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Abstract: Railway interlocking systems are crucial safety components in rail transportation, designed
to prevent train collisions by regulating switch positions and signal indications. These systems
delineate potential train movements within a railway station by connecting sections into routes, which
are further divided into blocks. To ensure safety, the system prohibits the simultaneous allocation of
the same block or intersecting routes to multiple trains. In this study, we characterize the ‘interlocking
problem’ as a safety verification task for a single real-time station configuration, rather than a
‘command and control’ function. This is a matter of verification, not solution, typically managed by
an interlocking system that receives movement authority requests. Over the years, we have developed
various algebraic models to address this issue, suggesting the potential use of computer algebra systems
in implementing interlocking systems. However, some of these models exhibit limitations. In this
paper, we propose a novel algebraic model for decision-making in railway interlocking systems that
overcomes the limitations of previous approaches, making it suitable for large railway stations. Our
primary objective is to offer a mathematical solution to interlocking problems in linear time, which our
approach accomplishes.
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1. Introduction

Rail transportation is a crucial mode of transport globally, offering a reliable and efficient means of
transporting goods and people over long distances. It plays a vital role in the economy and society, as
highlighted in various studies on resilience in railway transport systems [1, 2].
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A key component of rail transportation is the railway interlocking system, which is a safety-critical
system designed to prevent train collisions. The compatibility of switch positions and signal indications
at a railway station is crucial for safety. The interlocking system prevents improper changes to traffic
signals and turnout switches. A railway station comprises sections connected by traffic signals and
turnouts, defining possible train movements. A route is a sequence of connected sections that a train
can travel along, partitioned into several blocks. To prevent collisions, two trains may never be in the
same block of a route. Two intersecting routes (or their relevant blocks) must not be allocated to trains
simultaneously.

In this paper, we define the ‘interlocking problem’ as follows: given a station topology composed of
track sections, signals, and turnouts, and given a specific run-time configuration (which includes trains
positioned in some sections, the positions of turnouts, and signal aspects), we must decide whether
the signal aspects and turnout positions allow the trains present in the station to move in such a way
that they could potentially collide. This definition refers to a ‘safety check’ for a single run-time
configuration of a station, rather than a ‘safe command and control’ function, which is what existing
interlocking systems implement. It is a verification problem, not a solution problem. In practice, an
interlocking system usually receives movement authority requests from trains, a dispatcher, or another
system. It then has to command the positions of turnouts and signal aspects to grant a movement
authority to the train over a path that fulfills the request. This is done after checking that the path is
free from other trains and is exclusively reserved for the requesting train.

This complex problem has been extensively studied, with recent research exploring artificial
intelligence applications for fault detection [3] and comparing different safety verification methods
[4]. There is also work on developing formal model-based methodologies to aid railway engineers in
specifying and verifying interlocking systems [5].

Computer-based railway interlocking systems can be classified as follows:

• Route-table based: For every route request, an algorithm checks its feasibility using a “control
table”. The software consists of a single algorithm, independent of the topology.
• Geographical: The interlocking program is made up of instances of software objects that mimic

the behavior of physical objects. The configuration of this program depends on the topology.
Within this category, we can distinguish between:

– Route-based: Routes are defined a priori, and their definitions constitute data shared by the
instantiated objects.

– On-demand route definition: There is no a priori definition of routes. Instead, a train’s request
to the interlocking system is given only as the final destination that the train must reach.
Instantiated software objects are responsible for exploring possible routes to the destination
and choosing one of them. Our approach lies in this category.

Classical railway interlocking systems are route-based and the compatibility of routes is decided in
advance [6]. Some modern railway interlocking systems can make decisions on the fly. This makes
them more flexible as routes are not predetermined. However, before authorizing any changes to signals
or switch positions, it is necessary to check if two trains would travel on intersecting routes (including
the same route) and potentially collide. All modern railway interlocking systems are computer-based,
either geographical or route-table based. However, naive implementations of geographical algorithms
may encounter efficiency problems when finding safe routes through the railway network. Efficient
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data validation for these geographical systems has been studied [7], and model checking using UMC
has been proposed as another verification method [8].

Over the years, we have developed various models to study this problem [9, 10, 11, 12, 13, 14].
Some of these models are based on polynomials, ideals, and Groebner bases, similar to those used
in artificial intelligence for implementing expert systems [15]. This approach bridges computational
algebra and interlocking problems, suggesting that computer algebra systems can be used to implement
interlocking systems.

Recently, we presented a groundbreaking algebraic model [16] that improves the implementation of
interlocking systems. This model provides a linear algorithm that significantly outperforms previous
models and is suitable for large-scale railway stations. However, this model has a limitation: the
railway station must not have cycles in paths for any configuration of the switches of the turnouts and
the indication of color lights. If this condition is not met, the model may produce incorrect conclusions.
In this paper, we propose a new algebraic model that builds on the ideas of the previous work [16].
Unlike this model, our present approach does not require any specific conditions on the railway stations
while retaining all its advantages over the earlier model [16].

The approach presented in [16] is entirely novel and offers intriguing theoretical perspectives.
However, it has yet to gain acceptance within the general railway research community due to a
significant limitation: the challenge of implementing it in actual interlocking systems. This is primarily
due to the stringent certification requirements associated with such safety-critical applications. Despite
this, the results could prove beneficial for simulations that do not require certification. The approach
in [16] does not address the general problem and only works in cases where there are no cycles.
From a mathematical perspective, overcoming the problem of cycles with the approach in [16] is not
straightforward. Indeed, we have had to define new and highly abstract concepts to solve them, which
are not immediately apparent nor derived from the paper [16]. We believe that the idea of extending
the concept of interlocking problems to extended interlocking problems and defining a completely
new relation between them is very novel from a mathematical perspective. We are confident that
our manuscript offers fresh insights into the relationship between two seemingly disconnected fields,
making it of considerable interest from a theoretical standpoint.

The paper is structured as follows: In Section 2, we explore the limitations of the framework
presented in [16] and provide the motivation behind our proposal. In Section 3, we outline the
main ideas used to address the limitation of [16]. In Section 4, we present formal definitions of
interlocking problems, which are necessary to validate our approach. In Section 5, we present the
key concept upon which our algebraic model is based: extended interlocking problems. In Section
6, we translate all previously described concepts into algebraic terms. The static parts of the railway
stations are represented by polynomials while the dynamic part by means of a monomial. In Section
7, we demonstrate how an interlocking system can be implemented by means of a Computer Algebra
System. In Section 8, we conduct a comprehensive comparison of the performance of our proposed
approach against other existing methods. In Section 9, we set our conclusions. Finally, in the appendix,
we provide an algorithm with linear complexity.
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2. Motivation

In [16], the authors introduced a novel algebraic approach for detecting dangerous situations in
railway stations. This method, which is based on a linear algorithm, significantly outperforms previous
models presented by the authors or their direct collaborators. Its robustness and efficiency make it
particularly suitable for application in large-scale railway stations.

The approach is based on representing a railway station by means of a set of polynomials. Then,
the problem of determining if a railway station is in a dangerous state is translated into the algebraic
problem of determining if the remainder of a monomial on division by a set of polynomials is zero.

However, while this method is significantly faster than previous algebraic models, it requires a strict
condition within the railway station: for any given configuration, the paths within the railway station
must not form cycles. Without this assumption, the approach in [16] does not work. For example, the
algorithm does not work in the house layout depicted in Figure 1.

S1
S2

S3

S4

Figure 1. Example of a house layout in which the approach does not work.

It is evident that there is a single train present at this railway station, eliminating the possibility of a
collision. Despite this, the algebraic model referenced in [16] inaccurately indicates that this situation
is hazardous. This error arises because the model relies on a theorem that is only applicable to railway
stations devoid of cycles.

Although the presence of cycles, as depicted in Figure 1 (we have provided this example solely to
highlight the limitations of the preceding algebraic model), is not common in railway stations, such
cycles may form when the station includes a specific type of turnout: trailable turnouts. A turnout,
regardless of its type, is a common element in a railway station that connects three sections. Figure
2 depicts a turnout connecting three sections: S1, S2, and S3. A switch in the turnout determines the
possible movement of the trains: if the switch is in the direct track position, then a train can move from
section S1 to section S2 (and vice versa); if the switch is in the diverted track position, a train can move
from section S1 to section S3 (and vice versa). We will distinguish between two types of turnouts:

Non-trailable turnouts. In case that the turnout is non-trailable, a train may derail if the switch is in
the direct track position and it tries to pass from section S3, or if the switch is in the diverted track
position and it tries to pass from section S2. For this reason non-trailable turnouts are usually
properly protected by light signals.

Trailable turnouts. Trailable turnouts avoid potential derailment. For a trailable turnout, a train passes
from section S3 to section S1 in the case that the switch is in direct track position, and it can also
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pass from section S2 to section S1 in the case that the switch is in diverted track position.

S1

S3

T1=(S1,S2,S3)

S2T

Figure 2. Trailable Turnout.

Trailable turnouts are commonly used in the configuration depicted in Figure 3 because trains can
easily reverse directions. This configuration involves three trailable turnouts: the one connecting
sections S1, S2, and S3 whose switch is in the diverted tuck position; the one connecting S4, S3,
and S5 whose switch is in the diverted track position; and the one connecting S6, S2, and S5 whose
switch is in the straight track position.

S1

S3

T1=(S1,S2,S3) T2=(S6,S2,S5)

T3=(S4,S3,S5)

S5

S2 S6

S4

Figure 3. Configuration of three trailable turnout to reverse the direction of trains.

In Figure 4, we see the movement of the train to reverse the direction: the train moves from section
S1 to section S3 because the switch of the turnout (S1,S2,S3) is in the diverted track position; next,
the train moves from section S3 to section S4 because the turnout is trailable; next, the train stops and
reverses from section S4 to section S5 since the switch of (S4,S3,S5) is in the diverted track position;
next, the train moves backwards from section S5 to section S6 because the turnout is trailable; next,
the train moves forward from section S6 to section S2 because the switch of (S6,S2,S5) is in the direct
track position; and finally, the train moves forward from section S2 to section S1 because the turnout
is trailable.
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S1

S3 S5

S2 S6

S4

S1 S1 S1

S1S1S1

S3 S5

S2 S6

S4

S3 S5

S2 S6

S4

S3 S5

S2 S6

S4

S3 S5

S2 S6

S4

S3 S5

S2 S6

S4

S3 S5

S2 S6

S4

Figure 4. A train reversing direction.

Trailable turnouts may produce the presence of cycles in the railway station. Let us consider the
simple railway station of Figure 5, considering that both turnouts are trailable. As may be seen, there
is a cycle, and indeed the algorithm of the approach in [16] will output that the potential collisions
may happen if only one train is placed in section S1 (which is not possible since there is only one train
placed in the railway station).

