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1. Introduction

Fourth-order equations and eigenvalue problems have been extensively utilized in many scientific
and engineering fields [1,2], and the numerical computation of numerous intricate and nonlinear fourth-
order equations and eigenvalue problems, such as the Cahn-Hilliard equation and the transmission
eigenvalue problem [3–7], stem from repeatedly solving a linear fourth-order equation and eigenvalue
problem. Numerous theoretical and numerical computing results have been obtained on fourth-order
equations and eigenvalue problems, primarily involving the finite element methods [8–11] and spectral

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024367


7571

methods [12–17].
For the finite element method applied to fourth-order equations and eigenvalue problems, a C1

continuous finite element space is typically required. This not only complicates the construction of
basis functions but also leads to a significant number of degrees of freedom. The spectral method,
which is known to all, is a high-order numerical method with a spectral accuracy and plays a vital
role in finding numerical solutions of many differential equations [18–22]. However, it is necessary
for the computational domain to be square or cubic. To address this limitation, some spectral element
methods are commonly employed to solve differential equations on general domains. For the spectral
element methods applied to second-order problems, both their theoretical foundation and numerical
calculations are well-established. However, for the spectral element methods applied to fourth-order
problems on general domains, the construction of basis functions is also intricate and the computational
load is substantial. Therefore, it is highly significant to introduce spectral methods based on hybrid
format for the fourth-order equations and eigenvalue problems. To our knowledge, there are few reports
on Legendre spectral methods based on a hybrid format for fourth-order eigenvalue problems with the
boundary conditions of simply supported plates.

Thus, our aim of the current paper is to propose an efficient Legendre spectral method for fourth
order eigenvalue problems with the boundary conditions of a simply supported plate. Initially, a new
variational formulation based on a hybrid format and its discrete variational form are established.
We then employ the spectral theory of complete continuous operators to establish the prior error
estimates of the approximate solutions. By integrating approximation results of some orthogonal
projection operators in weighted Sobolev spaces, we further give the error estimation for approximating
eigenvalues and eigenfunctions. In addition, we developed an effective set of basis functions by
utilizing the orthogonal properties of Legendre polynomials, and subsequently derive the matrix
eigenvalue system of the discrete variational form for both two-dimensional and three-dimensional
cases, based on tensor product. Finally, numerical examples are provided to demonstrate the
exponential convergence and efficiency of the algorithm.

The rest of this article is arranged as follows. In Section 2, we derive the equivalent hybrid
format and its Legendre spectral approximation. In Section 3, we provide the error estimation of
the approximating eigenvalues and eigenfunctions. In Section 4, we carry on a detailed description for
the efficient implementation of the discrete variational form. In Section 5, we present some numerical
examples to validate the theoretical findings and the effectiveness of the algorithm. Finally, we give in
Section 6 a concluding remark.

2. Hybrid format and its Legendre spectral approximation

In this paper, we consider the fourth-order eigenvalue problem as follows:

∆2u(x) − α∆u(x) + βu(x) = λu(x), in Ω, (2.1)
u(x) = 0, on ∂Ω, (2.2)
∆u(x) = 0, on ∂Ω, (2.3)

where both α and β are non-negative constants, and Ω ⊂ Rd(d = 2, 3) is a bounded domain. Let us
introduce an auxiliary variable:

∆u(x) + w(x) = 0. (2.4)

AIMS Mathematics Volume 9, Issue 3, 7570–7588.



7572

The Eqs (2.1)–(2.3) can be restated as:

− ∆w(x) + αw(x) + βu(x) = λu(x), in Ω, (2.5)
− ∆u(x) = w(x), in Ω, (2.6)
w(x) = u(x) = 0, on ∂Ω. (2.7)

Without loss of generality, we assume β > 0. If β = 0, we can add u(x) to both sides of the equation
(2.5). At this time, only the corresponding eigenvalue becomes λ + 1, and the structure of the equation
remains unchanged. By multiplying both sides of equation (2.6) with β, equations (2.5)-(2.7) can be
rewritten as

− ∆w(x) + αw(x) + βu(x) = λu(x), in Ω, (2.8)
− β∆u(x) = βw(x), in Ω, (2.9)
w(x) = u(x) = 0, on ∂Ω. (2.10)

Let Hm(Ω) and Hm
0 (Ω) be the usual Sobolev spaces of order m, and their norms and seminorms are

denoted by ∥ · ∥m and | · |m, respectively. Especially, we denote L2(Ω) by H0(Ω), equipped by the inner
product ⟨σ, ϱ⟩ :=

∫
Ω
σϱ̄dx and norm ∥σ∥0 =

√
⟨σ,σ⟩, here ϱ̄ denotes the complex conjugate of ϱ.

