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Abstract: Motivated by the fact that the fuzzy quasi-normed space provides a suitable framework for 

complexity analysis and has important roles in discussing some questions in theoretical computer 

science, this paper aims to study the nearest point problems in fuzzy quasi-normed spaces. First, by 

using the theory of dual space and the separation theorem of convex sets, the properties of the fuzzy 

distance from a point to a set in a fuzzy quasi-normed space are studied comprehensively. Second, 

more properties of the nearest point are given, and the existence, uniqueness, characterizations, and 

qualitative properties of the nearest points are obtained. The results obtained in this paper are of great 

significance for expanding the application fields of optimization theory. 
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1. Introduction 

The best approximation has important applications in many fields such as mathematics, 

engineering, and economics. It is mainly concerned with the questions of existence, uniqueness, 

characterizations, and qualitative properties of the nearest points. Therefore, the nearest point theory 

plays a key role in the best approximation. The extensive and in-depth research, especially in the 

framework of the normed space, the best approximation theory has achieved rich results, see 

literature [3-5,8,19,20] and their references. In order to expand the application range, many scholars 

have studied this problems in different spaces in recent years, for example: probabilistic normed 

space [18], fuzzy normed space [10], fuzzy 2-normed space [14]. 

https://doi.org/10.3934/math.2024323
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In 1977, Krein and Nudelman [11] first proposed the best approximation problem in asymmetric 

normed spaces. In 2002 and 2003, Mustăța [15,16] studied the relationship between the existence of 

the best approximation and the uniqueness of the extension of the bounded linear functional on an 

asymmetric norm space. In 2004, Cobzas and Mustăța [7] studied the characterization of the best 

approximating element for the subspace of an asymmetric normed space. In 2013, Cobzas [6] gave a 

systematic summary of the research on the best approximation in asymmetric normed spaces. 

In 2010, Algere and Romaguera [2] put forward the concept of fuzzy quasi-norm (i.e., asymmetric 

fuzzy norm), which takes fuzzy norm and asymmetric norm (i.e., quasi-norm) as two special cases and 

has wide applicability. The examples show that a fuzzy quasi-normed space provides a suitable 

framework for the complexity analysis, with important roles in discussing some questions in 

optimization, approximation theory, and theoretical computer science. 

Therefore, it is a natural direction to study the best approximation problem in the framework of 

a fuzzy quasi-normed space. Indeed, Wu, et al. [21] carried out the pioneering research in this field 

in 2023. In the fuzzy quasi-normed space, they put forward the concept of the nearest point and some 

characteristics of the nearest point, and extended the well-known Arzela distance formula from point 

to hyperplane in the case of a fuzzy quasi-normed space by using duality. 

This paper is a continuation of paper [21]. The main content of this article is as follows: After 

introducing the basic definitions and conclusions of the fuzzy quasi-normed space in section 2, the 

relevant properties of the distance between a point and a set are discussed more comprehensively in 

section 3. In section 4, we focus on the nearest point problem and give some important conclusions, 

such as the existence, uniqueness, characterizations, and qualitative properties of the nearest points. In 

section 5, a brief conclusion is given. 

2. Preliminaries 

In this paper, the symbols R   and N   represent the set of real numbers and nonnegative 

integer numbers, respectively,   denotes the empty set, X  is a real vector space, and   is the 

null element in a real vector space. cA  represents the complement of a subset A . If A  is a subset 

of the topological space ( ), NX  , let clN A  and intN A  denote the closure and the interior of A . 

In order to specify the topology of the space used, a continuous mapping f   which is from a 

topological space ( )1,X   to another topological space ( )2,Y  , is also called ( )1 2,   continuous.  

Definition 2.1. [17] A binary operation : [0,1] [0,1] [0,1] →  is a continuous t-norm if it satisfies the 

following conditions: 

(T1)   is associative and commutative, 

(T2)   is continuous, 

(T3) 1a a =  for any [0,1]a , 

(T4) a b c d    whenever ca   and db   with , , , [0,1]a b c d  . 

Two paradigmatic examples of continuous t-norms are “     and “    , which are defined by 

 min ,a b a b =  and a b ab = , respectively. 

Definition 2.2. [2] A fuzzy quasi-norm on a real vector space X  is a pair ( ),N   such that   is a 

continuous t-norm and N  is a fuzzy set in  )0,X  +  satisfying the following conditions: for every 

,x y X , 

(FQN1) ( ),0 =0N x ; 
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(FQN2) 
( ) ( ), - , 1N x t N x t= =

 for all 0t x   = ; 

(FQN3) 
( ) ( ), ,N x t N x t =

 for all 0  ; 

(FQN4) 
( ) ( ) ( ), , ,N x y t s N x t N y s+ +  

 for all , 0t s  ; 

(FQN5) 
( ), _N x

: 
 )  0 + 0,1 →，

 is left continuous； 

(FQN6) 
( )lim , 1

t
N x t

→
=

. 

By a fuzzy quasi-normed space, we mean a triple ( ), ,X N   . ( ),N    is denoted in short by N  , if no 

confusion arises. Obviously, the function ( ), _N x  is increasing for each x X . Let ( ) ( ), ,N x t N x t= −  for 

all x X  and 0t  , then N  is also a fuzzy quasi-norm and is called the conjugate of N . 

In [2], Alegre and Romaguera pointed out that each fuzzy quasi-norm N   on X   induces a 

topology N  on X  which has as a base the family of open balls 

( )x =B ( ) , , : (0,1), 0NB x r t r t   

at x X , where 

( ) ( ) , , , 1NB x r t y X N y x t r=  −  −： . 

