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Abstract: A nonsmooth ecological model was proposed and analyzed, focusing on IPM, state-
dependent feedback control strategies, and anti-predator behavior. The main objective was to investigate
the impact of anti-predator behavior on successful pest control, pest outbreaks, and the dynamical
properties of the proposed model. First, the qualitative behaviors of the corresponding ODE model were
presented, along with an accurate definition of the Poincaré map in the absence of internal equilibrium.
Second, we investigated the existence and stability of order-k (where k=1,2,3) periodic solutions
through the monotonicity and continuity properties of the Poincaré map. Third, we conducted numerical
simulations to investigate the complexity of the dynamical behaviors. Finally, we provided a precise
definition of the Poincaré map in situations where an internal equilibrium existed within the model. The
results indicated that when the mortality rate of the insecticide was low or high, the boundary order-1
periodic solution of the model was stable. However, when the mortality rate of the insecticide was
maintained at a moderate level, the boundary order-1 periodic solution of the model became unstable; in
this case, pests and natural enemies could coexist.

Keywords: anti-predator behavior; state-dependent feedback control; nonlinear impulsive equautions;
Poincaré map; order-k periodic solution
Mathematics Subject Classification: 34A34, 34A37

1. Introduction

Pest control plays a pivotal role in agriculture. Infestations of pests in crops can result in yield losses,
reduced quality, and even total crop failure. Therefore, the implementation of effective pest control
measures is essential for maintaining agricultural stability and promoting sustainable development.
However, traditional pest control methods often heavily rely on chemical pesticides, which, while
partially addressing pest issues, also present a range of new challenges. The excessive use of chemical
pesticides may trigger issues such as soil degradation, environmental pollution, and disruption of
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ecosystems. To address these concerns, the Integrated Pest Management (IPM) strategy has emerged
as a solution [1–4]. IPM combines various methods, including chemical control (such as pesticide
spraying), biological control (introduction of natural predators), and physical control [5–7], in an organic
and holistic approach to achieve efficient, cost-effective, and environmentally friendly pest management.

The primary objective of the IPM strategy is not the complete eradication of pests, but rather the
control of their populations to acceptable levels for both crops and the environment, achieved through
a combination of control measures [8–10]. This objective is rooted in practical considerations, as the
complete elimination of pests is unattainable and contradicts the principles of sustainable agricultural
development. Therefore, a key aspect of IPM is the utilization of strategies to manage pest populations
within tolerable limits once they reach economic thresholds. The implementation of these control
measures depends on the pest population density and can be described using state-dependent impulsive
differential equations [11–13]. IPM strategies emphasize the reduction of chemical pesticide usage,
advocating for precise application, reduced dosage, and decreased frequency, while also prioritizing the
use of biological and physical control methods. By adopting these strategies comprehensively, IPM aims
to achieve effective pest management while minimizing adverse impacts on the environment and non-
target organisms. In doing so, it promotes agricultural stability and sustainable development [14–17].

Furthermore, anti-predator strategies are widespread within natural prey and predator ecosystems.
These tactics, employed by prey populations, serve as a vital defense mechanism against predators,
playing a pivotal role in ecosystem dynamics. These defensive behaviors encompass techniques such as
camouflage, concealment, toxin production, the development of protective spines, and the emission of
warning signals [18–20]. In the realm of pest control, the anti-predator behaviors exhibited by insects
exert a substantial influence on pest management. Many pest populations exhibit evasion, destruction of
predator eggs, predation or consumption of juvenile predators, and defensive strategies to avoid natural
predators. In references [21, 22], researchers investigated the univoltine spotted lanternfly (Lycorma
delicatula), which possesses features such as concealed forewings, defensive chemicals, and various
behavioral defenses including rapid jumping, sudden display of conspicuous hindwings and abdomen (a
startle/deimatic display), and feigning death. References [23–25] investigated how the Frankliniella
occidentalis (Pergande) (Thysanoptera: Thripidae) reduces the impact of phytoseiid mites by preying
on their eggs. The presence of anti-predator behaviors in pest populations significantly impacts the
effectiveness of pest control measures and poses considerable challenges. Despite the hurdles posed
by insects’ anti-predator behaviors, a comprehensive approach that combines diverse control methods,
along with continuous research and innovation, empowers us to effectively address these challenges.
This approach leads to successful pest management and fosters sustainable agricultural development.

Anti-predator behaviors in the natural world take on diverse forms, making predator-prey
relationships highly complex and presenting significant challenges for the analysis of pest-predator
ecosystems. This article is grounded in the concept of pulse control and integrates a holistic approach to
pest management. Thus, we aim to establish a pulse control model for pest-predator systems that
accounts for anti-predator behaviors in which the Holling type IV functional response was also [26–29].
By exploring this model, the objective is to pinpoint optimal control strategies and offer an effective
method for pest management.

The organization of our paper is structured as follows: In the upcoming section, we will introduce
an innovative ecological state-dependent impulsive model incorporating antipredator behavior. Section 3
provides the dynamics of the corresponding ODE model and the definition of Poincaré maps. In
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Section 4, we present the sufficient conditions for the order-k periodic solution when the system lacks
internal equilibria, and simultaneously derive the corresponding sufficient conditions when the system
possesses internal equilibrium points in Section 5. Bifurcation analysis is conducted through a numerical
method in this section. The final section offers some biological conclusions.

2. Model formulation

In 1930, Volterra and Lotka analyzed the predation-prey relationship between predatory fish and
edible fish, proposing the renowned Lotka-Volterra model. In recent years, numerous scholars have
expanded upon the Lotka-Volterra model to develop a series of mathematical models for studying
the dynamic behaviors and control strategies of pest-predator systems. Expanding upon the classical
Lotka-Volterra model and considering the presence of anti-predator behavior, we have established the
following pest-predator model with the Holling IV response function:

dx(t)
dt = rx(t)

(
1 − x(t)

K

)
− βx(t)y(t),

dy(t)
dt =

µx(t)y(t)
a+x2(t) − δy(t) − ηx(t)y(t).

(2.1)

Here, x(t) represents the pest density and y(t) represents the natural-enemy density, δ is the death rate of
natural enemies, µ is the prey-to-predator conversion rate, β denotes the predation rate, and η represents
the anti-predation coefficient.

One strategy employed in IPM involves releasing natural enemies for a defined duration, followed
by the application of chemical pesticides. The primary goal of IPM is to keep pest density below the
Economic Injury Level (EIL), rather than striving for complete eradication. The relevant tactics are put
into action when the host density exceeds the specified ET threshold. Consequently, in combination
with model (2.1), we can construct the following ecological model with threshold control strategy and
antipredator behavior 

dx(t)
dt = rx(t)

(
1 − x(t)

K

)
− βx(t)y(t),

dy(t)
dt =

µx(t)y(t)
a+x2(t) − δy(t) − ηx(t)y(t),

 x < ET,

x(t+) =
(
1 − p

)
x(t),

y(t+) = y(t) + τ,

 x = ET,

(2.2)

where x(t+) and y(t+) represent the number of pests and natural enemies, respectively, after the control
strategy is applied at time t, we have the following definitions: ET denotes the Economic Threshold,
and p ∈ [0, 1) represents the pest mortality rate due to pesticide spraying and other control methods, and
τ represents the number of natural enemies released at time t.

