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1. Introduction

Among the essential fields of mathematics is topology. Numerous related structures, including
ideal [1], filter [2], grill [3], etc., have been introduced as a result of its numerous generalized
applications in both science and social science. The duality of a filter is the concept of an ideal.

An ideal space is a topic that has been researched by Kuratowski [2] and Vaidyanathaswamy [4].
An idealJ on a topological space (Z, ρ) is a collection of nonempty subsets of Z that fulfills: (i) H ∈ J
and K ⊆ H implies K ∈ J and (ii) H ∈ J and K ∈ J implies H ∪ K ∈ J , see [1, 5].

Grill is one of the traditional structures in topology that is comparable to ideal. In 1947, Chóquet
proposed the term of grill (see [3]).

A family G of 2Z is a grill on Z if G fulfills the requirements listed here:

(1) ∅ < G,
(2) if N ∈ G and N ⊆ M, then M ∈ G,
(3) if N ∪ M ∈ G, then N ∈ G or M ∈ G.

Further information can be found in [6–9].
Primal in topological spaces have been considered in 2022 by Acharjee and etc. as the dual concept

of a grill (see [10]). This topic has won its importance aspects of interest. The separation axioms
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in primal topological space have not considered by the authors. These structures are widely used
to enlarge abstract concepts, and they also provide an essential tool for addressing certain practical
problems, particularly those pertaining to enhancing accuracy measurements and rough approximation
operators.

By [10], we know that a primal P on a topological space (Z, ρ) is a collection P ⊆ 2Z, such that the
below conditions hold:

(1) Z < P,
(2) if M ∩ N ∈ P, then N ∈ P or M ∈ P,
(3) if N ∈ P and M ⊆ N, then M ∈ P.

A primal space (Z, ρ) is a topological space (Z, ρ) with primal P. The notation (Z, ρ,P) is named a
primal topological space or a primal space.

Throughout this paper, (Z, ρ) and (X, σ) (briefly, Z and X) indicate topological spaces unless
specified otherwise. For any A ⊆ Z, Cl(A) = A, Int(A) and Ac denote the closure, interior and
complement of A, respectively. The family of all open neighborhoods of a point x of Z is symbolized
by ρ(x). Also, the set of all closed subsets inside a given space (Z, ρ) will be denoted by ρc.

2. Preliminaries

We now obtain the following ideas and results, which the next part will require:

Definition 2.1. [10] Let (Z, ρ,P) be a primal space. We consider a map (·)� : 2Z → 2Z as A�(Z, ρ,P) =

{x ∈ Z : (∀ U ∈ ρ(x))(Ac ∪Uc ∈ P)} for any subset A of Z. We can also write A�
P

= A� as A�(Z, ρ,P) to
define the primal in accordance with our specifications.

Corollary 2.1. [10] A family P ⊆ 2Z is a primal on Z if and only if the conditions below hold:

(1) Z < P,
(2) if N < P and M < P, then M ∩ N < P,

(3) if N < P and N ⊆ M, then M < P.

Definition 2.2. [10] Let (Z, ρ,P) be a primal space. Define a map Cl� : 2Z → 2Z as Cl�(A) = A∪ A�
P

,
where A is any subset of Z.

Definition 2.3. [10] Let (Z, ρ,P) be a primal space. Then, the collection ρ� = {A ⊆ Z | Cl�(Ac) = Ac}

is a topology on Z called primal topology on Z.

Lemma 2.1. [10] Let (Z, ρ,P) be a primal space. If Ac < P, then A� = ∅.

Corollary 2.2. [11] Let (Z, ρ,P) be a primal space and let A, B ⊆ Z such that A ∈ ρ. Then, A ∩ B� =

A ∩ (A ∩ B)� ⊆ (A ∩ B)�.

Lemma 2.2. [11] Let (Z, ρ,P) be a primal space. Then, the family BP = {A∩ P : A ∈ ρ and P < P} is
a base for the primal topology ρ� on Z.

Lemma 2.3. [11] Let (Z, ρ,P) be a primal space. Then, Cl(A�) = A� for all A ⊆ Z. If ρc \ {Z} ⊆ P,
we get that U ⊆ U� and Cl(U) = U� for all U ∈ ρ.
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Lemma 2.4. [11] Let (Z, ρ,P) be a primal space and let H,K ⊆ Z such that Kc < P. Then,

(H ∪ K)� = H� = (H \ K)�.

More about of primal spaces and more details of ρ� can be found in [9–11, 15].

3. P-Hausdorff spaces

Definition 3.1. A primal space (Z, ρ,P) is said to be P-Hausdorff if for every distinct points a, b ∈ Z,
there exist H,K ∈ ρ such that a ∈ H, b ∈ K and [H ∩ K]c < P.

Since Z < P, then every Hausdorff space is P-Hausdorff. However, the following examples show
that the converse is not true.

Example 3.1. Consider the set of real numbers R. Fix p ∈ R and define εp as follows:

U ∈ εp ⇐⇒ U = R or p < U.

