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1. Introduction

Let Mn be the set of n × n complex matrices. Mn(Mk) is the set of n × n block matrices with each
block in Mk. For A ∈ Mn, the conjugate transpose of A is denoted by A∗. When A is Hermitian,
we denote the eigenvalues of A in nonincreasing order λ1(A) ≥ λ2(A) ≥ ... ≥ λn(A); see [2, 7–9].
The singular values of A, denoted by s1(A), s2(A), ..., sn(A), are the eigenvalues of the positive semi-
definite matrix |A| = (A∗A)1/2, arranged in nonincreasing order and repeated according to multiplicity
as s1(A) ≥ s2(A) ≥ ... ≥ sn(A). If A ∈ Mn is positive semi-definite (definite), then we write A ≥
0 (A > 0). Every A ∈ Mn admits what is called the cartesian decomposition A = Re A + iIm A, where
Re A = A+A∗

2 , Im A = A−A∗
2 . A matrix A ∈ Mn is called accretive if Re A is positive definite. Recall that a

norm || · || onMn is unitarily invariant if ||UAV || = ||A|| for any A ∈ Mn and unitary matrices U,V ∈ Mn.
The Hilbert-Schmidt norm is defined as ||A||22 = tr(A∗A).

For A, B > 0 and t ∈ [0, 1], the weighted geometric mean of A and B is defined as follows

A♯tB = A1/2(A−1/2BA−1/2)tA1/2.

When t = 1
2 , A♯ 1

2
B is called the geometric mean of A and B, which is often denoted by A♯B. It is known

that the notion of the (weighted) geometric mean could be extended to cover all positive semi-definite
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matrices; see [3, Chapter 4].
Let A, B, X ∈ Mn. For 2 × 2 block matrix M in the form

M =
(

A X
X∗ B

)
∈ M2n

with each block inMn, its partial transpose of M is defined by

Mτ =
(

A X∗

X B

)
.

If M and Mτ ≥ 0, then we say it is positive partial transpose (PPT). We extend the notion to accretive
matrices. If

M =
(

A X
Y∗ B

)
∈ M2n,

and

Mτ =
(

A Y∗

X C

)
∈ M2n

are both accretive, then we say that M is APT (i.e., accretive partial transpose). It is easy to see that
the class of APT matrices includes the class of PPT matrices; see [6, 10, 13].

Recently, many results involving the off-diagonal block of a PPT matrix and its diagonal blocks
were presented; see [5, 11, 12]. In 2023, Alakhrass [1] presented the following two results on 2 × 2
block PPT matrices.

Theorem 1.1 ( [1], Theorem 3.1). Let
(

A X
X∗ B

)
be PPT and let X = U |X| be the polar decomposition

of X, then

|X| ≤ (A♯tB)♯(U∗(A♯1−tB)U), t ∈ [0, 1].

Theorem 1.2 ( [1], Theorem 3.2). Let
(

A X
X∗ B

)
be PPT, then for t ∈ [0, 1],

Re X ≤ (A♯tB)♯(A♯1−tB) ≤
(A♯tB) + (A♯1−tB)

2
,

and

Im X ≤ (A♯tB)♯(A♯1−tB) ≤
(A♯tB) + (A♯1−tB)

2
.

By Theorem 1.1 and the fact si+ j−1(XY) ≤ si(X)s j(Y) (i + j ≤ n + 1), the author obtained the
following corollary.
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Corollary 1.3 ( [1], Corollary 3.5). Let
(

A X
X∗ B

)
be PPT, then for t ∈ [0, 1],

si+ j−1(X) ≤ si(A♯tB)s j(A♯1−tB).

Consequently,

s2 j−1(X) ≤ s j(A♯tB)s j(A♯1−tB).