3. Poincare map

The qualitative analysis of model (2.1) is essential for comprehending the dynamic characteristics
of model (2.2). Therefore, our primary emphasis will be on analyzing the dynamic behavior of Eq (2.1).
The two isolines of model (2.1) are

L1 : y =
r
β

(
1 −

x
K

)
; L2 : f (x) � ηx3 + δx2 −

(
µ − aη

)
x + aδ = 0.
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The first and second derivatives of the function f (x) with respect to x are as follows

f ′(x) = 3ηx2 + 2δx −
(
µ − aη

)
; f ′′(x) = 6ηx + 2δ > 0.

It follows from f ′′(x) > 0 that f ′(x) is a strictly monotonically increasing function as x ∈ [0,+∞), we
consider the following two cases:

Case 1: (µ − aη) ≤ 0. In this case, f ′(x) > 0 and f (x) > f (0) = aδ > 0, which implies that
dy/dt < 0 for all x > 0, so we can derive that limt→+∞ y(t) = 0 for any positive initial value (x0, y0), this
also indicates that natural enemy will eventually go extinct. Furthermore, by applying stability theory,
model (2.1) has a stable boundary node (K, 0) and an unstable saddle (0, 0).

Case 2: (µ − aη) > 0. Since f ′(x) is monotonically increasing as x ∈ [0,+∞) and f ′(0) =
−(µ − aη) < 0, then f ′(x) = 0 exists a positive root denoted by xg, and

xg =
−δ +

√
δ2 + 3η

(
µ − aη

)
3η

.

Hence, f (x) is a strict decrease within (0, xg) and a strict increase within (xg,+∞). In this case, we
consider the following three subcases:

(C1) f (xg) > 0; (C2) f (xg) = 0; (C3) f (xg) < 0.

(C1) The equation f (x) = 0 exists no positive roots, indicating that model (2.1) has no internal equilibria,
in this case, which aligns with Case 1.
(C2) The equation f (x) = 0 exists a single positive root x = xg, indicating that model (2.1) has an
internal equilibrium Eg = (xg, yg). We have

f (xg) = N3 +
(
9η2a − 9µη − 3δ2)N + 2δ3 + 18η2aδ + 9µηδ = 0

and
yg =

r
β

(
1 −

xg

K

)
,

where N =
√
δ2 + 3η

(
µ − aη

)
.

(C3) The equation f (x) = 0 exists two positive roots denoted by x1 and x2, indicating that model (2.1)
has two internal equilibria E1 = (x1, y1) and E2 = (x2, y2). We can use the root-finding formula [30] to
solve the cubic equation f (x) = 0 and obtain two positive roots

x1 =
−δ +

√
A

(
cos θ3 −

√
3 sin θ3

)
3η

, x2 =
−δ +

√
A

(
cos θ3 +

√
3 sin θ3

)
3η

,

where A = δ2 + 3η(µ − aη), θ = arccos T , T = 2Aδ−3ηB
2
√

A3
, B = −δ(µ − aη) − 9ηaδ, T ∈ (−1, 1). Then we

substitute xi into y and derive

y1 =
r
β

1 − −δ +
√

A
(
cos θ3 −

√
3 sin θ3

)
3Kη

 , y2 =
r
β

1 − −δ +
√

A
(
cos θ3 +

√
3 sin θ3

)
3Kη

 .
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Next, let’s study the local stability of equilibria Eg = (xg, yg) for model (2.1), we first calculate the
Jacobian matrix of model (2.1) as

J(x, y) =

 r
(
1 − x

K

)
− rx

K − βy −βx

µy
a+x2 −

2µx2y
(a+x2)2 − ηy

µx
a+x2 − δ − ηx

 ,
and

J(xg, yg) =


−

rxg

K −βxg

µyg

a+x2
g
−

2µx2
gyg(

a+x2
g

)2 − ηyg 0

 , ∣∣∣J(xg, yg)
∣∣∣ = βxgyg

µ
(
a − x2

g
)(

a + x2
g
)2 − η

 .
It follows from f (xg) = 0 that a =

ηx3
g+δx

2
g−µxg

−δ−ηxg
, then

∣∣∣J(xg, yg)
∣∣∣ = β
µ

xgyg

(
µδ − 2η2x3

g − 4δηx2
g − 2δ2xg

)
.

Consider the function g(x) = µδ − 2η2x3
g − 4δηx2

g − 2δ2xg, calculating the derivative of this function,
we get

g′(x) = −
(
6η2x2

g + 8δηxg + 2δ2
)
< 0,

which indicates that g(x) is monotonically decreasing. Since f ′(xg) = 3ηx2
g + 2δxg −

(
µ − aη

)
= 0 and

f (xg) = ηx3
g + δx

2
g −

(
µ − aη

)
xg + aδ = 0, we get

g(xg) = µδ − 2η2x3
g − 4δηx2

g − 2δ2xg = −2η2x3
g − δηx

2
g + δ

(
µ − 3ηx2

g − 2δxg
)

= −2η2x3
g − δηx

2
g + δ

[
(µ − aη) − 3ηx2

g − 2δxg + aη
]
= −2η2x3

g − δηx
2
g + aδη

= η
[
− 2ηx3

g − δx
2
g − ηx

3
g − δx

2
g + (µ − aη)xg

]
= ηxg

[
− 3ηx2

g − 2δxg + (µ − aη)
]
= 0.

Thus |J(x2, y2)| = 0, which means that E2 is a degenerate equilibrium.
Furthermore, we investigate the local stability of the equilibrium E2 = (x2, y2), where f ′(xg) =

3ηx2
g + 2δxg − (µ − aη) = 0 and f (xg) = ηx3

g + δx
2
g −

(
µ − aη

)
xg + aδ < 0. Then we have

g(xg) = µδ − 2η2x3
g − 4δηx2

g − 2δ2xg = −2η2x3
g − δηx

2
g + aδη

< η
[
− 2η2x3

g − δηx
2
g − ηx

3
g − δx

2
g + (µ − aη)xg

]
= ηxg

[
− 3ηx2

g − 2δxg + (µ − aη)
]
= 0,

and xg < x2, this implies g(x2) < g(xg) < 0. Thus |J(x2, y2)| < 0, that is, E2 is a saddle.
Analogously, since f ′(x1) < 0 and g(x1) = µδ − 2η2x3

1 − 4δηx2
1 − 2δ2x1 > 0, we get |J(x1, y1)| > 0

and trJ(x1, y1) = − rx1
K < 0. Thus, the positive equilibrium E1 is stable. Meanwhile, by calculating the

discriminant of the characteristic equation

σ =
r2x2

1

K2 − 4
r

Kµ
x1(K − x1)

[
µδ − 2η2x3

1 − 4δηx2
1 − 2δ2x1

]
,

E1 is a node as σ > 0; otherwise, it is a focus.
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In order to better understand the dynamic behavior of model (2.1), numerical simulations were
carried out for the model (2.1), as demonstrated in Figure 1. When µ = 0.625, the two equilibria
coincide into one equilibrium Eg, as shown in Figure 1[B]. As µ decreases to 0.62, model (2.1) exists
no internal equilibrium, as shown in Figure 1[A]. When mu increases to 0.63, there are two internal
equilibria, and E1 is a node and E2 is a saddle, as shown in Figure 1[C]. As µ continues to increase, E1

changes from node to focus.
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Figure 1. Dynamical behavior of model (2.1) as parameters µ varies. Parameter are r =
1,K = 4, β = 0.4, a = 1.5, δ = 0.2, η = 0.05. [A] µ = 0.62; [B] µ = 0.625; [C] µ = 0.63.