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

T

TT

T

Figure 5. A cycle is formed by means of the trailable turnouts.

Consequently, the approach in [16] has a significant limitation: it requires that the railway station
does not use trailable turnouts because its presence leads to the formation of cycles. This requirement
prevents the approach from being used in all previous figures. Here, we present a new algebraic
approach that overcomes this limitation by accounting for the possibility of cycles, while remaining
extraordinarily fast and suitable for large stations.

3. Overview of our approach

Distinct from others, the approach presented in [16] is based on a specific definition of the
“interlocking problem” and an analysis of the relation between different interlocking problems. We
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denote this relation as→.
The relation→ has a significant property: if A → B, and if A is in a dangerous situation, then B is

also in a dangerous situation.
The reciprocal property is not guaranteed in general, and indeed, for a general railway station it is

possible that B is in a dangerous situation and A is not. However, if the railway station does not have
cycles in its paths, the reciprocal property is also fulfilled (despite→ not being symmetric).

Consequently, for the case of a railway station whose paths does not form cycles, we have that:

if A→ B, then A is in a dangerous situation if and only if B is also in a dangerous situation.

The strategy for determining whether an interlocking problem X1 is in a dangerous situation in [16]
is as follows: iteratively derive new interlocking problems X1 → X2 → . . .→ Xn until Xn can be solved
immediately. Figure 6 illustrates the set of interlocking problems for a railway station and the relation
{. Through a representation based on polynomials, this process of iteratively obtaining new derived
interlocking problems can be automated using the division algorithm.

...

Interlocking
Problems

Figure 6. The set of interlocking problems and the relation→.

However, this strategy only works under the condition that the railway station does not have cycles
Otherwise, our strategy fails because it could be possible that Xn is in a dangerous situation, but X1 is
not. This is why the algorithm proposed in [16] does not work in railway stations with cycles.

In this paper, we will overcome this obstacle in the following way: we will extend the set of
interlocking problems into a larger, more abstract set — the set of extended interlocking problems.
Then, we will define a new relation, denoted by{, which, although not symmetric, fulfills the desired
property:

if A{ B, then A is in a dangerous situation if and only if B is also in a dangerous situation. (1)

We would like to emphasize that the relation { is completely new and is not an extension of R1.
For two interlocking problems A and B, we could have that A→ B, but A ̸{ B.

Once we have defined this set of extended interlocking problems, and the relation { between
them, our strategy will be similar to [16]: we will iteratively derive new interlocking problems X1 {

X2 { . . . { Xn until Xn can be solved immediately*. In this paper, we have found a completely
*As we will see, Xn can be solved immediately because trains are positioned within locked sections, meaning they are prohibited

from moving.
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new representation based on polynomials, so that this process of obtaining the extended interlocking
problems X1, X2, . . .→ Xn can also be automatically done using the division algorithm.

Unlike [16], our current model works for any railway station because property (1) holds regardless
of whether paths of the railway station may form cycles or not.

Figure 7 depicts the set of interlocking problems for a railway station and the relation ‘is derived
from’. Once the relation{ is defined, we can translate the problem into polynomials and detect if an
interlocking problem is in a dangerous situation by means of the division algorithm.

...

Interlocking
Problems

Extended Interlocking Problems

...

...

...

Figure 7. The set of extended interlocking problems and the new relation{.

4. Interlocking problems

In this section, we will formalize some key concepts related to railway stations and interlocking
problem that allow us to prove the validity of our approach.

A railway station is defined by a finite set of sections {S 1 . . . S n}. Sections are physically connected
by means of light signals and turnouts. We define this by means of a relation E.

Definition 4.1. Given a railway station, we define the set E ⊂ Z × Z as:

E = {(i, j)|S i is connected to S j or S j is connected to S i

by means of a color light signal or a turnout}

Remark 4.1. In a railway station, each section is connected to a maximum of two other sections on
each extreme through a turnout. This means that each section can be connected to a maximum of four
other sections. Therefore, the size of E is less than or equal to 4 · N where N is the number of sections.
As a result, the number of elements in E, is O(N).

AIMS Mathematics Volume 9, Issue 3, 7673–7710.
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According to this definition, E is a symmetric relation. This relation informs whether there is
physical contact between two sections. Figure 8 depicts an example of a railway with 11 sections. As
may be seen, (1, 2) ∈ E since S 1 is connected to S 2. We would like to emphasize here that the fact that
(1, 2) ∈ E does not indicate that a train can always pass from section S 1 to section S 2. Indeed, in this
case, it depends on the indication of the light signal.

In this way, we define a relation P for indicating if a train can pass from a section S i to another
connected to section S j in a particular configuration of the railway station.

Definition 4.2. Given a railway station, we define the set P ⊂ E as:

P = {(i, j) ∈ E| if a train can pass from section S i to section S j}

In the case of a turnout connecting S i to S j or S k, we can analyze the difference in P of the section
pairs regarding a normal turnout and those regarding a trailable turnout:

• If the turnout is trailable, both ( j, i) ∈ P and (k, i) ∈ P hold true, regardless of the position of the
switch.
• If the turnout is non-trailable, we have that:

– In the case where the switch is in the direct track position, ( j, i) ∈ P and (k, i) < P.
– In the case where the switch is in the diverted track position, ( j, i) < P and (k, i) ∈ P.

Figure 9 depicts a possible configuration of the railway station. As may be seen, since the switch
of the turnout connecting sections S 2, S 3, and S 9 is in the direct track position, we have that (2, 3) ∈ P
and (2, 9) < P.

Just observe that (5, 6) ∈ P and (11, 6) ∈ P because the second turnout is trailable, whereas (9, 2) < P
and (3, 2) ∈ P because the fist turnout is non-trailable.

There may be trains placed in the sections of a railway station. We will consider that each train is
placed on just one section†. Since we assume that a collision occurs when more trains are placed in the
same section, we will use multiset Q to represent occupancy of sections: a section belongs to Q if it is
occupied by a train, and the section is repeated in Q once for each train placed in it.

Definition 4.3. We define the multiset Q as the multiset of integers indicating the sections in which a
train is placed: the number of times that element i appears in Q represents the number of trains located
in section S i.

We will consider that Q is a multiset instead of a set, since Q will have repeated elements in case
two different trains are placed in the same section (which is dangerous).

Figure 10 depicts a situation of the railway station in which there are two trains: one occupies
section S 1; and another occupies section S 10. Consequently we have that Q = {1, 10}. If there are two
trains occupying the same section S 1, then we would have that Q = {1, 1}.

Trains move through the railway network guided by the indications of light signals and turnouts.
The concern arises when considering the possibility of a train colliding with another. We formally
define an interlocking problem as an ordered pair (P,Q).

†In this paper, we will assume that each train occupies one section, as we showed in Section 8 of [16] that the general case where
trains occupy multiple sections can be reduced to an equivalent interlocking problem where trains occupy a single section.
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Definition 4.4. An interlocking problem is an ordered pair (P,Q), where P is the set of Definition 4.2
and Q is the multiset of Definition 4.3.

Given an interlocking problem (P,Q) we are interested in determining if movement of trains
(following indications of the light signals and position of the switches) may result in a collision. We
will formally define it:

Definition 4.5. We will say that the railway interlocking problem (P,Q) is in a dangerous situation if
and only if there are two lists of integers (we will call them ‘paths’), [u1, . . . un] and [v1, . . . vm] such
that all the following conditions hold:

(1) For all 0 < i < n, we have that (ui, ui+1) ∈ P. That is to say, a train can pass from ui to ui+1.
(2) For all 0 < j < m, we have that (v j, v j+1) ∈ P. That is to say, a train can pass from v j to v j+1.
(3) {u1, v1} ⊆ Q. That is to say, there must be a train in u1 and v1.
(4) un = vm. That is to say, both paths reach the same section (there is a possible collision).
(5) For all 1 < i < n ui < Q and for all 1 < j < m v j < Q. That is to say, intermediate sections in the

list must be free of trains so that trains from section u1 and section v1 may reach section un = vm.
(6) For all 1 ≤ i < n and for all 1 ≤ j < m we have ui , v j. That is to say, the possible collision

happens at the end of the paths.
(7) For all i , j we have ui , u j. That is to say, the path [u1, . . . un] does not contain cycles.
(8) For all i , j we have vi , v j. That is to say, the path [v1, . . . vm] does not contain cycles.

We will say that the railway interlocking problem (P,Q) is in a safe situation if and only if (P,Q) is not
in a dangerous situation.

Example 4.1. Let us consider the railway station of Figure 8.

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

T

Figure 8. Track layout of a very simple railway station.

As may be seen, the railway station is divided into sections S 1 . . . S 11. There are ten color light
signals (for example, there is one from S 1 to S 2) and two turnouts:

• A turnout connecting sections S 2, S 3, and S 9.
• A turnout connecting sections S 6, S 5, and S 11. We have marked a turnout with ‘T’ in the figure to

indicate that the turnout is trailable.

According to Definition 4.1, the set E is:

E = {(1, 2), (2, 9), (9, 10), (10, 11), (11, 6), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)
(2, 1), (9, 2), (10, 9), (11, 10), (6, 11), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7)}

Let us consider the configuration depicted in Figure 9. The position of the switches of the turnouts
is represented by:

AIMS Mathematics Volume 9, Issue 3, 7673–7710.
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• a small segment, if the switch is in the direct track position (see for instance the turnout between
sections S 2 and S 3, S 9 in Figure 9), or
• a small angle, if the switch is in the diverted track position (see for instance the turnout between

sections S 6 and S 5, S 11 in Figure 9).

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

T

Figure 9. A possible configuration of the railway station of Figure 8.

In view of the fact that the figures are printed in black and white, the aspect of the color light signals
will be represented by a black circle (stop indication) or white circle (proceed indication).

Now, we will determine the subset P ⊆ E given by the indications of the light signals and the
position of the switches of the turnouts in Figure 9:

P = {(1, 2), (9, 10), (10, 11), (2, 3), (3, 4), (11, 6), (6, 7), (7, 8), (2, 1),
(11, 10), (5, 4), (3, 2), (6, 11), (8, 7), (5, 6)}

As may be seen, (10, 9) < P because the indication of the color light signal connecting sections S 10 and
S 9 is stop. In the same way, (5, 6) ∈ P because (S 6, S 5, S 11) is a trailable turnout. However, (9, 2) < P
because the switch of the non-trailable turnout (S 2, S 3, S 9) is in the direct track position.

Figure 10 depicts the placement of one train in section S 1 and another train in section S 10.
Therefore, in this case: Q = {1, 10}

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

T

Figure 10. A possible placement of trains in the configuration of the railway station.

