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Abstract: The relationship between cancer and the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection is controversial. While SARS-CoV-2 can worsen the status of a cancer
patient, many remission cases after SARS-CoV-2 infection have been recorded. It has been suggested
that SARS-CoV-2 could have oncolytic properties, which needs further investigations. Mathematical
modeling is a powerful tool that can significantly enhance experimental and medical studies. Our
objective was to propose and analyze a mathematical model for oncolytic SARS-CoV-2 with immunity.
The basic properties of this model, including existence, uniqueness, nonnegativity, and boundedness of
the solutions, were confirmed. The equilibrium points were computed, and their existence conditions
were determined. The global stability of the equilibria was proven using the Lyapunov theory.
Numerical simulations were implemented to validate the theoretical results. It was found that the model
has thirteen equilibrium points that reflect different infection states. Based on the model’s results, the
infection of cancer cells by SARS-CoV-2 can lead to a reduction in the concentration of cancer cells.
Additionally, the induction of cytotoxic T lymphocytes (CTLs) decreases the number of cancer cells,
potentially resulting in cancer remission or an improvement in the overall health of cancer patients.
This theoretical result aligns with numerous studies highlighting the oncolytic role of SARS-CoV-2.
In addition, given the limited availability of real data, further studies are essential to better comprehend
the role of immune responses and their impact on the oncolytic role of SARS-CoV-2.
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Abbreviation

N: nutrient, it is produced from a source at a fixed rate, cells grow as a result of consuming nutrient;
M: epithelial cells, the type of cells in the lungs that are infected by SARS-CoV-2; C cancer cells: the
cells characterized by uncontrolled growth that become infected by SARS-CoV-2; V: the free SARS-


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024351

7213

CoV-2 particles, the virus responsible for COVID-19, these particles infect epithelial and cancer cells;
T': anti-cancer CTLs, the immune cells that specifically target and eliminate cancer cells; A: antibodies,
they are used by the immune system to eliminate virus particles from the body

1. Introduction

COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
While there has been a decline in reported cases and deaths globally, SARS-CoV-2 is still spreading in
many countries [1]. SARS-CoV-2 passes into host cells by way of a transmembrane protein known as
the angiotensin-converting enzyme 2 receptor [2]. It principally causes infection in alveolar epithelial
type-1II cells of the lungs [3,4]. However, other organs can be infected by SARS-CoV-2. The impact
of COVID-19 on cancer patients has opened up a wide field of research. This group of patients is
vulnerable to COVID-19 due to weakened immune system or ongoing anti-cancer treatments [5]. The
question of whether SARS-CoV-2 induces remission in cancer patients or exacerbates the severity of
the disease remains controversial [35, 6].

The interconnection between cancer and viruses has become one of the most important topics in
oncology and virology [7]. Some viruses, called oncolytic viruses (OVs), have the ability to infect
cancer cells. These viruses can be found in nature or genetically modified to replicate in cancer cells
without infecting normal cells [5,8]. OVs kill cancer cells after massive replication inside them and by
inducing a specific antitumor immune response [5, 8]. Examples of OVs include adenovirus, vaccinia
virus, Coxsackievirus, and herpes simplex virus [8,9]. Talimogene laherparepvec is the only approved
oncolytic virotherapy [6, 10]. Talimogene laherparepvec is an engineered herpes virus used to treat
advanced melanoma through immediate injection into the tumor [10].

The impact of COVID-19 on cancer patients is bidirectional. It has been indicated that SARS-CoV-2
infection can enhance cancer progression [5,7,8,11]. On the other hand, cancer remission after SARS-
CoV-2 infection has been reported in many patients [6, 12—14]. For example, Pasin et al. [15] reported
the case of a patient with refractory natural killer (NK)/T-cell lymphoma who experienced a transient
remission during SARS-CoV-2 infection. As angiotensin-converting enzyme 2 is expressed in NK
cells, the authors in [15] proposed that SARS-CoV-2 could own some oncolytic properties. Challenor
and Tucker [16] presented the case of a remission in a patient with classical Hodgkin lymphoma after
SARS-CoV-2 infection. Another case was reported by Sollini et al. [17] involving a patient with
follicular lymphoma who achieved full remission after SARS-CoV-2 infection. The authors in [16,17]
supposed that the infection stimulated an antitumor immune response. Kandeel et al. [18] reported the
remission of two cases with acute leukemia. Antwi-Amoabeng et al. [19] presented a case in which a
patient with multiple myeloma had remission following SARS-CoV-2 infection. The patient received
a single dose of chemotherapy. However, the authors mentioned that the remission in this case was
parallel to the remission in patients who got four doses of chemotherapy. Ohadi et al. [20] reported
a case of mycosis fungoides that went into remission after the coronavirus infection. Other cases of
remission were reported in [6].