Now, we can discuss the pulse set, phase set, and Poincaré mapping of model (2.2) without
internal equilibria.

Table 1. Equilibrium of model (2.1).

Equilibrium Condition Dynamic behavior
E0 = (0, 0) ———– a saddle

EK = (K, 0)
µK

a+K2 − δ − ηK > 0 a saddle
µK

a+K2 − δ − ηK < 0 a stable node
Exg = (xg, yg) ———– a degenerate equilibrium
E2 = (x2, y2) ———– a saddle

E1 = (x1, y1)
σ > 0 a stable node
σ < 0 a stable focus

For Case 1 and Case 2 (C1), two lines in R2
+ =

{
(x, y)|x ≥ 0, y ≥ 0

}
are related to the pulse set and

phase set:
L3 : x = (1 − p)ET ; L4 : x = ET.

Considering 0 < ET < K, we can deduce that the intersection of L1 and L4, denoted as QET = (ET, yET ),
and

yET =
r
β

(
1 −

ET
K

)
.

Similarly, the intersection of L1 and L3 is denoted as QpET =
(
(1 − p)ET, ypET

)
, and

ypET =
r
β

(
1 −

(
1 − p

)
ET

K

)
.
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Define Ω =
{
(x, y)|x > 0, y > 0, x < ET

}
⊂ R2

+, model (2.1) exists no internal equilibria, it has a stable
boundary node (K, 0) and a saddle (0, 0), this implies that all initial solutions within Ω will eventually
converge to L4 in a finite time. Consequently, we define the pulse setM of model (2.2) as

M =
{
(x, y)|x = ET, 0 ≤ y ≤ yET

}
,

and a continuous function

I : (ET, y) ⊂ M → (x+, y+) =
(
(1 − p)ET, y + τ

)
,

then the phase set N can be defined as

N = I(M) =
{
(x+, y+) ∈ Ω|x+ =

(
1 − p

)
ET, τ ≤ y+ ≤ yET + τ

}
�

{
(x+, y+) ∈ Ω|x+ =

(
1 − p

)
ET, y+ ∈ YD

}
,

(3.1)

where YD = [τ, yET + τ] and (x+0 , y
+
0 ) ∈ N0. Obviously, any initial solution that begins at (x+0 , y

+
0 ) will

satisfy y+k ≤ yET + τ, where y+0 > yET + τ.
For Case 2 (C2) and (C3), the corresponding pulse and phase sets of model (2.2) are more complex

than those of Case 1 and Case 2 (C1), and we will provide a detailed explanation in Section 5.
To define the Poincaré mapping for Case 1 and Case 2 (C1), we must take into account two distinct

transversals: S ET , which pertains to the Poincaré mapping on the pulse set, and S pET , corresponding to
the Poincaré mapping on the phase set. More precisely, the definitions of these transversals are

S ET =
{
(x, y)|x = ET, y ≥ 0

}
; S pET =

{
(x, y)|x =

(
1 − p

)
ET, y ≥ 0

}
.

Assume P+k =
(
(1 − p)ET, y+k

)
lies on S pET , the solution

Ψ
(
t, t0, (1 − p)ET, y+k

)
�

(
x
(
t, t0, (1 − p)ET, y+k

)
, y

(
t, t0, (1 − p)ET, y+k

))
from P+k will arrive S ET in finite time t1, i.e., x

(
t1, t0, (1 − p)ET, y+k

)
= ET , and we have yk+1 =

y
(
t1, t0, (1 − p)ET, y+k

)
� PM(y+k ). After a pulse, the system will jump from Pk+1 = (ET, yk+1) to

P+k+1 =
(
(1 − p)ET, y+k+1

)
, here y+k+1 = yk+1 + τ. Thus the Poincaré mapping PM can be defined as

y+k+1 = PM(y+k ) + τ = y
(
(1 − p)ET, y+k

)
+ τ � PM(y+k ).

Similarly, assume Pk = (ET, yk) lies on S ET , post-pulse P+k =
(
(1 − p)ET, yk + τ

)
lies on S pET , the

solution from P+k will arrive Pk+1 in finite time t1, where Pk+1 = (ET, yK+1) lies on S ET . Indicating that
yk+1 is determined by yk, thus Poincaré mapping PM can be defined as

yk+1 = PM
(
yk + τ

)
= y

(
(1 − p)ET, yk + τ

)
+ τ.

For this, let

P(x(t), y(t)) = rx(t)
(
1 −

x(t)
k

)
− βx(t)y(t),
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Q(x(t), y(t)) =
µx(t)y(t)
a + x2(t)

− δy(t) − ηx(t)y(t).

In phase space, we obtain the scalar differential equation
dy
dx =

µxy
a+x2 −δy−ηxy

rx(1− x
k )−βxy

� g(x, y),

y
(
(1 − p)ET

)
= y+0 ,

(3.2)

where g(x, y) is continuously differentiable, and Ω1 =
{
(x, y)

∣∣∣x > 0, 0 < y < r
β

(
1 − x

k

)}
. As S < ypET ,

we have x+0 = (1 − p)ET, y+0 � S,S ∈ N , so (x+0 , y
+
0 ) ∈ Ω1, it gives that

y(x) = y
(
x; (1 − p)ET,S

)
= y(x,S), (1 − p)ET ≤ x ≤ ET.

It follows from equation (3.2) that

y(x,S) = S +
∫ (1−p)ET

x
exp

(
g
(
s, y

(
s,S

)))
ds,

thus, the Poincaré map PM in the Ω1 is

PM(S) = y(ET,S) + τ. (3.3)

Theorem 1. For case 1 and case 2 (C1), the Poincaré mapping PM of model (2.2) satisfies:
(i) The domain is [0,+∞), and the range is

[
τ, PM(ypET )

)
=

[
τ, y

(
(1 − p)ET, ypET

)
+ τ

]
of PM. Moreover,

PM is monotonically increasing on [0, ypET ] and monotonically decreasing on [ypET ,+∞);
(ii) PM is continuously differentiable;
(iii) PM is concave on [0, ypET );
(iv) PM has a unique fixed point y∗, if τ > 0, then y∗ ∈ (0, ypET ) when PM(ypET ) < ypET , and y∗ ∈
(ypET ,+∞) when PM(ypET ) > ypET .

Proof. (i) Based on model (2.1), the domain is [0,+∞), and the range is
[
τ, PM(ypET )

)
as there exists no

pulse effect. For ∀y+k1
, y+k2
∈ [0, ypET ] and y+k1

< y+k2
, we have yk1+1 = y

(
(1−p)ET, y+k1

)
< y

(
(1−p)ET, y+k2

)
=

yk2+1. That is, PM(y+k1
) < PM(y+k2

), so PM is monotonically increasing on [0, ypET ].

