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Abstract: A nonautonomous logistic population model with a feature of an Allee threshold has been
investigated in a periodically fluctuating environment. A slow periodicity of the harvesting effort
was considered and may arise in response to relatively slow fluctuations of the environment. This
assumption permits obtaining the analytical approximate solutions of such model using the perturbation
approach based on the slow variation. Thus, the analytical expressions of the population evolution
in the situation of subcritical and the supercritical harvesting were obtained and discussed in the
framework of the Allee effect. Since the exact solution was not available due to the nonlinearity of
the system, the numerical computation was considered to validate our analytical approximation. The
comparison between the two methods showed a remarkable agreement as the time progressed, while
such agreement fell off when the time was close to the initial density. Moreover, in the absence of
the periodicity of the harvesting term, the expressions of the population evolution reduced to the exact
solutions but in implicit forms. The finding results were appropriate for a wide range of parameter
values, which lead to avoiding extensive recalculations while displaying the population behavior.
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1. Introduction

The population growth behavior has been described through numerous models. For instance, the
logistic model [1, 2] displays the population evolution from the initial density to the carrying capacity
limit, no matter how small the initial population is. However, some populations only evolve when
the initial population is large enough, otherwise the population is extinct. Some reasons for this
behavior have been described by Courchamp et al. [3] in several categories, such as genetic diseases,
demographic stochasticity, etc. Such a phenomenon is called a strong Allee effect [4, 5]; for further
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details, see [6–8] and the references therein. There are numerous examples in the real world that adapt
the feature of the Allee effect, which have been addressed in [9–12]. Mathematically, the simplest
model that displays this feature [13] is given by

dN
dT

= PN(t)
(
1 −

N(t)
K

) (
N(t)

S
− 1

)
, N(0) = N0, (1.1)

where N(T ) is the population density at time T ≥ 0, whereas P,K,N0, and S are positive constants
of per capita growth rate, carrying capacity, the initial population and Allee threshold, 0 < S < K,
respectively. Model (1.1) clearly has the property that when the initial population is greater than the
Allee threshold, 0 < S < N0, the solution travels to the carrying capacity, describing the population
at the equilibrium. In contrast, when 0 < N0 < S , the solution decreases to zero, showing the extinct
situation of the population. Since the solution of such model can only be provided in an implicit form,
Idlango et al. [14] obtained an analytical approximate expression for the population evolution and
showed a very good comparison with the numerical data.

Note that adding a constant effort harvest term that is proportional to the population density, HN(T ),
into (1.1) gives the logistic population model subjects to the harvesting and the strong Allee effect [15]
as follows

dN
dT

= PN(T )
(
1 −

N(T )
K

) (
N(T )

S
− 1

)
− HN(T ), N(0) = N0 (1.2)

describing the situation of subcritical and supercritical harvesting under the restriction of the
Allee effect.

It must be mentioned that the qualitative properties of the population models are regularly influenced
by the seasonal and even violent changes in the environment, such as climate change, food sources,
hunting, etc [16]. Thus, it is seen that within the progress of the mathematical biology, the time-varying
coefficients are often incorporated with the models. For example, the dynamical models in a view of
a periodic environmental change have been investigated by Rosenblat [17] and Legović et al. [18].
More recently, Alharbi [19, 20], Alsharidi et al. [21], and Idlango et al. [22, 23] considered single
species models subjects to variable coefficients. Accordingly, the model (1.2) can be written in terms
of variable coefficients as follows

dN
dT

= P(T )N(T )
(
1 −

N(T )
K(T )

) (
N(T )
S (T )

− 1
)
− H(T )N(T ), N(0) = N0. (1.3)

Clearly, when the time-varying parameters are adopted, as in (1.3), the population models turn to
nonautonomous systems and the exact solution is far of achievement, so the numerical approximate
method must be resorted to; see, for example, the analysis of those in [17, 18] among others [24, 25].
However, the numerical method often responds to particular parameter values, which leads to providing
a limited information about the population evolution, as in [25]. As a result, it is essential to consider
the analytical approximate method in order to obtain a general representation that is capable to describe
the influence of the time variation in the model coefficients and its impacts on the population evolution
for various general scenarios.