Define the product Sobolev spaces as follows:

H1
0(Ω) := H1

0(Ω) × H1
0(Ω),H0(Ω) := L2(Ω) × L2(Ω),

and the corresponding norms are given by

∥(w, u)∥1,Ω = (∥w∥21 + ∥u∥
2
1)

1
2 , ∥(w, u)∥0,Ω = (∥w∥20 + ∥u∥

2
0)

1
2 .

Then a variational formulation of (2.8)–(2.10) is: Find λ ∈ C and 0 , (w, u) ∈ H1
0(Ω) such that

A((w, u), (v, φ)) = λB((w, u), (v, φ)),∀(v, φ) ∈ H1
0(Ω), (2.11)

where

A((w, u), (v, φ)) =
∫
Ω

∇w∇v̄ + αwv̄ + βuv̄ + β∇u∇φ̄ − βwφ̄dx,

B((w, u), (v, φ)) =
∫
Ω

uv̄dx.

Define the finite element space Wd
N = H1

0(Ω) ∩ (Pd
N × Pd

N), here PN denotes the space of Nth-order
polynomials. Then the corresponding discrete variational form of (2.11) reads: Find λN ∈ C and
0 , (wN , uN) ∈Wd

N such that

A((wN , uN), (vN , φN)) = λNB((wN , uN), (vN , φN)), ∀(vN , φN) ∈Wd
N . (2.12)

3. Error estimation of the approximate solutions

For simplicity, we limit our consideration to the case where Ω = (−1, 1)d with d = 2, 3, and a ≲ b
means that a ≤ cb, where c is a positive constant independent of N.
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Lemma 1. A((w, u), (v, φ)) is a continuous and coercive bilinear functionals defined on H1
0(Ω)×H1

0(Ω).
That is, for any given ((w, u), (v, φ)) ∈ H1

0(Ω) ×H1
0(Ω), there hold

|A((w, u), (v, φ))| ≲ ∥(w, u)∥1,Ω∥(v, φ)∥1,Ω, (3.1)
A((w, u), (w, u)) ≳ ∥(w, u)∥21,Ω. (3.2)

Proof. Using Cauchy-Schwarz inequality, we derive that

|A((w, u), (v, φ))| =|
∫
Ω

∇w∇v̄ + αwv̄ + βuv̄ + β∇u∇φ̄ − βwφ̄dx|

⩽

∫
Ω

|∇w∇v| + α|wv| + β|uv| + β|∇u∇φ| − β|wφ|dx

⩽

(∫
Ω

|∇w|2 + α|w|2 + β|u|2 + β|∇u|2 + β|w|2dx
) 1

2

×

(∫
Ω

|∇v|2| + α|v|2 + β|v|2 + β|∇φ|2 + β|φ|2dx
) 1

2

≲∥(w, u)∥1,Ω∥(v, φ)∥1,Ω.

Thus, (3.1) holds. On the other hand, from Poincaré inequality, we have

A((w, u), (w, u)) =
∫
Ω

|∇w|2 + α|w|2 + βuw + β|∇u|2 − βwudx

=

∫
Ω

|∇w|2 + α|w|2 + β|∇u|2dx

=|w|21 + α∥w∥
2
0 + β|u|

2
1 ≳ ∥(w, u)∥21,Ω.

This proof is completed.

Lemma 2. B((w, u), (v, φ)) is a continuous bilinear functional defined on H0(Ω) ×H0(Ω). That is, for
any (w, u) ∈ H0(Ω) and (v, φ) ∈ H0(Ω), it holds

|B((w, u), (v, φ))| ≲ ∥(w, u)∥0,Ω∥(v, φ)∥0,Ω. (3.3)

Proof. Using Cauchy-Schwarz inequality and the definition of B, we have

|B((w, u), (v, φ))| = |
∫
Ω

uvdx| ≤
( ∫
Ω

|u|2dx
) 1

2 ×
( ∫
Ω

|v|2dx
) 1

2

≤
( ∫
Ω

|u|2 + |w|2dx
) 1

2 ×
( ∫
Ω

|v|2 + |φ|2dx
) 1

2

= ∥(w, u)∥0,Ω∥(v, φ)∥0,Ω.

Note that the soure problem associated with (2.11) is to find (w, u) ∈ H1
0(Ω) such that

A((w, u), (v, φ)) = B(( f , g), (v, φ)), ∀( f , g) ∈ H0(Ω), ∀(v, φ) ∈ H1
0(Ω). (3.4)
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Using Lemmas 1-2 and Lax-Milgram Theorem, the soure problem (3.4) exists an unique solution.
Thus, we can define a solution operator T : H0(Ω)→ H1

0(Ω) such that

A(T ( f , g), (v, φ)) = B(( f , g), (v, φ)), ∀( f , g) ∈ H0(Ω), ∀(v, φ) ∈ H1
0(Ω). (3.5)

Thus, we can obtain the equivalent operator form of (2.11) as follows

T (w, u) = λ−1(w, u). (3.6)