( ), NX   is a quasi-metrizable and paratopological vector space [1]. Furthermore, ( ), NX   is locally 

convex if the continuous t-norm   is chosen as " ". If  nx  is a sequence in X , it is easy to verify 

that  nx  converges to x  with respect to N  if and only if lim ( , ) 1n
n

N x x t
→

− =  for any 0t  . 

For any x X , ( )0,1r , and 0t  , set 

  ( ) , , : , 1NB x r t y X N y x t r=  −  − , 

  ( ) , , : , 1NS x r t y X N y x t r=  − = − . 

Remark 2.1. For any 0t  , it is easy to prove that the mapping ( )_,N t  is lower semi-continuous 

with respect to N , and therefore, is upper semi-continuous with respect to 
N

 .  , ,B x r t  is 
N

 -

closed. 

Definition 2.3. [9] Let X   be a real vector space, and    be a continuous t-norm. 

( ) : is a function from to [0, ), 0,1p p X  =  P  is called a family of star quasi-seminorms if it 

satisfies the following conditions: for all ,x y X , ( ), 0,1   , and [0, )c  , 

(*QN1) 
( ) ( )p cx cp x =

, 

(*QN2) * ( ) ( ) ( )p x y p x p y   +  +
. 

If P  satisfies the condition 

(*QN3) ( )p x = ( )p x − =0 for every (0,1)   implies x = , 

then P  is said to be separating. 

Theorem 2.1. [9] Let ( ),X N ，  be a fuzzy quasi-normed space, and (0,1)  . The function || |X : 

 )0,X →   is given by 
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|| |Xx 
=  inf 0 : ( , )t N x t   .       (2.1) 

Then, for all x X  and 0t  , 

(1) || |Xx 
 is increasing with respect to ( )0,1  , 

(2) 
|| |Xx  =

 sup 0 : ( , )t N x t  
, 

(3) ( , )N x t   implies that 
|| |Xx t  , 

(4) 
( ),N x t 

 implies that 
|| |Xx t  , 

(5) ( , )N x t   implies that 
|| |Xx t  . 

Theorem 2.2. [9] Let ( ), ,*X N   be a fuzzy quasi-normed space, x X  , and (0,1)   . Then, the 

following assertions are equivalent: 

(1) N  satisfies 

(FQN7): For any x  , ( , _)N x  is strictly increasing on 
 : 0 ( , ) 1t N x t 

; 

(2) 
|| |Xx  =

 inf 0 : ( , )t N x t  
=

 sup 0 : ( , )t N x t  
; 

(3) ( , )N x t   if and only if 
|| |Xx t  , that is, ( , )N x t   if and only if 

|| |Xx t  . 

Remark 2.2. It is easy to see that ( ) || | : 0,1X

NP  =     is a separating family of star quasi-

seminorms. If   is chosen as " ", then NP  is a family of quasi-norms. 

Remark 2.3. If N   satisfies condition (FQN7), it follows from Theorems 2.1(3) and 2.2(3) that 

( ),N x t = , which implies that || |Xx t = . 

Example 2.1. Let  ( ) max ,0u x x=   for each x ¡  . Then, u   is a quasi-norm on the field ℝ. 

Moreover, if  

st ( , )
( )

t
N x t

t u x
=

+  for each x ¡ , 0t  , 

then it is easy to verify that ( )st ,N   is a fuzzy quasi-norm satisfying (FQN7) for any continuous 

t-norm  . 

In the rest of this paper, the quasi-norm u  is always defined as in Example 2.1, its conjugate is 

denoted by u , that is, ( )  max ,0u x x= −  for each x ¡ . The topology u  ( u , resp.) generated by 

u  (u , resp.) is called the upper (lower, resp.) topology of ¡ . The quasi dual ( )
#

,X N ，  ( ( )
#

,X N
−

， , 

resp.) of the fuzzy quasi-normed space ( ), ,X N   is formed by all continuous linear functionals 

from ( ), NX   to ( ), uR  ( ( ), uR , resp.), or, equivalently, by all upper (lower resp.) semi-

continuous linear functionals from ( ), NX   to (ℝ, | | ). Obviously， ( )
#

, ,X N  ( )
#

, ,X N
−

=   and 

( ) ( )
# #

, , , ,X N X N
−

 =  . 

In the following, ( )
#

,X N ，  and ( )
#

, ,X N
−

  will be simply denoted by #X  and #X −  resp., if 

no confusion arises. 

Now, for each 
#f X  and (0,1)  , we define that 
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 #

, 1|| | sup ( ) :|| | 1X

Xf f x x −=  .       （2.2） 

It is proved that ( ) #

,|| | : 0,1XP  =    is a separating family of star quasi-seminorms on #X  in [9]. 

Obviously, if #f X  and 0f  , then #

,|| | 0Xf    for any (0,1)  . 

Remark 2.4.  #

, 1|| | sup ( ) :|| | 1X

Xf f x x −=   (see Theorem 3.3 in [12]). 

Similar to formulas (2.1) and (2.2), we can define the separating families of star quasi-seminorms 

( ) || | : 0,1X

N
P  −=    and ( ) #

,|| | : 0,1XP  −=    on the conjugate spaces ( ), ,X N   and #X − , 

respectively. It is easy to show that || | = || |X Xx x 

− −  and # #

, ,|| | || |X Xf f 

− = − . 

In the rest of the paper, 1|| |Xx − , 1|| |Xx −
− , #

,|| | Xf   and #
,|| | Xf 
−  will be simply denoted by 1|| |x − , 

1|| |x −
− , #|| |f  , and #|| |f 

− , respectively, if no confusion arises. 