The above remission cases suggest that SARS-CoV-2 could have an oncolytic role in many types
of cancer. It may infect and destroy cancer cells to expose the tumor-associated antigens. These
antigens stimulate an immune response against cancer cells, leading to cancer remission [18]. Hence,
there is an urgent need to understand the relationship between SARS-CoV-2 infection and cancer.
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This understanding may enable the engineering of SARS-CoV-2 for use as an efficient therapy against
certain types of cancer. Mathematical modeling is a strong tool that is often employed to assist
experiments and medical research [21,22]. Mathematical models have been used to understand the
dynamics of many infectious diseases and test hypotheses that may be challenging to assess
experimentally. The analysis of these models can offer predictions of outcomes and aid in identifying
optimal treatment strategies.

Many mathematical models about SARS-CoV-2 [23-25], cancer [26], SARS-CoV-2/cancer [27],
and oncolytic virotherapy [28—32] have been constructed and studied. However and to the best of our
knowledge, no oncolytic SARS-CoV-2 models have been established yet. Such models are important
to understand the effect of the infection of cancer cells by SARS-CoV-2 and the role of different
immune responses during this coinfection. In this work, we propose an oncolytic SARS-CoV-2
virotherpy model. The construction of this model follows similar principles of those used in [33]. We
conduct a comprehensive mathematical analysis of this model including assessments of boundedness,
nonnegativity, and global stability of equilibrium points. In addition, we implement some numerical
simulations.

This paper is structured as follows. Section 2 introduces the model under consideration. Section 3
demonstrates that all solutions are bounded and have zero or positive values. Furthermore, it computes
the equilibrium solutions of the proposed model. Section 4 verifies the global properties of these
solutions. Section 5 is dedicated to numerical simulations. The last section discusses the results and
provides a glimpse of the future vision.

2. Oncolytic SARS-CoV-2 model with immune responses

In formulating the model, we consider the following assumptions:

(i) The nutrient is produced from a source at a fixed rate, while it is depleted due to its consumption by
epithelial cells and cancer cells. Additionally, depletion occurs as a result of natural death;

(i1) Epithelial cells proliferate as a result of nutrient consumption, and their numbers decrease due to
either viral infection or natural death;

(iii) Cancer cells replicate as a result of nutrient utilization, and their numbers decline due to viral
infection, attacks by cytotoxic T lymphocytes (CTLs), or natural cell death;

(iv) Free virus particles increase as a consequence of infecting epithelial cells and cancer cells, but they
diminish due to the removal by antibodies or natural death;

(v) CTLs are stimulated by infected cancer cells, while antibodies are stimulated by free virus particles;
(vi) CTLs and antibodies undergo decay through natural processes;
(vi1) The induction of CTLs by SARS-CoV-2 infection is implied in the stimulation rate of CTLs;

(viii) The model does not contain infected components for epithelial cells and cancer cells.

The proposed ordinary differential equation (ODE) model consists of six nonlinear equations and
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takes the form

d];lft) = a - LNOM() — LNEC(E) — wN(®),
dZZt(t) = O, N(OM() — e MOV (1) — (w + w))M(?),
dC(t)

—— = 0LNOCH) - £COV() - £,COT (1) — (w + w)C(2),
dt (2.1)

dVv

—dit) = paM(OV() + pCOV(1) = LEVDAQM) — (w + w3)V (1),
dT

% = 516 COT (1) — (w + w)T (1),

dA

% = 56V(OA() — (w + ws)A(1),

where N(t), M(t), C(t), V(¢), T (), and A(t) typify the concentrations of nutrient, epithelial cells, cancer
cells, SARS-CoV-2 particles, anti-cancer CTLs, and antibodies. The nutrient is released from its source
at rate « and declines at rate wN. Epithelial cells expend nutrient at rate 4;NM, reproduce at rate
6A;NM, and get infected by SARS-CoV-2 at rate e, MV. Cancer cells expend nutrient at rate L, NC,
grow at rate 4, NC, and become infected at rate ,CV. SARS-CoV-2 replicates as a result of infecting
epithelial cells and cancer cells at rates pegMV and pe,CV, respectively. CTLs kill cancer cells at
rate £CT and reproduce at rate s;&;CT. Antibodies eliminate SARS-CoV-2 at rate &, VA and get
stimulated at rate s,&, VA. Epithelial cells, cancer cells, SARS-CoV-2 particles, CTLs, and antibodies
die at natural rates w M, w,C, w3V, wsT, and wsA, respectively. The parameters in model (2.1) are
postulated to take positive values. Figure 1 provides a schematic diagram of the model. For simplicity,
we consider the following
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Figure 1. Schematic diagram of model (2.1).
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3. Basic properties

The following theorem demonstrates the existence and uniqueness of the solutions of model (2.1).