Note that the corresponding adjoint problem of (2.11) is: Find λ∗ ∈ C and 0 , (w∗, u∗) ∈ H1
0(Ω) such

that

A((v, φ), (w∗, u∗)) = λ∗B((v, φ), (w∗, u∗)), ∀(v, φ) ∈ H1
0(Ω). (3.7)

Similarly, the solution operator T ∗ : H0(Ω)→ H1
0(Ω) can be defined by

A((v, φ),T ∗( f , g)) = B((v, φ), ( f , g)), ∀( f , g) ∈ H0(Ω), ∀(v, φ) ∈ H1
0(Ω). (3.8)

Note that H1
0(Ω) is embedded in H0(Ω), together with (3.8), we can obtain the equivalent operator

formulation of (3.7):

T ∗(w∗, u∗) = (λ∗)−1(w∗, u∗).

Theorem 1. Both T : H1
0(Ω)→ H1

0(Ω) and T ∗ : H1
0(Ω)→ H1

0(Ω) are complete continuous operators.

Proof. We can obtain by taking (v, φ) = T ( f , g) in (3.5) that

A(T ( f , g),T ( f , g)) = B(( f , g),T ( f , g)).

From Lemmas 1-2 and Poincaré inequality, we have

∥T ( f , g)∥21,Ω ≲ A(T ( f , g),T ( f , g)) = B(( f , g),T ( f , g))
≲ ∥( f , g)∥0,Ω∥T ( f , g)∥0,Ω ≤ ∥( f , g)∥0,Ω∥T ( f , g)∥1,Ω,

which implies that

∥T ( f , g)∥1,Ω ≲ ∥( f , g)∥0,Ω. (3.9)

Assuming S is a bounded subset in H1
0(Ω), since H1

0(Ω) is compactly embeded in H0(Ω), then S is
the sequentially compact set in H0(Ω). It follows from (3.9) that TS is a sequentially compact set in
H1

0(Ω). Therefore, T : H1
0(Ω) → H1

0(Ω) is a complete continuous operator. We derive from (3.4) and
(3.7) that

A(T ( f , g), (v, φ)) = B(( f , g), (v, φ)) = A(( f , g),T ∗(v, φ)), ∀( f , g), (v, φ) ∈ H1
0(Ω),

which means that in the sense of inner product A(·, ·), T ∗ is the adjoint operator of T . Thus, T ∗ :
H1

0(Ω)→ H1
0(Ω) is also a complete continuous operator.
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We can similarly define the discrete solution operator TN by

A(TN( f , g), (vN , φN)) = B(( f , g), (vN , φN)), ∀( f , g), ∈ H0(Ω), ∀ (vN , φN) ∈Wd
N . (3.10)

It is obvious that both TN : H1
0(Ω)→Wd

N and H0(Ω)→Wd
N are all finite rank operators. Using (3.10),

we can obtain the equivalent operator formulation of (2.12):

TN(wN , uN) = λ−1
N (wN , uN). (3.11)

Let us define a projection operator ΠN : H1
0(Ω)→Wd

N such that

A((w, u) − ΠN(w, u), (vN , φN)) = 0, ∀(w, u) ∈ H1
0(Ω), ∀(vN , φN) ∈Wd

N . (3.12)

Lemma 3. Let T and TN be the operators defined by (3.5) and (3.10), respectively. Then, it holds:

TN = ΠNT. (3.13)

Proof. For any (w, u) ∈ H1
0(Ω) and (vN , φN) ∈Wd

N , we derive that

A(ΠNT (w, u) − TN(w, u), (vN , φN))
= A(ΠNT (w, u) − T (w, u) + T (w, u) − TN(w, u), (vN , φN))
= A(ΠNT (w, u) − T (w, u), (vN , φN)) +A(T (w, u) − TN(w, u), (vN , φN)) = 0.

By taking (vN , φN) = ΠNT (w, u) − TN(w, u), we have

A(ΠNT (w, u) − TN(w, u),ΠNT (w, u) − TN(w, u)) = 0.

Then, (3.13) follows from Lemma 1.
It is clear that TN |Wd

N
: Wd

N →Wd
N is a finite rank operator. Let

ξN = sup
(w,u)∈H1

0(Ω),∥(w,u)∥1,Ω=1
inf

(vN ,φN )∈Wd
N

∥T (w, u) − (vN , φN)∥1,Ω.

With the theory of approximation, we have

lim
N→∞
ξN = 0. (3.14)

Let us define

∥(w, u)∥A = [A((w, u), (w, u))]
1
2 .

Then, Lemma 1 implies that ∥(w, u)∥A is a equivalent norm in H1
0(Ω).

