, subtracting 

from the resulting expressions in the direct problem and neglecting the second-order terms, the 

following sensitivity problem for the first sensitivity function T1(i) is obtained as: 

(I) Solid domains (i, i = 1 to 7): 

2
i 1 i 1k T ( ) ( ) (i 1) 0   +    − = ,        (11) 

where an insulation condition is applied to the base surface Sbottom: 

1 7
7

T ( )
k 0

n

 
− =


 ; on Sbottom.        (12) 

(II) Air domain (8): 

All the thermal parameters considered in this work are assumed to be constants, i.e. it is a linear 

problem; therefore, Eqs (3) and (4) need to be solved only once in the direct problem at the first 

iteration, and these solutions can be used for the remaining iterations. In 8, the energy equation for 

the sensitivity function can be derived as: 

 2
8 1 8 p 1 8k T ( ) C T ( )   =   U .       (13) 

The inlet conditions for the first sensitivity function can be obtained as Uin = uin and Ti,in = 0. 

(III) Interface conditions (
i j

S ,i j   ): 

The interface conditions on the interface surfaces are given below 

1 j1 i
i j 1 i 1 j

T ( )T ( )
k k  and  T ( )= T ( )

n n

  
− = −    

 
, on 

i j
S ,i j   .  (14) 
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Similarly, for s = 2 and 3, two additional groups of sensitivity equations for sensitivity functions 

T2(i) and T3(i) are derived below in the solid domain (i, i = 1 to 7): 

2
i 2 i 2k T ( ) ( ) (i 2) 0   +    − = .       (15) 

2
i 3 i 3k T ( ) ( ) (i 3) 0   +    − = .       (16) 

The sensitivity functions in the air domain are the same as those given in Eq (13). In addition, the 

boundary condition (14) is also applied to all the interface surfaces of Eqs (15) and (16). To obtain the 

expression for the calculation of step size n
s  , an alternative form of cost function n 1

sJ( )+   at 

iteration n+1 must be derived. 

The computed temperatures Tm(Ss+3,s) that occur in Eq (7) should be functions of 1, 2, and 3. 

However, because the measured temperatures Ym(S4,1), Ym (S5,2), and Ym (S6,3) were affected mostly 

by 1, 2, and 3, respectively, the cost function can be approximately expressed as: 

( )
23 M

n 1 n n
s m s 3,s s s s m

s 1m 1

J ( ) T S ; P Y+
+

= =

    =  − −      
.   (17) 

Equation (18) is subjected to linearization through a Taylor series expansion. As a result of this 

process, we ultimately arrive at: 

23 M
n 1 n n

s m s s s,m s m
s 1m 1

J ( ) T ( ) T (P ) Y+

= =

     =  −  − 
   

. (18) 

n
s  can then be obtained by minimizing Eq (18) with respect to n

s ; thereafter, the following 

expression can be obtained: 

 

( )

M

m m s,m
n m 1

s M 2

s,m
m 1

T Y T

  ; s = 1 to 3

T

=

=

− 

 =



.      (19) 

2.3.2. The adjoint problems 

The following procedure is performed to derive the adjoint problem: For s = 1, the adjoint 

functions 1(i), i = 1 to 7, and 1(8) are multiplied to Eqs (1) and (5), respectively, and are integrated 

over the i domains. The expressions are then added to the right-hand side of Eq (7) to obtain a new 

cost function ( )sJ    
: 
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  ( ) ( )

( )

 

s 3,s

i

8

3 2

s s 3,s s 3,s m m s 3,s
s 1S

7
2

1 i i i 1 i 1 i
i 1

2
1 8 8 8 p 8 8

J ( ) = T S Y S (x x ) (y y )dS

( ) k T( ) ( ) d

( ) k T( ) C T( ) d .