In many cases, it is possible to consider slow fluctuations in the environmental factors, such
as climate changes, adequate food, etc. This may lead to proposing a slowly varying population
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model. Ludwig et al. [26] used such observation in the analysis of the spruce budworm, but leaving
their calculation unsolved analytically. Thus, Shepherd et al. [27], Grozdanovski et al. [28], and
Alharbi [19, 20] considered a multi-scaled perturbation method to investigate population models in
a slowly varying environment for various cases. Accordingly, the analytical approximate expressions
have been obtained and validated numerically. The comparison between the two methods shows a
very good agreement. However, in their analysis, the associated coefficients functions must vary in a
slow time scale compared to the intrinsic time scale of the overall population, otherwise the considered
hypothesis is not valid in obtaining the analytical expression of the population evolution. In addition,
utilizing the multi-scaled perturbation method often provides asymmetric rate of convergence between
the leading and higher order differential equations, which must be aligned by eliminating the disturbed
terms, arising in the higher order equations.

Therefore, in this paper, we aim to investigate the single species population model (1.3) that
exhibits the Allee effect and a slowly periodic fluctuation of the harvesting rate. The assumption
of the harvesting periodicity may arise in response to relatively slow fluctuations of the environment.
This allows us to utilize the regular perturbation approach based on the small variation to obtain the
analytical approximate solutions for the population evolution in the situation of subcritical and the
supercritical harvesting with respect to the Allee threshold condition. Such analytical expressions will
successfully be able to show the harvesting variation on the same time scale of the overall population.
Moreover, the rate of convergence for the leading and higher order population expressions is symmetric
without any elimination of the disturbed terms. In addition, due to dealing with the nonlinear system, a
numerical computation will be obtained using a fourth-order Runge-Kutta technique in order to validate
the analytical approximation. The comparison between the two methods is expected to show that when
the time progresses, the analytical expressions will display a very good convergence with the numerical
data, while such accuracy falls off when the time approaches the initial density. The finding results are
appropriate for a wide range of parameter values, which provides an advantage of avoiding extensive
recalculations while displaying the population evolution.

2. Preliminaries

Since we are only interested in the influence of the periodic (or seasonal) fluctuation of the
harvesting, which might be caused by a disease, a fishing, or a hunting, on the population behavior, the
coefficients P(T ),K(T ), and S (T ) in (1.3) are assumed fixed. So, we arrive at

dN
dT

= PN(T )
(
1 −

N(T )
K

) (
N(T )

S
− 1

)
− H(T )N(T ), N(0) = N0. (2.1)

In what follows, we render the system (2.1) dimensionless. By expressing the nondimensional time,
population, and harvesting effort scale by t = PT , N(T ) = Kn(t), and H(T ) = H0η(t), respectively, (2.1)
can be written in a dimensionless form as

dn
dt

= n (1 − n) (σn − 1) − αη(t)n, n(0) = µ, (2.2)

where η(t) fluctuates periodically and is given by

η(t) = 1 + εγ(t), (2.3)
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and σ, α, and µ are given by

σ =
K
S
, α =

H0

P
, µ =

N0

K
, (2.4)

respectively, ε is a dimensionless, small, and positive parameter, and H0 is the baseline of the
harvesting function.

As the model (2.2) stands, two situations that depend on the harvesting have been identified. One is
the subcritical harvesting, where the population evolves to equilibrium, or is extinguished due to the
Allee effect. The other is supercritical harvesting, where the population is extinct for any initial
density µ.

3. Perturbation approach

It is important to note that, for the general variation, assuming at least one of the model
coefficients varies with time, the system (2.2) can only be solved using numerical techniques.
However, applying (2.3) in (2.2) and assuming ε is sufficiently small, this permits obtaining the
analytical approximate expressions for the population evolution model using the perturbation approach.
Accordingly, we propose the perturbation expansion based on ε as follows

n(t) ∼ n0(t) + εn1(t) + O(ε2), (3.1)

and substituting (3.1) into (2.2) obtains, on equating like powers of ε, a leading order term

dn0

dt
= n0

(
δ − σ(n0 − ψ)2

)
, (3.2)

a higher order term

dn1

dt
+ ((3n0σ − 2(σ + 1))n0 + 1 + α)) n1 = −αγ(t)n0, (3.3)