Theorem 2. There holds:

lim
N→∞
∥T − TN∥L(H1

0(Ω),H1
0(Ω)) = 0. (3.15)
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Proof. Based on the definition of operator norm, we have

∥T − TN∥L(H1
0(Ω),H1

0(Ω)) = sup
(w,u)∈H1

0(Ω),∥(w,u)∥1,Ω=1
∥T (w, u) − ΠNT (w, u)∥1,Ω .

For ∀(vN , φN) ∈Wd
N , we derive from Lemma 1 and (3.12) that

∥T (w, u) − ΠNT (w, u)∥21,Ω ≲ ∥T (w, u) − ΠNT (w, u)∥2A
= A(T (w, u) − ΠNT (w, u),T (w, u) − ΠNT (w, u))
= A(T (w, u) − ΠNT (w, u),T (w, u) − (vN , φN))
≲ ∥T (w, u) − ΠNT (w, u)∥1,Ω ∥T (w, u) − (vN , φN)∥1,Ω .

That is,

∥T (w, u) − ΠNT (w, u)∥1,Ω ≲ ∥T (w, u) − (vN , φN)∥1,Ω .

Thus, we have

∥T − TN∥L(H1
0(Ω),H1

0(Ω)) ≲ sup
(w,u)∈H1

0(Ω),∥(w,u)∥1,Ω=1
inf

(vN ,φN )∈Wd
N

∥T (w, u) − (vN , φN)∥1,Ω.

Then, (3.15) holds from (3.14).
Note that the discrete variational form of (2.12) is: Find λ∗N ∈ C, 0 , (v∗N , φ

∗
N) ∈Wd

N such that

A((v, φ), (v∗N , φ
∗
N)) = λ∗NB((v, φ), (v∗N , φ

∗
N)), ∀(vN , φN) ∈Wd

N , ∀(v, φ) ∈Wd
N . (3.16)

Define the discrete solution operator T ∗N : H0(Ω)→Wd
N by

A((v, φ),T ∗N( f , g)) = B((v, φ), ( f , g)), ∀( f , g) ∈ H0(Ω), ∀(v, φ) ∈Wd
N . (3.17)

Then, (3.17) implies that (3.16) has the following equivalent operator form:

TN(w∗N , u
∗
N) = (λ∗N)−1(w∗N , u

∗
N).

Let λ and µ be the nonzero eigenvalue with algebraic multiplicity g and the ascent of (λ−1 − T ),
respectively. It follows from (3.15) that g eigenvalues λ j,N( j = 1, 2, · · · , g) will converge to λ. Let
ρ(T ) and σ(T ) be the resolvent set and the spectrum set, respectively. Define the spectral projection
operators:

E =
1

2πi

∫
Γ

Rz(T )dz, EN =
1

2πi

∫
ΓN

Rz(TN)dz,

where Rz(T ) = (z − T )−1, and Γ lies in ρ(T ) and is a circle centered at λ−1 that does not enclose any
other points within σ(T ).

According to [23], E is a projection onto the generalized eigenvectors space corresponding to λ−1

and T , that is, R(E) = N((λ−1 − T )µ), where R andN denote the range and the null space, respectively.
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Similarly, R(EN) =
g∑

j=1
N((λ−1

j,N −TN)µ j), where µ j is the ascent of λ−1
j,N −TN . For the dual problems (3.7)

and (3.16), we can similarly define E∗,R(E∗), E∗N and R(E∗N).
For two closed subspaces Q1,Q2, let

d(Q1,Q2) = sup
(w,u)∈Q1,∥(w,u)∥1,Ω=1

inf
(v,φ)∈Q2

∥(w, u) − (v, φ)∥1,Ω.

Defining the gaps between R(E) and R(EN) in H1
0(Ω) as follows

δ(R(E),R(EN)) = max{d(R(E),R(EN)), d(R(EN),R(E))}.

Denote

εN(λ) = sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

inf
(vN ,φN )∈Wd

N

∥(w, u) − (vN , φN)∥1,Ω,

ε∗N(λ∗) = sup
(w∗,u∗)∈R(E∗),∥(w∗,u∗)∥1,Ω=1

inf
(vN ,φN )∈Wd

N

∥(w∗, u∗) − (vN , φN)∥1,Ω.

Based on the Theorems 8.1–8.4 in [23], we have the following prior error estimates.

Theorem 3. There exists a constant C such that

δ(R(E),R(EN)) ≤ CεN(λ),

|λ − (
1
g

g∑
j=1

λ−1
j,N)−1| ≤ CεN(λ)ε∗N(λ∗),

|λ − λ j,N | ≤ C[εN(λ)ε∗N(λ∗)]
1
µ .

Theorem 4. If lim
N→∞
λN = λ. Suppose for each N that (wN , uN) satisfy ∥(wN , uN)∥1,Ω = 1 and (λ−1

N −

TN)k(wN , uN) = 0 for some positive integer k ≤ µ. Then, for any integer l with k ≤ l ≤ µ, there exists a
vector (w, u) such that (λ−1 − T )l(w, u) = 0 and

∥(w, u) − (wN , uN)∥1,Ω ≤ C[εN(λ)]
l−k+1
µ .