+

+ + +
=

= 



   −  −  −   

 +     +     −     

 +     −    −    
U

   (20) 

The variation of Eq (20) J1 can be derived by perturbing (1) by (1)+(1) and 

T(i)+T1(i) in Eq (21), while (2) and (3) remain unchanged, subtracting from Eq (20) and 

neglecting the higher-order terms. The expression given below is obtained 

  ( ) ( )

( )

 

s 3,s

i

8

3

1 s s 3,s s 3,s 1 m m s 3,s
s 1S

7
2

1 i i 1 i 1 i 1 i
i 1

2
1 8 4 1 8 p 1 8 8

J ( ) = 2 T S Y S T (x x ) (y y )dS

( ) k T ( ) ( ) d

( ) k T ( ) C T ( ) d .

+

+ + +
=

= 



    −   −  −   

 +      +     −     

 +      −      
U

  (21) 

In Eq (21), the domain integral terms are reformulated based on Green’s second identity; the 

boundary and interface conditions of the sensitivity problems are used, and then J1 is allowed to 

approach zero. The vanishing of the integrands containing T1 leads to the following adjoint problem 

1(i): 

(I) Solid domain (i, i = 1 to 7): 

2
i 1 ik ( ) 0   = , i = 1 to 7.        (22) 

1 7
7

( )
k 0 

n

 
− =


,  on Sbottom.       (23) 

(II) Air domain (8): 

2
8 1 8 p 1 8k ( )= C ( )     U ,       (24) 

The inlet conditions are Uin = uin and 1,in(8) = 0, and U and P are computed from Eqs (3) 

and (4). 

(III) Interface conditions (
i j

S ,i j   ): 

The perfect thermal contact condition is used to all the interface surfaces of , except for S4,1, 

S5,2 and S6,3. 

1 j1 i
i j 1 i 1 j

( )( )
k k  and  ( )= ( )

n n

  
− = −    

 
, on 

i j
S ,i j   .    (25) 
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The interface conditions on S4,1, S5,2 and S6,3 are given as: 

1 s 3 1 8
s 3 8 s 3,s s 3,s m m

1 s 3 1 8

( ) ( )
k = k 2[T (S ) Y (S )] (x x ) (y y ),

n n

( ) ( ),

+
+ + +

+

   
− − − −  −  −

 
  =  

  (26) 

on s+3,sS ,s 1 to 3.=  Clearly, extra heat source terms exist on S41, S52 and S63 in the interface surfaces 

of the adjoint problem. 

Finally, the following integral term remains: 

1

1 1 1 1 1J ( ) ( )d


 =      .                          (27) 

The functional increment can be defined as [11]: 

 
1

1 1 1 1J J ( ) ( )d


 =      .                         (28) 

The comparison of Eqs (27) and (28) yields the gradient of the cost function: 

( )1J '    
 = 1(1).         (29) 

Similarly, for s = 2 and 3, two sets of adjoint equations for adjoint functions 2(i) and 3(i) can 

be derived, and it is found that they are all identical to 1(i); therefore, the adjoint equations need to 

be solved only once. Finally, the following two gradient equations for (2) and (3) are obtained: 

( )2J '   
 = 1(2),         (30) 

( )3J '   
 = 1(3).         (31) 

The residual between the computed and simulated measured temperatures can be approximated 

by: 

( ) ( )m s 3,s m s 3,sT S Y S+ +
 −  
 

,                         (32) 

here  represents the standard deviation of the temperature readings. Substituting the above 

temperature residual expression into Eq (7), the following stopping criterion value , based on the 

discrepancy principle [11], can be obtained 

 = 3M2.                                 (33) 

3. Results 

A 3-D inverse problem using the technique of function estimation is investigated in the present 

study to determine the distribution of unknown strength of heat generations (1), (2), and (3) 

of three chips mounted on a PCB with the CGM. 
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Three silicon chips with k = 124 W/(m-K) and lengths Lx = Ly = 6 mm and Lz = 1 mm were filled 

with CEL-9200, k = 0.97 W/(m-K) [12], and they were mounted on a PCB with dimensions of 120 

mm72 mm1 mm and k = 0.2 W/(m-K). The sizes (in mm) of the three encapsulated chips in the x, 

y and z directions are 25103, 15153 and 19143, respectively. The computational domain of 

the present work is given in Figure 1(a), where uin denotes the inlet air velocity and T  = 300 K 

represents the ambient air temperature. The chips are very thin in this work, therefore it is reasonable 

to assume that (s) = (x,y) for the numerical experiments. 