Theorem 1. Assume that the initial values (Ny, My, Co, Vo, Ty, Ao) € RS are given. There exists ty >
0 and continuously differentiable functions N,M,C,V,T,A: [0,ty)) — R such that (N,M,C,V,T,A)
satisfies model (2.1) and

(N(0), M(0), C(0), V(0), T(0), A(0)) = (No, Mo, Co, Vo, To, Ao) -

Proof. As the system of ODEs given in (2.1) is autonomous, it is enough to prove that the function f:
R® — R® defined by

a— 21220 — 213 — W
012122 — €12224 — Q122
022123 — €2324 — £12325 — (273
DE17224 + P€:2374 — £224%6 — U324
§1€12325 — A475
§2622426 — As526

f@) =

is locally Lipschitz in its z argument. We observe that the Jacobian matrix

Lz —Abn-w -z -7 0 0 0
012> 00121 — €124 — 4 0 —€122 0 0
V(o) = 0473 0 021 — @z — 6125 — 2 —673 -&£123 0
0 DE€1Z4 Pez4 Pei1Zs + pez3 — 76 — a3 0 624
0 0 51€125 0 516123 — ay 0
0 0 0 526226 0 526224 — as

is linear in z and consequently locally bounded for all z € R®. Therefore, f has a continuous and
bounded derivative on any compact subset of RS, and so f is locally Lipschitz in z. According to the
classical Picard-Lindelof theorem [34], there exists a unique solution z(¢) to the ODE

dz(t)
ar fz(@)

on the time interval [0, #y] for some 7, > 0 [35]. O
Next, we prove the nonnegativity and boundedness of the solutions of model (2.1).

Theorem 2. Let; > 0(i =1,2,3,4,5), then the set
Q= {(N, M,C,V,T,A) e Ri 0SSN <1, 0 M), C(t) £15,0< V() £13,0<T(t) £14,0< A1) £ 7'5}

is positively invariant set for system (2.1).
Proof. For system (2.1), we obtain

dN aM dC dv dT dA
E|N=O =a>0, E|M=O =0, E|C=O =0, E|vzo =0, E|T=0 =0, E|A=0 =0.
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This shows that
(N, M(1),C(t), V(1), T(1), A(t)) € R®

for t > 0 whenever
(N(0), M(0), C(0), V(0), T(0), A(0)) € RS.

To prove the boundedness, we consider the function

1 1 1 1 1
x® =N + éM(t) + EC(I) + %V(t) + e—s]T(t) + 7 A(1).

P2
dy(t
By computing %, we get

dx(t) a a as as as
7 =a— (,L)N(t) - EM(I) - EC(I) - %V(l‘) - H_SIT(t) - %A(Z)

1 1 1 1 1
<a-k|NO+-=-Mit)+-Clt)+ —V@)+ —T(@) + —A(
@ —k|N(@) 7 (?) 7 (?) o (?) o5, () 05, (1)

= a — kx(1),
where
k = min{w, a, as,as, as, as} .

This implicates that

O<xy®)y<t, if x(0)<ty, forr>0,
where
o'
T = —.
K
Consequently, we have N(¢) < 7, M(t) < 15, C(t) < 15, V(t) < 13, T(t) < 14, and A(t) < 15, Where
T, = 01y, 73 = Op1y, T4 = 05171, and 15 = Ops, 7. Thus, the set Q is positively invariant [36]. O
Theorem 3. Model (2.1) has thirteen equilibrium points as follows:
(1) The trivial equilibrium E, always exists;
(2) The uninfected-epithelial equilibrium E, exists if Ry > 1;
(3) The uninfected-cancer equilibrium E, exists if Ry > 1;
(4) The infected-epithelial equilibrium E5 exists if

A
Ro>1+ 14 ;
wpeE

(5) The infected-cancer equilibrium E, exists if

A
R >1+ 205 ;
wpe;

(6) The uninfected-cancer equilibrium with CTLs Es exists if

/12614 .