In order to offer the error estimates for the approximation of eigenvalues and eigenfunctions, we
begin by introducing the d-dimensional Jacobian polynomial and weight function:

Jα,βn (x) =
d∏

j=1

J̃α j,β j
n j (x j),ωα,β(x) =

d∏
j=1

ωα j,β j(x j),∀x ∈ Id, (3.18)

where n = (n1, n2, · · · , nd) ∈ Nd, α = (α1, α2, · · · , αd), β = (β1, β2, · · · , βd), I = (−1, 1). Define the
non-uniformly weighted Sobolev space:

Bs
α,β(Id) := {ρ : ∂kxρ ∈ L2

ωα+k,β+k(Id), 0 ≤ |k|1 ≤ s}, ∀s ∈ N,

with the following norm and semi-norm

∥ρ∥Bs
α,β

(Id) =

( ∑
0≤|k|1≤s

∥∂kxρ∥
2
ωα+k,β+k

) 1
2

, |ρ|Bs
α,β

(Id) =

( d∑
j=1

∥∂s
x j
ρ∥2

ωα+se j ,β+se j

) 1
2

,

where e j is the jth unit vector in Rd, k = (k1, k2, · · · , kd), |k|1 = k1 + k2 + · · · + kd. From the theorem
8.1 and remark 8.14 in [18], we have following lemma.
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Lemma 4. There exists a projection operatorΠ−1,−1N : H1
0(Ω)→Wd

N , such that for any σ ∈ Bs
−1,−1(D),

it holds for 1 ≤ s ≤ N + 1 that

|Π−1,−1N σ − σ|B1
−1,−1(Id) ≤ c

√
(N − s)!
(N − 1)!

(
N + s

) 1−s
2

|σ|Bs
−1,−1(Id),

where c ≃
√

2 for N ≫ 1.

Theorem 5. There exists a constant C such that

εN(λ) ≤CN1−m sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

[|w|Bm
−1,−1

(Id) + |u|Bm
−1,−1

(Id)], (3.19)

ε∗N(λ∗) ≤CN1−m sup
(w∗,u∗)∈R(E∗),∥(w∗,u∗)∥1,Ω=1

[|w∗|Bm
−1,−1

(Id) + |u∗|Bm
−1,−1

(Id)]. (3.20)

Proof. We only give the proof for (3.19), and the same argument can be applied to (3.20). Using
Poincaré inequality, we derive that

εN(λ) = sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

inf
(vN ,φN )∈Wd

N

∥(w, u) − (vN , φN)∥1,Ω

≤C sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

inf
(vN ,φN )∈Wd

N

[|w − vN |
2
1 + |u − φN |

2
1]

1
2

≤C sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

[|w −Π−1,−1N w|21 + |u −Π
−1,−1
N u|21]

1
2 .

Note that

|w −Π−1,−1N w|21 =
d∑

j=1

∫
Id

[∂x j(w −Π
−1,−1
N w)]2dx

≤

d∑
j=1

∫
Id

[∂x j(w −Π
−1,−1
N w)]2

d∏
i=1,i, j

1
(1 − xi)(1 + xi)

dx

=

d∑
j=1

∫
Id

[∂x j(w −Π
−1,−1
N w)]2ω−1+e j,−1+e jdx = |w −Π−1,−1N w|2B1

−1,−1(Id).

Through a similar derivation, we can obtain that

|u −Π−1,−1
N u|21 ≤ |u −Π

−1,−1
N u|2B1

−1,−1(Id).

From Lemma 4, we derive that

εN(λ) ≤ C sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

[|w −Π−1,−1N w|21 + |u −Π
−1,−1
N u|21]

1
2

≤ C sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

[|w −Π−1,−1
N w|B2

−1,−1
(Id) + |u −Π−1,−1

N u|B1
−1,−1

(Id)]

≤ C

√
(N − m)!
(N − 1)!

(N + m)
1−m

2 sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

[|w|Bm
−1,−1

(Id) + |u|Bm
−1,−1

(Id)].

Then, (3.19) follows from (3.5.32) in [18]. The proof is completed.
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Denote

Mm(w, u) = sup
(w,u)∈R(E),∥(w,u)∥1,Ω=1

[|w|Bm
−1,−1(Id) + |u|Bm

−1,−1(Id)],

M∗m(w∗, u∗) = sup
(w∗,u∗)∈R(E∗),∥(w∗,u∗)∥1,Ω=1

[|w∗|Bm
−1,−1(Id) + |u∗|Bm

−1,−1(Id)].

We can obtain from Theorems 3-5 the error estimation of the approximating eigenvalues and
eigenfunctions.