Definition 2.4. [21] Let X  be a real vector space, cR , and   be a linear functional on X . 

The set  , = : ( )cH x X x c  =  is called the hyperplane corresponding to   and c . The sets 

 , : ( )cH x X x c  =    and  , : ( )cH x X x c  =    

are called the lower open half-space and upper open half-space determined by ,cH   or   , 

respectively; and the following two sets 

 , : ( )cH x X x c  =    and  , : ( )cH x X x c  =    

are called the lower closed half-space and upper closed half-space determined by ,cH  or  , 

respectively. 

Let x X  and A  X . If x  and A  lie in opposite closed half-spaces determined by the 

hyperplane ,cH , we say ,cH , or that   separates x  and A . 

Remark 2.5. [21] (1) If ( )
#

, ,X N  , it is obvious that ,c NH    and ,c N
H   . Meanwhile, 

,cH


 and ,cH


 are 

N
 -closed and N -closed, respectively. 

(2) If ( )
#

, ,X N
−

   , then, ,c N
H     and ,c NH    . Meanwhile, ,cH


  and ,cH


  are N  -

closed and 
N

 -closed, respectively. 

(3) Both the open half-spaces and the closed half-spaces determined by H  are convex subsets. 

3. The fuzzy distance from a point to a set 

First, we recall the fuzzy distances from a point to a set defined in [21]. Let A  be a nonempty 

subset of a fuzzy quasi-normed space ( ),X N ， . Two fuzzy distances from a point x X  to A  

were defined as follows: 0t  , 

 ( , , ) sup ( , ) :Nd x A t N y x t y A= −  , 

 ( , , ) sup ( , ) :Nd A x t N x y t y A= −  . 

Remark 3.1. It is easy to verify that 
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( , , )Nd x A t ( , , )
N

d A x t= , 

( , ,0)Nd x A ( , ,0)Nd A x= 0= , 

lim ( , , ) lim ( , , ) 1N N
t t

d x A t d A x t
→ →

= = . 

Now, we give some properties of these fuzzy distances. 

Theorem 3.1. Let A  be a nonempty subset of a fuzzy quasi-normed space ( ),X N ， . Then, A  is 

N -closed if and only if for any 
0

cx A  there exists 0 0t   such that 0 0( , , ) 1Nd x A t  . 

Proof. If A   is N  -closed, then cA   is N  -open. Therefore, for any 
0

cx A  , there is 0 0t    and 

0 (0,1)r    such that  0 0 0 0 0 0( ,1 , ) ( , ) :NB x r t N y x t r y X− = −   cA  . That is, 0 0 0( , )N y x t r−   

for any y A , so that 0 0 0( , , ) 1Nd x A t r  . 

Conversely, if for any 
0

cx A  there exists 0 0t   such that 0 0( , , ) 1Nd x A t  , that is, 

 0 0 0sup ( , ) : 1N x x t x A r−  =  , then  

0 0 0( ,1 , )NB x r t−  0 0 0( , ) :N y x t r y X= −   cA . 

Therefore, 0x  is a N -interior point of cA . By the arbitrariness of 0x , we know that cA  is N -

open. Thus, A  is N -closed. 

Theorem 3.2. Let A   be a nonempty subset of a fuzzy quasi-normed space ( ),X N ，  , 0x X  , 

0t  . Then, ( ) ( )0 0, , ,cl ,N N Nd x A t d x A t= . 

Proof. Take clNx A  arbitrarily. Then, there is a sequence  nx A  such that lim ( , ) 1n
n

N x x t
→

− = . 

So, for any 0 t  , we have 

0 0 0( , , ) ( , ) ( , ) ( , ) ( , )N n nd x A t N x x t N x x N x x t N x x t   −  −  − − → − −  as n → . 

Since ( ), _N x   is increasing and left continuous, we get 0( , , )Nd x A t  0( , )N x x t−  . By the 

arbitrariness of clNx A   we know that ( ) ( )0 0, , ,cl ,N N Nd x A t d x A t  . The inverse of the above 

inequality follows from clNA A . So, ( )0 , ,Nd x A t = ( )0 ,cl ,N Nd x A t . 

Lemma 3.1. Let ( ),X N ，   be a fuzzy quasi-normed space,  # \ 0X  , and cR  . Then, 

, ,clc N cH H 

 =  and 
, ,clc cN

H H 

 = . 

Proof. We distinguish three cases to prove the conclusion. 

Case 1: 0c  . For any 
,cx H , take 

1
n

n
x x

n

+
=  ( )n¥ , then, 

,n cx H

 . Since 

lim ( , ) lim ( , ) 1n
n n

N x x t N x nt
→ →

− = =  for any 0t  , we get that 
,clN cx H

 . By the arbitrariness of 

,cx H , we know 
, ,clc N cH H 

 , and hence 
, , ,c c cH H H  

 =  ,clN cH

 . By Remark 2.5, 
,cH

  

is N -closed, so 
, ,clc N cH H 

  . Thus, 
, ,clc N cH H 

 = . 

Again, for any 
,cx H , take 

1
n

n
y x

n
=

+
 ( )n¥ , then, 

,n cy H

 . Since 

lim ( , ) lim ( ,( 1) ) 1n
n n

N y x t N x n t
→ →

− = + =  for any 0t  , we have 
,cl cN

x H

 . By the arbitrariness of 
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,cx H , we know 
, ,clc cN

H H 

 , and hence 
, , ,c c cH H H  

 =  ,cl cN
H

 . By Remark 2.5, 
,cH

  is 

N
 -closed, so 

, ,clc cN
H H 

  . Thus, 
, ,clc cN

H H 

 = . 