The center point temperature Tcenter of chip 2 with (s) = 31250 W/m3, uin = 2 m/s and T
=300 

K was calculated using the four grid numbers of 162, 468, 239, 162, 416, 832 and 529, 280 as 326.7 

K, 341.3 K, 342.5 K and 342.7 K, respectively. It is clear that the error of Tcenter in chip 2 between the 

grid numbers 416, 832 and 529, 280 was only 0.058%; therefore, grid numbers of 416, 832 were 

considered for the computations. 

The exact temperature readings, Yexact, with random errors, , were used to simulate the 

measurement data Y: 

Y = Yexact + ,                             (34) 

here, the symbol  represents a randomly generated number, facilitated through the IMSL subroutine 

DRNNOR (by Perforce Software Inc., 2021), encompassing a range from -2.576 to 2.576, 

corresponding to a 99% confidence bound. 

An advantage of using the CGM to compute an inverse problem is the ability to arbitrarily choose 

the values of initial guesses; therefore, the initial guess for the heat sources is chosen as a small number, 

(s)0 = 1 W/m3, for all numerical experiments in the present study. 

The unknown heat generations (1), (2) and (3) are considered as: 

x3
1

y

0 x L ,
( ) (x, y) 22222 W / m ,  

0 y L ,

 
  =  = 

 

                  (35) 

x3 3
2

yx x

0 x L ,x y
( ) (x, y) 5 3 3 10  W / m ,  

0 y L ,L L

     
  =  = +  +     

      

          (36) 

x3 3
3

yx x

0 x L ,x y
( ) (x, y) 60 30 30 10  W / m ,  

0 y L ,L L

     
  =  = −  −    

      

          (37) 

where (1) is assumed to be a constant heat source, and the heat source distributions for (2) and 

(3) are assumed to be two inclined planes. 

The 3-D plots for the exact (2) and (3) are given in Figure 2(a) and 2(b), respectively, and 

contour plots for (1), (2) and (3) are given in Figure 3(a)–3(c), respectively. The grid sizes of 

the chip are taken as 20 and 20 in the x and y directions, respectively; thus a total of M = 400 unknown 

discretized values of heat source are to be estimated at each chip, and 400 temperature readings are 

needed on Ss+3,s surfaces. 
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Figure 2. The exact and estimated heat sources for (a) chip 2 and (b) chip 3 using  = 0 

and uin = 2 m/s. 

First, inverse estimates are executed using  = 0.0, uin = 2 m/s, T  = 300 K and (1)0=(2)0= 

(3)0 = 1 W/m3. Contour plots of the simulated exact measurement temperatures Y(Ss+3,s), s = 1 to 3, 

with  = 0.0 are presented in Figure 4(a)–4(c), respectively. Figure 5(a) and 5(b) illustrate the 

temperature distributions of air and encapsulated chips on the measurement and bottom surfaces, 

respectively. Since the magnitude of heat generation varies for chips, the resultant temperatures of the 

air and encapsulated chips also vary. In addition, because of the motion of air, the air temperatures will 

be higher in the downstream regions of chips than at the inlet, and the temperatures of the encapsulated 

chips are higher on the bottom surface than on the measurement surface. 

Figure 6(a) illustrates the progression of convergence concerning the number of iterations. It is 

readily apparent that the cost function experiences a decrease, ultimately converging to 0.0003 

after 50  iterations. This trend also underscores that the estimated heat sources exhibit swift 

convergence towards the precise heat generations, facilitated by the rapid rate of convergence observed 

over the initial iterations. Subsequent to this swift convergence, the ensuing iterations are employed to 

meticulously refine and optimize the estimated heat sources within a localized context. 