Theorem 6. There exists a constant C such that

δ(R(E),R(EN)) ≤ CN1−mMm(w, u),

|τ − (
1
g

g∑
j=1

τ−1
j,N)−1| ≤ CN2(1−m)Mm(w, u)M∗m(w∗, u∗),

|λ − λ j,N | ≤ CN
2(1−m)
µ [Mm(w, u)M∗m(w∗, u∗)]

1
µ .

Theorem 7. If lim
N→∞
λN = λ. Suppose for each N that (wN , uN) satisfy ∥(wN , uN)∥1,Ω = 1 and (λ−1

N −

TN)k(wN , uN) = 0 for some positive integer k ≤ µ. Then, for any integer l with k ≤ l ≤ µ, there exists a
vector (w, u) such that (λ−1 − T )l(w, u) = 0 and

∥(w, u) − (wN , uN)∥1,Ω ≤ C[N1−mMm(w, u)]
l−k+1
µ .

4. Efficient implementation of the discrete variational form.

In order to effectively solve problem (2.12), we first construct a set of basis functions for the
approximation space Wd

N . Denote by Lm(x) the Legendre polynomial of degree m. Let

φm(x) = Lm(x) − Lm+2(x), (m = 0, 1, · · · ,N − 2),

It is obvious that

Wd
N =

{ d∏
k=1

φik(xk) : ik = 0, 1, · · · ,N − 2
}
×
{ d∏

k=1

φ jk(xk) : jk = 0, 1, · · · ,N − 2
}
.

Denote

ai j =

∫
I
φ
′

j(x)φ
′

i(x)dx, bi j =

∫
I
φ j(x)φi(x)dx.

• Case d = 2. We can expand the eigenfunctions as follows:

(wN , uN) =
( N−2∑

i, j=0

wi jφi(x1)φ j(x2),
N−2∑
i, j=0

ui jφi(x1)φ j(x2)
)
, (4.1)

where wi j, ui j are the expansion coefficients of the wN and uN , respectively.
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Denote

w =


w00 w01 · · · w0,N−2

w10 w11 · · · w1,N−2
...

... · · ·
...

wN−2,0 wN−2,1 · · · wN−2,N−2

 ,

u =


u00 u01 · · · u0,N−2

u10 u11 · · · u1,N−2
...

... · · ·
...

uN−2,0 uN−2,1 · · · uN−2,N−2

 .
We use ū to denote the vector formed by the columns of u. Now, plugging the expressions of (4.1)

in (2.12), and taking (vN , φN) through all the basis functions in W2
N , the discrete variational form (2.12)

is equivalent to the following matrix form:[
A B

C D

] [
w̄
ū

]
= λN

[
0 E

0 0

] [
w̄
ū

]
, (4.2)

where

A = A ⊗ B + B ⊗ A − αB ⊗ B, B = βB ⊗ B,

C = −βB ⊗ B, D = β(A ⊗ B + B ⊗ A), E = B ⊗ B,

where A = (ai j), B = (bi j), ⊗ represents the tensor product symbol of the matrix.
• Case d = 3. Here, we can expand the eigenfunctions as follows:

(wN , uN) =
( N−2∑

i, j,k=0

wi jkφi(x1)φ j(x2)φk(x3),
N−2∑

i, j,k=0

ui jkφi(x1)φ j(x2)φk(x3)
)
. (4.3)

Denote

wk =


wk

00 wk
01 · · · wk

0,N−2
wk

10 wk
11 · · · wk

1,N−2
...

... · · ·
...

wk
N−2,0 wk

N−2,1 · · · wk
N−2,N−2

 ,

uk =


uk

00 uk
01 · · · uk

0,N−2
uk

10 uk
11 · · · uk

1,N−2
...

... · · ·
...

uk
N−2,0 uk

N−2,1 · · · uk
N−2,N−2

 .
Denote by w̄k and ūk the vectors formed by the columns of wk and uk, respectively. Let W =

(w̄0, w̄1, · · · , w̄N−2), U = (ū0, ū1, · · · , ūN−2). Denote by W̄ and Ū the vectors formed by the columns of
W and U. Now, plugging the expressions of (4.3) in (2.12), and taking (vN , φN) through all the basis
functions in W3

N , we obtain the matrix form of the discrete variational form (2.12) as follows:[
A B

C D

] [
W
U

]
= λN

[
0 E

0 0

] [
W
U

]
, (4.4)
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where

A = B ⊗ B ⊗ A + B ⊗ A ⊗ B + A ⊗ B ⊗ B − αB ⊗ B ⊗ B,

B = βB ⊗ B ⊗ B, C = −βB ⊗ B ⊗ B,

D = β(B ⊗ B ⊗ A + B ⊗ A ⊗ B + A ⊗ B ⊗ B), E = B ⊗ B ⊗ B.