Case 2: 0c  . For any 
,cx H , take 

1
n

n
x x

n
=

+
 ( )n¥ , then 

,n cx H

 . Since

lim ( , ) lim ( , ) 1n
n n

N x x t N x nt
→ →

− = − =  for any 0t  , we get 
,clN cx H

 . By the arbitrariness of 

,cx H , we know 
, ,clc N cH H 

 , and hence 
, , ,c c cH H H  

 =  ,clN cH

 . By Remark 2.5, 
,cH

  is 

N -closed, so that 
, ,clc N cH H 

  . Thus 
, ,clc N cH H 

 = . 

Again, for any 
,cx H , take 

1
n

n
y x

n

+
=  ( )n¥ , then 

,n cy H

 . Since

lim ( , ) lim ( , ) 1n
n n

N y x t N x nt
→ →

− = =  for any 0t  , we get 
,cl cN

x H

 . By the arbitrariness of 

,cx H , we have 
, ,clc cN

H H 

 , and hence 
, , ,c c cH H H  

 =  ,cl cN
H

 . By Remark 2.5, 
,cH

  is 

N
 -closed, so 

, ,clc cN
H H 

  . Thus, 
, ,clc cN

H H 

 = . 

Case 3: 0c = . Take 
, ,0cx H H  = , then ( ) 0x c = = . For any 

,0h H

 , take 

1 1
n

n
x h x

n n

−
= +  ( )n¥ , then 

,0nx H

 . Since lim ( , )n
n

N x x t
→

− lim ( , )
n

N h x nt
→

= − =1 for any 0t  , 

we get 
,0clNx H

 . By the arbitrariness of 
,0x H , we know 

,0 ,0clNH H 

 , and hence 

,0 ,0 ,0H H H  

 =  ,0clN H

 . Since 
,0H

  is N -closed, 
,0 ,0clNH H 

  . Thus, 
,0 ,0clNH H 

 = . 

For any 
,0g H

 , take 
1 1

n

n
y g x

n n

−
= +  ( )n¥ , then 

,0ny H

 . Since 

lim ( , ) lim ( , ) 1n
n n

N y x t N g x nt
→ →

− = − =  for any 0t  , we get 
,0cl

N
x H

 . By the arbitrariness of 

,0x H , we know 
,0 ,0cl

N
H H 

 , and hence 
,0 ,0 ,0H H H  

 =  ,0cl
N
H

 . Since 
,0H

  is 
N

 -

closed, 
,0 ,0cl

N
H H 

  . Thus, 
,0 ,0cl

N
H H 

 = . 

Theorem 3.3. Let ( ), ,X N   be a fuzzy quasi-normed space,  # \ 0X , cR , 0t  . Then, 

(1) ( ) ( ) ( )0 , 0 , 0 ,, , , , , ,N c N c N cd x H t d x H t d x H t  

 = = , 
0 ,cx H

  ; 

(2) ( ) ( ) ( )0 , 0 , 0 ,, , , , , ,c c cN N N
d x H t d x H t d x H t  

 = = , 
0 ,cx H

  . 

Proof. It follows from Remark 3.1 that the conclusion holds for 0t = . Now we suppose that 0t  . 

Theorem 3.2 and Lemma 3.1 imply that 

( ) ( )0 , 0 ,, , , ,N c N cd x H t d x H t 

 =  and ( ) ( )0 , 0 ,, , , ,c cN N
d x H t d x H t 

 = . 

Moreover, by the definition of fuzzy distance from a point to a set, we have 

( ) ( )0 , 0 ,, , , , 1N c N cd x H t d x H t 

= =  and ( ) ( )0 , 0 ,, , , , 1c cN N
d x H t d x H t 

= = , 

when 
0 ,cx H . So, to complete the proof, we need only to show 

(1) ( ) ( )0 , 0 ,, , , ,N c N cd x H t d x H t 

= , 0 ,cx H

  ; 

(2) ( ) ( )0 , 0 ,, , , ,c cN N
d x H t d x H t 

= , 0 ,cx H

  . 

We give only the proof of (1) as the proof of (2) is similar. To this end, take 
,cx H

 , ,c cH H 

=   
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arbitrarily. If 
,cx H , it is obvious that ( ) ( )0 , 0, , ,N cd x H t N x x t  − . 

Now, we suppose that 
,cx H

 . Set 

( ) ( ) ( ) ( )  0 1 , 0,1f x x    = + −  , 

then ( ) ( )0f x c=   and ( ) ( )01f x c=  . Since ( )f   is continuous with respect to  , there 

is 10 1   such that ( )1f c = . Let ( )1 1 0 11x x x = + − , then
1 ,cx H  and 

( ) ( )( ) ( )( )1 0 1 0 1 0 1 0, 1 , 1 ( ),N x x t N x x x t N x x t  − = + − − = − −  

( )0 1, (1 )N x x t = − − ( )0 ,N x x t − , 

hence 

( ) ( ) ( )0 , 1 0 0, , , ,N cd x H t N x x t N x x t  −  − . 

By the arbitrariness of 
,cx H

 , we get ( ) ( )0 , 0 ,, , , ,N c N cd x H t d x H t 

 . The inverse of the above 

inequality is obvious. Thus, conclusion (1) holds. 

Lemma 3.2. [13] Let ( ),X N ，  be a fuzzy quasi-normed space, and C  a nonempty either N -open 

or 
N

 -open subset of X . If f  is a linear functional X  and is not identically equal to 0, then 

inf ( ) ( ) sup ( )f C f c f C  , c C  . 