R/ >1+ ;
wsi&
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(7) The infected epithelial-cancer equilibrium without immunity E¢ exists if

aj e (11/12(13 /12(13 09/1162
— <1+ +

R+ —+ ,
ar€ wpear wpe weay
aje€ /11612613 /11613 0961/12
Ry+ —+—<1+ + ,
a e wpa;e wpe; wai e
a e 416 ajdy
—>1, —>1, and — > 1;
ar€ A€ axA,

(8) The uninfected epithelial-cancer equilibrium with CTLs E; exists if

/12614 01/12
and — > 1;
wSsi6] arAy

Ry>1+

(9) The infected-epithelial equilibrium with antibodies Eg exists if

Aias €1ds Aiazas
+ +

Ro>1+ ;
wper a6 wpaysé;

(10) The infected-cancer equilibrium with antibodies Ey exists if

Ahas €0as Aazas
R/ >1+ ~ + ;
wpe  ar$Héy  wparsré;

(11) The infected-cancer equilibrium with CTLs and antibodies E exists if

/12a4 €xds5 62/12614615 €y
R >1+ + + and P
wsi§l  @m$Hé  ws1E1a2598 516103

> 1;

(12) The infected epithelial-cancer equilibrium with CTLs E, exists if

e siéaz +w615151

> 1,
L&  pea, igay
/1162614 /12(14 /11613
Ry+ ————>1+
wes1& wsi€]  wpe
and
a e /1162614 01/1162613 a1€2/12614 /11613 /12614 al/llezza4 09/1162
Ry + + + 5 > 1+ + 5 ;
e we sl wpea,  wWeSsiEiar wper  wsi§1 wesiblay  wWEAy

(13) The infected epithelial-cancer equilibrium with CTLs and antibodies E, exists if

€1d5 /1204 61/12(14(15
Ry>1+ ,
a1 wsiér warsi€é;
611/12 61/12615 €xd5
+
ady  Aaxsr& a$26>
and
/11 €ay /11 €xa4ds5 €1ds5 /7.1 as /1204 /l] asds €] /1204615
Ry + + >1+ + .
wesiér was1é156, a6, wpe  wsi§y wpars;  waisi&56;
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Proof. To get the equilibria of system (2.1), we solve the following system:

O0=a—-A4NM - A,NC — wN,
0=0,4NM - e MV —aM,
0=01LNC - &CV - & CT - aC,
0=peMV + pe,CV — VA — a3V,
0=5:&ECT —aqT,

0= 56VA - asA.

Then, we obtain

(1) The trivial equilibrium
Ey = (N, 0,0,0,0,0) = (%,o, 0,0,0,0).

This point always exists. This point has no biological meaning as all components vanish except for the
nutrient.

(2) The uninfected-epithelial equilibrium E; = (N;, M;,0,0,0,0). The components N; and M, are

defined as: 4 o
Ni=—, M =—@®R,-1,
1 o, 1 /11( 0 )

where
(01 9/1]

0 =

wa,
As N; > 0, the equilibrium E; exists if Ry > 1. This equilibrium represents a healthy individual without
cancer or SARS-CoV-2 infection.

(3) The uninfected-cancer equilibrium E, = (N,,0, C»,0,0,0), where

a w
No=—— Cr=— (R -1,
2 oL 2 /12( 1 )
where ol
R]Za[ 2.
wday

As N, > 0, the point E, exists if R; > 1. This equilibrium represents the case of a person who has
cancer, but without SARS-CoV-2 infection.

(4) The infected-epithelial equilibrium E3 = (N3, M3,0, V3,0, 0), where

Ny B G
wpe + Ajaz )43
and
A
Vs = ﬂ(&)—l— 1a3).
wpe; + a3 wpe;

Clearly, N3 > 0, M5 > 0, and V5 > 0 if

A

Ry>1+ 14 .
WpE

AIMS Mathematics Volume 9, Issue 3, 7212-7252.
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Hence, E; exists if

A
Ry>1+ 14

wpe

The person here suffers from SARS-CoV-2 infection, but he is cancer-free.

(5) The infected-cancer equilibrium E4 = (Ny, 0, Cy4, V4, 0,0), where

ape as
N, = L, Cy=—,
wpe + Araz ) 43)

and

wpap /12(13
y=——|R; - 1- .
wpe + az wpe

Notably, Ny > 0, C4 > 0,and V, > 0 if

Aasz

R >1+ .
wpe

Thus, E, exists if

A
R >1+ 245

wpe '

In this scenario, the cancer patient is experiencing a SARS-CoV-2 infection with the disappearance
of healthy epithelial cells.

(6) The uninfected-cancer equilibrium with CTLs E5 = (Ns, 0, Cs, 0, T, 0), where

as1& ay
Ns = —————, 5= —,
Aay + ws1& s1€1
and
ws1ay /12d4
Ts=——————|R; —-1- .
Aay + ws1& ws1é

Clearly, Ns > 0, Cs > 0, and T5s > O if
/12(14

R, >1+ .
[OMNTS]

Hence, E5 exists if

/12614

ws1&

R/ >1+

CTLs are activated to eliminate cancer cells in a patient who has experienced the disappearance of
healthy epithelial cells.
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(7) The infected epithelial-cancer equilibrium without immunity E¢ = (Ng, Mg, Cg, Vi, 0,0), where