For ∀y+ki
∈ [ypET ,+∞), i = 1, 2 and y+k1

< y+k2
, the orbital Ψ

(
t, t0,

(
1− p

)
ET, y+ki

)
will first meet L3 and

then intersect with L4. Here we denote the intersection points of Ψ
(
t, t0,

(
1 − p

)
ET, y+ki

)
and L4 as y+k1

=((
1 − p

)
ET, y+k1

)
and y+k2

=
((

1 − p
)
ET, y+k2

)
. Noting that y+k1

=
((

1 − p
)
ET, y+k1

)
> y+k2

=
((

1 − p
)
ET, y+k2

)
,

and y+k1
, y+k2
∈ [0, ypET ], then PM(y+k1

) = PM(y+k1
) > PM(y+k2

) = PM(y+k2
). So PM is monotonically decreasing

on [ypET ,+∞).
(ii) In fact, P(x, y) and Q(x, y) in model (2.1) are continuously differentiable for x, y > 0, which

satisfies the continuity and differentiability of the solution with respect to the initial values. Therefore,
by applying the Cauchy-Lipschitz theorem, PM is continuously differentiable.

(iii) It follows from model (3.2) that

∂g
∂y
=

rx
(
1 − x

K

) [
µx

a+x2 − δ − ηx
]

[
rx

(
1 − x

K

)
− βxy

]2 ,
∂2g
∂y2 =

2rβx
(
1 − x

K

) [
µx

a+x2 − δ − ηx
]

[
rx

(
1 − x

K

)
− βxy

]3 ,
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and we have
[
µx

a+x2 − δ − ηx
]
< 0 and

[
rx

(
1 − x

K

)
− βxy

]
> 0 as x < ET and y < ypET , that is, ∂g

∂y < 0 and
∂2g
∂y2 < 0 when y < ypET .

From Cauchy-Lipschitz theorem for scalar equation, we can derive that

∂y
(
x,S

)
∂S

= exp

∫ x

(1−p)ET

∂

∂y

Q
(
z, y

(
z,S

))
P
(
z, y

(
z,S

))
 dz

 > 0

and
∂2y

(
x,S

)
∂S2 =

∂y
(
x,S

)
∂S

∫ x

(1−p)ET

∂2

∂y2

Q
(
z, y

(
z,S

))
P
(
z, y

(
z,S

))
 ∂y(x,S)
∂S

dz < 0,

thus PM is concave when y < ypET .

(iv) PM is continuous and monotonically decreasing on [ypET ,+∞) and PM(0) = τ ≥ 0, so there
exists ỹ ∈ [ypET ,+∞) such that PM(ỹ) < ỹ. Therefore, PM exists a fixed point y∗ on [0,+∞).

If τ > 0 and PM(ypET ) < ypET , it follows from PM is monotonically decreasing on [ypET ,+∞) that
PM(y+k ) < PM(ypET ) < ypET for y+k ∈ [ypET ,+∞), i.e., PM does not have any fixed point on [ypET ,+∞),
since PM is concave on (0, ypET ), so PM has a unique fixed point on [ypET ,+∞).

If τ > 0 and PM(ypET ) > ypET , PM is concave with PM(0) > 0, there exists no fixed point on
(0, ypET ). Based on the monotonicity of PM over the interval, it is known that the fixed point of PM is
unique on [ypET ,+∞). The proof is complete. □

4. Global dynamics analysis of model (2.2) without internal equilibrium

4.1. Existence and stability of order-1 periodic solution

For Case 1 and Case 2 (C1), the chemical control is employed, i.e., τ = 0, in this situation, and the
density of pests will decrease. This could potentially lead to extinction of natural enemies; thus, we
have the following subsystem 

dx(t)
dt = rx(t)

(
1 − x(t)

K

)
, x < ET,

x(t+) = (1 − p)x(t), x = ET,
(4.1)

solving the above equation yields

x(t) =
K

1 +
[

K
(1−p)ET − 1

]
exp(−rt)

with x(0+) = (1 − p)ET . If the solution x(t) reaches L4 at time T , then

ET =
K

1 +
[

K
(1−p)ET − 1

]
exp(−rT )

,

i.e.,

T =
1
r

ln
[

K − ET (1 − p)
(1 − p)(K − ET )

]
.
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Therefore, model (4.1) has a periodic solution

xT (t) =
K

1 +
[

K
(1−p)ET − 1

]
exp(−rt)

,

with a period T .

Theorem 2. For Case 1 and Case 2 (C1), if τ = 0, the boundary order-1 periodic solution
(
xT (t), 0

)
of

model (2.2) is globally asymptotically stable.

Proof. We first prove the local stability of the solution
(
xT (t), 0

)
. Denote ϕ(x, y) = x−ET, α(x, y) = −px

and β(x, y) = τ, it gives

∂P
∂x
=

r(K − 2x)
K

− βy,
∂Q
∂y
=
µx

a + x2 − δ − ηx,

∂α

∂x
= − p,

∂ϕ

∂x
= 1,

∂α

∂y
=
∂β

∂x
=
∂β

∂y
=
∂ϕ

∂y
= 0,

∆1 =
P+
p
=

P+
(
(1 − p)ET, 0

)
P(ET, 0)

=
(1 − p)

(
K − (1 − p)ET

)
K − ET

,

and it can be obtained∫ T

0

(
∂P
∂x
+
∂Q
∂y

)
dt =

∫ T

0

r
(
K − 2xT (t)

)
K

+
µxT (t)

a +
(
xT (t)

)2 − δ − ηx
T (t)

 dt

� I1 + I2 + I3,

where

I1 = ln

 K − ET(
1 − p

)(
K −

(
1 − p

)
ET

) ,
I2 =

µK
2r(K2 + a)

ln
(K −

(
1 − p

)
ET

K − ET

)2 a + ET 2

a +
(
1 − p

)2ET 2

 + µK2

√
ar(K2 + a)

arctan
( √

apET
a +

(
1 − p

)
ET 2

)
,

I3 = −
δ

r
ln

K −
(
1 − p

)
ET(

1 − p
)(

K − ET
) − ηK

r
ln

K −
(
1 − p

)
ET

K − ET
.