A careful examination of Alakhrass’ proof in Corollary 1.3 actually revealed an error. The right
results are si+ j−1(X) ≤ si(A♯tB)

1
2 s j((A♯1−tB)

1
2 ) and s2 j−1(X) ≤ s j((A♯tB)

1
2 )s j((A♯1−tB)

1
2 ). Thus, in this

note, we will give a correct proof of Corollary 1.3 and extend the above inequalities to the class of
2 × 2 block APT matrices. At the same time, some relevant results will be obtained.

2. Main results

Before presenting and proving our results, we need the following several lemmas of the weighted
geometric mean of two positive matrices.

Lemma 2.1. [3, Chapter 4] Let X,Y ∈ Mn be positive definite, then

1) X♯Y = max
{

Z : Z = Z∗,
(

X Z
Z Y

)
≥ 0

}
.

2) X♯Y = X
1
2 UY

1
2 for some unitary matrix U.

Lemma 2.2. [4, Theorem 3] Let X,Y ∈ Mn be positive definite, then for every unitarily invariant
norm,

||X♯tY || ≤ ||X1−tY t||

≤ ||(1 − t)X + tY ||.

Now, we give a lemma that will play an important role in the later proofs.

Lemma 2.3. Let M =
(

A X
Y∗ B

)
∈ M2n be APT, then for t ∈ [0, 1],

(
Re A♯tRe B X+Y

2
X∗+Y∗

2 Re A♯1−tRe B

)
is PPT.
Proof: Since M is APT, we have that

Re M =
(

Re A X+Y
2

X∗+Y∗
2 Re B

)
is PPT.
Therefore, Re M ≥ 0 and Re Mτ ≥ 0.
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By the Schur complement theorem, we have

Re B −
X∗ + Y∗

2
(Re A)−1 X + Y

2
≥ 0,

and

Re A −
X∗ + Y∗

2
(Re B)−1 X + Y

2
≥ 0.

Compute

X∗ + Y∗

2
(Re A♯tRe B)−1 X + Y

2

=
X∗ + Y∗

2
((Re A)−1♯t(Re B)−1)

X + Y
2

=

(
X∗ + Y∗

2
(Re A)−1 X + Y

2

)
♯t

(
X∗ + Y∗

2
(Re B)−1 X + Y

2

)
≤ Re B♯tRe A.

Thus,

(Re B♯tRe A) −
X∗ + Y∗

2
(Re A♯tRe B)−1 X + Y

2
≥ 0.

By utilizing (Re B♯tRe A) = Re A♯1−tRe B, we have(
Re A♯tRe B X+Y

2
X∗+Y∗

2 Re A♯1−tRe B

)
≥ 0.

Similarly, we have (
Re A♯tRe B X∗+Y∗

2
X+Y

2 Re A♯1−tRe B

)
≥ 0.

This completes the proof.
First, we give the correct proof of Corollary 1.3.

Proof: By Theorem 1.1, there exists a unitary matrix U ∈ Mn such that |X| ≤ (A♯tB)♯(U∗(A♯1−tB)U).
Moreover, by Lemma 2.1, we have (A♯tB)♯(U∗(A♯1−tB)U) = (A♯tB)

1
2 V(U∗(A♯1−tB)

1
2 U). Now, by

si+ j−1(AB) ≤ si(A)s j(B), we have

si+ j−1(X) ≤ si+ j−1((A♯tB)♯(U∗(A♯1−tB)U))

= si+ j−1((A♯tB)
1
2 VU∗(A♯1−tB)

1
2 U)

≤ si((A♯tB)
1
2 )s j((A♯1−tB)

1
2 ),

which completes the proof.
Next, we generalize Theorem 1.1 to the class of APT matrices.

Theorem 2.4. Let M =
(

A X
Y∗ B

)
be APT, then

AIMS Mathematics Volume 9, Issue 4, 8805–8813.



8809

∣∣∣∣∣X + Y
2

∣∣∣∣∣ ≤ (Re A♯tRe B)♯(U∗(Re A♯1−tRe B)U),

where U ∈ Mn is any unitary matrix such that X+Y
2 = U

∣∣∣X+Y
2

∣∣∣.
Proof: Since M is an APT matrix, we know that(

Re A♯tRe B X+Y
2

X∗+Y∗
2 Re B♯1−tRe A

)
is PPT.