Ns 1 ,
oL (1—62 - 1)
/1261
A 64 A
w62(1 + 2043 + atA € ~R, - aie  a 203)
M wpe we ay are| wpeay
6 = s
A
Mz(@ _ 1)(1_62 _ 1)
ar€; /1261
A Oe A A
wa & (1 n 143 n ave Ay — Ry - Qe 10203)
C wpe; wai e a e wpa; e
6 s
A
61612/12 (0162 - 1)( 1€ - 1)
aj € /1261
A
N (u _ 1)
612/1]
Ve 1
61/12 (1—62 - 1)
/1261

We note that the components are positive if

a6 a1dras Abhas ablig
<1+ +

R+ —+ ,
€ wpear wpe weay
ar€| /llaza3 /11(13 0961/12
Roy+ — + <1+ + ,
a6 wpa e wpe; wap 6
a6 1€ a) Ay
—>1, —>1, d — > 1.
ar€, A€ ad,

Thus, Eg is defined when the above conditions are met. In this scenario, the cancer patient has
SARS-CoV-2 infection with inactive immune responses.

(8) The uninfected epithelial-cancer equilibrium with CTLs E; = (N7, M7, C7,0, T7,0), where

A A
= M7:2(R0_1_ ) = T7:@(u_1).
64, Ay wsi&; s1€1 & \andy
Accordingly, N; > 0, C; > 0, M; > 0 if
A
Ry>1+ 204 ,
wsi&
and 77 > 0 if
611/12
—>1
arAq
Therefore, E; exists when
Ro>1+ 2% and 9225
wSs1861 a4
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Here, the cancer patient has active CTL immunity that works on killing cancer cells.

(9) The infected-epithelial equilibrium with antibodies Eg = (Ng, Mg, 0, Vs, 0, Ag), where

_ €145 + a158 _ way 26> ( . _€&as ) Ve = as
T sE ° T A (@as + ar5:6)) ané) T nE
Ag = wpa, €5, Az aeas  Aasas )
Ay (e1as + a1 56) wper  a1né  wparsHtH

Thus, the components are positive and Eg exists if

€105 Aiaz €105 Aiazas
and Ry > 1+ + .
a;$262 wper  arsé  wpaysé;

Ry>1+

Notably, the first condition is naturally satisfied when the second condition is met.
The SARS-CoV-2 patient has active antibody immunity against the virus.

(10) The infected-cancer equilibrium with antibodies Ey = (Ny, 0, Cy, Vo, 0, Ag), where

_8as + ar1556 L warsné, ( ., eads ) Ve @
T bms T L(eas +asé) ar$r6,)’ 0
Ao = wWpa6 5, ( . Ahas  eas  hasas )
Ay (€as + ay &) wpe  Wm$HE  Wpar$H&H

We note that Ey is defined when

Ahas L _©as Aazas

R >1+ ,
wpe  Wy$HE,  Wpasé;

where the other condition
€ds

a2526>
is naturally met when the previous condition is satisfied.

The infected cancer patient who suffers from the disappearance of epithelial cells has active
antibody immunity against the virus.

(11) The infected-cancer equilibrium with CTLs and antibodies Eyy = (N, 0, Cio, Vio, T10,A10),
where

R/ >1+

asi& aq as
Ny=———"——, Cio=—, Vio=—1,
Aray + wsi& s1€1 $262
T wSs1ads (R /7.2614 €xds 62/12614(15
o =——|R1 -1~ - - ,
Aray + wsi€ wsi§) a6 wsi€1a56

a3(p62a4 1)
10 —1].

&\ siéias

Thus, E is biologically accepted when

Aray € ds e Arasas peay
and

wsi& a$r  ws11a2526 si&1az

> 1.

R >1+
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This point represents the case of a cancer patient who is infected, with active immune responses,
but experiencing the disappearance of epithelial cells.

(12) The infected epithelial-cancer equilibrium with CTLs Ey; = (N1, M1y, C11, Vi1, T11,0), where

e 1€

N11 = s
A€ si&laz we si€y
Adi16ay + -1
&  pea,  6a
€as (s16103 ay
M, = ( -1), Ch=—}1,
€151&1 \ peay s1€1
/11 €dy /12614 /11 as
wa1s1§1 (R0+——1— -
_ we 516 wsiE]  wpe
Vi e  si&az wesié ’
2€1 16143 19161
/1162(14( + + - 1)
& peay  A6ay
T WeES1a a e /1162614 a1/1162a3 a162/12a4
11

1+
2
A€ s1§1a3+wels1§1 1)( Mhe  weSsIE)  wpeay  WE SIE1ar

/1162614 (
e  pea,  Aigay

1= _
2
wper  ws1€)  wesiElar WEA

2
Aias Aray (11/1162(14 00/1162)

It is easy to observe that Ny, Vi, and T, are positive and E; exists when
A€ si&a WE S
261 1&1a3 ! 1€1

> 1,
L&  pea,  Ai6ay
/11 €ay /12614 /11 as
Ry+ ————>1+ +
wes1€ wsi€]  wpe

and
2
a6 Ad16ay a1 d16a;3 a6 Aray Aias Aray a i€ ay a6
+ + > 1+ + .
2 2
€ WESIEI  wpea, WE S 1A wper  wsi§1 wesibla,  wWEAy

At this point, the infected cancer patient has active CTLs and inactive antibody immune response.