Define P such that M ∈ P if and only if p < M. Then, (R, εp,P) is P-Hausdorff but not Hausdorff. To
show that, let x, y ∈ R such that x , y.
Case 1. Either x = p or y = p. Let x = p. Then, choose H = R and K = {y}. Then, [H ∩ K]c =

[R ∩ {y}]c = [{y}]c = R \ {y}. Since p ∈ R \ {y}, then R \ {y} < P.
Case 2. Neither x = p nor y = p. Then, choose H = {x} and K = {y}. Hence, [H ∩ K]c = [{x} ∩ {y}]c =

[∅]c = R. Since R < P, then (R, εp,P) is P-Hausdorff but not Hausdorff since the only open set
contains p in εp is R.

Example 3.2. Let Z = {a, b, c}, ρ = {Z, ∅, {a}, {b}, {a, b}, {b, c}} and P = {∅, {b}, {c}, {b, c}}. (Z, ρ,P) is
not Hausdorff since b , c and no any pair of disjoint open sets containing b and c respectively. On the
other hand, (Z, ρ,P) is P-Hausdorff as shown in the Table 1.

Table 1. Details on P-Hausdorff.

a , b H = {a} and K = {b} [H ∩ K]c = Z Z < P

a , c H = {a} and K = {b, c} [H ∩ K]c = Z Z < P

b , c H = {b} and K = {b, c} [H ∩ K]c = {a, c} {a, c} < P

Corollary 3.1. Let (Z, ρ,P) be a primal space such that P = 2Z \ {Z}. Then, (Z, ρ,P) is Hausdorff if
and only if (Z, ρ,P) is P-Hausdorff.

Lemma 3.1. Let (Z, ρ,P) be P-Hausdorff and ρc \ {Z} ⊆ P. Then, (Z, ρ,P) is Hausdorff.

Proposition 3.1. Let (Z, ρ,P) be a primal space. Then, the following statements are equivalent.

(1) (Z, ρ,P) is P-Hausdorff.
(2) If a ∈ Z, then for each a , b, there is A ∈ ρ such that a ∈ A and b < A�.
(3) For any a ∈ Z, the family

⋂
{A� : A ∈ ρ(a)} is either ∅ or {a}.
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Proof. (1) =⇒ (2): Let a, b ∈ Z 3 a , b. Then there exist A, B ∈ ρ such that a ∈ A, b ∈ B and
[A ∩ B]c < P. Since [A ∩ B]c < P by Lemma 2.1 implies that [A ∩ B]� = ∅ and so by Corollary 2.2
A� ∩ B = ∅. Thus, b < A�.

(2) =⇒ (3): Let a, b ∈ Z 3 a , b, by hypothesis there is A ∈ ρ such that a ∈ A and b < A�. This
implies that b < ∩{A� : A ∈ ρ(a)} and so

⋂
{A� : A ∈ ρ(a)} is either ∅ or {a}.

(3) =⇒ (1): Let a, b ∈ Z such that a , b. By the hypothesis b <
⋂
{A�|A ∈ ρ(a)}, we can say that

b < A� for some A ∈ ρ(a). Therefore, there is B ∈ ρ(b) such that [A ∩ B]c < P so that, (Z, ρ,P) is
P-Hausdorff. �

Proposition 3.2. Let (Z, ρ,P) be a primal space. Then, (Z, ρ,P) is P-Hausdorff if and only if (Z, ρ�,P)
is P-Hausdorff.

Proof. Let (Z, ρ,P) be P-Hausdorff. Since ρ ⊆ ρ�, then (Z, ρ�,P) is P- Hausdorff. Conversely, assume
that (Z, ρ�,P) is P- Hausdorff. Let a, b ∈ Z such that a , b. Then, there exist A, B ∈ ρ� such that
a ∈ A, b ∈ B and [A ∩ B]c < P. Hence, by Lemma 2.2 there exist U,V ∈ ρ and P1, P2 < P such that
U ∩ P1 ⊆ A and V ∩ P2 ⊆ B. Then, [A ∩ B]c ⊆ [U ∩ V]c. Since [A ∩ B]c < P and [A ∩ B]c ⊆ [U ∩ V]c,
then [U ∩ V]c < P. Hence, (Z, ρ�,P) is P-Hausdorff. �

Definition 3.2. Let (Z, ρ,P) be a primal space. Let A ⊆ Z be any set such that A < P. We define the
subprimal space of ρ as follows:

PA = {A ∩ N : N ∈ P} = {N ∈ P : N ⊆ A}.

Proposition 3.3. Let (Z, ρ,P) be P-Hausdorff and let A ⊆ Z such that A < P. Then, (A, ρA,PA) is
PA-Hausdorff.

Proof. Let a and b be two distant points in A. Since (Z, ρ,P) is P-Hausdorff, then there are H,K ∈ ρ
such that a ∈ H and b ∈ K with [H ∩ K]c < P. Hence, a ∈ A ∩ H ∈ ρA and b ∈ A ∩ K ∈ ρA with
[(A ∩ H) ∩ (A ∩ K)]c = [(H ∩ K) ∩ A]c < PA. Therefore, (A, ρA,PA) is PA-Hausdorff. �

4. P-regular spaces

Definition 4.1. A primal space (Z, ρ,P) is said to be P-regular if for every H ∈ ρc and a < H, there
exist A, B ∈ ρ such that a ∈ A, A ∩ B = ∅ and [H \ B]c < P.