Theorem 3.4. Let A   be a nonempty subset of a fuzzy quasi-normed space ( ),X N ，  , 0x X  , 

c ¡ ,  # \ 0f X ,  0 : ( )H x f x c= = . 

(1) If 0H  separates 0x  and A , then 

(i) 
0 0x H   implies that 0 0 0( , , ) ( , , )N Nd x A t d x H t , 0t  ; 

(ii) 
0 0x H   implies that 

0 0 0( , , ) ( , , )
N N

d x A t d x H t , 0t  . 

(2) If U  is a N  or 
N

 -open neighborhood of 0h 0H , then there exist 1x  and 2x  in U  

such that 1 2( ) ( )f x c f x  , that is, 1x  and 2x  can be separated by 0H  strictly. 

Proof. (1) If 0H  separates 0x  and A , and 
0 0x H  , then 

0A H  . It follows from Theorem 3.3 (1) 

that ( ) ( ) ( )0 0 0 0 0, , , , , ,N N Nd x A t d x H t d x H t =  for any 0t  . Similarly, we can prove (ii). 

(2) Without loss of generality, we suppose that U  is a N -open ball containing 0h , that is, 

U  =  0 0( ,1 , ) : ( , )NB h r t x X N x h t r− =  −    where 0t    and (0,1)r  . By Lemma 3.2, we get 

0inf ( ) ( ) sup ( )f U f h f U   . Since 0( )f h c=  , there exist 1x   and 2x U   such that 1( )f x c

2( )f x . 

Lemma 3.3. [13] Let ( ),X N ，  be a fuzzy quasi-normed space and 1C , 2C  two nonempty convex 

subsets of X  with 1int N C   . Then, the following are equivalent: 

(1) for each 2 1intNC C  −  and (0,1)  , there is an f 
#X \ 0  such that ( )f  = || | , 

#|| |f   1 and ( ) ( )1 2sup inff C f C  ; 

(2) 2 1int NC C =  . 
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Theorem 3.5. Let A   be a nonempty convex subset of a fuzzy quasi-normed space ( ), ,X N   , 

0x X , 0t  . 

(1) If 0( , , ) 1Nd x A t  , then, for any (0,1)  , there is  # \ 0f X   such that #|| | 1f    and 

0 0( , , ) ( , , )N Nd x H t d x A t= , where  : ( ) inf ( )H y f y f A = = . 

(2) If 0( , , ) 1
N

d x A t  , then, for any (0,1)  , there is  # \ 0g X   such that #|| | 1g    and 

0 0( , , ) ( , , )
N N

d x H t d x A t= , where  : ( ) sup ( )H y g y g A = = . 

Proof. (1) Set  0 0: ( , ) ( , , )NP y X N y x t d x A t=  −  , then 
0x P , P A =  , and 

NP  . Take 

,x y P ,  0,1  arbitrarily, then 

( )0(1 ) ,N x y x t + − − ( ) ( )0 0( ), (1 )( ), (1 )N x x t N y x t    −  − − −  

( ) ( )0 0, ,N x x t N y x t= −  − 0( , , )Nd x A t . 

Thus, (1 )x y P + −   , and hence P   is convex. By Lemma 3.3, for any (0,1)   , there is 

 # \ 0f X   such that #|| | 1f    and 

0( ) sup ( ) inf ( )f x f P f A    .       (3.1) 

That is, the hyperplane  : ( ) inf ( )H y f y f A = =  separates 0x  and A . By Theorem 3.4 (1), we 

get 0 0( , , ) ( , , )N Nd x H t d x A t . 

If 0 0( , , ) ( , , )N Nd x H t d x A t  , then there is h H   such that 0( , )N h x t− 0( , , )Nd x A t  . Thus, 

h P , and hence P  is a N -open neighborhood of h . However, the inequalities (3.1) indicates that 

all points in P  are on the same side of the hyperplane H , which contradicts Theorem 3.4 (2). Thus, 

0( , , )Nd x H t  0( , , )Nd x A t . Thus 0 0( , , ) ( , , )N Nd x H t d x A t= . 

(2) Set  0 0: ( , ) ( , , )
N

P y X N y x t d x A t=  −  . By a similar method as that used in (1), we can 

show that 0x P , P A =  , and P  is 
N

 -open convex. Therefore, Lemma 3.3 implies that, for 

any (0,1)  , there exists f ( )
#

, ,X N   \ 0 ( )  
#

, , \ 0X N
−

=   such that #-|| | 1f    and 

0( ) sup ( ) inf ( )f x f P f A    . 

Let g f = − , then g  ( )
#

, ,X N   \ 0  and 

   #

1 1|| | sup ( ) :|| | 1 sup ( ) :|| | 1g g x x f x x     − −=  = − 
 

 1sup ( ) :|| | 1f x x 

−

−= − −  #-|| | 1f =  , 

moreover 

0sup ( ) inf ( ) ( )g A g P g x    .      （3.2） 

So, the hyperplane  : ( ) sup ( )H y g y g A = =  separates 0x  and A . Using Theorem 3.4 (1), we 

get 0 0( , , ) ( , , )
N N

d x H t d x A t . 



7619 

AIMS Mathematics  Volume 9, Issue 3, 7610–7626. 

If 0 0( , , ) ( , , )
N N

d x H t d x A t  , then there is h H   such that 0( , )N x h t−
0( , , )

N
d x A t  . Thus, 

h P , and hence P  is a 
N

 -open neighborhood of h . However, the inequalities (3.2) indicate that 

all points in P  are on the same side of the hyperplane H , which contradicts Theorem 3.4 (2). Thus, 

0( , , )
N

d x H t  0( , , )
N

d x A t . Thus, 0 0( , , ) ( , , )
N N

d x H t d x A t= . 