Let W be a unitary matrix defined as W =
(

I 0
0 U

)
. Thus,

W∗

(
Re A♯tRe B X∗+Y∗

2
X+Y

2 Re A♯1−tRe B

)
W =

(
Re A♯tRe B |X+Y

2 |

|X+Y
2 | U∗(Re A♯1−tRe B)U

)
≥ 0.

By Lemma 2.1, we have∣∣∣∣∣X + Y
2

∣∣∣∣∣ ≤ (Re A♯tRe B)♯(U∗(Re A♯1−tRe B)U).

Remark 1. When M =
(

A X
Y∗ B

)
is PPT in Theorem 2.4, our result is Theorem 1.1. Thus, our result

is a generalization of Theorem 1.1.

Using Theorem 2.4 and Lemma 2.2, we have the following.

Corollary 2.5. Let M =
(

A X
Y∗ B

)
be APT and let t ∈ [0, 1], then for every unitarily invariant norm

|| · || and some unitary matrix U ∈ Mn,

∣∣∣∣∣∣∣∣∣∣X + Y
2

∣∣∣∣∣∣∣∣∣∣ ≤ ||(Re A♯tRe B)♯(U∗(Re A♯1−tRe B)U)||

≤

∣∣∣∣∣∣
∣∣∣∣∣∣ (Re A♯tRe B) + U∗(Re A♯1−tRe B)U

2

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
||Re A♯tRe B|| + ||Re A♯1−tRe B||

2

≤
||(Re A)1−t(Re B)t|| + ||(Re A)t(Re B)1−t||

2

≤
||(1 − t)Re A + tRe B|| + ||tRe A + (1 − t)Re B||

2
.

Proof: The first inequality follows from Theorem 2.4. The third one is by the triangle inequality. The
other conclusions hold by Lemma 2.2.

In particular, when t = 1
2 , we have the following result.
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Corollary 2.6. Let M =

(
A X
Y∗ B

)
be APT, then for every unitarily invariant norm || · || and some

unitary matrix U ∈ Mn, ∣∣∣∣∣∣∣∣∣∣X + Y
2

∣∣∣∣∣∣∣∣∣∣ ≤ ||(Re A♯Re B)♯(U∗(Re A♯Re B)U)||

≤

∣∣∣∣∣∣
∣∣∣∣∣∣ (Re A♯Re B) + U∗(Re A♯Re B)U

2

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ ||Re A♯Re B||

≤ ||(Re A)
1
2 (Re B)

1
2 ||

≤

∣∣∣∣∣∣∣∣∣∣Re A + Re B
2

∣∣∣∣∣∣∣∣∣∣ .
Squaring the inequalities in Corollary 2.6, we get a quick consequence.

Corollary 2.7. If M =
(

A X
Y∗ B

)
is APT, then

tr
((

X∗ + Y∗

2

) (X + Y
2

))
≤ tr((Re A♯Re B)2)

≤ tr(Re ARe B)

≤ tr
(Re A + Re B

2

)2 .
Proof: Compute

tr
((

X∗ + Y∗

2

) (X + Y
2

))
≤ tr((Re A♯Re B)∗(Re A♯Re B))

= tr((Re A♯Re B)2)
≤ tr((Re A)(Re B))

≤ tr
(Re A + Re B

2

)2 .
It is known that for any X,Y ∈ Mn and any indices i, j such that i + j ≤ n + 1, we have si+ j−1(XY) ≤

si(X)s j(Y) (see [2, Page 75]). By utilizing this fact and Theorem 2.4, we can obtain the following
result.

Corollary 2.8. Let M =
(

A X
Y∗ B

)
be APT, then for any t ∈ [0, 1], we have

si+ j−1

(X + Y
2

)
≤ si((Re A♯tRe B)

1
2 )s j((Re A♯1−tRe B)

1
2 ).