Therefore, we can derive that

|µ2| = ∆1 exp
∫ T

0

(
∂P
∂x +

∂Q
∂y

)
dt

=

(
1−p

)(
K−

(
1−p

)
ET

)
K−ET exp(I1 + I2 + I3)

=

(K−
(

1−p
)

ET
K−ET

)2
a+ET 2

a+
(

1−p
)2

ET 2


µK

2r
(

K2+a
) (

K−
(

1−p
)

ET(
1−p

)(
K−ET

))− δr
(

K−
(

1−p
)

ET
K−ET

) ηK
r

exp


µK2 arctan

 √
apET

a+
(

1−p
)

ET2


√

ar
(

K2+a
)


= exp(I2 + I3).
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Considering µ2 as a function of p ∈ [0, 1], and taking the derivative of µ2 with respect to p yields
dµ2(p)

dp = (I2 + I3)′ exp(I2 + I3)

= −
K
[
ηM3+δM2−

(
µ−aη

)
M+aδ

]
r
(

a+
(

1−p
)2

ET 2
)(

1−p
)(

k−
(

1−p
)

ET
) exp(I2 + I3),

where M = (1 − p)ET . Then dµ2(p)
dp = 0 is equivalent to

F1(M) = ηM3 + δM2 −
(
µ − aη

)
M + aδ = 0. (4.2)

Since there is no internal equilibrium (i.e., (µ < aη) or f (xg) > 0), we have F1(M) > 0, which implies
that dµ2(p)

dp < 0 (i.e., µ2 is strictly monotonically decreasing). Hence, |µ2| < 1 for p ∈ (0, 1], the solution(
xT (t), 0

)
is local stability.

Next, we prove the global attraction of
(
xT (t), 0

)
. When k ≥ 0 and ET < K, the impulse point

sequence y+k from phase set N satisfies y+k ∈ [0, ypET ), and we have dy
dt < 0 for any x ≤ ET , y+K is strictly

monotone decreasing sequence, and lim
k→∞

y+k = y∗ = 0. Otherwise, if x ≤ ET , it would contradict the

condition that dy
dt < 0. Therefore,

(
xT (t), 0

)
is globally asymptotically stable. The proof is complete. □

Furthermore, we have verified the above conclusion in Theorem 2 through numerical means. If
τ = 0, Case 1 and Case 2 (C1) hold true, the solution

(
xT (t), 0

)
is stable. Specifically, the natural enemy

gradually reduces and eventually goes extinct, and the pest population oscillates periodically with a
relatively high frequence, as shown in Figure 2[A]. If τ = 0.01, then pests and natural enemies can
coexist, there exists an internal order-1 periodic solution, as shown in Figure 2[B].
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Figure 2. Stability of the boundary order-1 periodic solution
(
xT (t), 0

)
for Case 1 and Case 2

(C1). Parameters are r = 1,K = 1, β = 0.5, µ = 0.135, a = 1, δ = 0.036, η = 0.2, p = 0.78, and
[A] τ = 0; [B] τ = 0.01.

4.2. Existence and stability of order-k periodic solution

When we implement both chemical and biological control strategies simultaneously (i.e., p, τ , 0),
the dynamic behavior of model (2.2) becomes highly complex. We consider the following three cases:
(i) PM(ypET ) < ypET ; (ii) PM(ypET ) = ypET ; (iii) PM(ypET ) > ypET .
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For Case 1 and Case 2 (C1), when ET < K, there exists an infinite sequence y+n = Pn
M(y+0 ) with

y+0 ∈ [0,+∞).

Theorem 3. If PM(ypET ) < ypET , then PM has an unique fixed point y∗ that is globally asymptotically
stable.

Proof. From Theorem 1, it gives that PM(y∗) = y∗ for PM(ypET ) < ypET and y∗ ∈ (0, ypET ).
For ∀y+0 ∈ [0, y∗), since PM is concave and monotonically increasing on [0, ypET ), we have y∗ =

PM(y∗) > PM(y+0 ) > y+0 . Thus Pn
M(y+0 ) is monotonically increasing and lim

n→+∞
Pn

M(y+0 ) = y∗.
For ∀y+0 ∈ (y∗,+∞), there are two subcases: (a) For all n, Pn

M(y+0 ) > y∗. Obviously, y∗ = PM(y∗) <
PM(y+0 ) < y+0 , this indicates that Pn

M(y+0 ) is monotonically decreasing, so we have lim
n→+∞

Pn
M(y+0 ) = y∗;

(b) There exists an integer n1 such that Pn
M(y+0 ) < y∗ for n > n1. Analogously, we can obtain that the

sequence Pn1+ j
M (y+0 ) is monotonically increasing, thus lim

j→+∞
Pn1+ j

M (y+0 ) = y∗. The proof is complete. □

Theorem 4. If PM(ypET ) = ypET , then PM has a unique fixed point y∗ that is globally asymptotically
stable.

The proof is similar to that of Theorem 3, therefore, the proof process is omitted.

Theorem 5. If PM(ypET ) > ypET and P2
M(ypET ) ≥ ypET , then PM has a stable fixed point or stable

two-point ring, that is model (2.2) has a stable order-1 or order-2 periodic solution.

Proof. For
(
(1 − p)ET, y+0

)
∈ N , when y+0 ∈ [0, ypET ], PM exists no fixed point and increases

monotonically on [0, ypET ). There is an integer n such that y+n−1 < ypET ≤ y+n and
y+n = PM(y+n−1) ≤ PM(ypET ), so y+n ∈

[
ypET , PM(ypET )

]
. When y+0 ∈ (ypET ,+∞), the Poincaré mapping PM

decreases monotonically on (ypET ,+∞), and we can obtain y+1 = PM(y+0 ) ≤ PM(ypET ) and
y+n ∈ [ypET , PM(ypET )] as n > 1, i.e., there exists an integer n such that Pn

M(y+0 ) ∈
[
ypET , PM(ypET )

]
.

Moreover
PM

([
ypET , PM(ypET )

])
=

[
P2

M(ypET ), PM(ypET )
]
⊂

[
ypET , PM(ypET )

]
,

thus P2
M is monotonically increasing.

For any y+0 ∈
[
ypET , PM(ypET )

]
, assuming y+1 = PM(y+0 ) , y+0 and y+2 = P2

M(y+0 ) , y+0 , which means

that the solution of model (2.2) from
((

1 − p
)
ET, y+0

)
is not a order-1 (or order-2) periodic. Based on

reference [31], we consider the following four cases:
(i) PM(ypET ) ≥ y+1 > y+0 > y+2 ≥ ypET . In this case, we have y+3 = PM(y+2 ) > PM(y+0 ) = y+1 and

y+4 = PM(y+3 ) < PM(y+1 ) = y+2 , further leading to y+3 > y+1 > y+0 > y+2 > y+4 and

PM(ypET ) ≥ · · · > y+2n+1 > y+2n−1 > · · · > y+1 > y+0 > y+2 > · · · > y+2n > y+2n−2 > · · · ≥ ypET .

(ii) PM(ypET ) ≥ y+1 > y+2 > y+0 ≥ ypET . In this case, it gives that PM(y+1 ) = y+2 < y+3 = PM(y+2 ) <
PM(y+0 ) = y+1 and PM(y+2 ) = y+3 > y+4 = PM(y+3 ) > PM(y+1 ) = y+2 , we can obtain that y+1 > y+3 > y+4 > y+2 >
y+0 and

PM(ypET ) ≥ y+1 > · · · > y+2n−1 > y+2n+1 > · · · > y+2n+2 > y+2n > · · · > y+2 > y+0 ≥ ypET .