and the initial conditions

n0(0) = µ, and, n1(0) = 0, (3.4)

where ψ and δ are defined by

ψ =
σ + 1

2σ
, and δ = σψ2 − (1 + α), (3.5)

respectively. Therefore, the leading order term (3.2) is an autonomous differential equation, whereas
the higher order term (3.3) describes a slowly varying population. Since α measures the ratio of the
baseline of the harvesting effort, H0, to the growth rate, we conclude from the second of (3.5) and (3.2)
that when α < σψ2 − 1, δ > 0, so the harvesting is subcritical. In contrast, when α > σψ2 − 1, δ < 0,
so the harvesting becomes supercritical. Consequently, we consider these two cases.

4. Subcritical harvesting

In the following, we consider δ > 0, so the harvesting is subcritical. Note that sometimes the
initial density, µ, is driven below the critical threshold, so it will, in this section, be expected that the
population either survives to a positive limiting state or is extinguished, depending on the µ value.
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With the application of the initial condition, given in the first of (3.4), the differential equation (3.2)
may be solved implicitly in the form

F(n0) − e−φt = 0, (4.1)

where

F(u) =

(
u
µ

)β√σδ (
σ(u − ψ)2 − δ

σ(µ − ψ)2 − δ

) σ(µ − ψ) +
√
σδ

σ(u − ψ) +
√
σδ

βψ ,
φ =

2
√
σδ

σ

(
σψ +

√
σδ

)
, β =

2(σψ +
√
σδ)

1 + α
.

Straightforward, applying the stability analysis to the leading order term (3.2) displays the behavior
of the solution (4.1), which is governed by the initial density, µ. In order to discuss that, we first
introduce the critical points as follows

(1) cp1 = 0, which is stable.
(2) cp2 =

σψ−
√
σδ

σ
, which is unstable and acts as breakpoints [29].

(3) cp3 =
σψ+

√
σδ

σ
, which is stable.

Thus, when the initial population obeys cp2 < µ < cp3, n0(t) increases to the surviving limiting state,
cp3, as t → ∞, whereas it decreases to the limit when the µ value is beyond cp3. In contrast, when the
µ value lies below cp2, the population tends to extinguish, i.e., n(t)→ 0 as t → ∞; see Figure 1.

Figure 1. The impact of the initial density value, µ, on the population evolution when the
harvesting is subcritical.

Note that n0(t) appears implicitly in (4.1), so our approach is apparently not able to obtain the
expression of the higher order term, n1(t). However, it can be observed that as t → ∞, the term
e−φt → 0. Such an observation shows a possibility of obtaining the asymptotic expression of n0(t)
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by defining the solution of (4.1) as a power series in terms of a small e−φt. Once this achieved, the
linear differential Eq (3.3) can, in principle, be solved utilizing an integrating factor together with the
application of the initial condition, given in the second of (3.4). Accordingly, we express n0(t) as a
Poincaré expansion in e−φt

n0s(t) ∼ f0 + f1e−φt + O(e−2φt), (4.2)

where the subscript s denotes association with the survival case. Substituting (4.2) in (4.1), expanding
in power of e−φt, and equating like powers of e−φt yields the coefficients f0, f1, · · · . Thus, with the
choice f0 =

σψ+
√
σδ

σ
, the expansion for n0s(t) when n0s(t)→ cp3 as t → ∞ becomes

n0s(t) =
σψ +

√
σδ

σ
+ χe−φt + · · · , (4.3)

where χ is given by

χ =
σ (µ − ψ)2

− δ

2
√
σδ

(
σψ+

√
σδ

σµ

) 2
√
σδ

σψ−
√
σδ

σ(µ − ψ) +
√
σδ

2
√
σδ

 2σψ
√
σψ−σψ

, (4.4)

determining the leading order term when µ > cp2.
Similar to the above but more precise calculation, when µ < cp2,

n0(t)→ 0 as t → ∞. Thus, the expansion of n0(t) is given by

n0d(t) = ωe−(1+α)t −
2ω2σψ

1 + α
e−2(1+α)t + · · · , (4.5)

where ω is given by

ω = µ

(
1 + α

σ(µ − ψ)2 − δ

) √σδ−σψ
2
√
σδ

σ(µ − ψ) +
√
σδ

√
σδ − σψ

− σψ
√
σδ

(4.6)

and the subscript d denotes association with the extinction case. Note that in the expansion (4.3), the
convergence rate to cp3 (survival) depends on φ, while in the expansion (4.5), the convergence rate to
cp1 (extinction) depends on (1 + α).