It is noted that each block matrix in (4.2) and (4.4) is sparse, and each non-zero element in them can be
precisely calculated by utilizing the orthogonal properties of Legendre polynomials [18]. Therefore,
we can employ the sparse solver eigs(A, B, k,′ sm′) to effectively solve (4.2) and (4.4).

5. Numerical experiment

In this section, a series of numerical experiments will be presented to confirm the theoretical
findings and demonstrate the efficiency of our algorithm. Our program is compiled and executed in
MATLAB R2019a.

Example 1 We take Ω = (−1, 1)2, α = β = 1. The numerical results of the first fourth eigenvalues
λ1

N , λ
2
N (double eigenvalue), λ3

N , λ4
N for different N are listed in Table 1. To intuitively demonstrate

the spectral accuracy of our algorithm, we employ the numerical solution with N = 40 as a reference
solution and plot the absolute error curves of approximate eigenvalues as well as corresponding error
curves under a log-log scale in Figure 1. Additionally, we also give an image of the reference solution
for the eigenfunction and an error image between the reference solution and the approximate solution
with N = 30 in Figure 2.
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Figure 1. Absolute error curves (left) between the numerical solution and the reference
solution and the errors curves (right) under log-log scale.
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Figure 2. Image (left) of the reference solution u40(x) and the error image (right) between
reference solution and numerical solution u30(x).

Table 1. Numerical results of the first four approximation eigenvalues for different N.

N λ1
N λ2

N λ3
N λ4

N
5 30.287864207529200 163.1204205202208 402.7547327452907 813.0000000000005

10 30.287074959045135 165.5387105473934 410.3755739012024 634.4780697093954
15 30.287074959045280 165.5387102419903 410.3755729381884 634.4808299653813
20 30.287074959045280 165.5387102419902 410.3755729381863 634.4808299652357
25 30.287074959045283 165.5387102419905 410.3755729381896 634.4808299652358

We observe from Table 1 that the first four eigenvalues achieve at least 13-digit accuracy with
N ≥ 25. Likewise, as shown in Figures 1–2, our algorithm is both convergent and spectral accurate.

As a comparison, we list in Table 2 the numerical results of the first four approximate eigenvalues
obtained by directly solving the fourth-order eigenvalue problem using the classical Legendre spectral
method.

Table 2. Numerical results of the first four approximation eigenvalues for different N.

N λ1
N λ2

N λ3
N λ4

N
5 30.295236624303840 165.2737789038451 407.8269176502486 1247.000000000008

10 30.287074959045206 165.5387151406006 410.3755834469236 634.4806909655549
15 30.287074959045313 165.5387102419901 410.3755729381873 634.4808299678238
20 30.287074959045288 165.5387102419903 410.3755729381873 634.4808299652353
25 30.287074959045280 165.5387102419902 410.3755729381866 634.4808299652374

From Tables 1 and Table 2, we can observe that the convergence orders of the two numerical
methods are almost the same. Howerver, for the fourth-order eigenvalue problem in general domain, if
the spectral element method is directly applied to solve it, not only does the construction of the basis
function become complex, but the computational load is also significant. On the contrary, the spectral
element method for second-order problems is relatively mature in theoretical analysis and numerical
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calculation. Therefore, by transforming a fourth-order eigenvalue problem into a second-order coupled
system, not only are the difficulties of theoretical analysis overcome, but the construction of the basis
function is also relatively simple, facilitating efficient programming.

Although our theoretical analysis is based on the case where α and β are all positive constants,
our algorithm is applicable to the case where α and β are variable coefficients. Thus, we provide a
two-dimensional numerical example with variable coefficients in Example 2. Initially, we derive the
equivalent matrix form for the case where α and β are all variable coefficients. Let us denote

q(N−1) j+(n+1),(N−1)k+(m+1) =

∫ 1

−1

∫ 1

−1
φ
′

kφ
′

jφmφn + φkφ jφ
′

mφ
′

ndx1dx2,

c(N−1) j+(n+1),(N−1)k+(m+1) =

∫ 1

−1

∫ 1

−1
αφkφ jφmφndx1dx2.

Let β1 = ∂x1β, β2 = ∂x2β. We further denote

d(N−1) j+(n+1),(N−1)k+(m+1) =

∫ 1

−1

∫ 1

−1
β1φ

′

kφ jφmφndx1dx2,

e(N−1) j+(n+1),(N−1)k+(m+1) =

∫ 1

−1

∫ 1

−1
β2φkφ jφ

′

mφndx1dx2,

f(N−1) j+(n+1),(N−1)k+(m+1) =

∫ 1

−1

∫ 1

−1
β(φ

′

kφ
′

jφmφn + φkφ jφ
′

mφ
′

n)dx1dx2,

g(N−1) j+(n+1),(N−1)k+(m+1) =

∫ 1

−1

∫ 1

−1
βφkφ jφmφndx1dx2,

h(N−1) j+(n+1),(N−1)k+(m+1) =

∫ 1

−1

∫ 1

−1
φkφ jφmφndx1dx2.