Formulas (3.3) and (3.4) can be understood as the fuzzy distance formulas from the point x  to 

the set .G  

Theorem 3.6. Let ( ), ,X N   be a fuzzy quasi-normed space satisfying (FQN7), G  be a nonempty 

subset of X , x X , ( )0,1  , and  # \ 0X . 

(1) If inf ( )c G=  −  and ( )x c  , then 

#

( )
, , 1

|| |
Nd

c x
x G






 
 − 



−


;       (3.3) 

(2) If sup ( )d G=    and ( )x d  , then 

0 #
, , 1

|

)

|

(

|
N

d
d

x
x

G







 
 − 



−


.       (3.4) 

Proof. (1) Since inf ( )c G=  −  and ( )x c  , for any g G  we have 

0 ( ) ( )c x g x  −  − #

1|| | || |g x  −  − , 

and therefore, 

1 #
|| |

|| |

( )x
x

c
g 






−

−
−  . 

Because ( ), ,X N   satisfies (FQN7), it follows from Theorem 2.2 (3) that 

( )1#
, ,|| | 1

(

|

)

||
N g x N g g

c
x

x
x 







−

 
−  − −



−
 −


, 

which together with the arbitrariness of g G  implies (3.3). 

(2) Since sup ( )d G=    and ( )x d  , for any g G , we get 

0 ( ) ( )x d x g  −  − #

1|| | || |x g  −  − , 

and therefore 

1 #
|| | 0

(

|| |

)x d
x g 




− 

−
−  . 

Because ( ), ,X N   satisfies (FQN7), it follows from Theorem 2.2 (3) that 

( )1#
|

( ) s
, ,| | 1

|| |
N x g N x g x

x
g

f


 




−

 
−  − −  −

−


 
, 

which together with the arbitrariness of g G  implies (3.4). 
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4. The nearest point from a set to a point 

Recently, Wu et al. [21] initiated the concept of nearest point and began research on the best 

approximation problems in the framework of fuzzy quasi-normed space. Based further study of the 

properties of nearest points, this section focuses on the existence and equivalent characterization of 

the nearest point. 

Definition 4.1. [21] Let A  be a nonempty subset of a fuzzy quasi-normed space ( ),X N ， , x X , 

and 0t  . An element 0y A  is said to be a N - t -nearest point to x  from A  if ( , , )Nd x A t =

0( , )N y x t− . 

We denote by ( ),N

AP x t  the set of all N - t -nearest points to x  from A . For 0t  , a subset 

A  of a fuzzy quasi-normed space ( ),X N ，  is called N - t -proximinal if ( ),N

AP x t    for every 

point x X . 

First, we give the representation of ( ),N

AP x t . 

Theorem 4.1. Let A   be a nonempty subset of a fuzzy quasi-normed space ( ),X N ，  , 0x X  , 

0t  , and ( )0 0( , , ) 0,1Nr d x A t=  . Set  0 0,1 ,S S x r t= − , and  0 0,1 ,B B x r t= − . Then, 

(1) 
0( , )N

AP x t A S A B=  =  , 

(2) 
0 0( , ) ( , )N N

A A SP x t P x t= . 

Proof. (1) If 0y  A B , then 0y A  and 0 0( , )N y x t− 0r . Noting that 0 0( , , )Nd x A t r= , we have 

0y 
0( , )N

AP x t . Thus, A B 
0( , )N

AP x t . Obviously, S B . Therefore, 

A S  A B 
0( , )N

AP x t .       (4.1) 

Let us suppose that 
0( , )N

AP x t    (otherwise, (1) obviously holds). For any 
0( , )N

Ay P x t , we know 

that y A   and 0 0( , )N y x t r− =  , which means y A S   . Therefore, 
0( , )N

AP x t A S   . Which, 

together with (4.1), implies that (1). 

(2) Take any 
0 0( , )N

Ay P x t , then 0 0 0( , )N y x t r− = . It follows from (1) that 0y A S  . 

Therefore, 

0 0 0 0 0 0( , ) ( , , ) ( , , ) ( , )N NN y x t d x A S t d x A t N y x t−    = − . 

Hence, 0 0 0( , , ) ( , )Nd x A S t N y x t = −  , that is, 
0 0( , )N

A Sy P x t  . So, 
0( , )N

AP x t 0( , )N

A SP x t  . The 

inverse of the above inequality follows from A S A  . Thus, (2) holds. 

Next, we show some basic properties of the set of all N - t -nearest points. 

Theorem 4.2. Let A  be a nonempty subset of a fuzzy quasi-normed space ( ),X N ， , 0x X , and

0t  . 

(1) If A  is convex,  =  , then 0( , )N

AP x t  is convex. 

(2) If A  is 
N

 -closed, then 0( , )N

AP x t  is 
N

 -closed. 

(3) 0 0( , ) ( , )N N

A y AP x y t y P x t+ + = + , y X  . 

(4) 0 0( , ) ( , )N N

A AP x t P x t   = , 0  . 

Proof. (1) Suppose that 0( , )N

AP x t    . Take 0, ( , )N

Ay z P x t   arbitrarily. Since A   is convex, so 

(1 )y z A + −   for any 0 1  . Hence, 
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0( , , )Nd x A t 0( (1 ) , )N y z x t  + − −  

0 0( , ) ((1 ) (1 ) , (1 ) )N y x t N z x t      −  − − − −  

0 0( , ) ( , )N y x t N z x t= −  −  

0 0( , , ) ( , , )N Nd x A t d x A t=   

0( , , )Nd x A t= , 

and hence 0 0( , , ) ( (1 ) , )Nd x A t N y z x t = + − −  . Therefore, 
0(1 ) ( , )N

Ay z P x t + −   . Thus, 

0( , )N

AP x t  is convex. 