Therefore, the solution of the leading order term n0(t) has split into two parts: n0s(t), given in (4.3),
is to describe the surviving population, and n0d(t), given in (4.5), is to represent the extinct population
due to driven µ below the critical threshold. Such division will be maintained while solving the higher
order terms.

Substituting the leading terms (4.3) into (3.3) yields

dn1s

dt
+ (φ + · · · ) n1s = −αγ(t)

σψ +
√
σδ

σ
+ χe−φt + · · ·

 . (4.7)

Considering the leading terms indicated in (4.7) and solving, we obtain, on applying the initial
condition, given in the second of (3.4),

n1s(t) = −αe−φt
∫ t

0
γ(s)

σψ +
√
σδ

σ
eφs + χ + · · ·

 ds, (4.8)
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determining the higher order expression of the surviving population in terms of the periodic
function γ(t).

In a like manner, substituting the leading terms (4.5) into (3.3), we arrive at

dn1d

dt
+ (1 + α + · · · ) n1d = −αγ(t)

(
ωe−(1+α)t −

2ω2σψ

1 + α
e−2(1+α)t + · · ·

)
. (4.9)

As earlier, preserving the leading terms mentioned in (4.9) and solving, we obtain, on applying the
initial condition, given in the second of (3.4),

n1d(t) = −αe−(1+α)
∫ t

0
γ(s)

(
ω −

2ω2σψ

1 + α
e−(1+α)s + · · ·

)
ds, (4.10)

determining the higher order expression of the extinct population.
To recapitulate, considering the subdivisions of the leading and higher order terms, the perturbation

expansion (3.1) for the surviving population at the positive limiting state becomes

ns(t) = n0s(t) + εn1s(t) + · · · , (4.11)

whereas the expansion for the extinct population due to the Allee effect becomes

nd(t) = n0d(t) + εn1d(t) + · · · , (4.12)

where n0s(t), n1s(t), n0d(t) and n1d(t) are given by (4.3), (4.5), (4.8), and (4.10), respectively.

5. Supercritical harvesting

Considering α > σψ2 − 1, δ is always negative, the harvesting is supercritical. Accordingly, we
redefine δ, given in the second of (3.5), in such a way that δ = −δe, where δe is given by

δe = 1 + α − σψ2, (5.1)

and the subscript e denotes association with supercritical harvesting.
Thus, considering (5.1) together with the first of (3.4), the solution of (3.2) yields

G(n0e) − e−(1+α)t = 0, (5.2)

where

G(u) =
u
µ

(
σ(µ − ψ)2 + δe

σ(u − ψ)2 + δe

) 1
2

e
σψ
√
σδe

(
arctan

(
σ(u−ψ)
√
σδe

)
−arctan

(
σ(µ−ψ)
√
σδe

))
. (5.3)

Again, n0e(t) only appears implicitly. So, applying analogous reasonings of that in Section 4 but
when n(t) → 0 as t → ∞, we define the asymptotic expansion of n0e(t) as a power series in terms of a
small e−(1+α)t as follows

n0e = τe−(1+α) −
2τ2σψ

1 + α
e−2(1+α) + · · · , (5.4)
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where τ is given by

τ =
µ√

σ(µ−ψ)2+δe
1+α

e
σψ
√
σδe

(
arctan

(
σψ
√
σδe

)
+arctan

(
σ(µ−ψ)
√
σδe

))
, (5.5)

determining the leading order term of the supercritical harvesting.
In a like manner, substituting (5.4) into (3.3), we arrive at

dn1e

dt
+ (1 + α + · · · ) n1e = −αγ(t)

(
τe−(1+α)t −

2τ2σψ

1 + α
e−2(1+α)t + · · ·

)
. (5.6)

Retaining the leading terms mentioned in (5.6) and solving, we obtain, on considering the initial
condition given in the second of (3.4),

n1e = −αe−(1+α)
∫ t

0
γ(t)

(
τ −

2τ2σψ

1 + α
e−(1+α)s + · · ·

)
ds, (5.7)

determining the higher order term of the supercritical harvesting.
Therefore, the perturbation expansion (3.1) regarding the supercritical harvesting becomes

ne(t) = n0e(t) + εn1e(t) + · · · , (5.8)

where n0e(t) and n1e(t) are given by (5.4) and (5.7), respectively.