Consequently,

s2 j−1

(X + Y
2

)
≤ s j((Re A♯tRe B)

1
2 )s j((Re A♯1−tRe B)

1
2 ).
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Proof: By Lemma 2.1 and Theorem 2.4, observe that

si+ j−1

(X + Y
2

)
= si+ j−1

(∣∣∣∣∣X + Y
2

∣∣∣∣∣)
≤ si+ j−1((Re A♯tRe B)♯(U∗(Re A♯1−tRe B)U))

= si+ j−1((Re A♯tRe B)
1
2 V(U∗(Re A♯1−tRe B)U)

1
2 )

≤ si((Re A♯tRe B)
1
2 V)s j((U∗(Re A♯1−tRe B)U)

1
2 )

= si((Re A♯tRe B)
1
2 )s j((Re A♯1−tRe B)

1
2 ).

Finally, we study the relationship between the diagonal blocks and the real part of the off-diagonal
blocks of the APT matrix M.

Theorem 2.9. Let M =
(

A X
Y∗ B

)
be APT, then for all t ∈ [0, 1],

Re
(X + Y

2

)
≤ (Re A♯tRe B)♯(Re A♯1−tRe B)

≤
(Re A♯tRe B) + (Re A♯1−tRe B)

2
,

and

Im
(X + Y

2

)
≤ (Re A♯tRe B)♯(Re A♯1−tRe B)

≤
(Re A♯tRe B) + (Re A♯1−tRe B)

2
.

Proof: Since M is APT, we have that

Re M =
(

Re A X+Y
2

X∗+Y∗
2 Re B

)
is PPT.
Therefore,  Re A♯tRe B Re

(
X+Y

2

)
Re

(
X∗+Y∗

2

)
Re A♯1−tRe B

 = 1
2

(
Re A♯tRe B X+Y

2
X∗+Y∗

2 Re A♯1−tRe B

)
+

1
2

(
Re A♯tRe B X∗+Y∗

2
X+Y

2 Re A♯1−tRe B

)
≥ 0.

So, by Lemma 2.1, we have

Re
(X + Y

2

)
≤ (Re A♯tRe B)♯(Re A♯1−tRe B).

This implies the first inequality.
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Since Re M is PPT, we have(
Re A −i X+Y

2
i X∗+Y∗

2 Re B

)
=

(
I 0
0 iI

)
(Re M)

(
I 0
0 −iI

)
≥ 0,(

Re A i X∗+Y∗
2

−i X+Y
2 Re B

)
=

(
I 0
0 −iI

)
((Re M)τ)

(
I 0
0 iI

)
≥ 0.

Thus, (
Re A −i X+Y

2
i X∗+Y∗

2 Re B

)
is PPT.

By Lemma 2.3, (
Re A♯tRe B −i X+Y

2
i X∗+Y∗

2 Re A♯1−tRe B

)
is also PPT.
So,

1
2

(
Re A♯tRe B −i X+Y

2
i X∗+Y∗

2 Re A♯1−tRe B

)
+

1
2

(
Re A♯tRe B i X∗+Y∗

2
−i X+Y

2 Re A♯1−tRe B

)
≥ 0,

which means that  Re A♯tRe B Im
(

X+Y
2

)
Im

(
X+Y

2

)
Re A♯1−tRe B

 ≥ 0.

By Lemma 2.1, we have

Im
(X + Y

2

)
≤ (Re A♯tRe B)♯(Re A♯1−tRe B).

This completes the proof.

Corollary 2.10. Let
(

Re A X+Y
2

X+Y
2 Re B

)
≥ 0. If X+Y

2 is Hermitian and t ∈ [0, 1], then,

X + Y
2
≤ (Re A♯tRe B)♯(Re A♯1−tRe B)

≤
(Re A♯tRe B) + (Re A♯1−tRe B)

2
.
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