As may be seen in the figure, this situation is safe. However, if a new train were placed in section
S 8, we would have that Q = {1, 8, 10} (Figure 11) and the situation would turn into a dangerous one:
the trains situated in sections S 10 and S 8 could collide in section S 7. As may be seen, we have that
[10, 11, 6, 7] and [8, 7] fulfill the conditions in Definition 4.5.

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

T

Figure 11. Another possible placement of trains in the configuration of the railway station.
The proposed situation is dangerous.
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5. Extended interlocking problems

In this section, we will extend the concept of the interlocking problem, and we will define a relation
{ to such extension.

5.1. The concept of the extended interlocking problem

First, we will define the concept of a locked section. A locked section is one in which, if a train
stayed there, it cannot move to another section. Formally,

Definition 5.1. Given the set P ⊂ E, we say that a section i is locked in P if for every (a, b) ∈ P we
have that a , i.

Intuitively, if a train is positioned on a locked section, it becomes immobilized and is unable to
transition to another section within the railway station. Take, for instance, section S4 in Figure 9, which
is a locked section. As observed in Example 4.1, neither (4, 3) nor (4, 5) belong to P. Consequently, if
a train is placed on S4, it becomes ‘locked’ in place, as it is incapable of moving to either section S3
or S5.

Once locked sections are defined, we define the concept of the extended interlocking problem
(Definition 5.2) and the conditions that it must fulfill to be in a dangerous situation (Defintion 5.3).

Definition 5.2. Let E be a railway network. An extended interlocking problem is a (P, S ,T,Q) where:

• P is a configuration of the railway network.
• S is a multiset of locked sections in P.
• T,Q are multisets of sections.

Definition 5.3. We will say that the railway interlocking problem (P, S ,T,Q) is in a dangerous situation
if and only if there are two lists of integers (we will call them ‘paths’) [u1, . . . un] and [v1, . . . vm] such
that all the following conditions hold:

(1) For all 0 < i < n, we have that (ui, ui+1) ∈ P.
(2) For all 0 < j < m, we have that (v j, v j+1) ∈ P.
(3) {u1, v1} ⊆ S ∪ T ∪ Q and u1 ∈ S ∪ Q.
(4) un = vm.
(5) For all 1 < i < n ui < S ∪ Q and for all 1 < j < m v j < S ∪ Q.
(6) For all 1 < i < n and for all 1 < j < m we have ui , v j.
(7) For all i , j we have ui , u j.
(8) For all i , j we have vi , v j.

We will say that the railway interlocking problem (P, S ,T,Q) is in a safe situation if and only if
(P, S ,T,Q) is not in a dangerous situation.

Remark 5.1. As may be seen in Definition 4.5 and Definition 5.3, any interlocking problem (P,Q) can
be regarded as the extended interlocking problem (P, ∅, ∅,Q).

Remark 5.2. Referring to Definition 4.5 and Definition 5.3, we can deduce that an extended
interlocking problem (P, S ,T,Q) is in a dangerous situation if, and only if, there exists some t ∈ T
such that the interlocking problem (P, S ∪ {t} ∪ Q) is also in a dangerous situation.
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5.2. The relation ‘derived from’ in the set of extended interlocking problems

Once we define the concept of the extended interlocking problem, we will analyze the set of
extended interlocking problems for a specific railway station by means of a binary relation: ‘derived
from’. This relation is the reflexive and transitive closure of another one, ‘directly derived from’.

Definition 5.4. Let (P1, S 1,T1,Q1) and (P2, S 2,T2,Q2) be two extended interlocking problems of a
railway network E. We say that (P2, S 2,T2,Q2) is directly derived from (P1, S 1,T1,Q1) if and only if
one of these conditions holds:

i) T1 = ∅; t ∈ Q1 and we have that:

P2 = P1; T2 = {t}; S 2 = S 1; Q2 = Q1 − {t}

ii) T1 = T ∪ {t, t} and we have that:

P2 = P1; T2 = T ∪ {t}; S 2 = S 1; Q2 = Q1

iii) If all sections in T1 are locked in P1, a section t ∈ T1 is not repeated in T1 and we have that:

P2 = P1; T2 = T1 − {t}; S 2 = S 1 ∪ {t}; Q2 = Q1

iv) S 1 = S 2; Q1 = Q2; and ∃(i, j) ∈ P1 such that:

– i ∈ T1.
– P2 = P1 − {(i, j)}.
– T2 = T1 ∪ { j}.

Definition 5.5. We define the relation ‘is derived from’ as the reflexive and transitive closure of the
relation ‘is directly derived from’. That is to say, (P2, S 2,T2,Q2) is derived from (P1, S 1,T1,Q1), and
we denote (P1, S 1,T1,Q1){ (P2, S 2,T2,Q2), if and only if one of these conditions holds:

i) P1 = P2; S 1 = S 2; T1 = T2; and Q1 = Q2;
ii) (P2, S 2,T2,Q2) is directly derived from (P1, S 1,T1,Q1),

iii) There is an extended interlocking problem (P3, S 3,T3,Q3) such that it is directly derived from
(P1, S 1,T1,Q1) and (P3, S 3,T3,Q3){ (P2, S 2,T2,Q2).

Remark 5.3. It is important to note that the relation { is not symmetric. In other words, while
it is possible for (P1, S 1,T1,Q1) { (P2, S 2,T2,Q2) to hold true, the reverse, (P2, S 2,T2,Q2) ̸{
(P1, S 1,T1,Q1), may also be true.

5.3. Some insights about the concept of extended interlocking problems and the ‘Derived From’
relation

Although an extended interlocking problem is an abstract concept, it is indeed the cornerstone
of our approach. We aim to provide some intuition about this abstract concept. As per Remark
5.2, an extended interlocking problem (P, S ,T,Q) is associated with multiple interlocking problems,
specifically one for each t ∈ T . An extended interlocking problem (P, S ,T,Q) is in a dangerous
situation if and only if there exists a t ∈ T such that the interlocking problem (P, S ∪ {t} ∪ Q) is also in
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a dangerous situation. Consequently, the extended interlocking problem (P, S ,T,Q) provides insights
into the solutions of numerous simple interlocking problems, one for each t ∈ T . If the extended
interlocking problem (P, S ,T,Q) is in a safe situation, then we can infer that, for every t ∈ T , the
interlocking problem (P, S ∪ Q ∪ {t}) is also in a safe situation. Conversely, if (P, S ,T,Q) is in a
dangerous situation, it implies that there exists a t ∈ T such that (P, S ∪ {t} ∪ Q) is in a dangerous
situation.

In this way, the multisets S , T , and Q represent sections of the railway station where trains are, or
may potentially be, located:

• For each s ∈ S , it is assumed that a train is positioned on the section s. Additionally, we know
that section a is locked.
• For each q ∈ Q, it is assumed that a train is positioned on section q.
• It is known that there is precisely one train positioned in one of the sections in T .

In Figure 12, we elucidate this concept by illustrating the extended interlocking problem
(P, S ,T,Q) = (P, {4}, {6, 7, 8}, {1, 10}) for the railway station shown in Figure 8, along with its
associated simple interlocking problems. The components of this problem are defined as follows:

• P = {(1, 2), (9, 10), (10, 11), (2, 3), (3, 4), (11, 6), (6, 7), (7, 8), (2, 1), (11, 10), (5, 4), (3, 2),
(6, 11), (8, 7), (5, 6)}
• S = {4}, represented by red rectangles. As can be observed, section S4 is a locked section,

implying that a train cannot move from S4 to another section.
• T = {6, 7, 8}, represented by yellow rectangles in sections S6, S7, and S8.
• Q = {1, 10}, represented by black rectangles in sections S1 and S10.

Given that T = {6, 7, 8}, the extended interlocking problem (P, {4}, {6, 7, 8}, {1, 10}) is associated
with the following simple interlocking problems: (P, {4, 8, 1, 10}), (P, {4, 7, 1, 10}), and (P, {4, 6, 1, 10}),
as illustrated in Figure 13. Since the simple interlocking problem (P, {4, 6, 1, 10}) is in a dangerous
situation, it follows that the extended interlocking problem (P, {4}, {6, 7, 8}, {1, 10}) is also in a
dangerous situation.

In previous section we introduced a ‘derived from’ relation between extended interlocking
problems. This relation plays a pivotal role in determining whether the extended interlocking
problem (P, S ,T,Q) is in a dangerous situation. As we will see in Proposition 5.4, if (P, S ,T,Q) {
(P′, S ′,T ′,Q′), then (P, S ,T,Q) is in a dangerous situation if and only if (P′, S ′,T ′,Q′) is in a dangerous
situation.

In Figure 13, we illustrate this ‘derived from’ relation for the extended interlocking problem
(P, ∅, ∅, {1, 4, 6, 8}), which is equivalent to the interlocking problem (P, {1, 4, 6, 8}).

• (P, ∅, ∅, {1, 4, 6, 8}) { (P, ∅, {8}, {1, 4, 6}) by i) in Definition 5.4. Just observe that
(P, ∅, {8}, {1, 4, 6}) ̸{ (P, ∅, ∅, {1, 4, 6, 8}), as this relation is not symmetric (see Remark 5.3).
As we will see in the next section, (P, ∅, ∅, {1, 4, 6, 8}) is in a dangerous situation if and only if
(P, ∅, {8}, {1, 4, 6}) is.
• (P, ∅, {8}, {1, 4, 6}) { (P2, ∅, {8, 7}, {1, 4, 6}) by iv) in Definition 5.4 where P2 = P − {(8, 7)}.

As we will see in the next section, (P, ∅, {8}, {1, 4, 6}) is in a dangerous situation if and only if
(P2, ∅, {8, 7}, {1, 4, 6}) is.
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• (P2, ∅, {8, 7}, {1, 4, 6}){ (P3, ∅, {8, 8, 7}, {1, 4, 6}) by iv) in Definition 5.4 where P3 = P2−{(7, 8)}.
As we will see in the next section, (P2, ∅, {8, 7}, {1, 4, 6}) is in a dangerous situation if and only if
(P3, ∅, {8, 8, 7}, {1, 4, 6}) is.
• (P3, ∅, {8, 8, 7}, {1, 4, 6}) { (P3, ∅, {8, 7}, {1, 4, 6}) by ii) in Definition 5.4. As we will

see in the next section, (P3, ∅, {8, 8, 7}, {1, 4, 6}) is in a dangerous situation if and only if
(P3, ∅, {8, 7}, {1, 4, 6}) is.
• (P3, ∅, {8, 7}, {1, 4, 6}) { (P3, {8, 7}, ∅, {1, 4, 6}) by iii) in Definition 5.4 because{8,7} does not

contain repeated elements and sections S8 and S7 are locked. As we will see in the next section,
(P3, ∅, {8, 7}, {1, 4, 6}) is in a dangerous situation if and only if (P3, {8, 7}, ∅, {1, 4, 6}) is.
• (P3, {8, 7}, ∅, {1, 4, 6}) { (P3, {8, 7}, {6}, {1, 4}) by i) in Definition 5.4. As we will see in the next

section, (P3, {8, 7}, ∅, {1, 4, 6}) is in a dangerous situation if and only if (P3, {8, 7}, {6}, {1, 4}) is.
• (P3, {8, 7}, {6}, {1, 4}){ (P4, {8, 7}, {6, 7}, {1, 4}) by iv) in Definition 5.4 where P4 = P3 − {(6, 7)}.