Similar to the deduction of (4.2), we can obtain the equivalent matrix form of the discrete variational
form (2.12) as follows: [

Av Bv

Cv Dv

] [
w̄
ū

]
= λN

[
0 Ev

0 0

] [
w̄
ū

]
, (5.1)

where

Av = Q +C, Bv = G, Cv = D + E + F, Dv = −G, Ev = H,

where

C = (c(N−1) j+(n+1),(N−1)k+(m+1)),D = (d(N−1) j+(n+1),(N−1)k+(m+1)),
E = (e(N−1) j+(n+1),(N−1)k+(m+1)), F = ( f(N−1) j+(n+1),(N−1)k+(m+1)),
G = (g(N−1) j+(n+1),(N−1)k+(m+1)),H = (h(N−1) j+(n+1),(N−1)k+(m+1)),
Q = (q(N−1) j+(n+1),(N−1)k+(m+1)).

Example 2 We take Ω = (−1, 1)2, α = 1, β = esin(x1+x2). The numerical results of the first fourth
eigenvalues λ j

N( j = 1, 2, 3, 4) for different N are listed in Table 3. Similarly, in order to intuitively
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demonstrate the spectral accuracy of our algorithm, we employ the numerical solution with N = 40
as a reference solution and plot the absolute error curves of approximate eigenvalues as well as
corresponding error curves under a log-log scale in Figure 3. Additionally, we also give an image
of the reference solution for the eigenfunction and an error image between the reference solution and
the approximate solution with N = 30 in Figure 4.

Table 3. Numerical results of the first four approximation eigenvalues for different N.

N λ1
N λ2

N λ3
N λ4

N
5 20.516080766173257 140.7497111800699 140.9491722973433 370.2555125438320

10 20.523346905996156 140.9328397952852 141.1180042820287 371.0947733339725
15 20.523346901558348 140.9328457799942 141.1180110253167 371.0947913721103
20 20.523346901558394 140.9328457799939 141.1180110253170 371.0947913721107
25 20.523346901558362 140.9328457799946 141.1180110253167 371.0947913721118
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Figure 3. Absolute error curves (left) between the numerical solution and the reference
solution and the errors curves (right) under log-log scale.

Figure 4. Image (left) of the reference solution u40(x) and the error image (right) between
reference solution and numerical solution u30(x).
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From Table 3, it is observed once again that the first four numerical eigenvalues arrive at an accuracy
of approximately 14-digits when N ≥ 25. Additionally, it is observed from Figures 3-4 that our
algorithm is convergent and spectral accurate.

Next, we provide a three-dimensional numerical example in Example 3.
Example 3 We take Ω = (−1, 1)3, α = β = 1. The numerical results of the first fourth eigenvalues

λ
j
N( j = 1, 2, 3, 4) for different N are listed in Table 4. Again, in order to intuitively demonstrate the

spectral accuracy of our algorithm, we employ the numerical solution with N = 40 as a reference
solution and plot absolute error curves of approximate eigenvalues as well as corresponding error
curves under a log-log scale in Figure 5.

Table 4. Numerical results of the first four approximation eigenvalues for different N.

N λ1
N λ2

N λ3
N λ4

N
5 48.391913926971800 202.6713333320417 463.7525086494870 831.6354398793130

10 48.390410405809130 205.3660485651845 471.9269144900231 710.5119176894398
15 48.390410405809410 205.3660482248708 471.9269134571854 710.5148388418000
20 48.390410405809240 205.3660482248708 471.9269134571845 710.5148388416472
25 48.390410405809270 205.3660482248702 471.9269134571852 710.5148388416419

6 8 10 12 14 16 18 20
10-15

10-10

10-5

100

105

N
1

N
2

N
3

N
4

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
-15

-10

-5

0

N
1

N
2

N
3

N
4

Figure 5. Absolute error curves (left) between the numerical solution and the reference
solution and the errors curves (right) under log-log scale.

As shown in Table 4, the first four eigenvalues achieve at least 14-digit accuracy when N ≥ 25.
Furthermore, from Figure 5, we can see that our algorithm is also convergent and spectral accurate.

6. Conclusions

In this paper, an efficient Legendre spectral method is proposed and studied for fourth order
eigenvalue problems with the boundary conditions of a simply supported plate. By introducing an
auxiliary variable, the fourth order eigenvalue problem is transformed into a coupled second-order
eigenvalue problem. By utilizing the hybrid format, a fresh weak formulation and its corresponding
discrete variational form are formulated. Error estimates for the eigenvalues and eigenfunction
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approximations are also derived. In addition, numerical results validate the effectiveness of the
algorithm and the correctness of theoretical results.

The algorithm proposed in this paper can be combined with the spectral element method to be
applied to the numerical computation of fourth-order problems on more general domains.
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