(iii) ypET ≤ y+1 < y+0 < y+2 ≤ PM(ypET ). Similar to (i), we have

ypET ≤ · · · < y+2n+1 < y+2n−1 < · · · < y+1 < y+0 < y+2 < · · · < y+2n < y+2n+2 < · · · ≤ PM(ypET ).
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(iv) ypET ≤ y+1 < y+2 < y+0 ≤ PM(ypET ). Similar to (ii), we have

ypET ≤ y+1 < · · · < y+2n−1 < y+2n+1 < · · · < y+2n+2 < y+2n < · · · < y+2 < y+0 ≤ PM(ypET ).

For Cases (ii) and (iv), there exists a unique y∗ ∈
[
ypET , PM(ypET )

]
such that lim

n→∞
y2n+1 = lim

n→∞
y2n =

y∗. Alternatively, there may exist y∗1, y
∗
2 ∈

[
ypET , PM(ypET )

]
with y∗1 , y∗2 such that lim

n→∞
y2n+1 = y∗1 and

lim
n→∞

y2n = y∗2. For Cases (i) and (iii), only the latter is true. The proof is complete. □

Theorem 6. If PM(ypET ) > ypET and P2
M(y+) > y+

(
y+ ∈ [ypET , y∗)

)
, then the order-1 periodic solution of

model (2.2) is globally stable.

Proof. We will prove Theorem 6 by considering three cases: (a) y+ ∈ [ypET , y∗); (b) y+ ∈ [y∗,+∞) and
(c) y+ ∈ [0, ypET ).

For Case (a), note that PM(ypET ) ≥ PM(y+) > y∗ and P2
M(y+) > y+ for all y+, we have y+ < P2

M(y+) <
y∗, and then it gives that PM(ypET ) ≥ PM(y+) > P3

M(y+) > y∗ and y+ < P2
M(y+) < P4

M(y+) < y∗. By
mathematical induction we have P2 j

M(y+) is monotonically increasing, and lim
j→∞

P2 j
M(y+) = y∗ for any j ≥ 1

and P2 j−1
M (y+) monotonically decreasing, and lim

j→∞
P2 j−1

M (y+) = y∗ for any j ≥ 1.

For Case (b), if P j
M(y+) > y∗ for all j, it follows from PM(y+) < y+ that P j

M(y+) is monotonically
decreasing and lim

j→∞
P j

M(y+) = y∗. Otherwise, there exists a positive integer m such that Pm
M(y+) ∈

[ypET , y∗).
For Case (c), PM is monotonically increasing, there exists a positive integer m such that Pm

M(y+) ∈
[ypET , y∗) or Pm

M(y+) > y∗, then the conclusion can be drawn from Cases (a) and (b). □

Theorem 7. If PM(ypET ) > ypET and P2
M(ypET ) < y+c = min

{
y+ : PM(y+) = ypET

}
, then model (2.2) has

a non-trivial order-3 periodic solution.

Proof. From Theorem 2, the unique fixed point y∗ of the PM satisfies y∗ ∈
(
ypET , PM(ypET )

)
. Denote

Z(y) = P3
M − y ∈ C[0,+∞), we get

P3
M(y+c ) = P2

M(PM((y+c )) = P2
M(ypET ) < y+c ⇒ Z(y+c ) < 0

and
P3

M(0) = P2
M(PM(0)) = P2

M(τ) > 0⇒ Z(y+c ) > 0.

Therefore, there exists ỹ∗ ∈ (0, y+c ) such that P3
M(ỹ∗) = ỹ∗. As y+c < ypET < y∗ and y∗ is unique,

we conclude that model (2.2) has a non-trivial periodic solution of order-3 with the initial value((
1 − p

)
ET, ỹ∗

)
. The proof is complete. □

Theorem 7 provides only sufficient conditions for the existence of a non-trivial order-3 periodic
solution in model (2.2). For order k (k ≥ 3) periodic solution, it is generally challenging to determine
precise conditions for the existence of a system’s solution through general theorems or formulas.
Therefore, in these instances, reliance on numerical simulations is necessary for bifurcation analysis.

As shown in Figure 3[A] and Figure 3[B], we have investigated the bifurcation diagrams of
model (2.2) through numerical methods, which demonstrate the complex dynamical behavior of
model (2.2). As the bifurcation parameters p and τ change respectively, model (2.2) exhibits a series of
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bifurcation phenomena such as period doubling, chaos, periodic window, period halving and so on. The
emergence of these phenomena is due to model (2.2) transitions from an order-1 periodic solution to an
order-k periodic solution, and then reverts to an order-1 periodic solution.
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Figure 3. Bifurcation analysis of model (2.2) (no interior equilibrium) with respect to p and
τ. Parameters are r = 1,K = 20, β = 8, µ = 0.135, a = 0.33, δ = 0.025, η = 0.011, and [A]
τ = 0.3; [B] p = 0.5.

5. Global dynamics analysis of model (2.2) with internal equilibrium

For Cases (C2) and (C3), model (2.2) exhibits either one or two equilibria. In such cases, the
Poincaré map lacks a well-defined nature, and both its domain and range become notably intricate.
Consequently, we will delve into a detailed examination of the pulse set and phase set associated with
the Poincaré mapping.

5.1. Determination of pulse sets and phase sets

For Case (C3), model (2.2) has two internal equilibria.
(i) As σ < 0, E1 is a stable focus.
When x1 < K ≤ x2, there exists only an internal equilibrium E1, any solution to model (2.2) that

begins at
((

1 − p
)
ET, y+0

)
passes through an infinite number of pulses when ET < x1, and model (2.2)

has a trajectory Γ1 tangent to L3, we denote the tangent point as QpET

((
1 − p

)
ET, ypET

)
. The orbital

trajectory Γ1 intersects the line L4 at Q(ET, yQ). Thus, the pulse set and phase set can be defined
respectively as

M1 =
{
(x, y)|x = ET, 0 ≤ y ≤ yQ

}
, N1 =

{
(x+, y+) ∈ Ω|x+ = (1 − p)ET, y+ ∈ yD1

}
,

here YD1 = [τ, yQ + τ]. There is a trajectory Γ1 tangent to L4 at QET and intersecting L2 at P
(
x−3, y−3

)
as

x1 ≤ ET . Γ2 is tangent to L3 at this point, as shown in Figure 4[A].
If (1− p)ET < x3, the pulse set isM1 and the phase set isN1. If (1− p)ET ≥ x3, Γ2 intersects with

L3 at P1

((
1 − p

)
ET, yQ1

)
and P2

((
1 − p

)
ET, yQ2

)
respectively, so the pulse set isM, and the phase set is

N2 =
{
(x+, y+) ∈ Ω|x+ = (1 − p)ET, y+ ∈ YD2

}
,
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where YD2 =
{
[0, yQ1]

⋃
[yQ2 ,+∞)

}⋂
D. Any solution that initiates from (x+, y+) ∈ N does not exhibit

pulsing behavior when yQ1 < y+ < yQ2 .
When K > x2, we consider the following two cases based on the different positions of the threshold

ET and the equilibria E1, E2.

I1 x1 < ET < x2; I2 x2 ≤ ET .

For Case I1, if (1 − p)ET < x3, then the pulse and phase sets are M1 and N1, respectively.
If (1 − p)ET ≥ x3, then the pulse set isM, and the phase set is N2.