As we will see in the next section, (P3, {8, 7}, {6}, {1, 4}) is in a dangerous situation if and only if
(P4, {8, 7}, {6, 7}, {1, 4}) is.
• (P4, {8, 7}, {6, 7}, {1, 4}){ (P4, {8, 7, 6, 7}, ∅, {1, 4}) by iii) in Definition 5.4 because {6,7} does not

contain repeated elements and sections S6 and S7 are locked. As we will see in the next section,
(P4, {8, 7}, {6, 7}, {1, 4}) is in a dangerous situation if and only if (P4, {8, 7, 6, 7}, ∅, {1, 4}) is.
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( , {4, 6,1,10})P

Figure 12. Intuition of the concept extension interlocking problems.
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Figure 13. Intuition of the relation ‘derived from’ and our approach.
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In this way, the extended interlocking problem (P, ∅, ∅, {1, 4, 6, 8}), or, equivalently, the simple
interlocking problem (P, {1, 4, 6, 8}), is in a dangerous situation if and only if (P4, {8, 7, 6, 7}, ∅, {1, 4})
is in a dangerous situation. The latter is indeed in a dangerous situation due to the repetition of 7 in the
set {8,7,6,7}, as per Proposition 5.1.

5.4. Determining if an extended interlocking problem is in a dangerous situation

Under some conditions, we can easily determine if an extended interlocking problem is in a
dangerous situation (see Proposition 5.1 and Proposition 5.2). Besides, Proposition 5.4 relates the
problem of determining if an extended interlocking problem is in a dangerous situation with another
one.

First, we will prove Proposition 5.1 and Proposition 5.2.

Proposition 5.1. Let (P, S ,T,Q) be an extended interlocking problem. If S ∪ Q contains repeated
elements, (P, S ,T,Q) is in a dangerous situation.

Proof.- Let {u, v} ⊆ S ∪ Q such that u = v (that is to say, u is repeated in S ∪ Q). Let [u] and [v]
be two lists of integers, each containing a single integer. We have that [u] and [v] fulfill conditions in
Definition 5.3. ■

Proposition 5.2. Let (P, S , ∅, ∅) an extended interlocking problem. We have that (P, S , ∅, ∅) is in a
dangerous situation if and only if S contains repeated elements.

Proof.-
⇒) Let [u1, . . . un] and [v1 . . . vm] be paths fulfilling conditions in Definition 5.3. By ii) in Definition
5.3, we have that {u1, v1} ⊆ S ∪ T ∪ Q = S . Therefore, we have that u1 and v1 are locked sections in
P. Consequently, by condition (2) and (3) in Definition 5.3, we have that n = 1 and m = 1. By (4) in
Definition 5.3, we have that u1 = un = vm = v1 and, therefore, S contains repeated elements.
⇐) This is an immediate consequence of Proposition 5.1. ■

Next, we will show an important proposition about the relation ‘derived from’ between extended
interlocking problems.

Proposition 5.3. Let (P1, S 1,T1,Q1), (P2, S 2,T2,Q2) be two extended interlocking problems such that
(P2, S 2,T2,Q2) is directly derived from (P1, S 1,T1,Q1). We have that:

(P1, S 1,T1,Q1) is in a dangerous situation⇔ (P2, S 2,T2,Q2) is in a dangerous situation.

Proof.- We will consider the four conditions in Definition 5.4.

Condition i). We will consider that T1 = ∅; T2 = {t} where t ∈ Q1; S 2 = S 1 and Q2 = Q1 − {t}.

⇒) Let [u1 . . . un] and [v1, . . . vm] be paths fulfilling Definition 5.3 for (P1, S 1,T1,Q1). We will
consider the following cases:

Case u1 = t = v1. We will prove that [t] and [t] are paths fulfilling Definition 5.3 for
(P2, S 2,T2,Q2).

Conditions (1), (2). They hold because P1 = P2.
Condition (3). We have that {t, t} ⊆ S 1 ∪ T1 ∪ Q1 = S 2 ∪ T2 ∪ Q2. Since T2 = {t}, we have

that {t, t} ⊆ S 2 ∪ {t} ∪ Q2. Consequently, we have that t ∈ S 2 ∪ Q2.
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Conditions (4), (6), (7), (8). They are immediately proved.
Condition (5). This is immediately proved since S 2 ∪ Q2 ⊆ S 1 ∪ Q1.

Case u1 , t. We have that [u1 . . . un] and [v1, . . . vm] are paths fulfilling Definition 5.3 for
(P2, S 2,T2,Q2).

Conditions (1), (2). They hold because P1 = P2.
Condition (3). We have that {u1, v1} ⊆ S 1∪T1∪Q1 = S 2∪T2∪Q2. Since u1 ∈ S 2∪T2∪Q2 =

S 2 ∪ {t} ∪ Q2 and u1 , t, we have that u1 = S 2 ∪ Q2.
Conditions (4), (6), (7), (8). They are immediately proved.
Condition (5). This is immediately proved since S 2 ∪ Q2 ⊆ S 1 ∪ Q1.

Case v1 , t. We will prove that [v1, . . . vm] and [u1 . . . un] are paths fulfilling Definition 5.3 for
(P2, S 2,T2,Q2).

Conditions (1), (2). They hold because P1 = P2.
Condition (3). We have that {u1, v1} ⊆ S 1∪T1∪Q1 = S 2∪T2∪Q2. Since v1 ∈ S 2∪T2∪Q2 =

S 2 ∪ {t} ∪ Q2 and v1 , t, we have that v1 = S 2 ∪ Q2.
Conditions (4), (6), (7), (8). They are immediately proved.
Condition (5). This is immediately proved since S 2 ∪ Q2 ⊆ S 1 ∪ Q1.

⇐) Let [u1 . . . un] and [v1, . . . vm] be paths fulfilling Definition 5.3 for (P2, S 2,T2,Q2). We will
consider the following cases:

Case. There exists i such that ui = t. We have that [u1 . . . ui−1, ui] and [t] are paths fulfilling
Definition 5.3 for (P1, S 1,T1,Q1):

Conditions (1), (2). They hold because P1 = P2.
Condition (3). We have that {u1, v1} ⊆ S 1 ∪ T1 ∪ Q1 = S 2 ∪ T2 ∪ Q2. We have also that

u1 ∈ S 2 ∪ Q2 ⊆ S 1 ∪ Q1.
Conditions (4), (6), (7), (8). They are immediately proved.
Condition (5). Let j be such that 1 < j < i. We have that u j ∈ S 2 ∪ Q2 ∪ {t}. By condition

(6) we have that u j , ui = t. Therefore, we have that u j ∈ S 2 ∪ Q2.

Case. There exists i such that vi = t. We have that [t] and [v1 . . . vi−1, vi] are paths fulfilling
Definition 5.3 for (P1, S 1,T1,Q1):

Conditions (1), (2). They hold because P1 = P2.
Condition (3). We have that {u1, v1} ⊆ S 1 ∪ T1 ∪ Q1 = S 2 ∪ T2 ∪ Q2. We have also that

u1 ∈ S 2 ∪ Q2 ⊆ S 1 ∪ Q1.
Conditions (4), (6), (7), (8). They are immediately proved.
Condition (5). Let j be such that 1 < j < i. By condition (5) we have that v j ∈ S 2 ∪Q2 ∪ {t}.

By condition (6) we have that v j , vi = t. Therefore, we have that v j ∈ S 2 ∪ Q2.

Case. For all i we have that ui , t and vi , t. We can prove that [u1 . . . un] and [v1, . . . vm] are
paths fulfilling Definition 5.3 for (P1, S 1,T1,Q1):

Conditions (1), (2). They hold because P1 = P2.
Condition (3). We have that {u1, v1} ⊆ S 1 ∪ T1 ∪ Q1 = S 2 ∪ T2 ∪ Q2. We have also that

u1 ∈ S 2 ∪ Q2 ⊆ S 1 ∪ Q1.
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Conditions (4), (6), (7), (8). They are immediately proved.
Condition (5). We have that ui < S 2 ∪ Q2 and vi < S 2 ∪ Q2. Since ui , t and vi , t, we have

that ui < S 2 ∪ Q2 ∪ {t} = S 1 ∪ Q1 and vi < S 2 ∪ Q2 ∪ {t} = S 1 ∪ Q1.

Condition ii). We will consider that T1 = T ∪ {t, t}, T2 = T ∪ {t}, P2 = P1, S 2 = S 1, Q2 = Q1.

It is immediate to prove that [u1 . . . un] and [v1, . . . vm] are paths fulfilling Definition 5.3 for
(P1, S 1,T1,Q1) if and only if [u1 . . . un] and [v1, . . . vm] fulfill Definition 5.3 for (P2, S 2,T2,Q2).

Condition iii). We will consider that t is not repeated in T1; all sections in T1 are locked in P1; P2 = P1;
T2 = T1 − {t}; S 2 = S 1 ∪ {t}; Q2 = Q1.

We have that S 2 ∪ T2 ∪ Q2 = S 1 ∪ {t} ∪ T2 ∪ Q1 = S 1 ∪ T1 ∪ Q1.

⇒) Let [u1 . . . un] and [v1, . . . vm] be paths fulfilling Definition 5.3 for (P1, S 1,T1,Q1). We will
prove that [u1 . . . un] and [v1, . . . vm] fulfill Definition 5.3 for (P2, S 2,T2,Q2).

Conditions (1), (2). They hold because P1 = P2.

Condition (3). We have that {u1, v1} ⊆ S 1 ∪ T1 ∪Q1 = S 2 ∪ T2 ∪Q2 and u1 ∈ S 1 ∪Q1 ⊆ S 2 ∪Q2.

Conditions (4), (6), (7), (8). They are immediately proved.

Condition (5). Let i be such that 1 < i < n. We have that ui < S 1 ∪ Q1. Since t is a locked
section in P1, we have that ui , t. Consequently, we have that ui < S 1 ∪ Q1 ∪ {t} = S 2 ∪ Q2.
Consequently, for all 1 < i < n we have that ui < S 2 ∪ Q2. In the same way, we can prove
that for all 1 < j < m, v j < S 2 ∪ Q2.

⇐) Let [u1, . . . un] and [v1 . . . vm] be paths fulfilling Definition 5.3 for (P2, S 2,T2,Q2).