If P = 2Z \ {Z}, then the concepts of regularity and P-regularity are equivalent. Moreover, every
regular is P-regular but the converse is not true as shown in the following examples:

Example 4.1. Consider the set of the real numbers with co-finite topology (R,CF ). Let P f be the
primal of all subsets of the real numbers whose complement is not finite. Then, (R,CF ,P f ) is not
regular because the co-finite topology has no disjoint nonempty open sets. For P-regularity, let H ⊆ R
and let x ∈ R \ H. As H is a closed proper subset of R, then H is finite. Let A, B ∈ CF such that x ∈ A
and A ∩ B = ∅. Then, B = ∅ and hence [H \ B]c = Hc < P f because H is finite.

Example 4.2. Let Z = {a, b, c}. Define ρ = {∅,Z, {a}, {c}, {a, c}} and P = {∅, {c}, {b}, {c, b}}. Let
H = {b, c}. Then, it is closed set and a < H. Hence, it is clear that (Z, ρ,P) is not regular but it is
P-regular as shown in the Table 2.

AIMS Mathematics Volume 9, Issue 3, 7662–7672.



7666

Table 2. Details on P-regularity.

H = {b, c} a < H N = {a} and M = {c} [H \ M]c = {a, c} < P
H = {a, b} c < H N = {c} and M = {a} [H \ M]c = {a, c} < P
H = {b} a < H N = {a} and M = {c} [H \ M]c = {a, c} < P

c < H N = {c} and M = {a} [H \ M]c = {a, c} < P

Theorem 4.1. Let (Z, ρ,P) be a primal space . Then, the following statements are equivalent:

(1) (Z, ρ,P) is P-regular.
(2) For each a ∈ Z and a ∈ U ∈ ρ, there is A ∈ ρ containing a such that [Cl(A) \ U]c < P.
(3) For each a ∈ Z and F ∈ ρc not containing a, there is A ∈ ρ containing a such that [Cl(A)∩F]c < P.

Proof. (1) =⇒ (2): Let U ∈ ρ containing a. Then, a < Z \ U = Uc which is closed. Since (Z, ρ,P) is
P-regular, there exist A, B ∈ ρ such that a ∈ A, A ∩ B = ∅ and [Uc \ B]c < P. Let Uc \ B = I. Then,
Uc ⊆ B ∪ I. Now, A ∩ B = ∅ and A ⊆ Bc, so Cl(A) ⊆ Bc and Cl(A) \ U ⊆ Bc ∩ Uc ⊆ Bc ∩ (B ∪ I) =

Bc ∩ I ⊆ I = Uc \ B. Therefore, [Uc \ B]c ⊆ [Cl(A) \U]c. By Corollary 2.1, we have [Cl(A) \U]c < P.
(2) =⇒ (3): Let a < F ∈ ρc. Then, a ∈ Fc which is open set. Hence, there exist A ∈ ρ such that

a ∈ A and [Cl(A) \ Fc]c < P which implies that [Cl(A) ∩ F]c < P.
(3) =⇒ (1): Let a ∈ Z and F ∈ ρc such that a < F. Then, there exists A ∈ ρ such that a ∈ A and

[Cl(A) ∩ F]c < P. Let B = [Cl(A)]c. Since Cl(A) ∈ ρc, then B = (Cl(A))c ∈ ρ and A ∩ B = ∅. As
[Cl(A) ∩ F]c < P, then [F \ (Cl(A))c]c = [F \ B]c < P. Hence, (Z, ρ,P) is P-regular. �

We now have the corollary that follows.

Corollary 4.1. Let (Z, ρ,P) be a primal space and let ρc \ {Z} ⊆ P. Then, the following statements are
equivalent.

(1) (Z, ρ,P) is P-regular.
(2) For each a ∈ Z and a ∈ U ∈ ρ, there is A ∈ ρ containing a such that [A� \ U]c < P.
(3) For each a ∈ Z and F ∈ ρc not containing a, there is A ∈ ρ containing a such that [A� ∩ F]c < P.

Proposition 4.1. Let (Z, ρ,P) be P-regular and let A ∈ ρ. Then, there are B ∈ ρ and Hc < P such that
a ∈ B ⊆ Cl(B) ⊆ A ∪ H for all a ∈ A.

Proof. Let a ∈ A ∈ ρ. Since a < Ac which is a closed set, there exist B,U ∈ ρ such that B ∩ U = ∅,
a ∈ B and [Ac \ U]c < P. Let H = Ac \ U = Ac ∩ Uc = Uc \ A. Then, a ∈ B ⊆ Uc = A ∪ H and so
a ∈ B ⊆ Cl(B) ⊆ A ∪ H. �

Theorem 4.2. Let (Z, ρ,P) be a P-regular space and let z1, z2 ∈ Z such that z1 , z2. Then, either
Cl({z1}) = Cl({z2}) or [Cl({z1}) ∩Cl({z2})]c < P.