For Case I2, the unstable manifold LU1 approaching (K, 0) intersects L4 at U(ET, yU1), if (1 −
p)ET ≤ x2, then the unstable manifold LU2 tending to E2 intersects L3 at two points: lower point is
Umin

((
1 − p

)
ET, yUmin

)
and the higher one is Umax

((
1 − p

)
ET, yUmax

)
, as shown in Figure 4[B], so the

pulse and phase sets can be defined respectively as

M2 =
{
(x, y)|x = ET, 0 ≤ y ≤ yU1

}
, N3 =

{
(x+, y+) ∈ Ω|x+ = (1 − p)ET, y+ ∈ yD3

}
,

where yD3 =
{
[0, yUmin)

⋃
(yUmax ,+∞)

}⋂
D.

If (1 − p)ET > x2, the solutions that initiate from QpET intersect L4 at QET , and any solutions that
begin with

((
1 − p

)
ET, y+

)
intersect L4 as well. Therefore, the pulse set isM1, and the phase set is N1.

(ii) When σ > 0, E1 is a stable node.
For x1 < K ≤ x2, when ET < x1 the pulse and phase sets areM1 and N1. When ET > x1, based

on (1− p)ET ≥ 0, the orbit originating from the phase set may converge towards a stable node E1 of the
system along the direction of the asymptotes. During this period, it is not possible to ascertain whether
the system will reach the pulse set. Consequently, the domain of the pulse set and the phase set cannot
be determined.

When K > x2, we consider the following two cases:

II1 ET < x1; II2 x1 < ET .

For Case II1, based on (1 − p)ET < x1, the pulse set isM1 and the phase set is N1.
For Case II2, similar to Case I1, the unstable manifold LU1 approaching (K, 0) intersects L4 at

U(ET, yU1), if (1 − p)ET ≤ x2, then the unstable manifold LU2 tending to E2 intersects L3 at two
points: lower point is Umin

((
1 − p

)
ET, yUmin

)
and the higher one is Umax

((
1 − p

)
ET, yUmax

)
, as shown in

Figure 4[C], so the pulse and phase sets can be defined respectively asM2 and N3,

If (1 − p)ET > x2, the solutions that initiate from QpET intersect L4 at QET , and any solutions that
begin with

((
1 − p

)
ET, y+

)
intersect L4 as well. Therefore, the pulse set isM1, and the phase set is N1.

For Case (C2), model (2.2) has one internal equilibrium Eg, we consider the following two cases:

III1 III2; ET > xg ET ≤ xg.

When ET ≤ xg, the pulse set is M1, phase set is N1. When ET > xg, similar to Case I1, the
unstable manifold LU1 approaching (K, 0) intersects L4 at U(ET, yU1).

If (1−p)ET ≤ xg, then the unstable manifold LU2 tending to Eg intersects L3 at Umin

((
1−p

)
ET, yUmin

)
and Umax

((
1 − p

)
ET, yUmax

)
, as shown in Figure 4[D], so the pulse and phase sets areM2 and N3.

If (1 − p)ET > xg, the solutions starting from QpET intersect L4 at QET , and any solutions starting
from

((
1 − p

)
ET, y+

)
also intersect L4. Therefore, the pulse set isM1, and the phase set is N1.
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Table 2. Definition domain of pulse set and phase set for model (2.2) (there exists internal
equilibrium).

Case Case Case ET (1 − p)ET Ms Ns
C3 σ < 0 x1 < K ≤ x2 ET < x1 (1 − p)ET ≥ 0 M1 N1
C3 σ < 0 x1 < K ≤ x2 ET ≥ x1 (1 − p)ET < x3 M1 N1
C3 σ < 0 x1 < K ≤ x2 ET ≥ x1 (1 − p)ET ≥ x3 M N2
C3 σ < 0 x1 < x2 ≤ K I1 (1 − p)ET < x3 M1 N1
C3 σ < 0 x1 < x2 ≤ K I1 (1 − p)ET ≥ x3 M N2
C3 σ < 0 x1 < x2 ≤ K I2 (1 − p)ET < x2 M2 N3
C3 σ < 0 x1 < x2 ≤ K I2 (1 − p)ET ≥ x3 M1 N1
C3 σ > 0 x1 < K < x2 ET < x1 (1 − p)ET < x1 M1 N1
C3 σ > 0 x1 < K < x2 ET > x1 (1 − p)ET ≥ 0 — —
C3 σ > 0 x1 < x2 ≤ K II1 (1 − p)ET < x1 M1 N1
C3 σ > 0 x1 < x2 ≤ K II2 (1 − p)ET < x2 M2 N3
C3 σ > 0 x1 < x2 ≤ K II2 (1 − p)ET ≥ x2 M1 N1
C2 —– xg ≤ K III1 (1 − p)ET ≥ 0 M1 N1
C2 —– xg ≤ K III2 (1 − p)ET < xg M2 N3
C2 —– xg ≤ K III2 (1 − p)ET ≥ xg M1 N1
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Figure 4. Domain of pulse set and phase set with internal equilibrium of model (2.2).

5.2. Stability switching of the boundary order-1 periodic solution (xT (t), 0) of model (2.2)

For Cases (C2) and (C3), as p is defined in (4.2) and µ2 > 1, the
(
xT (t), 0

)
may exhibit instability.

For this, we assume that the model (2.1) has at least one internal equilibrium.
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Theorem 8. For Case (C3), if µ2 > 1, τ = 0 and Poincaré mapping PM is well defined, then the solution(
xT (t), 0

)
of model (2.2) is unstable. Moreover, there exists an internal order-1 periodic solution.

Proof. As µ2 > 1, the solution
(
xT (t), 0

)
is unstable. To prove model (2.2) has an internal order-1

periodic solution, we need to show that P′M(0) > 1. Since

P′(0) =
∂y(ET, 0)
∂S

= exp


∫ x

(1−p)ET

∂

∂y

Q
(
z, y

(
z,S

))
P
(
z, y

(
z,S

))
 dz


= exp

∫ x

(1−p)ET

 µz
a+z2 − δ − ηz

rz
(
1 − z

K

)  dz

 = exp(I2 + I3),

so P′(0) = P′M(0) = µ2 > 1, it follows from Theorem 1 that PM is defined, then PM and the identical
mapping have a point of intersection. Hence, model (2.2) exists an internal order-1 periodic solution.
The proof is complete. □

For Case (C3), if ET > x2, there are two roots from Eq (4.2)

p1 =
ET − x1

ET
, p2 =

ET − x2

ET
.

When µ2(p1) > 1, there are two threshold values, p3 and p4, such that for p ∈ (0, p3)∪ (p4, 1), µ2(p) < 1
holds, while for p ∈ (p3, p4), µ2(p) > 1 holds. This implies that is stable when the mortality rate of the
insecticide is either low or high. However, when the mortality rate of the insecticide is maintained at
a moderate level,

(
xT (t), 0

)
becomes unstable, allowing the coexistence of pests and natural enemies,(

xT (t), 0
)

is stable as p = 0.2, as shown in Figure 5[A]. While
(
xT (t), 0

)
becomes unstable as p = 0.7,

see Figure 5[B]. Further,
(
xT (t), 0

)
becomes stable again when p = 0.88, as shown in Figure 5[C].