It is observed that the values for constant heat generation (1) can be estimated accurately in 

only 3 iterations. This result implies that if all the heat generations of chips are constants or nearly 

constants, which is the case for practical applications, the iteration numbers required to obtain 

converged estimates should be very small, and it makes the algorithm very efficient in practice. 

The estimated 3-D (2) and (3) are given in Figure 2(a) and Figure 2(b), respectively, the 

contour plots of (1), (2) and (3) are plotted in Figure 3(a)–3(c), respectively, and the 

corresponding estimated temperatures T(Ss+3,s), s = 1 to 3, are presented in Figure 4(a)–4(c), 

respectively. The figures indicated that using  = 0.0, the exact and estimated values are nearly the 

same for both the heat generations and temperatures. 
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Figure 3. The exact and estimated heat sources for (a) chip 1, (b) chip 2 and (c) chip 3 

over the x-y plane using  = 0 and uin = 2 m/s. 
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Figure 4. The measured and estimated temperatures over the x-y plane for (a) chip 1, (b) 

chip 2 and (c) chip 3 using  = 0 and uin = 2 m/s. 
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Figure 5. Temperature distributions on the (a) measurement and (b) bottom surfaces using 

uin = 2 m/s and  = 0. 

 

Figure 6. Rate of convergence for (a) uin = 2 m/s and (b) uin = 4 m/s using  = 0. 

The computed errors for the estimated temperatures ERR1,s and estimated heat generations 

ERR2,s are summarized in Table 1 and are defined below. 

400 m s 3,s m s 3,s

m 1 m s 3,s

T (S ) Y (S )
ERR1,s %= 400 100%,  s 1 to  3

Y (S )

+ +

= +

−
  = .         (38a) 

400 estimated,m exact,m

m 1 exact,m

(x, y) (x, y)
ERR2,s %= 400 100%,  s 1 to  3

(x, y)=

 − 
  =


.    (38b) 

The influence of temperature readings with errors on heat source estimations (1), (2) and 

(3) is one of the major concerns for inverse problems and is examined now. The error of the 

temperatures readings is first considered as  = 0.01 and then increased to  = 0.05. The estimation of 

three heat sources can be obtained after 9 and 8 iterations for  = 0.01 and 0.05, respectively, and the 
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estimated (1), (2) and (3) are shown in Figure 7(a)–7(c), respectively, for  = 0.01 and 0.05. 

The errors ERR1, s and ERR2, s are also summarized in Table 1. These results indicate that the heat 

generation estimates remain reliable when error readings are considered. 

 

Figure 7. The estimated (a) (1), (b) (2) and (c) (3) over the x-y plane using uin=2 

m/s and  = 0.01 and 0.05. 
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Table 1. Estimated errors for sources under different air velocities and temperature reading errors. 

  u = 2 m/s u = 4 m/s 

 =0  =0.01  =0.05  =0  =0.01  =0.05 

Iteration numbers 50 9 8 50 8 8 

J 0.0003 0.0764 0.2129 0.0002 0.0219 0.2665 

Chip 1 ERR1,1 % 0.00002 0.00005 0.00006 0.00002 0.00005 0.00005 

ERR2,1 % 0.1387 0.1477 0.1582 0.1270 0.1618 0.1769 

Chip 2 ERR1,2 % 0.00002 0.0020 0.0026 0.00002 0.0024 0.0029 

ERR2,2 % 1.3849 2.6339 2.9935 1.1964 1.8792 3.5412 

Chip 3 ERR1,3 % 0.0002 0.0054 0.0199 0.0001 0.0067 0.0235 

ERR2,3 % 1.9696 2.5668 2.9244 1.6506 2.0141 2.2662 

To illustrate the estimated heat generations more clearly, the exact and estimated (1), (2), 

and (3), at the midpoint of the x position of each chip with y positions varied, are plotted in 

Figure 8(a)–8(c), respectively. If the measurement errors are increased, the estimates may become 

poor, but they will be reliable, although the unknown heat source can be replicated accurately for 

errorless measurements. 