(2) can be proved by using Theorem 4.1(1) and Remark 2.1. 

(3) Since 

 0 0( , , ) sup ( , ) :Nd x y A y t N x x y t x A y+ + = − −  +  

 0sup ( , ) :N a x t a A= −   

0( , , )Nd x A t= , 

then 

0( , )N

A yz P x y t+ +  z A y +  and 0( , )N z x y t− − 0( , , )Nd x y A y t= + +  

 z y A−   and 0( , )N z x y t− − 0( , , )Nd x A t=  


0( , )N

Az y P x t−   


0( , )N

Az y P x t + . 

Thus, 
0 0( , ) ( , )N N

A y AP x y t y P x t+ + = + . 

(4) The proof is as follows: 

0 0 0 0 0( , ) : ( , ) sup ( , )N

A
y A

P x t y A N y x t N y x t





 
=  − = − 
 

 

 0 0 0 0: ( , ) sup ( , )
z A

z A N z x t N z x t  


=  − = −  

 0 0 0 0: ( , ) sup ( , )
z A

z A N z x t N z x t    


=  − = −  

0( , )N

AP x t  = . 

Definition 4.2. A fuzzy quasi-normed space ( ),X N ，   is said to be strictly convex, if

( (1 ) , )N x y t + − ( , ) ( , )N x t N y t    for any ( )0,1  , 0t   , and ,x y X   with x y  , 

( , ) 1N x t  , and ( , ) 1N y t  . 

Example 4.1. The fuzzy quasi-normed space ( )st, ,N R   is strictly convex. In fact, if for any 
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,x yR  with x y , st ( , ) 1N x t   and st ( , ) 1N y t  , it follows from the definition of stN  that both 

0x   and 0y  . Without loss of generality, we suppose that x y . Then, 

( )st ,(1 )
(1 )

t t
N

x
t

t
x y

tx y
 

 
+ =− 

++ +−
=

t t

t t yx


+ +
st st( , ) ( , )N x t N y t=   

for any ( )0,1 , 0t  . 

Theorem 4.3. If a fuzzy quasi-normed space ( ),X N ，  is strictly convex, A  is a nonempty convex 

subset of X , 0x X , 0t  , and 0( , , ) 1Nd x A t  . Then, 
0( , )N

AP x t  is either an empty set or a single 

point set. 

Proof. Suppose there exist 
0, ( , )N

Ay z P x t A   with y z . Then, 

0( ,N y x t− ）= 0( ,N z x t− ）= 0( , , ) 1Nd x A t  . 

By Theorem 4.2 (1), we get 
0( ) 2 ( , )N

Ay z P x t+  . Since ( ),X N ，  is strictly convex, we have 

0 0 0 0 0(( ) 2 , ) (( ) 2 ( ) 2, ( , ( ,N y z x t N y x z x t N y x t N z x t+ − = − + −  −  −） ） ） 

0 0 0( , , ) ( , , )= ( , , )N N Nd x A t d x A t d x A t=  , 

which contradicts that 
0( ) 2 ( , )N

Ay z P x t+  . The proof is complete. 

Now, we investigate the existence of the nearest point. 

Theorem 4.4. Let ( ),X N ，  be a fuzzy quasi-normed space, and A  be a nonempty subset of X . If 

A  is 
N

 -closed and 
N

 -compact, then ( , )N

AP x t    for any x X  and 0t  . 

Proof. Set ( , , )Nr d x A t= . Let us suppose that 0r   (otherwise, 0r = , and we have ( , )N

AP x t A= ). 

For any n¥ , we get 0 1 1
1

nr

n
 − 

+
. Set 

[ ,1 , ]
1

t

n

nr
A A B x t

n
=  −

+
, 

then 
1 2 3 n

t t t tA A A A    L L  , and t

nA   is 
N

  -closed. Since ( , , )Nd x A t r=
1

nr

n


+
 , there 

exists t

ng A  such that ( , )
1

t

n

nr
N g x t

n
− 

+
. Therefore, t t

n ng A A  , and hence 
1

t t

n K

n

k
g A

=
   . 

That is,  tnA  has the property of finite intersection. Since A  is 
N

 -compact, we get t

nA  . 

Take 
0

t

ng A  , then 0( , , ) ( , )Nd x A t N g x t −
1

nr

n


+
 , n ¥  . Letting n →  , we have 

( , , )Nd x A t 0( , ) ( , , )NN g x t r d x A t −  = , which means 
0 ( , )N

Ag P x t . Thus, ( , )N

AP x t   . 

In the rest of this section, we characterize nearest points by the dual space. 

Theorem 4.5. Let ( ), ,X N   be a fuzzy quasi-normed space satisfying (FQN7), G  is a nonempty 

convex subset of X  , 0

Cx G  , 0g G  , 0 0t   , 0 0 0( , ) (0,1)N g x t−   , and 0 0 0 01 ( , )N g x t = − −  . 

Then, 0g  ( )0 0,N

GP x t   if and only if there is #

0 X    with 
0

#

0 1| ||  =   such that ( ) 00 0g x t −   

for any g G . 
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Proof. Since 0 0 0 0( , ) 1N g x t − = −   and ( ),X N ，  satisfies (FQN7), we get 
00 0 1 0|| |g x t−− =   from 

Remark 2.3. 