We will consider two possible cases:

Case u1 = t. We will prove that [v1 . . . vm] and [t] are paths fulfilling Definition 5.3 for
(P1, S 1,T1,Q1).

Conditions (1), (2). They hold because P1 = P2.
Condition (5). Immediately proved since S 1 ∪ Q1 ⊂ S 2 ∪ Q2

Conditions (4), (6), (7), (8). They are immediately proved.
Condition (3). We have that {v1, t} = {v1, u1} ⊆ S 2 ∪ T2 ∪ Q2 = S 1 ∪ T1 ∪ Q1. We will prove

that v1 ∈ S 1 ∪ Q1 by considering the following subcases:
Case v1 < T1. Since v1 ∈ S 1 ∪ T1 ∪ Q1 and v1 < T1, we have that v1 ∈ S 1 ∪ Q1.
Case v1 ∈ T1. Since T1 are locked sections in P2 = P1 and [t] and [v1 . . . vm] are paths

fulfilling Definition 5.3 for (P2, S 2,T2,Q2), we have that m = 1, v1 = t, and, by
condition (3), {t, t} ⊆ S 2 ∪ T2 ∪ Q2 = S 1 ∪ T1 ∪ Q1. Since t is not repeated in T1, we
have that v1 = t ∈ S 1 ∪ Q1.

Case u1 , t. We will prove that [u1, . . . un] and [v1, . . . vm] are paths fulfilling Definition 5.3 for
(P1, S 1,T1,Q1)

Conditions (1), (2). They hold because P1 = P2.
Condition (5). Immediately proved since S 1 ∪ Q1 ⊂ S 2 ∪ Q2

Conditions (4), (6), (7), (8). They are immediately proved.
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Condition (3). We have that {u1, v1} ⊆ S 2 ∪ T2 ∪ Q2 = S 1 ∪ T1 ∪ Q1. Since u1 ∈ S 2 ∪ Q2 =

S 1 ∪ {t} ∪ Q1 and u1 , t, we have that u1 ∈ S 1 ∪ Q1.

Condition iv). We will consider that S 1 = S 2; Q1 = Q2; (i, j) ∈ P1; i ∈ T1; P2 = P1 − {(i, j)};
T2 = T1 ∪ { j}. We will consider the following cases:

⇒) Let [u1, . . . un] and [v1 . . . vm] be two paths fulfilling Definition 5.3 for (P1, S 1,T1,Q1).

Case 1. ∃k where 1 ≤ k ≤ n such that (uk, uk+1) = (i, j). We will prove that [u1, . . . , uk] and [uk]
fulfill all conditions in Definition 5.3 for (P2, S 2,T2,Q2).

Condition (1) Let k′ < k. We have that uk′ , uk = i. Consequently, (uk′ , uk′+1) , (i, j) and
we have that (uk′ , uk′+1) ∈ P2.

Condition (3). We have that u1 ∈ S 1 ∪ Q1 = S 2 ∪ Q2. We have that uk = i ∈ T2. Since
u1 , uk, we have that {u1, uk} ⊆ S 2 ∪ T2 ∪ Q2.

Condition (5). Immediately proved since S 1 ∪ Q1 = S 2 ∪ Q2.
Conditions (2), (4), (6), (7), (8). They are immediately proved.

Case 2. Case 1 does not hold and ∃k′ where 1 ≤ k′ ≤ m such that (vk′ , vk′+1) = (i, j). We
will prove that [u1, . . . , un] and [vk′+1 . . . vm] fulfill all conditions in Definition 5.3 for
(P2, S 2,T2,Q2).

Condition (1). Immediately proved since Case 1 does not hold.
Condition (2). Immediately proved since (vk′ , vk′+1) = (i, j), and for every k′′ > k′ we have

that vk′′ , vk′ = i, and consequently (vk′′ , vk′′+1) ∈ P2.
Condition (3). We have that u1 ∈ S 1∪Q1 = S 2∪Q2. We have also that vk′+1 = j ∈ T2. Since

u1 , vk′+1, we have that {u1, vk′+1} ∪ S 2 ∪ T2 ∪ Q2.
Condition (5). Immediately proved since S 1 ∪ Q1 = S 2 ∪ Q2.
Conditions (4), (6), (7), (8). They are immediately proved.

Case 3. Neither Case 1 nor Case 2 holds. We will prove that [u1 . . . un] and [v1 . . . vm] fulfill all
conditions in Definition 5.3 for (P2, S 2,T2,Q2).

Conditions (1), (2). Immediately proved since neither Case 1 nor Case 2 holds.
Condition (3). We have that u1 ∈ S 1 ∪ Q1 = S 2 ∪ Q2. We have that v1 ∈ S 1 ∪ T1 ∪ Q1 ⊂

S 2 ∪ T2 ∪ Q2. Since u1 , v1 we have that {u1, v1} ∪ S 2 ∪ T2 ∪ Q2.
Condition (5). Immediately proved since S 1 ∪ Q1 = S 2 ∪ Q2.
Conditions (4), (6), (7), (8). They are immediately proved.

⇐) Let [u1 . . . un] and [v1 . . . vm] be paths fulfilling Definition 5.3 for (P2, S 2,T2,Q2).

We have that u1 ∈ S 2 ∪ Q2 = S 1 ∪ Q1. We will consider the following cases:

Case 1. v1 < T2. We will prove that [u1 . . . un] and [v1 . . . vm] are paths fulfilling Definition 5.3 for
(P1, S 1,T1,Q1).

Conditions (1), (2). Immediately proved since P2 ⊂ P1.
Condition (3). We have that u1 ∈ S 2 ∪ Q2 = S 1 ∪ Q1.

Since v1 < T2, we have that v1 ∈ S 2 ∪ Q2 = S 1 ∪ Q1.
Since u1 , v1, we have that {u1, v1} ⊆ S 1 ∪ Q1 ⊆ S 1 ∪ T1 ∪ Q1.
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Condition (5). Immediately proved since S 1 ∪ Q1 = S 2 ∪ Q2.
Conditions (4),(6),(7),(8). They are immediately proved.

Case 2. v1 ∈ T2 and v1 , j. We will prove that [u1, . . . , un] and [v1, . . . , vm] are paths fulfilling
Definition 5.3 for (P1, S 1,T1,Q1).

Conditions (1), (2). Immediately proved since P2 ⊂ P1.
Condition (3). We have that u1 ∈ S 2 ∪ Q2 = S 1 ∪ Q1.

Since v1 ∈ T2 = T1 ∪ { j} and v1 , j, we have that v1 ∈ T1 ⊆ S 1 ∪ T1 ∪ Q1.
Since u1 , v1, we have that {u1, v1} ⊆ S 1 ∪ T1 ∪ Q1.

Condition (5). Immediately proved since S 1 ∪ Q1 = S 2 ∪ Q2.
Conditions (4), (6), (7), (8). They are immediately proved.

Case 3. v1 ∈ T2 and v1 = j. We will prove that [u1, . . . , un] and [i, v1, . . . , vm] are paths fulfilling
Definition 5.3 for (P1, S 1,T1,Q1).

Condition (1). Immediately proved since P2 ⊂ P1.
Condition (2). Immediately proved since P2 ⊂ P1 and (i, j) ∈ P1.
Condition (3). We have that u1 ∈ S 2 ∪ Q2 = S 1 ∪ Q1.

Since i ∈ T1, we have that i ∈ S 1 ∪ T1 ∪ Q1.
Since i ∈ T1 and u1 ∈ S 1 ∪ Q1, we have that {u1, i} ⊆ S 1 ∪ T1 ∪ Q1.

Condition (5). Immediately proved since S 1 ∪ Q1 = S 2 ∪ Q2.
Conditions (4), (6), (7), (8). They are immediately proved.

■

Proposition 5.4. Let (P1, S 1,T1,Q1), (P2, S 2,T2,Q2) be two extended interlocking problems such that
(P1, S 1,T1,Q1){ (P2, S 2,T2,Q2). We have that:

(P1, S 1,T1,Q1) is in a dangerous situation⇔ (P2, S 2,T2,Q2) is in a dangerous situation.

Proof.- This is an immediate consequence of Definition 5.5 and Proposition 5.3. ■

6. The railway interlocking problem in algebraic terms

Drawing upon the findings presented in Section 5, we could devise an algorithm to detect dangerous
situations in interlocking problems. This algorithm would operate by iteratively transforming a given
interlocking problem into derived extended interlocking problems until it can definitively be verified
whether a dangerous situation exists. Indeed, an algorithm of linear complexity with respect to the
number of sections is detailed in the appendix.

In this section we will demonstrate that the task of detecting dangerous situations can be expressed
in algebraic terms. As it will be discussed in Theorem 6.3, the polynomial division algorithm can
serve as the mechanism for identifying dangerous situations. Here, we will outline this polynomial-
based representation and subsequently establish that the task of identifying dangerous situations is
equivalent to the algebraic problem of computing the remainder of a monomial upon division by a set
of polynomials.
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6.1. Algebraic Preliminaries. Some introductory notes about polynomial rings

In this section, we will briefly describe some essential results about polynomial rings, which will
be used to prove the validity of our approach. For a detailed introduction to the topic, see [17].

We will consider the polynomial ring Z2[x1 . . . xN] in the variables x1 . . . xN . Since the coefficients
of the polynomials lie in Z2, we have that monomials are a product of the form xα1

1 · x
α2
2 · . . . x

αN
N , and a

polynomial is a finite sum of monomials
∑
α=(α1,α2,...,αN ) xα1

1 xα2
2 . . . x

αN
n .

For example, we have that x1x2x3 and x1x2+x3+x2x3 are, respectively, a monomial and a polynomial
in Z2[x1, x2, x3] .

If we consider the order of variables x1 > x2 . . . > xm, we can define a lexicographical order
for the monomials on Z2[x1 . . . xN] (see [17], pp. 52–57). According to this lexicographical order,
x1x2x4 > x2x3.

Based on this lexicographical order, we define the leading term of a polynomial:

Definition 6.1. The leading term of a polynomial p ∈ Z2[x1, . . . , xN], denoted LT(p), is its greatest
monomial of the polynomial.

For example, in Z2[x1, x2, x3], we have that LT(x2
1 + x1x2x3 + x3) = x2

1.
This lexicographical order leads us to define a kind of division algorithm on polynomials in

Z2[x1, . . . , xN].

Theorem 6.1. Let p ∈ Z2[x1 . . . xN] and a finite list of polynomials on E = [ f1, . . . , fm] (where fi ∈

Z2[x1 . . . xN]). We have that
p = α1 f1 + . . . + αm fm + r

where α1, . . . , αm, r ∈ Z2[x1, . . . , xN] and either r = 0 or r is a linear combination of monomials, none
of which is divisible by any of LT( f1) . . .LT( fm).
A proof can be found on pages 62–64 in [17].