R, +

(13) The infected  epithelial-cancer  equilibrium  with CTLs and  antibodies
Eyy = (N12, M12, Cr2, Vi, T2, A12), Where
€1ds + a156>

Mz = 0A15:6,
My = wa, 5,6, ( Lo ads has  adaqas )
Ay (e1as + a;56) arés;  wsiéy warsi16
Co= o Vip=—,
5161 $262
T, = axsy ((11/12 edas eds )’
si&r \adr  Qazsé, az$2¢é>
A, = wpa € s; (0 A16&ay dieaas ., _aas _%
A (€1a5 + a15,6) wes1€] wapsi§156 a6 wpe

Aray Aiazas €1drasas )
ws1é)  wpais;  wa;sé156
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We observe that the components are positive and E1; is defined if

€1ds5 /12614 E]/lza4a5
Ry>1+ ,
a5 wsi& way 51§16
a Ay N €1Aras €05
ady  Aaxsé a$r6>
and
/1162614 /1162614615 €1d5 /7.1613 /7.2614 /11613615 61/12614615
Ry + >1+ + + .
we s waysi€26 aisé  wper  wsi§ wpars;  waisi€r$6

This point imitates the case of cancer patient with SARS-CoV-2 infection and active immune
responses. O

In the next sections, we will focus our analysis on the equilibria Ey, Ey, E3, E¢, E7, Eg, E11, and E},
as we are interested in the points where the epithelial cells component (M) does not vanish.

4. Global properties

The following theorems are aimed to establish the global stability of equilibria through nominating
Lyapunov functions. Let Y; be the largest invariant subset of

dz;
Yi: {(N9M9C"/’T’A)|E :O}’

wherei =0,1,3,6,7,8,11, 12.
Theorem 4. The equilibrium E, is globally asymptotically stable (GS) when Ry < 1 and Ry < 1.

Proof. We consider

N N 1 1 1 1 1
Zo(t):No(ﬁ—l—ln—)+5M+—C+—V+—T+—A.

0 Ny 0 6p 05, Ops,
Then, we get
dx N, 1
d—t" = (1 - WO) (@ — 1,NM — ,NC — wN) + 5 (BANM — e, MV — a; M)

1 1
+ i (BLNC — 6CV - &,CT — a,C) + o (petMV + pe,CV — VA — asV)
P

1
s (5161CT — a4T) + (5262VA — asA)
S1

Opsy
Ny ap a as as
- 1——) —N)+ UNGM + NoC = B - Lo By - &
(N(“‘“)‘O ST T T e T s,
N — Np)?
S W NS d gy 2R o - By 95y
N 0 6 bp  Opsy
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We see that

if Ry < 1 and R, < 1. Furthermore,
dXy

dr
when N = Npand M = C =V = A = 0. This gives

ac
-0
dt
From the third equation of model (2.1), we obtain 7 = 0. Hence, Y(') = {Ey} and by LaSalle’s
invariance principle (LP) [37], Eyis GSif Ry < 1 and R, < 1. O
Theorem 5. Let Ry > 1. Then, the equilibrium E; is GS if

A
Ry<1+ 14

wpe;

and A
a2 oy,
Clz/l]

Proof. We opt

N N\ 1 (M M\ 1 1 1 1
SO=N|—-1-In—|+-M|—-1-In—|+-C+—V+—T+—A.
N] N] 0 M] M] 0 0p 9S1 HPSQ
Then, we get
ds N 1 M
d—tl :(1 - W])(a ~ LNM = ,NC - wN) + (1 - ﬁ])(e/hNM— e MV — a, M)