Necessity: Suppose 0g  ( )0 0,N

GP x t  , then 0 0 0( , , )G B x t =   . Since 0 0g x−

0 0 0( , , )G B x t −  , it follows from Lemma 3.3 that there is #

0 X    such that 0 0 0( )g x −

00 0 1|| |g x −= − 0t= ，
0

#

0|| | 1   and 

( ) ( )0 0 0 0 0sup ( , , ) infB x t G   .       (4.2) 

Take 0
0

1 1
n

xn
b g

n n
= +

+ +
 for each n¥ , then 

( )0 0 0 0 0 0 0 0

1
, , ,

1 1
n

n n n
N b x t N g x t N g x t

n n n

+   
− = − = −   

+ +   
 

( )0 0 0 0, 1N g x t  − = − , 

and therefore   0 0 0( , , )nb B x t . By (4.2), we get ( ) ( )0 0nb g   for any g G . So, 

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 00

1

1
llim im

1
n

n n

n
g

n
b g

n
g x    

→ → + +

 
= + =  


. 

Hence 0 0 0 0 0 0( ) ( )g x g x t −  − =  for any g G . 

Now, we show that 
0

#

0 1| ||  = . If it does not hold, then 
0

#

0|| 1|  . It follows from Remark 2.4 

there is y X  such that 
01|| | 1y −   and ( )0 1y  . Let 0 0yb x t y= +  , then 

0 0 00 1 0 1 0 1 0|| | || | || |yb x t y t y t  − − −− =  =  . 

Which, together with Theorem 2.2 (3), implies that 0 0 0( , ) 1yN b x t −  − , that is, 0 0 0( , , )y B xb t . 

Noting that 

0 0 0 0 00 0 0( ( )() )y tb y xtx g  − =  − = , 

we obtain 00 0) )( (yb g  , which contradicts (4.2). Thus, 
0

#

0 1| ||  = . 

Sufficiency: Suppose there is #

0 X    with 
0

#

0 1| ||  =   such that ( ) 00 0g x t −    for any 

g G . Then, 

0 0 0

#

0 0 0 0 0 1 0 1( ) || | || | || |t g x g x g x    − − −   − = − . 

It follows from Theorem 2.1(4) that 0 0 0( , ) 1N g x t −  − , and therefore, 

0 0( , , )Nd x G t  0 0 0sup ( , ) : 1N g x t g G = −   − . 

Since 0 0 0 01 ( , )N g x t− = − , then 0g  ( )0 0,N

GP x t . 

Theorem 4.6. Let ( ), ,X N   be a fuzzy quasi-normed space satisfying (FQN7), G  is a nonempty 

convex subset of X , 
0x X , 0 0t  , 0g G , 0 0 0( , )r N g x t= − , and 

0 0 0( , )r N g x t = − . 
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(1) If 0 1r  , then 
0 0 0( , )N

Gg P x t  if and only if there is #( , , )X N    such that (i) 

0 0 0( )g x t − = , (ⅱ) 0( ) inf ( )g G = , (ⅲ) #

1|| | 1r − = ; 

(2) If 0 1r  , then 
0 0 0( , )N

Gg P x t  if and only if there is #( , , )X N    such that (i) 

0 0 0( )x g t − = , (ⅱ) 0( ) sup ( )g G = , (ⅲ) #

1|| | 1r − = . 

Proof. (1) Sufficiency: Suppose there is #( , , )X N    satisfying (ⅰ)-(ⅲ). Then, for each g G , 

#

0 0 0 0 0 0 1 0 0( ) ( ) ( ) ( ) ( ) || | || | || |r r rt g x g x g x g x g x      −= − = −  −   − = − . 

It follows from Theorem 2.1 (4) that 0 0( , )N g x t r−   . Therefore, 0 0( , , )Nd x G t r  . Since 

0 0 0( , )N g x t r− = , we get 0 0( , , )Nd x G t r= . Thus, 
0 0 0( , )N

Gg P x t . 

Necessity: Suppose that 
0 0 0( , )N

Gg P x t . Then, for each g G ， 

0 0 0 0 0 0 0( , ) sup ( , ) ( , )
g G

r N g x t N g x t N g x t


= − = −  − . 

It follows from Theorem 2.2 (3) that 0 0|| |rg x t−  . By Remark 2.3, we get 0 0|| |rg x− 0t= . Hence, 

0inf || |r
g G

g x


− 0 0|| |rg x= − 0t= . 

For 0 0g x− , the following facts are known from the proof of necessity of Theorem 4.5: there is 
#X    such that #

1|| | 1r − =  , 0 0 0 0( ) || |rg x g x − = − 0t=   and 0 0 0 0( ) ( )g x g x t −  − =   for any 

g G . So,   satisfies (ⅰ) and (ⅲ), and 0( ) ( )g g   for any g G . Therefore, 0( ) inf ( )g G = , 

that is,   satisfies (ⅱ). 

(2) If we replace the fuzzy quasi-norm N  in (1) with its conjugate N , we obtain:
0 0 0( , )N

Gg P x t  

if and only if there is #( , , )X N   such that it satisfies (ⅰ)–(ⅲ) in (1). Let  = − . Then, it is easy 

to see that #( , , )X N    and satisfies (ⅰ)–(ⅲ) in (2). 

5. Conclusions 

The present paper gives some properties of the distance from a point to a set in a fuzzy quasi-

normed space, and obtains some important results about nearest points. Obviously, there are many 

problems which we consider could lead to further research in the topic developed in the present 

article. For example: (1) How to get some existence conclusions of the nearest point under the 

weaker condition? (2) How to find the nearest points if they exist? How to design the specific 

algorithms? (3) How to apply the results obtained in this paper to convex programming and 

optimization problems in the framework of the fuzzy quasi-normed space. 
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