In order to validate the proposed algorithm and investigate the impact of the inlet air velocity on 

the estimated heat generation, it was increased to uin = 4 m/s when σ was set to 0.0. The graph in 

Figure 6(b)  depicts the cost function against the number of iterations for errorless measurements. 

After 50 iterations, the objective function J decreases to 0.0002, illustrating that the estimated heat 

source rapidly converges towards the averaged exact heat source in the initial iterations, with the 

remaining iterations serving to fine-tune it locally. 

The estimated contour plots of (1), (2) and (3) are given in Figure 9(a)–9(c), respectively, 

and the measured and estimated temperatures Y(Ss+3,s) and T(Ss+3,s) are given in Figure 10(a)–10(c) for 

chip 1, chip 2, and chip 3, respectively. Comparing Figures 4 and 10 shows that a higher air velocity 

will result in lower surface temperatures of encapsulated chips. 

Furthermore, a striking resemblance between the precise and estimated values of both temperature 

and heat generation was noted. This observation was supported by the analysis of average errors, 

denoted as ERR1, s and ERR2, s, which are succinctly presented in Table 1. The inverse estimation of 

heat generations for inexact measurements,  = 0.01 and 0.05, are also conducted, and the estimated 

results are listed in Table 1. 

Similarly, to compare the exact and estimated heat generations more clearly, the exact and 

estimated (1), (2), and (3) with uin = 4 m/s at the center point of the x positions of each chip 

and varying the y position are illustrated in Figure 8(a)–8(c). Again, the heat generations can be 

reproduced well for  = 0, but increasing the measurement errors results in acceptable estimates. These 

results indicate that the air velocities considered in this work have an insignificant influence on the 

estimated results; in addition, the estimates are reliable when considering error measurements. 

Based on the results of the above numerical experiments, it can be concluded that the unknown 

magnitude of spatially dependent heat generations of multiple chips mounted on a PCB are accurately 

estimated in this work, and if the temperature measurements are exact or inexact, the inverse solutions 

remain reliable. 
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Figure 8. Comparison of the exact and estimated heat generations (a) (1), (b) (2) 

and (c) (3) at x = 0.003 m using uin = 2 and 4 m/s. 

 

Figure 9. The estimated (a) (1), (b) (2) and (c) (3) over the x-y plane using uin=4 

m/s and  = 0.0. 
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Figure 10. The measured and estimated temperatures over the x-y plane for (a) chip 1, (b) 

chip 2 and (c) chip 3 using uin = 4 m/s and  = 0. 

4. Conclusions 

By employing simulated surface-temperature data, we adeptly delved into the realm of a 3-D 

steady-state inverse heat transfer problem, successfully unraveling the enigma of unknown volumetric 

heat sources attributed to multiple encapsulated chips adorning a PCB. The linchpin of this 

investigation lay in the adept utilization of the CGM optimization algorithm. Notably, the CGM's 

distinct advantage stems from its capacity to obviate the need for presupposing a particular functional 

form for the heat source. This attribute renders it exceptionally suited for addressing the intricate 

domain of function-estimation problems, wherein arbitrary initial conjectures for the heat sources are 

often the norm. It's pertinent to highlight that, while the CGM has formerly been harnessed to unravel 
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inverse problems associated with either heat conduction or heat convection, this study represents its 

virgin application within the context of the inverse heat transfer problem. Rigorous evaluation ensued 

through the analysis of multiple test cases, spanning varying heat generations across each chip, an 

array of inlet velocities, and the inclusion of diverse measurement errors. Notably, simulation results 

consistently underscored the reliability of CGM-derived estimations for the heat generation of multiple 

chips, even when confronted with escalating air velocities and measurement inaccuracies. An example 

of this reliability emerges in the form of the maximum ERR2,2, which stood resolutely below 3.5412% 

for σ = 0.05 and uin = 4 m/s. Emanating from the findings of these meticulous numerical experiments, 

the study culminates with the resounding verdict that the CGM, a potent optimization tool, aptly serves 

as the key to unlock the solutions to the complex 3-D steady-state inverse heat transfer problem. 
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