1 1
+ 5 (9/12NC —eCV - -J’:]CT - CIQC) + 9_ (pelMV + pEzCV - szA - Cl3V)
P

1
+ 9— (S]é‘:] CT —a4T) + (Szé:zVA —asA). “4.1)
S1

6ps,
At equilibrium, E; solves the system
{a/ = /l]N]M] + Q)N],

/11N1M1 = %Ml

Applying the above equations to collect (4.1) gives

dX, N, Ny N
—:1——) Ny —wN) + UN M |2 - — - —
dr ( N (wN; — wN) + N, 1( N N1)
+(12N1—@)C+ Sy - Bly- Ly By
0 6 6p Os; 6ps,
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N N ﬁ] g 02/11
A
+ 2 Ry —1 - DBy Lap Dy
61, WpE 0s, Ops,
Hence, J
2
— <0
dt
if 1 1
Ry<1+ 14 and &sl.
wpE| ad
In addition,
dz,
dr
if N=NyandC =V =T = A = 0. Consequently,
dN
-0
dt

and the first equation of (2.1) gives M = M. Therefore, Y 1 ={E;} and E; is GS when

A A
Ro>1, Ry<1+2% and 42244
wpe aAy
according to LP [37]. O
Theorem 6. Let
/11(13
Ry>1+
wpeE|

Then, the equilibrium E5 is GS if

ar€; /1161203 S 1+ /11613 + a’gfl/lz

a6 wpaie wpe  wWae

and
Aiaz L _ads Aiazas

wpe; a1 wparsés

Proof. We construct

N N\ 1 (M M\ 1. 1_ [V vy 1 1
23(t):N3(ﬁ—l—ln—)+5M3(——l—ln—)+5C+—V3(——1—1n—)+—T+—A.
3

N3 M3 M3 9p V3 V3 9S1 QpS2
Then, we get
ds N 1, M
=2 (1 - ﬁ)(a ~ UNM = LNC - wN) + 5 (1 - ﬁ)(@ﬂlNM — e MV —a,M)
! 1 %
+ 5 (OLNC = €CV = £CT = a:0) + o (1 - 73) (peMV + peCV - £VA - a3V)  (42)
p
1 1
+ — (S]f]CT - Cl4T) + (SzszA - Cl5A) .
s, Ops,
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The equilibrium conditions at E5 are
a = A N; M5 + wN5,

ANMs = S vs+ Ly

1NsMy = M Vs + o Ms, (4.3)
€] as

—M;V3 = —V;.

g M3 Y3 9p3

By using (6), Eq (4.2) becomes
dz; Ny N a €
1——) N3 — wN) + AN M5 |2 — — — — (/IN————V)C
ar ( (wN3 — wN) + ;N3 3( N N3)+ 21V3 3

(fzv ——)A—ﬁT

6p Ops; Osy
N - N N N
:_u+ﬂN3M% B _ 1
N N N
wpa & N Aias N ale Ay R are Aiaras c
9(/11(13 + wpe) wpe  wa& aje wpa e

wa & (R _1- Aaz _&adas Arasas ) —ET
9(/11a3+a)p61) wper  a126  wpa1$8 Os;

We observe that
d23<0
dr —

if A A fe A

are ara a aBe
R0+21+12321+13+ 142
wpe; wai e

a e wpaie

and 1 1
143 €145 1asds
Ry<1+ + .
wper  aiHé  wpasHié;

dx ,
In addition, — = 0 when N = N3, M =M;,V=VsandC =T = A =0. Thus, ¥; = {E3} and LP [37]

implies that E5 is GS when
A1az
Ry>1+ -
wpe
with the above conditions. |
Theorem 7. Let the existence conditions of E¢ be satisfied. Then, the equilibrium E¢ is GS if
R+ a6 N Ad16ay a1 di6as a,6Ara, <1+ Ajas Aray 611/11622614 a6
1 <
me  wesiEl  wpelay,  weasiéia wper  wsi€1  wesibla,  wWeaa
and
ady  €dras €2ds
WA LarsE; T st
O

Proof. See Appendix A.
Volume 9, Issue 3, 7212-7252.
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Theorem 8. Let

/12614 al/lz
Ry>1+ and —— > 1.
ws181 arAy
Then, the equilibrium E; is GS if
/1162(14 /12614 /11(13
Ry + pS .
we; s1&1 wsi§)  wpe
Proof. See Appendix B.
Theorem 9. Let
Adas  €as Aazas
Ry >1+ .
wpe;  a1é&  wpa;Hé
Then, Eg is GS if
ady  €dras €2ds
mAy  Liayséy az$26>
Proof. See Appendix C.
Theorem 10. Let 1
2€] s16143 WES1G]
¢ + ¢ > 1,
& peas Li6a
/11 (Y7 /12614 /11 as
Ry+ ———>1+
we 516 wsi€)  wpe
and
R+ a e + /1162614 (11/1162613 61162/12614 /11613 /12614 01/11622614 0’0/1162
1 .
wme  wesiE) wpela,  we siéia wpe  wsié welsibay W
Then, Eq; is GS if
A16ay A16&aqas €105 Aias Aray Ai1asas e Arasas
Ro + + <1+ .
wersi§) wapsi€156 arné  wpe  wsi§ wpars;  waisi€1$6
Proof. See Appendix D.
Theorem 11. Let 1 A
€1ds5 204 €142a405
Ry>1+ ,
arsé;  wsiéy wasi€rsé&
Cl]/lz €] /12615 €xds5
> 1+
ad;  Aaxs$6 a$76>
and
/1162614 /1162614615 €1ds5 /11613 /12614 /11&3615 €] /12614&5
Ro + + .
wesié) wasi§156 a;26  wper  wsi€r wparsy  waisi€16

Then, the equilibrium E1, is GS.