Proof. Let z1 ∈ Cl({z2}) and z2 ∈ Cl({z1}). Then Cl({z1}) ⊆ Cl(Cl({z2})) = Cl({z2}) ⊆ Cl(Cl({z1})) =

Cl({z1}) and so Cl({z1}) = Cl({z2}). Suppose b < Cl({z1}). Since (Z, ρ,P) is a P-regular, then by
Theorem 4.1 (3) there exists V ∈ ρ containing z2 such that [Cl(V) ∩ Cl({z1})]c < P. Since z2 ∈ V , then
Cl({z2}) ∩ Cl({z1}) ⊆ Cl(V) ∩ Cl({z1}), which implies that [Cl(V) ∩ Cl({z1})]c ⊆ [Cl({z2}) ∩ Cl({z1})]c

and [Cl(V) ∩Cl({z1})]c < P. Hence, [Cl({z1}) ∩Cl({z2})]c < P. �
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Theorem 4.3. If the primal space (Z, ρ,P) is P-regular, then (Z, ρ�,P) is P-regular.

Proof. Let A be ρ�-closed and z < A. Since Z \ A is a ρ�-open set and z ∈ Z \ A, there exist B ∈ ρ and
I < P such that z ∈ B ∩ I ⊆ Z \ A. As (Z, ρ,P) is primal regular, there exists C ∈ ρ such that z ∈ C
and [Cl(C) \ B]c < P by Theorem 4.1 (2). Let Cl(C) \ B = J. Then, Cl(C) \ J ⊆ B ⊆ (Z \ A) ∪ Ic and
Cl(C) \ (Z \ A) = Cl(C) ∩ A ⊆ J ∪ Ic. Hence, [J ∪ Ic]c = Jc ∩ I ⊆ [Cl(C) ∩ A]c ⊆ [Cl�(C) ∩ A]c. Since
Jc ∩ I < P, we have [Cl�(C)∩ A]c < P and since C is also ρ�-open set by Theorem 4.1 (3), (Z, ρ�,P) is
P-regular. �

The converse of Theorem 4.3 is not right as shown in the following examples:

Example 4.3. Let (R, εp,P) be defined as in Example 3.1. (R, εp,P) is not P-regular. To show that, let
H = {p} and let a ∈ R such that a , p. Now suppose that A, B ∈ εp such that a ∈ A and A ∩ B = ∅

which implies that B , R.
Then, [H \ B]c = [H ∩ Bc]c = [{p}]c = R \ {p} ∈ P. Hence, (R, εp,P) is not P-regular.

Now we want to prove that (R, ε�p,P) is P-regular.
We know that ε�p = {A ⊆ R | Cl�(Ac) = Ac}, where Cl�(A) = A ∪ A�. Let A ⊆ R be any set. Then, there
are two cases:
Case 1. p ∈ A. Hence, A� = {x ∈ R | Uc ∪ Ac ∈ P, ∀U ∈ εp(x)}. Uc ∪ Ac ∈ P if and only if
p < Uc ∪ Ac which implies that p < Uc and p < Ac. Thus, p ∈ U ⇒ U = R which is the only open set
containing p. Hence, A� = {p}. Since p ∈ A, then Cl�(A) = A which means that Ac ∈ ε�p.
Case 2. p < A. Hence, A� = {x ∈ R | Uc ∪ Ac ∈ P, ∀U ∈ εp(x)}. Since p < A, then p ∈ Ac which
implies that p ∈ Ac ∪ Uc for every U ∈ εp. Therefore, Ac ∪ Uc < P for all U ∈ εp. Thus, A� = ∅, and
hence Cl�(A) = A which means that Ac ∈ ε�p. We conclude that ε�p = 2R. Thus, (R, ε�p,P) is P-regular.

Example 4.4. Let Z = {a, b, c}, ρ = {Z, ∅, {a}, {b}, {a, b}, {b, c}} and P = {∅, {a}, {b}, {a, b}}. Then,
ρ� = {Z, ∅, {a}, {b}, {a, b}, {b, c}, {c}, {a, c}}. Then, (Z, ρ�,P) is P-regular. Let H = {c} which is a closed
set and b < H. Then, if A, B are disjoint open sets such that b ∈ A, we have that either A = {b} and
B = {a} or A = {b, c} and B = {a}. In both cases, we have [H \ B]c ∈ P which implies that (Z, ρ,P) is
not P-regular.

Theorem 4.4. Let (Z, ρ�,P) be P-regular. If ρc \ {Z} ∈ P, then (Z, ρ,P) is P-regular.