The remainder of p on division by E is denoted by NR(p, E). The proof in [17] (pp. 62-64) provides
an algorithm to find the polynomials α1, . . . αm, r ∈ Z2[x1, . . . , xN] in Theorem 6.1. In each step of this
algorithm, we obtain a sequence of intermediate-dividends. For our purpose, we will require only some
of the first intermediate-dividends of this algorithm.

Notation 6.1. We will use the notation a|b to refer to the polynomial a divides the polynomial b.
Similarly, we will say a ̸ |b to refer to a does not divide b.

Definition 6.2. Given p ∈ Z2[x1, . . . , xN] and a finite list of polynomials E = [ f1 . . . fm], we recursively
define the first-intermediate-dividends of p on division by E, r0, . . . , rn ∈ Z2[x1, . . . , xN], as follows:

• r0 = p,
• if i > 0, then

– if ∃ j ∈ {1, . . . ,m} such that LT( f j)|LT(ri), then

ri+1 = ri −
LT(ri)
LT( fk)

fk

where k is the minimum j such that LT( f j)|LT(ri),
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– if ∀ j ∈ {1, . . . ,m},LT( f j)̸ |LT(ri) then rn = ri.

According to the proof in [17] (pp. 62-64), we have:

Proposition 6.1. Let p ∈ Z2[x1, . . . , xN] and let E = [ f1, . . . , fm] be a list of polynomials in
Z2[x1, . . . , xN]. Let r0, . . . rn ∈ K[x1, . . . , xN] be the first-intermediate-dividends of p on division by
E. We have that:

rn = 0 if and only if NR(p, E) = 0

The Computer Algebra System, CoCoA, implements an algorithm for automatically calculating NR.
For instance, if we want to calculate NR(x2 + xyz, {y2 + z, x2 + yz}) in the ring Z2[x, y, z] with x > y > z,
we only need to follow these steps:

First, we define the ring using the following syntax:

use ZZ/(2)[x,y,z], lex;

Next, input the following command:

NR(xˆ3+xˆ2*y*z,[xˆ2+y*z,y+z]);

The output will be:

x*zˆ2 + zˆ4

As you can see, we have:

x3 + x2yz = (x + yz) · (x2 + yz) + (xz + yz2 + z3) · (y + z) + (xz2 + z4)

6.2. Representation of a railway station by means of a list of polynomials

We will represent a railway station by means of a list of polynomials on the following variables:

• li j: The variable li, j for each pair of sections S i and S j where (i, j) ∈ E. That is to say, we define
the variable li, j if the topology of the station allows for passage from section S i to section S j (in
some configuration of the railway station).
• qi, ti, si: The variables qi, ti, and si for each section S i in the railway network ‡.

Once these variables are defined, we will represent the railway station by the list of polynomials E
on

A = Z2[li, j, . . . , qi, . . . , ti, . . . , si . . .]

Observe that the number of variables in A is 3N + K, where N is the number of sections and K is
the size of E.

Definition 6.3. We define E as the list of polynomials inA formed by:

• ∀(i, j) ∈ E, the polynomial:
li jti + tit j

‡Intuitively, these variables refer to whether the section is in the multisets Q, T , or S .
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• For each section S i, the four polynomials:

t2
i + ti

s2
i

ti + si

qi + ti

Observe that the number of polynomials in E is 4N + K, where N is the number of sections and K
is the size of E.

Example 6.1. Let us recall the set E of the railway station of Example 4.1. Let us remember that in
this case:

E = {(1, 2), (2, 9), (9, 10), (10, 11), (11, 6), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)
(2, 1), (9, 2), (10, 9), (11, 10), (6, 11), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6), (8, 7)}

Consequently, we will consider the following variables:

• Variables: l1,2, l2,9, l9,10, l10,11, l11,6, l2,3, l3,4, l4,5, l5,6, l6,7, l7,8,

l2,1, l9,2, l10,9, l11,10, l6,11, l3,2, l4,3, l5,4, l6,5, l7,6, l8,7

and
• Variables: q1 . . . , q11, t1 . . . t11, s1, . . . , s11 (since this railway station contains 11 sections)

Once the variables are defined, we define the list E in this ring:

• l1,2t1 + t1t2 (because (1, 2) ∈ E),
• l2,9t2 + t2t9 (because (2, 9) ∈ E),
• . . .
• t2

1 + t1, t2
2 + t2, . . . , t2

11 + t11,
• s2

1, s
2
2, . . . , s

2
11,

• t1 + s1, t2 + s2, . . . t11 + s11,
• q1 + t1, q2 + t2, . . . q11 + t11,

6.3. Representation of an extended interlocking problem by means of monomials

In this section we will represent an extended interlocking problem (P, S ,T,Q) by means of a
monomial, ϕ(P, S ,T,Q):

Definition 6.4. Given the interlocking problem (P, S ,T,Q) for a railway station, we define ϕ(P, S ,T,Q)
as the monomial inA:

ϕ(P, S ,T,Q) = ϕP · ϕS · ϕT · ϕQ

where:

• ϕP is a monomial representing the set P defined as:

ϕP =
∏

(i, j)∈P

li j
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• ϕS is a monomial representing the set S defined as:

ϕS =
∏
i∈S

si

• ϕT is a monomial representing the set T defined as:

ϕT =
∏
i∈T

ti

• ϕQ is a monomial representing the set Q defined as:

ϕQ =
∏
i∈Q

qi

Example 6.2. We will consider the interlocking problem (P,Q) depicted in Figure 10.
As we stated in Remark 5.1, an interlocking problem (P, S ) can be understood as an extended

interlocking problem (P, ∅, ∅,Q). We will represent it by means of monomials:

The monomial ϕP. Remember that P is (see Example 9):

P = {(1, 2), (9, 10), (10, 11), (2, 3), (3, 4), (11, 6), (6, 7), (7, 8), (2, 1), (11, 10), (5, 4), (3, 2),
(6, 11), (8, 7), (5, 6)}

Consequently, we have that:

ϕP = l1,2l9,10l10,11l2,3l3,4l11,6l6,7l7,8l2,1l11,10l5,4l3,2l6,11l8,7l5,6

The monomial ϕS . Since S = ∅, we have that:

ϕS = 1

The monomial ϕT . Since T = ∅, we have that:

ϕT = 1

The monomial ϕQ. Since Q = {1, 10}, we have that:

ϕQ = q1q10

Consequently, the extended interlocking problem (P, ∅, ∅,Q) depicted in Figure 10 is represented by
the monomial:

ϕPϕSϕTϕQ = ϕPϕQ = l1,2l9,10l10,11l11,6l2,3l3,4l5,6l6,7l7,8l2,1l11,10l6,11l3,2l5,4l8,7 · q1q10
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6.4. Solving extended interlocking problems by means of the division algorithm

In this section, we will show that we can determine if an extended interlocking problem is in a
dangerous situation by means of the division algorithm.

According to the next lemma, we have that each first intermediate dividend of NR(ϕ(P, S ,T,Q),E)
is a monomial representing an extended interlocking problem derived from (P, S ,T,Q).

Lemma 6.2. Let (P, S ,T,Q) be an extended interlocking problem for a railway network E. Letting
r0, r1 . . . rn be the first-intermediate-dividends of NR(ϕ(P, S ,T,Q),E), we have that:

i) For every i < n there is an extended interlocking problem (Pi, S i,Ti,Qi) such that ϕ(Pi, S ,Ti,Qi) =
ri and (P, S ,T,Q){ (Pi, S i,Ti,Qi).

ii) If NR(ϕ(P, S ,T, ∅),E) , 0, there is an extended interlocking problem (Pn, S n, ∅, ∅) such that
ϕ(Pn, S n, ∅, ∅) = rn, (P, S ,T,Q){ (Pn, S n, ∅, ∅) and S n does not contain repeated elements.

Proof.-

i) For i = 0, we have that (P0, S 0,T0,Q0) = (P, S ,T,Q), r0 = ϕ(P0, S 0,T0,Q0) = ϕ(P, S ,T,Q), and
(P, S ,T,Q){ (P, S ,T,Q) = (P0, S 0,T0,Q0).
Suppose that 0 < i < n, ri−1 = ϕ(Pi−1, S i−1,Ti−1,Qi−1) and (P, S ,T,Q) { (Pi−1, S i−1,Ti−1,Qi−1).
We will prove that ri = ϕ(Pi, S i,Ti,Qi) for an extended interlocking problem (Pi, S i,Ti,Qi), such
that (Pi, S i,Ti,Qi) is directly derived from (Pi−1, S i−1,Ti−1,Qi−1), and, consequently, we have that
(P, S ,T,Q){ (Pi, S i,Ti,Qi).
According to Definition 6.2, we have that

ri = ri−1 −
LT(ri−1)
LT( fk)

fk

where fk is a polynomial in E such that LT( fk)|LT(ri−1). Since ri−1 is a monomial, we have that
LT(ri−1) = ri−1 = ϕ(Pi−1, S i−1,Ti−1,Qi−1) = ϕPi−1ϕS i−1ϕTi−1ϕQi−1 where:

– ϕPi−1 only contains variables with the form lxy.
– ϕS i−1 only contains variables with the form sx.
– ϕTi−1 only contains variables with the form tx.
– ϕQi−1 only contains variables with the form qx.

Besides, we have that fk , s2
k . Otherwise, we would have that fk and ri−1 are monomials, and

LT( fk) = fk and LT(ri−1) = ri−1. Since LT( fk)|LT(ri−1) (this means in our case, fk|ri−1), we have
that ri = ri−1 −

ri−1
fk

fk = 0, and therefore i = n (but we have supposed that i < n).
Consequently, there are the following cases left:

Case fk = lxytx + txty. Since LT( fk)|LT(ri−1), we have that lxytx|ϕ(Pi−1, S i−1,Ti−1,Qi−1). Thus, we
have that lxy|ϕPi−1 and tx|ϕTi−1 . Consequently:

– ϕPi−1 is of the form ϕPi−1 = p · lxy where p is a monomial, and therefore, (x, y) ∈ Pi−1.
– ϕTi−1 is of the form ϕTi−1 = w · tx where w is a monomial, and therefore, x ∈ Ti−1.

We define:

– ϕPi = p where Pi = Pi−1 − {(x, y)}.
– ϕTi = w · txty where Ti = Ti−1 ∪ {y}.
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Therefore, we have that:

ri = ri−1 −
LT(ri−1)
LT( fk)

fk = p · w · txty · ϕS i−1ϕQi−1 = ϕ(Pi, S i−1,Ti,Qi−1)

By iv) in Definition 5.4, (Pi, S i−1,Ti,Qi−1) is directly derived from (Pi−1, S i−1,Ti−1,Qi−1).