Considering from the perspective of pest control, even if the insecticide has no effect on the pest, the
lower or higher insecticide will outbreak the pest population and accelerate the extinction of the natural
enemy population.
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Figure 5. Stable switching of the boundary order-1 periodic solutions of model (2.2).
Parameters are r = 1,K = 3, β = 1, µ = 1.5, a = 2, δ = 0.35, η = 0.1, τ = 0, ET = 2.1,
and [A] p = 0.37; [B]p = 0.5; [C] p = 0.84.
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If x2 > ET > x1, only p1 is defined. Since µ2(p1) > 1, there exists a threshold p5 such that
µ2(p5) = 1, which implies

(
xT (t), 0

)
is stable when p ∈ (p5, 1), while it is unstable when p ∈ (0, p5), as

shown in Figure 6. Specifically, Figure 6[A] shows the
(
xT (t), 0

)
is stable when p = 0.7, while as p

decreases to 0.35,
(
xT (t), 0

)
is unstable, and it tends to a stable internal periodic solution, see Figure 6[B].

Considering from the perspective of pest control, ensuring high insecticide concentration and a certain
determined threshold is key to pest control in pest control strategies.
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Figure 6. Stability of the boundary order-1 periodic solution (xT (t), 0) for Case (C3).
Parameters are r = 1,K = 3, β = 0.8, µ = 1.5, a = 2, δ = 0.33, η = 0.1, τ = 0, ET = 1,
and [A] p = 0.7; [B] p = 0.35.

The implementation of the pest control strategy is closely related to the existence of the internal
equilibrium point of the model (2). Therefore, when the model has two internal equilibrium points, the
relationship between the internal equilibrium point and the threshold ET also needs to be considered
when implementing the pest control strategy. However, when the model does not have an internal
equilibrium point, using only chemical control can not achieve the effect of pest control.

In order to investigate the impact of pest anti-predator behavior on pest control, we conducted
numerical analysis by adjusting the anti-predator coefficient η according to Figure 5, as shown in Figure 7.
When the anti-predator coefficient changed from η = 0.1 to η = 0.09, the originally stable boundary
order-1 periodic solution

(
xT (t), 0

)
(Figure 5[A,C]) became unstable, as illustrated in Figure 7[A,B]. In

such cases, stabilizing the solution
(
xT (t), 0

)
can be achieved by reducing p to p = 0.24 or increasing

it to p = 0.88, as show in Figure 7[C,D]. From the perspective of pest control, as the anti-predator
coefficient increases, the difficulty of pest control rises, demanding a higher precision in controlling the
concentration of insecticides during spraying. In other words, effective pest control requires maintaining
pest concentrations within a narrower range, posing challenges to pest management.

Notation 8. For Case (C2) of model (2.2), if equation (4.2) exists only one root, then we have F1(M) ≥ 0,
that is, µ2 ≤ 1. This indicates that there exists no stability switching for the order-1 periodic solution.

In Figure 8[A], the bifurcation analysis with respect to p, shows the existence of higher-order
periodic solution of model (2.2), the occurrence of phenomena such as period doubling, period halving,
and chaos validates the existence of order-k periodic solutions of model (2.2). Specifically, when
τ = 0.51, there is a coexistence of order-1 and order-3 periodic solutions, as shown in Figure 8[B].
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Figure 7. The impact of anti-predator coefficient on pest control. Parameters are [A]p =
0.37, η = 0.09; [B] p = 0.84, η = 0.09; [C]p = 0.24, η = 0.09; [D]p = 0.88, η = 0.09, other
parameters are the same as in Figure 5.
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Figure 8. Bifurcation analysis of model (2.2) (two interior equilibrium) with respect to p
and τ. Parameters are r = 1,K = 20, β = 28, µ = 0.41, a = 0.4, δ = 0.03, η = 0.023, and
[A]τ = 0.03; [B] p = 0.1.

6. Conclusions

Anti-predator behavior is commonly observed in the natural world. Nevertheless, prior studies
frequently neglected the detrimental impacts of anti-predator behavior on natural enemies. In this article,
we employ a control strategy involving insecticide spraying and the introduction of natural enemies
when the pest population reaches the ET to formulate an ecological model encompassing pest-predator
interactions with anti-predator behavior. The model is analyzed under two conditions: One without
internal equilibrium points and one with internal equilibrium points, investigating the intricate dynamics
of the system.

In the absence of internal equilibrium points and τ = 0, the globally stable state is represented
by the boundary order-1 periodic solution. However, when τ > 0, this periodic solution may become
unstable. In cases where the boundary order-1 periodic solution is unstable, the model (2.2) demonstrates
an internal order-1 periodic solution, illustrated in Figure 2. When the model (2.2) includes at least one
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internal equilibrium point, its dynamic behavior becomes exceedingly complex, presenting significant
challenges for pest control. For instance, with a large Economic Threshold (ET > x2), effective pest
control requires maintaining pesticide lethality within a specific range (p ∈ (p3, p4)). Deviating from
this range, either by using lower or higher lethality, may lead to an increase in pest population density,
potentially triggering outbreaks. Concurrently, the number of natural enemies might decline or even
lead to extinction, as depicted in Figure 5. The occurrence of this phenomenon is because when the
mortality rate of insecticides is low, the pest population rapidly increases, leading to the extinction of
predator populations due to the pests’ anti-predator behavior. On the other hand, when the mortality
rate of insecticides is high, predator populations also become extinct due to the significant death of
pests (insufficient prey). Additionally, with the increase in the anti-predator coefficient, it is necessary to
control the mortality rate of insecticides within a narrower range to effectively manage pests. However,
when x2 > ET > x1, ensuring pesticide density is higher than p5 becomes necessary to control pest
population density. This allows for the coexistence of pests and natural enemies, as demonstrated in
Figure 6.

The definition and characteristics of the Poincaré map depend on the presence of internal
equilibrium points in the model (2.2). When there are no internal equilibrium points in the model (2.2),
the dynamical behavior is entirely determined by the properties of the Poincaré map. However, if there
is at least one internal equilibrium point in the model (2.2), the domain and range of the Poincaré map
may undergo significant changes, leading to complexities in the pulse set and phase set. For instance,
changes in the stability and type of the internal equilibrium point Ei, as well as the positions of L3 and
L4, can influence alterations in the pulse set and phase set. In the presence of nodes in the model (2.2),
the vector field becomes highly complex. In such cases, it becomes challenging to ascertain whether
trajectories starting from the phase set can reach the pulse set, making the determination of the Poincaré
map impossible. This presents a significant research challenge.

One fundamental assumption in this paper is that when the pest population density reaches the
economic threshold, actions such as pesticide spraying and predator release are completed
instantaneously—a condition idealized for the analysis. However, for a more realistic modeling
approach that considers factors like pesticide persistence and delay, we propose incorporating the
intermittency of pesticide use. More specifically, we suggest employing the Integrated Pest
Management (IPM) strategy continuously over a duration until the pest population density decreases
below the economic injury level, at which point the IPM strategy is discontinued. This aspect will be a
focus of our future work.
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