6. Results and discussion

The analytical approximate expressions for the logistic population model that exhibits the
Allee effect together with the slowly periodic harvesting term are readily obtained and the
expansions (4.11), (4.12), and (5.8) represent the solutions. These expansions have the advantage
of not requiring specific parameters values to be provided, which leads to avoiding the extensive
recalculations while displaying the population behavior. It is important to note that our expansions are
limited in the first two terms due to displaying a very good convergence with the numerical solution and
avoiding the swell in the expression. In addition, since the asymptotic expansions of the leading order
terms, given in (4.3), (4.5) and (5.4), are constructed in terms of small exponential terms, we expect
that when t is close to the initial density, the perturbation expansions (4.11), (4.12), and (5.8) diverge
from the numerical solutions, whereas these expansions provide remarkable agreement as t → ∞.

For α < σψ2 − 1, the harvesting is subcritical and the population survives at the equilibrium
state when µ > cp2 and the expansion (4.11) displays the evolution. On the other hand, when the
initial density is below the Allee threshold (i.e., µ < cp2), the population is extinguished and the
expansion (4.12) exhibits the population behavior.

When α is increased beyond the limit σψ2 − 1, the harvesting is turned to supercritical, which leads
to declining the population to zero in a finite time, as shown in the expansion (5.8).

Note that ε = 0 corresponds to the exact solution (no slowly varying term), and the leading order
terms (4.1) and (5.2) describe the population evolution in the situations of subcritical and supercritical
harvesting, respectively, including the Allee threshold condition. However, when ε > 0, (4.11), (4.12),
and (5.8) describe the slowly varying population behavior.
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As mentioned earlier, the implicit representation of the leading order terms of the subcritical
and supercritical harvesting make the explicit expressions of the higher order terms unattainable.
However, for a particular case, setting the periodic function γ(t) = sin t, the solution of (4.8), (4.10),
and (5.7) yields

n1s(t) = −αe−φt
( σψ +

√
σδ

σ
(
φ2 + 1

)
e−φt (φ sin(t) − cos(t) + e−φt) +

χ(1 − cos(t)) + · · ·
)
, (6.1)

n1d(t) = −αe−(1+α)t
(
ω(1 − cos(t)) +

2ω2σψe−(1+α)t

(1 + α)3 + (1 + α)
(cos(t)+

(1 + α) sin(t) − e(1+α)t
) )
, (6.2)

n1e = −αe−(1+α)t
(
τ(1 − cos(t)) +

2τ2σψe−(1+α)t

(1 + α)(1 + (1 + α)2)
(cos(t)+

(1 + α) sin(t) − e(1+α)t
) )
, (6.3)

determining slowly varying expressions for subcritical harvesting (survival and extinct case due to the
Allee threshold) and supercritical harvesting, respectively

From (6.1)–(6.3), note that for a large class of time, we arrive at

n1s →
α(σψ +

√
σδ)

σ
(cos(t) − φ sin(t)),

n1d → 0, n1e → 0

and, hence, the perturbation expansions (4.11), (4.12), and (5.8) become as t → ∞

ns →
σψ +

√
σδ

σ
+ ε

α(σψ +
√
σδ)

σ
(cos(t) − φ sin(t)) + · · · , (6.4)

nd → 0, ne → 0, (6.5)

describing the population behavior at the limiting states.
It must be pointed out that the leading and higher order terms of our perturbation expansions have

a symmetric convergence rate, whereas in the analysis of Alharbi [19, 20] and Idlango et al. [22, 23],
they needed to be aligned by eliminating the disturbed terms, arising in the higher order terms.