Case fk = t2
x + tx. Since LT( fk)|LT(ri−1) and LT( fk) = t2

x, we have that t2
x |ϕ(Pi−1, S i−1,Ti−1,Qi−1).

Thus, we have that t2
x |ϕTi−1 . Consequently:

– ϕTi−1 is of the form ϕTi−1 = w·t2
x where w is a monomial. We have also that Ti−1 = T∪{x, x}.

We define:

– ϕTi = w · tx where Ti = T ∪ {x}.

Therefore, we have that

ri = ri−1 −
LT(ri−1)
LT( fk)

fk = w · tx · ϕPi−1ϕS i−1ϕQi−1 = ϕ(Pi−1, S i−1,Ti,Qi−1)

By ii) in Definition 5.4, (Pi−1, S i−1,Ti,Qi−1) is directly derived from (Pi−1, S i−1,Ti−1,Qi−1).

Case fk = tx + sx. Since LT( fk)|LT(ri−1) and LT( fk) = tx, we have that tx|ϕ(Pi−1, S i−1,Ti−1,Qi−1).
Thus, we have that tx|ϕTi−1 . Consequently:

– ϕTi−1 is of the form ϕTi−1 = w · tx where w is a monomial. We have also that x ∈ Ti−1.

The fact that fk is tx + sx, instead of previous polynomials in E involves the following facts:

– Every section in Ti−1 is locked in Pi−1. Otherwise, if y ∈ Ti−1 were not locked, we
would have that there is a section z such that (y, z) ∈ Pi−1. Consequently, we have that
LT(ly,zty+ tytz)|ri−1. Since ly,zty+ tytz is in a lower position on the list E than the polynomial
tx + sx, the polynomial fk could not be tx + sx.

– The section x is not repeated in Ti−1. Otherwise, we would have that LT(t2
x + tx) = t2

x |ri−1,
and since t2

x + tx is in a lower position on the list E than the polynomial tx + sx, the
polynomial fk could not be tx + sx.

We define:

– ϕTi = w where Ti = Ti−1 − {x}.
– ϕS i = ϕS i−1 · sx where S i = S i−1 ∪ {x}.

Therefore, we have that:

ri = ri−1 −
LT(ri−1)
LT( fk)

fk = ϕPi−1ϕS i−1 · sx · w · ϕQi−1 = ϕ(Pi−1, S i,Ti,Qi−1)

By iii) in Definition 5.4, (Pi−1, S i,Ti,Qi−1) is directly derived from (Pi−1, S i−1,Ti−1,Qi−1).

Case fk = qx + tx. Since LT( fk)|LT(ri−1), we have that LT(qx + tx) = qx|ϕ(Pi−1, S i−1,Ti−1,Qi−1).
Thus, we have that qx|ϕQi−1 . Consequently:

– ϕQi−1 is of the form ϕQi−1 = w · qx where w is a monomial. We have also that x ∈ Qi−1.

The fact that fk is qx + tx instead of previous polynomials in E involves the following fact:
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– Ti−1 is empty. Otherwise, if y ∈ T , we would have that LT(ty + sy)|ri−1, and since ty + sy

is in a lower position on the list E than qx + tx, fk could not be qx + tx.

We define:

– ϕTi = tx where Ti = {x}.
– ϕQi = w where Qi = Qi−1 − {x}.

Therefore, we have that:

ri = ri−1 −
LT(ri−1)
LT( fk)

fk = ϕPi−1ϕS i−1 · x · w = ϕ(Pi−1, S i−1,Ti,Qi)

By i) in Definition 5.4, (Pi−1, S i−1,Ti,Qi) is directly derived from (Pi−1, S i−1,Ti−1,Qi−1).

ii) Given rn , 0, by applying the same line of reasoning we can establish the existence of
(Pn, S n,Tn,Qn) such that rn = ϕ(Pn, S n,Tn,Qn) and (P, S ,T,Q) { (Pn, S n,Tn,Qn). Besides,
for every fk ∈ E, we have that LT( fk) ̸ |rn. Consequently:

– Qn = ∅. Otherwise, we would have that LT(qx + tx)|rn for some section x
– Tn = ∅. Otherwise, if y ∈ Tn, we would have that LT(ty + sy)|rn.
– S n does not have repeated elements. Otherwise, if x were repeated in S n, we would have that

LT(s2
x)|rn.

■

Theorem 6.3. Let (P, S ,T,Q) be an extended interlocking problem for a railway network E. We have
that:

(P, S ,T,Q) is in a dangerous situation⇔ NR(ϕ(P, S ,T,Q),E) = 0

Proof.- Let r0, r1 . . . rn be the first intermediate remainders of NR(ϕ(P, S ,T, ∅),E).
⇒) We will prove that, if NR(ϕ(P, S ,T,Q),E) , 0, we have that (P, S ,T,Q) is not in a dangerous

situation.
Let us consider that NR(ϕ(P, S ,T,Q),E) , 0. By ii) in Lemma 6.2, we have that there is an

extended interlocking problem (Pn, S n, ∅, ∅) such that ϕ(Pn, S n, ∅, ∅) = rn, (P, S ,T,Q) { (Pn, S n, ∅, ∅)
and S n has no repeated elements. Consequently, by Proposition 5.2, we have that (Pn, S n, ∅, ∅) is not
in a dangerous situation. By Proposition 5.4, (P, S ,T,Q) is not in a dangerous situation.
⇐) Suppose that NR(ϕ(P, S ,T,Q),E) = 0. According to Proposition 6.1, we have that rn = 0.

Let (Pn−1, S n−1,Tn−1,Qn−1) such that ϕ(Pn−1, S n−1,Tn−1,Qn−1) = rn−1. According to Definition 6.2,
we have that

rn = rn−1 −
LT(rn−1)
LT( fk)

fk

where fk is a polynomial in E such that LT( fk)|LT(rn−1).
Since rn−1 is a monomial and rn = 0, we have that fk must be a monomial and, consequently,

fk must be of the form s2
x. Consequently, s2

x|ϕS n−1 , and therefore S n−1 contains the section x
repeated. By Proposition 5.1, (Pn−1, S n−1,Tn−1,Qn−1) is in a dangerous situation. Since (P, S ,T,Q) {
(Pn−1, S n−1,Tn−1,Qn−1) (see i in Lemma 6.2), by Proposition 5.4 we have that (P, S ,T,Q) is in a
dangerous situation. ■

Corollary 6.1. Let (P,Q) be an interlocking problem for a railway network E. We have that:
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(P,Q) is in a dangerous situation⇔ NR(ϕPϕQ,E) = 0

Proof.- An interlocking problem (P,Q) can be considered as an extended interlocking problem
(P, ∅, ∅,Q) (see in Remark 5.1). This corollary is an immediate consequence of the fact that
ϕ(P, ∅, ∅,Q) = ϕPϕQ. ■

7. Implementation with CoCoA

In this section we will show how to use the Computer Algebra System CoCoA [18] to detect if an
interlocking problem is in a dangerous situation for the railway station depicted in Figure 8.

Step 1. We will define the polynomial ring A and the list E. In Example 6.1, we calculated it. In
CoCoA syntax:

use ZZ/(2)[l1_2, l2_9, l9_10, l10_11, l11_6, l2_3, l3_4, l4_5, l5_6, l6_7,

l7_8, l2_1, l9_2, l10_9, l11_10, l6_11, l3_2, l4_3, l5_4, l6_5, l7_6, l8_7,

q[1..11],t[1..11],s[1..11]],

lex;

E:=[l1_2*t[1]+t[1]*t[2], l2_9*t[2]+t[2]*t[9],

l9_10*t[9]+t[9]*t[10], l10_11*t[10]+t[10]*t[11],

l11_6*t[11]+t[11]*t[6], l2_3*t[2]+t[2]*t[3],

l3_4*t[3]+t[3]*t[4], l4_5*t[4]+t[4]*t[5],

l5_6*t[5]+t[5]*t[6], l6_7*t[6]+t[6]*t[7],

l7_8*t[7]+t[7]*t[8], l2_1*t[2]+t[2]*t[1],

l9_2*t[9]+t[9]*t[2], l10_9*t[10]+t[10]*t[9],

l11_10*t[11]+t[11]*t[10], l6_11*t[6]+t[6]*t[11],

l3_2*t[3]+t[3]*t[2], l4_3*t[4]+t[4]*t[3],

l5_4*t[5]+t[5]*t[4], l6_5*t[6]+t[6]*t[5],

l7_6*t[7]+t[7]*t[6], l8_7*t[8]+t[8]*t[7],

t[1]ˆ2+t[1], t[2]ˆ2+t[2], t[3]ˆ2+t[3], t[4]ˆ2+t[4], t[5]ˆ2+t[5], t[6]ˆ2+t[6],

t[7]ˆ2+t[7], t[8]ˆ2+t[8], t[9]ˆ2+t[9], t[10]ˆ2+t[10], t[11]ˆ2+t[11],

s[1]ˆ2, s[2]ˆ2, s[3]ˆ2, s[4]ˆ2, s[5]ˆ2, s[6]ˆ2, s[7]ˆ2,

s[8]ˆ2, s[9]ˆ2, s[10]ˆ2, s[11]ˆ2,

t[1]+s[1], t[2]+s[2], t[3]+s[3], t[4]+s[4], t[5]+s[5], t[6]+s[6], t[7]+s[7],

t[8]+s[8], t[9]+s[9], t[10]+s[10], t[11]+s[11],

q[1]+t[1], q[2]+t[2], q[3]+t[3], q[4]+t[4], q[5]+t[5], q[6]+t[6], q[7]+t[7],

q[8]+t[8], q[9]+t[9], q[10]+t[10], q[11]+t[11]];

Step 2. For the particular configuration of the railway station in Figure 9, we calculate the monomial
ϕP (see Example 6.2). In CoCoA syntax:

P:=l1_2*l9_10*l10_11*l2_3*l3_4*l11_6*l6_7*l7_8*l2_1*l11_10*l5_4*

l3_2*l6_11*l8_7*l5_6;

AIMS Mathematics Volume 9, Issue 3, 7673–7710.



7702

Step 3. For the particular placement of trains in the railway station in Figure 10, we calculate the
monomial ϕQ (see Example 6.2). In CoCoA syntax:

Q:=q[1]*q[10];

Step 4. In order to detect if the situation is dangerous, we need to check if NR(ϕPϕQ,E) = 0 (see
Corollary 6.1). In CoCoA syntax:

NR(P*Q,E)=0;

As the output of CoCoA is “false”, the proposed situation is safe.