Proof. Let A ∈ ρc and z < A. Then, A is ρ�-closed set. Hence, there is a ρ�-open set B containing z such
that [B� ∩ A]c < P by Corollary 4.1 (3). Since B is a ρ�-open set containing z, there exist U ∈ ρ and
I < P such that z ∈ U∩ I = U \ Ic ⊆ B. Hence, by Lemma 2.4 (U \ Ic)� = U� ⊆ B� and U�∩A ⊆ B�∩A.
Also, [B�∩A]c ⊆ [U�∩A]c and [B�∩A]c < P. Then, we have that [U�∩A]c < P. By Corollary 4.1 (3)
(Z, ρ,P) is P-regular. �

Theorem 4.5. Let (Z, ρ,P) be P-regular and Y < P. Then, (Y, ρY ,PY) is P-regular.

Proof. Let B ∈ ρc
Y and y ∈ Y such that y < B. Then, B = Y ∩ A where A ∈ ρc such that y < A.

Since (Z, ρ,P) is P regular, there exist M,N ∈ ρ such that M ∩ N = ∅, y ∈ M and [A \ N]c < P.
Now, let M1 = Y ∩ M and N1 = Y ∩ N. Then, M1,N1 ∈ ρY , y ∈ M1 and M1 ∩ N1 = (Y ∩ M) ∩
(Y ∩ N) = Y ∩ (M ∩ N) = ∅. Suppose that A \ N = I. Then, Ic < P and A ⊆ I ∪ N. Thus,
B = Y∩A ⊆ Y∩ (I∪N) = (Y∩ I)∪N1, which implies that B\N1 ⊆ Y∩ I and hence [Y∩ I]c ⊆ [B\N1]c.
Since Y ∩ Ic < PY and Y ∩ Ic = [Y ∩ I]c ∩ Y ⊆ [Y ∩ I]c ⊆ [B \ N1]c, so that [B \ N1]c < PY . Thus,
(Y, ρY ,PY) is P-regular. �
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Definition 4.2. Let (Z, ρ,P) be a primal space and let Z has a property P. We say that P is a primal
topological property if every homeomorphic image for Z has P. That is, if f : (Z, ρ,P) −→ (Y, τ, f (P))
is a homemorphism and (Z, ρ,P) has a property P, then (Y, τ, f (P)) has the property P.

Theorem 4.6. If the primal space (Z, ρ,P) is P-regular and f : (Z, ρ,P) → (Y, τ, f (P)) is a
homeomorphism, then (Y, τ, f (P)) is P- regular. On other word, P-regularity is a primal topological
property.

Proof. Let B ∈ τc and y ∈ Y such that y < B. Let z = f −1(y). Since f is continuous, f −1(B) ∈ ρc not
containing z. Since (Z, ρ,P) is primal regular, there exist A,C ∈ ρ such that A ∩ C = ∅, z ∈ C and
[ f −1(B)\A]c < P. Let I = f −1(B)\A. Then, f −1(B) ⊆ A∪ I and B = f ( f −1(B)) ⊆ f [A∪ I] ⊆ f (A)∪ f (I).
Hence, B\ f (A) ⊆ f (I) and since f is homeomorphism, we have f (Ic) ⊆ [ f (I)]c ⊆ [B\ f (A)]c. Moreover,
f (Ic) < f (P), then [B\ f (A)]c < f (P). Since f (C)∩ f (A) = ∅ such that y ∈ f (C) and [B\ f (A)]c < f (P),
then (Y, τ, f (P)) is P-regular with respect to f (P). �

Next example shows that Theorem 4.6 does not necessarily hold if the primal topological space
defined on Y was different from f (P).

Example 4.5. Let (Z, ρ,P1) be defined as in Example 4.2. Let Y = {1, 2, 3}. Define τ =

{Y, ∅, {1}, {3}, {1, 3}} and P2 = {∅, {1}, {3}, {1, 3}}. Let f : (Z, ρ,P1) −→ (Y, τ,P2) be defined as
f (a) = 1, f (b) = 2, and f (c) = 3. Then, Z � Y. Note that P2 , f (P1). We know that (Z, ρ,P1) is P-
regular as shown in Example 4.2. However, (Y, τ,P2) is not P-regular. To show that, let H = {1, 2} ∈ τc

and 3 < H. Let A, B ∈ τ to be any open sets such that 3 ∈ A and A ∩ B = ∅. Then, we have the
following cases:
Case 1. A = {1, 3} and B = ∅. Then, [H \ B]c = Hc = {3} ∈ P2.
Case 2. A = {3} and B = ∅. Then, [H \ B]c = Hc = {3} ∈ P2.
Case 3. A = {3} and B = {1}. Then, [H \ B]c = [{2}]c = {1, 3} ∈ P2.

Definition 4.3. A primal space (Z, ρ,P) is said to be P-paracompact if every open coverU of Z has a
locally finite open refinementV such that

⋃
V =

⋃
{H : H ∈ V} < P.

Theorem 4.7. If a primal space (Z, ρ,P) is P-paracompact and Hausdorff, then (Z, ρ,P) is P-regular.