Figures 3 and 4 were generated using the expansions (4.11), (4.12), and (5.8), respectively, together
with the numerical data obtained using a fourth-order Runge-Kutta technique. It is clearly seen that
the convergence between the two solutions is very good for t → ∞, but such convergence falls off

at t close to zero as expected from the asymptotic expressions above. In addition, Table 1 is obtained
by calculating the absolute difference between the approximate expressions and the numerical data
as t → ∞. This shows a remarkable discrepancy between the analytical approximate and numerical
solution when t is small, but when t progresses, the two solutions match each other. Graphically,
Figure 2(a),(b) confirms the result of Table 1 by showing a monotonically decreasing discrepancy
curve for subcritical and supercritical harvesting as the time increases.
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Table 1. The tabulated values give the absolute value of the difference of the population
growth n(t) estimated both analytically and numerically.

| Analytical − numerical |
Time Subcritical Subcritical with extinction Supercritical
t = 0 0.8377 0.0683 0.4812
t = 1 7 × 10−3 2 × 10−3 1.7 × 10−5

t = 2 6.74 × 10−4 1.81 × 10−4 2.14 × 10−7

t = 3 1.36 × 10−4 9.6 × 10−5 3.72 × 10−10

(a) (b)
Figure 2. The absolute difference between the numerical and analytical solution of
subcritical (a) and supercritical (b) harvesting.

Figure 3(a),(b) regards the population evolution in the case of subcritical harvesting. They show
that when µ > cp2, the population survives to the equilibrium state, cp3, from below when cp2 < µ <

cp3 (Figure 3(a)) and from above when µ > cp3 (Figure 3(b)).

(a) (b)
Figure 3. The dynamical profile of the surviving population, where µ = 0.6 in (a) and
µ = 1.3 in (b), while the others α = 0.3, σ = 5, and t ≥ 0.5 in both. The accuracy of the
approximate solution (solid line) compared with the numerical solution (dotted line) is very
good indeed.
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In contrast, Figure 4(a) displays that when µ locates below the critical Allee threshold, µ < cp2, the
population is instantly extinct in finite time. Figure 4(b) relates to supercritical harvesting. It can be
seen that for any initial population, µ, the population dies out as t → ∞.

(a) (b)
Figure 4. (a) The dynamical profile of the extinct population due to the Allee effect, where
µ = 0.1, α = 0.3, σ = 5, and t ≥ 0.5. The accuracy of the approximate solution (solid line)
compared with the numerical solution (dotted line) is very good indeed. (b) The dynamical
profile of the extinct population due to supercritical harvesting, where µ = 0.6, α = 6,
σ = 5, and t ≥ 0.1. The accuracy of the approximate solution (solid line) compared with the
numerical solution (dotted line) is very good indeed.

Figure 5(a),(b), which was generated using the expression of the equilibrium given in (6.4),
shows the influence of the associated parameters σ and α on the population behavior. Figure 5(a)
shows that fixing the value of α while increasing σ leads to increasing the variation of the
population at the equilibrium. In contrast, in Figure 5(b), when fixing the value of σ, the population
density reduces as α increases.

(a) (b)
Figure 5. The dynamical profile of the population variation at the equilibrium, where in (a),
α = 0.2 and in (b), σ = 5.
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7. Conclusions

In this paper, we investigate the single species population model that exhibits the Allee effect
and the slowly varying periodic harvesting. The slow periodicity of the harvesting term may arise
in response to relatively slow fluctuations of the environment. This assumption allows us to utilize the
perturbation approach based on the small variation to obtain the analytical approximate solutions for
the population evolution in the situation of subcritical and the supercritical harvesting with respect to
the Allee threshold condition. In addition, due to the absence of the exact solution of such a system, we
obtain the numerical computation using a fourth-order Runge-Kutta technique to validate the analytical
results. The comparison between the two methods shows a remarkable agreement as t → ∞, while
such an agreement falls off when the time is close to the initial density. In addition, we show that
setting ε = 0 extinguishes the slowly varying term and the exact solution will be available in an
implicit form. The finding results are appropriate for a wide range of parameter values, which leads to
avoiding the extensive recalculations while displaying the population behavior.
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18. T. Legović, G. Perić, Harvesting population in a periodic environment, Ecol. Model., 24 (1984),
221–229. https://doi.org/10.1016/0304-3800(84)90042-5