Let us consider that a new train is placed in section S 8 (depicted in Figure 11). In this case, we
need first to redefine the polynomial ϕQ = q1q10q8. In CoCoA syntax:

Q:=q[1]*q[10]*q[8];

NR(P*Q,E)=0;

As the output of CoCoA is “true”, the interlocking problem is in a dangerous situation.

8. Experimental evaluation

In this section, we critically examine the effectiveness of the method proposed in this study,
contrasting it with earlier algebraic strategies. We have performed a comparative study on the duration
required to confirm the safety of a suggested scenario in large railway stations where paths may
form cycles, altering the number of sections (N) and involved trains (M). We have disregarded the
approach in [16] as it is not applicable to railway stations where paths can form cycles. The method we
propose consistently surpasses others, attributed to its worst-case linear complexity. Table 1 displays
the time necessary to evaluate the safety of various scenarios, excluding the model in [9] due to
its inadequate performance in larger stations. These times reflect the average performance over ten
different configurations (both safe and unsafe) of a railway station with N sections and M trains.

Notably, our innovative approach consistently takes less than one second to evaluate the safety of
the proposed scenario, even with a significant number of sections, outpacing other methods. The first
column corresponds to the track layout of a former Spanish railway station, with subsequent columns
representing multiple concatenations of that station. The duration accounted for by our approach
includes the four steps in Section 7, encompassing the computation of the polynomials for the topology,
configuration, and trains.
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Table 1. Comparative analysis of the time efficiency of various methods implemented for
determining the safety of a proposed scenario in specific railway stations, where the paths
may form cycles, involving N sections and M trains.

N=52 N=156 N=260 N=520 N=780
M=5 M=15 M=25 M=50 M=75

Model described in [11] 15.34 s 270.132 s > 1 h > 1h > 1h
Model described in [10] 35.46 s 397.58 s > 1 h > 1h > 1h
Model described in [12] 3.423 s 48.342 s 674.245s > 1h > 1h
Model described in [14] 0.458 s 1.320 s 3.456s > 1h > 1h
Model described in [13] 0.050 s 0.073 s 1.456s 18.356s > 1h
Our approach in CoCoA < 0.001s 0.036 0.083 s 0.164 s 0.324s

In Table 2, we focus on railway stations where paths do not form cycles. In such instances, we can
incorporate the approach in [16]. It is evident that our current approach yields rapid results, surpassing
previous methods, with the exception of [16], as it is tailored for railway stations where cycle formation
is not possible. However, as previously stated, this model [16] is not suitable for scenarios where cycles
can occur.

Table 2. Comparative analysis of the time efficiency of various methods implemented for
determining the safety of a proposed scenario in specific railway stations, where the paths
may form cycles, involving N sections and M trains.

N=52 N=156 N=260 N=520 N=780
M=5 M=15 M=25 M=50 M=75

Model described in [11] 10.23 s 250.250 s > 1 h > 1h > 1h
Model described in [10] 15.356 s 380.368 s > 1 h > 1h > 1h
Model described in [12] 1.124 s 38.292 s 554.180s > 1h > 1h
Model described in [14] 0.320 s 0.920 s 2.180s > 1h > 1h
Model described in [13] 0.020 s 0.047 s 1.038s 16.458s > 1h
Model described in [16] < 0.001s 0.015 s 0.078 s 0.156s 0.250 s
Our approach in CoCoA < 0.001s 0.028 s 0.132 s 0.187s 0.223 s

9. Conclusions

In this paper, we have introduced an innovative algebraic model that identifies dangerous situations
in any railway station. This model surpasses limitations of previous models, including those which
have circular routes. Our model provides a mathematical resolution to the interlocking problem,
achieving this in linear time. In this paper, we have defined the ‘interlocking problem’ as a safety
verification for a single run-time configuration of a station, rather than a ‘command and control’
function. This is a verification issue, not a solution problem, typically handled by an interlocking
system receiving movement authority requests.

The position of the trains within a railway station configuration is considered dangerous if the
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remainder of a specific monomial divided by a list of polynomials is zero. This finding enables the
immediate implementation of the solution of the interlocking system on a computer algebra system.

Although the paper presented has a significant limitation, namely its challenging practical
application in actual interlocking systems due to stringent certification requirements associated with
such safety-critical applications, we believe it holds considerable theoretical interest. It bridges
two seemingly disconnected fields and could prove beneficial for simulations that do not require
certification credit.

We believe that our approach holds mathematical significance and can be expanded in several
directions:

• Create a library that facilitates the creation of list E for any topology, defines switch changes
and the aspect of the color light signals through functions, and updates train movements. The
polynomials P and Q are updated through multiplication and division of monomials.
• Develop a graphical environment that enables visual design of a station and obtains the

polynomials in E, P, and Q in a computer algebra system like CoCoA.
• Extend the interlocking problem to encompass other problems related to expert systems in

railway stations, such as automatically detecting which semaphores and switches cannot be
changed because they would imply a dangerous situation. Given that our approach expresses
the interlocking problem as an algebraic system similar to those used for implementing expert
systems, we believe that our model can be seamlessly integrated into these expert systems.
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Mathematics. José Luis Galán-Garcı́a was not involved in the editorial review and the decision to
publish this article. The authors declare there are no conflicts of interest.

References
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Appendix: An algorithm with linear complexity for detecting dangerous situations in
interlocking problems

Based on the results presented in Section 5, we have developed an algorithm to identify dangerous
situations in interlocking problems. This algorithm operates iteratively, transforming the original
interlocking problem into derived extended interlocking problems X1 . . . Xn until Xn can be solved
directly. The algorithm is based on the following steps, which mirror those performed by the division
algorithm of a Computer Algebra System when representing the interlocking problem in the algebraic
terms of Section 6. For each section t in the railway station we consider:

Step 1. Check for repeated elements in Q. If any are found, output ”It is in a dangerous situation”,
otherwise return ”It is safe” (see Proposition 5.1).

Step 2. If T = ∅ and Q , ∅, apply condition i) from Definition 5.4. That is to say, consider some t ∈ Q
and update Q and T as follows:

Q := Q − {t}

T := T ∪ {t}

Step 3. After applying Steps 1 and 2, we have T , ∅. Here, we iteratively apply condition iv) from
Definition 5.4 until it can no longer be applied. That is, while there exist t ∈ T and (t, j) ∈ P, we
update P and T as follows:

P := P − {(t, j)}
If t < T then T := T ∪ { j}

As can be seen, before adding t to T , we check if t ∈ T . If t ∈ T , we do not need to add it again
because of condition ii) in 5.4.

Step 4. After applying Step 3, it is guaranteed that all sections in T are locked. Otherwise, if t ∈ T
were not locked, we would have that there exists a j such that (t, j) ∈ P (see Definition 5.1) and
we could apply Step 3. In this way, we can iteratively apply condition iii) from Definition 5.4
until it can no longer be applied. That is, while there exists t ∈ T , we proceed as follows:

• If t ∈ S , output ”It is in a dangerous situation” (see Proposition 5.1).

• Otherwise, update S and T as follows:
S := S ∪ {t}
T := T − {t}

Next, we will introduce an algorithm in pseudocode to determine whether an interlocking problem
(P,Q) is in a dangerous situation. We have assumed the following data structure to represent the sets
P, S , T , Q:

• S ,T,Q are represented by arrays of N integers (where N is the number of sections in the railway
station), denoted as S, T, and Q. The value Q[i] indicates the number of times section i is repeated
in Q.
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• In addition to T for representing T , we will consider a list of integers, Ts. We have that i ∈ Ts
if and only if i ∈ T . Let us consider that T = {1, 1, 3}. We would have that T=[2,0,1,0] and
Ts={1,1,3}.
• P is represented by an array of list of integers, denoted as P. The value P[i] contains a list of

integers such that j ∈ P[i] if and only if (i, j) ∈ P.

We will consider that there are two operations Push and Pop that add and remove elements from
the lists. Both operations run in O(1). Additionally, we will consider that there is a function to check
if the list is empty that also runs in O(1).

The presented algorithm makes use of some auxiliary variables: a list of integers, denoted as L; and
some integer variables, denoted as t, i,j, and t2. We assume that N is a variable indicating the number
of sections in the railway station.

(1) For t=1 to N

(2) if Q[t]>1

(3) return true //it is in a dangerous situation

(4) else if Q[t]=1

(5) Q[t]:=0;

(6) T[t]:=1; Push(Ts,t) //Condition i) in ‘Derived from’ Relation

(7) Push(L,t)

(8) While L is not empty

(9) i:=Pop(L);

(10) While P[i] is not empty

(11) j:=Pop(P[i]); //Condition iv) in ‘Derived from’ Relation

(12) if T[j]=0 //Condition ii) in ‘Derived from’ Relation

(13) T[j]:=1; Push(Ts, j)

(14) Push(L, j)

(15) While Ts is not empty

(16) t2:=Pop(Ts); Ts[t2]:=0;

(17) if S[t2]>0

(18) return true //it is in a dangerous situation

(19) else

(20) S[t2]:=1 // Condition iii) in ‘Derived from’ Relation

(21) return false //it is not in a dangerous situation

As may be seen:

Lines (2,3). They apply Step 1 described above. Initially, S = ∅.

Lines (5–6). They apply Step 2 described above.

Lines (7–14). These lines implement Step 3 as described above. A list L is utilized, which contains
the sections that the algorithm has yet to examine for being locked. Lines (8-12) apply condition
iv) in Definition 5.4. When P[i] is empty, it indicates that section i is locked. By the time the
while loop in line (8) concludes, the list L is empty, ensuring that all sections in T are locked.

Lines (13–18). They apply Step 4 described above.
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Line (21). When the for loop concludes, we have that T = ∅ and Q = ∅. Moreover, there are no
repeated elements in S . Consequently, the interlocking problem is not in a dangerous situation
(see Proposition 5.2).

Although it might seem that the algorithm is O(N · |P|) due to the nested while loops, upon careful
examination, we can demonstrate that it operates in O(N):

• Lines (5–7) are executed at most N times.
• Lines (11–14) are executed at most K times (counting all the iterations for all values of t). This

fact is derived because the algorithm never add elements to P and it removes one element from P
in line (11). Since P contains K elements, these lines can only be run at most K times.
• Line (9) is executed at most N + K times (counting all the iterations for all values of t). This fact

is derived because the algorithm adds one element to L in line (7) and line (14). It removes an
element from L in line (9). Since line (7) is executed at most N times and line (14) is executed at
most K times, line (9) can only be run at most N + K times.
• Lines (16-29) are executed at most N + K times (counting all the iterations for all values of t).

This fact is derived because the algorithm adds one element to Ts in lines (6) and (13) and it
removes one element from Ts in line (16). Since line (6) is executed at most N times, and line
(13) is executed at most K times, lines (16–29) can only be run at most N + K times.

Since K is O(N) (see Remark 4.1), we have that the algorithm operates in O(N).
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