Proof. Let b < A ∈ ρc. For each a ∈ A, there exist Ua ∈ ρ(b) and Va ∈ ρ(a) such that Ua ∩ Va = ∅.
Then, b < Cl(Va). Let U = {Va : a ∈ A}

⋃
{Z \ A} is an open cover of Z. Hence, there exist a locally

finite open refinement V = {V∗a : a ∈ A}
⋃
{W} such that V∗a ⊆ Va for each a ∈ A, W ⊆ {Z \ A}, and⋃

V < P. Let U = {Z \ {
⋃

Cl(V∗a)} : a ∈ A} and V =
⋃
{V∗a : a ∈ A}. Then, U ∩ V = ∅, b ∈ U and⋃

V = W ∪ V ⊆ (Z \ A) ∪ V = Ac ∪ V = [A \ V]c. Since
⋃
V < P, then [A \ V]c < P. Hence, (Z, ρ,P)

is P-regular. �

5. P-normal spaces

Definition 5.1. A primal space (Z, ρ,P) is said to be P-normal if for every disjoint closed sets H,K ∈
ρc, there are A, B ∈ ρ such that A ∩ B = ∅, [H \ A]c < P and [K \ B]c < P.

If P = 2Z \ {Z}, then the normality and P-normality are equivalent. Moreover, every normal is
P-normal but the converse is not true as shown in the following example.
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Example 5.1. Let Z = {a, b, c, d}, ρ = {∅,Z, {c}, {d}, {b, c}, {a, c, d}, {b, c, d}} and P =

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Let H = {a} and F = {b} which are disjoint closed set
and it is clear that (Z, ρ,P) is not normal but it is P-normal as shown in the Table 3.

Table 3. Details on P-normality.

H = {a, d} F = {b} A = {d} and B = {b, c} (H \ A)c = {b, c, d} < P
and (F \ B)c = Z < P

H = {a} F = {b} A = {d} and B = {b, c} (H \ A)c = {b, c, d} < P
and (F \ B)c = Z < P

Here is an example to show that P-normality doesn’t imply P-regualrity.

Example 5.2. Let (R, εp,P) be as defined in Example 3.1. Let H,K ∈ εc
p such that H ∩ K = ∅. Then,

either H = ∅ or K = ∅ since if ∅ , F ∈ εc
p, then p ∈ F. Without loss of generality, suppose that H = ∅

and K , ∅ which implies that p ∈ K. To show that (R, εp,P) is p-normal, choose A = ∅ and B = R.
Then, A ∩ B = ∅, [H \ A]c = [∅]c = R < P and [K \ B]c = [∅]c = R < P. Hence, (R, εp,P) is P-normal
but not P-regular as shown in Example 4.3.

Theorem 5.1. Let (Z, ρ,P) be a primal space. Then, the following are equivalent.

(1) Z is P-normal.
(2) For every F ∈ ρc and U ∈ ρ such that F ⊆ U, there is B ∈ ρ such that [Cl(B) \ U]c < P and

[F \ B]c < P.
(3) For each H,K ∈ ρc such that H∩K = ∅, there is A ∈ ρ such that [H\A]c < P and [Cl(A)∩K]c < P.

Proof. (1) =⇒ (2): Let F ∈ ρc and U ∈ ρ such that F ⊆ U. Then, Z \ U ∈ ρc and F ∩ (Z \ U) = ∅.
Thus, there exist A, B ∈ ρ such that A ∩ B = ∅, [F \ B]c < P and [(Z \ U) \ A]c < P. Now, since
A ∩ B = ∅ implies that Cl(B) ⊆ Z \ A and so (Z \ U) ∩ Cl(B) ⊆ (Z \ U) ∩ (Z \ A) which is equivalent
to [Cl(B) \ U] ⊆ [(Z \ U) \ A] and hence [(Z \ U) \ A]c ⊆ [Cl(B) \ U]c. Since [(Z \ U) \ A]c < P, then
[Cl(B) \ U]c < P.

(2) =⇒ (3): Let H,K ∈ ρc such that H ∩ K = ∅ and hence H ⊆ Z \ K. Then, there is A ∈ ρ such that
[Cl(A) ∩ K]c = [Cl(A) \ (Z \ K)]c < P and [H \ A]c < P.

(3) =⇒ (1): Let H,K ∈ ρc such that H ∩ K = ∅. Then, there is A ∈ ρ such that [H \ A]c < P and
[Cl(A)∩ K]c < P. Now [Cl(A)∩ K]c < P implies that [K \ (Z \Cl(A))]c < P. If we let B = (Z \Cl(A)),
then B ∈ ρ such that [K \ B]c < P and A ∩ B = A ∩ [Z \Cl(A)] = ∅. Hence, Z is P-normal. �

We now have the following corollary:

Corollary 5.1. Let (Z, ρ,P) be a primal space and ρc \ {Z} ⊆ P. Then, the following statements are
equivalent.