19. F. M. Alharbi, A slow single-species model with non-symmetric variation of the coefficients,
Fractal Fract., 6 (2022), 72. https://doi.org/10.3390/fractalfract6020072

20. F. M. Alharbi, The general analytic expression of a harvested logistic model with slowly varying
coefficients, Axioms, 11 (2022), 585. https://doi.org/10.3390/axioms11110585

21. A. K. Alsharidi, A. A. Khan, J. J. Shepherd, A. J. Stacey, Multiscaling analysis of a
slowly varying anaerobic digestion model, Math. Method. Appl. Sci., 43 (2020), 5729–5743.
https://doi.org/10.1002/mma.6315

22. M. A. Idlango, J. J. Shepherd, J. A. Gear, Multiscaling analysis of a slowly varying single species
population model displaying an Allee effect, Math. Method. Appl. Sci., 37 (2014), 1561–1569.
https://doi.org/10.1002/mma.2911

23. M. A. Idlango, J. J. Shepherd, J. A. Gear, Logistic growth with a slowly varying
holling type II harvesting term, Commun. Nonlinear Sci., 49 (2017), 81–92.
https://doi.org/10.1016/j.cnsns.2017.02.005

24. T. Cromer, Harvesting in a seasonal environment, Math. Comput. Model., 10 (1988), 445–450.
https://doi.org/10.1016/0895-7177(88)90034-9

AIMS Mathematics Volume 9, Issue 4, 8834–8847.

http://dx.doi.org/https://doi.org/10.1016/j.ejsobi.2005.09.004
http://dx.doi.org/https://doi.org/10.1016/S0169-5347(99)01683-3
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2005.10.003
http://dx.doi.org/https://doi.org/10.1016/j.tpb.2006.06.009
http://dx.doi.org/https://doi.org/10.1086/286169
http://dx.doi.org/https://doi.org/10.1002/mma.2911
http://dx.doi.org/https://doi.org/10.1142/S0219493721500441
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2011.07.021
http://dx.doi.org/https://doi.org/10.1007/BF00276033
http://dx.doi.org/https://doi.org/10.1016/0304-3800(84)90042-5
http://dx.doi.org/https://doi.org/10.3390/fractalfract6020072
http://dx.doi.org/https://doi.org/10.3390/axioms11110585
http://dx.doi.org/https://doi.org/10.1002/mma.6315
http://dx.doi.org/https://doi.org/10.1002/mma.2911
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2017.02.005
http://dx.doi.org/https://doi.org/10.1016/0895-7177(88)90034-9


8847

25. P. S. Meyer, J. H. Ausubel, Carrying capacity: A model with logistically varying limits, Technol.
Forecast. Soc., 61 (1999), 209–214. https://doi.org/10.1016/S0040-1625(99)00022-0

26. D. Ludwig, D. D. Jones, C. S. Holling, Qualitative analysis of insect outbreak systems: The spruce
budworm and forest, J. Anim. Ecol., 47 (1978), 315–332. https://doi.org/10.2307/3939

27. J. J. Shepherd, L. Stojkov, The logistic population model with slowly varying carrying capacity,
Anziam J., 47 (2005), C492–C506. https://doi.org/10.21914/anziamj.v47i0.1058

28. T. Grozdanovski, J. J. Shepherd, A. Stacey, Multi-scaling analysis of a logistic
model with slowly varying coefficients, Appl. Math. Lett., 22 (2009), 1091–1095.
https://doi.org/10.1016/j.aml.2008.10.002

29. R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature,
269 (1977), 471–477. https://doi.org/10.1038/269471a0

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 4, 8834–8847.

http://dx.doi.org/https://doi.org/10.1016/S0040-1625(99)00022-0
http://dx.doi.org/https://doi.org/10.2307/3939
http://dx.doi.org/https://doi.org/10.21914/anziamj.v47i0.1058
http://dx.doi.org/https://doi.org/10.1016/j.aml.2008.10.002
http://dx.doi.org/https://doi.org/10.1038/269471a0
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Perturbation approach
	Subcritical harvesting
	Supercritical harvesting
	Results and discussion
	Conclusions