(1) Z is P-normal.
(2) For every F ∈ ρc and U ∈ ρ such that F ⊆ U, there is B ∈ ρ such that [B� \ U]c < P and

[F \ B]c < P.
(3) For each H,K ∈ ρcsuch that H ∩ K = ∅, there is A ∈ ρ such that [H \ A]c < P and [A� ∩ K]c < P.
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Theorem 5.2. Let (Z, ρ,P) be a primal space and every non improper closed set is primal element
that is ρc \ {Z} ∈ P. Let W be ρ�-open set and F = Cl�(W). Then, there is G ∈ ρ such that W ⊆ G ⊆
Cl(G) ⊆ Cl�(W) = F.

Proof. We can write W =
⋃

α∈A(Gα ∩ Iα) and (Z \ F) =
⋃

β∈B(Gβ ∩ Iβ), where {Gα : α ∈ A} and
{Gβ : β ∈ B} are subsets of ρ and {Iα < P : α ∈ A} and {Iβ < P : β ∈ B}. Now for each α ∈ A and β ∈ B
we have (Gα ∩ Iα) ∩ (Gβ ∩ Iβ) = ∅. Thus, (Iα ∩ Iβ) ⊆ [Gα ∩ Gβ]c. Since Iα, Iβ < P, then Iα ∩ Iβ < P.
Hence, for each α ∈ A and β ∈ B we get [Gα ∩Gβ]c < P and so Gα ∩Gβ = ∅. If G =

⋃
α∈A Gα it follows

that G ∩ (
⋃

β∈B Gβ) = ∅. Hence, W ⊆ G ⊆ Cl(G) ⊆ [Z \ (
⋃

β∈B Gβ)] ⊆ F = Cl�(W). �

Theorem 5.3. Let (Z, ρ,P) be a primal space and ρc \ {Z} ∈ P. Then, (Z, ρ,P) is regular if and only if
ρ is regular with respect to ρ�.

Proof. Since Cl�(A) ⊆ Cl(A) for any subset A of Z the necessity is obvious. To show the sufficiency,
assume ρ is regular with respect to ρ� and let z ∈ Z, and U ∈ ρ(z). Then ∃ V ∈ ρ�(z) 3 z ∈ V ⊆
Cl�(V) ⊆ U. By Theorem 5.2, there is G ∈ ρ(z) such that z ∈ V ⊆ G ⊆ Cl(G) ⊆ Cl�(V) ⊆ U. Hence,
(Z, ρ,P) is regular. �

Theorem 5.4. If a primal space (Z, ρ,P) is a Lindelöf and P-regular, then (Z, ρ,P) is P-normal.

Proof. Let K1,K2 ∈ ρ
c such that K1 ∩ K2 = ∅. Since (Z, ρ,P) is P-regular, then there exist Ua,V ∈ ρ

such that a ∈ Ua, Ua ∩ V = ∅ and [K2 \ V]c < P for each a ∈ K1. Hence, Cl(Ua) ∩ V = ∅ and
[K2 \ V]c = [K2 ∩ (Z \ V)]c ⊆ [Cl(Ua) ∩ K2]c. Therefore, [Cl(Ua) ∩ K2]c < P. Since the collection
{Ua∩K1 : a ∈ K1} is an open cover of K1. Since K1 is a Lindelöf subspace of Z, then K1 =

⋃
{Ui∩K1 :

i ∈ N}, which implies that K1 ⊆
⋃
{Ui : i ∈ N}. Also, [Cl(Ui) ∩ K2]c < P for all i ∈ N. Similarly,

we can get a countable collection {Ft : t ∈ N} of open sets such that K2 ⊆
⋃
{Ft : t ∈ N} and

[Cl(Ft) ∩ K1]c = Pc
t < P for all t ∈ N. For all k ∈ N, suppose that Gk = Uk \

⋃
{Cl(Ft) : t = 1, 2, ..., k}

and Hk = Vk \
⋃
{Cl(Ut) : t = 1, 2, ..., k}. Let G =

⋃
{Gk : k ∈ N} and H =

⋃
{Hk : k ∈ N}. Since

Gk,Hk ∈ ρ for all k ∈ N, then G,H ∈ ρ such that G∩H = ∅. Claim that [K1\G]c < P. Let x ∈ K1. Then,
x ∈ Um for some m ∈ N. Also, [Cl(Fk)∩K1]c = Pc

k < P for all k ∈ N implies that K1 ⊆ Pk∪ (Z \Cl(Fk))
for all k ∈ N. Since x ∈ K1, then x ∈ Pk ∪ (Z \ Cl(Fk)) for all k and so x ∈ Pk or x < Cl(Fk) for all
k. Hence, x ∈ Um \

⋃
{Cl(F j) : j = 1, 2, ...,m} or x ∈

⋂
{P j : j ∈ N} = P. Thus, Pc

j < P for all j ∈ N
which implies that Pc < P. Since x ∈ Gm, x ∈ G, then x ∈ G ∪ P. Therefore, K1 ⊆ G ∪ P and hence
Pc ⊆ [K1 \G]c < P. Similarly, we can prove that [K2 \ H]c < P. Hence, (Z, ρ,P) is P-normal. �

Theorem 5.5. If a primal space (Z, ρ,P) is P-paracompact and Hausdorff, then (Z, ρ,P) is P-normal.

Proof. Let K1,K2 ∈ ρ
c such that K1 ∩ K2 = ∅. By Theorem 4.7, we have that (Z, ρ,P) is P-regular.

Then, for each a ∈ K1, there exist Ua,Va ∈ ρ such that Ua ∩ Va = ∅, a ∈ Ua and [K2 \ Va]c < P.
Hence, the collection U = {Ua : a ∈ K1} ∪ (Z \ K1) is an open cover of Z. Since (Z, ρ,P) is P-
paracompact, there is a locally finite open refinement V = {Wa : a ∈ K1} ∪G such that Wa ⊆ Ua for
every a ∈ K1, G ⊆ Kc

1 and
⋃
V =

⋃
{A : A ∈ V} < P. Let V =

⋃
{Wa : a ∈ K1}. Hence, V ∈ ρ. Since⋃

{A : A ∈ V} < P and
⋃
{A : A ∈ V} ⊆

⋃
{A : A ∈ V} ∪ Kc

1 = [
⋃
{Wa : a ∈ K1} ∪G] ∪ Kc

1 =
⋃
{Wa :

a ∈ K1} ∪ Kc
1 = V ∪ Kc

1 = [K1 \ V]c, then [K1 \ V]c < P. For each a ∈ Z, we have Ua ∩ Va = ∅, which
implies that Cl(Ua) ⊆ Vc

a and hence Cl(Wa) ⊆ Vc
a . Then,

⋃
{Cl(Wa) : a ∈ Z} ⊆

⋃
{Vc

a : a ∈ Z}, which
implies that [K2 \Va]c ⊆

⋃
{[K2 \Va]c : a ∈ Z} ⊆ Kc

2 ∪ {
⋃
{Vc

a : a ∈ Z}}c ⊆ Kc
2 ∪ {
⋃
{Cl(Wa) : a ∈ Z}}c =

Kc
2 ∪ [Cl(V)]c = [K2 ∩Cl(V)]c < P. Hence, by (3) in Theorem 5.1, (Z, ρ,P) is P-normal. �
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6. Conclusions

Acharjee et al. [10] and Al-Omari et al. [11, 12] developed the idea of a primal topology, which
is the grill’s dual structure. Research on this topological generalization is getting more and more
intriguing. It is often recognized that one of the most helpful ideas in real analysis [13], summability
theory [14], general topology, and other fields is the ideal, dual structure of the filter. Consequently,
ideal was a motivation to present the primal structure. Our research was based on primal space regions,
and [11] covered a number of fundamental operations on primal spaces. We have introduced three
new ideas in primal spaces in this work: The P-Hausdorff, P-regularlrity, and P-normality. As a
consequence, we have defined the terms “P-Hausdorff”, “P-regular spaces”, and “P-normal spaces”
and deduced some interesting generalizations and findings about them. Furthermore, we have obtained
other theoretical outcomes that illustrate the connections between P-Hausdorff, P-regular, and P-
normal spaces. Moreover, we included other examples in addition to a few correlations. However, this
research can also be expanded in primal soft topology [15], generalized rough approximation spaces,
fuzzy primal space, infra soft topological spaces, and so on. Many characteristics and outcomes of such
research may then be deduced and drawn from it based on this notion; these would be left for future
discussions. Therefore, we plan to explore this novel idea in general topology as well as other fields.
In the future, we hope to relate this concept, if possible, to some concepts of the quantum world [16]
from the standpoint of general topology.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors are highly grateful to editors and referees for their valuable comments and suggestions
for improving the paper.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. D. Jankovic, T. R. Hamlett, New topologies from old via ideals, Am. Math. Mon., 97 (1990), 295–
310. https://doi.org/10.2307/2324512

2. K. Kuratowski, Topologie: Volume I, London: Academic Press, 1966.

3. G. Choquet, Sur les notions de filter et grille, C. R. Math. Acad. Sci. Paris, 224 (1947), 171–173.
https://doi.org/10.2307/2324512

4. R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, 1960.

5. T. R. Hamlett, D. Rose, ∗-topological properties, Int. J. Math. Math. Sci., 13 (1990), 507–512.
https://doi.org/10.1155/S0161171290000734

AIMS Mathematics Volume 9, Issue 3, 7662–7672.

http://dx.doi.org/https://doi.org/10.2307/2324512
http://dx.doi.org/https://doi.org/10.2307/2324512
http://dx.doi.org/https://doi.org/10.1155/S0161171290000734


7672

6. A. Al-Omari, T. Noiri, On ΨG-sets in grill topological spaces, Filomat, 25 (2011), 187–196.
https://doi.org/10.2298/FIL1102187A

7. B. Roy, M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33 (2007),
771–786.

8. S. Modak, Topology on grill-filter space and continuity, Bol. Soc. Parana. Mat., 13 (2013), 219–
230. https://doi.org/10.5269/bspm.v31i2.16603

9. H. Al-Saadi, H. Al-Malki, Generalized primal topological spaces. AIMS Math., 8 (2023), 24162–
24175. https://doi.org/10.3934/math.20231232
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