AIMS Mathematics
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Proof. We nominate

N N 1 M M 1 C C
S(8) =Npo [ = 1 = 10— | =M [ = 1 =Tt | 4 ~Cpp = = 1 = In —
12(f) 12(1\712 anz) 0 12(Mlz anz) 0 12(C12 nclz)
1 \% \% 1 T T 1 A A
AT P A R PR
Op Viz Via]  Os; T Ty,) 6ps; A Ap
Then, we get
dx N 1 M
7‘2=(1—ﬁ)(a—AINM—AzNC—wNHE(l—ﬁ)(e/uNM—qMV—alM)
1 C12 1 V12
+ 5 (1 - ?)(HAQNC - €2CV - §1CT - ClQC) + % (1 - 7)(p€1MV+ pEQCV —fQVA - a3V) (44)

1 T
+ — (1 - i)(SI&CT — a4T) +

( A
0S1 T

- 7) (5:6:VA — asA).

Ops;

By using the conditions of equilibrium state at £/,

a = AN oMy + 3N12C 12 + wNo,

€ a
ANMy, = glMlzvlz + ElMlz,

€ a
ANCp = éclzvlz + %C12T12 + EZCH’

€l & & as
—MpVip+ =CaVip = 2Z2VpAp + — Vo,
9 12V12 9 12V12 Qp 124112 91? 12
& ay

ZCpT = —To,

0 12412 9S1 12

& as

VA, = —A.

9[9 124112 gpsz 12

Equation (4.4) is transformed into

d%, w (N = Npp)? N, N N, N
= + A4 NoMpp 2 - —= — — |+ LNCp [2 - — - —].
dt N 1 N N e N Np

dx dx
We note that d_t12 <0and d_t12 =0 at E,. Based on LP [37], E;, is GS when the existence conditions
are met. O

5. Numerical simulations

The ode45 solver of Matlab is utilized to effectuate the numerical simulations. ode45 is the default
solver for ODEs in Matlab. It utilizes an explicit Runge-Kutta formula and generally performs well
with a wide range of ODE problems. Nevertheless, when dealing with stiff problems or situations
demanding high accuracy, alternative solvers like ode15s, ode23s, and ode23t may prove more efficient.
We consider three different groups of initial conditions:

(1) (N(0), M(0), C(0), V(0), T(0),A(0)) = (0.0001, 0.01,0.03, 0.01,0.001, 0.001);
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(2) (N(0), M(0),C(0), V(0), T(0),A(0)) = (0.1,0.03,0.06, 0.05,0.002, 0.003);
(3) (N(0), M(0),C(0), V(0), T(0),A(0)) = (0.6,0.06,0.1,0.06,0.03,0.01).

The chosen sets of initial conditions are arbitrary, as the global stability is guaranteed for any initial
values. To affirm the global stability of Ey, E;, E3, Es, Eq, Eg, E11, and E},, we partition the numerical

simulations into eight classes. We change the values of A, A,, 51, 52, €1, €, &, W1, W3, and ws to obtain
the global stability of the equilibrium in each case. The other values are fixed and given in Table 1.

Table 1. Parameters’ values of system (2.1).

Parameter Value Source
1% 0.02 [33]
A Varied -

Ay Varied -

w 0.02 [33]
w1 0.01 [38]
wy Varied -
w3 Varied -
on 0.1 [38]
w5 Varied -

0 0.8 [33]
€ Varied -

& Varied -

P 0.24 [39]
& 0.5 [38]
& Varied -

S1 Varied -

52 Varied -

Thus, we have

(i) We opt 4; = 0.03, 1, = 0.03, s; = 0.1, s, = 0.2, ¢ = 055, & = 0.55, & = 4.88 x 1078,
w; = 0.17, w3 = 0.6, and ws = 0.05. This yields Ry = 0.8 < 1 and R; = 0.1263 < 1. Thus,
Ey=(1,0,0,0,0,0) is GS as indicated in Theorem 4 (see Figure 2). This point has no significant
biological interpretation as all populations, except the nutrient’s component, tend to zero.

(ii) We choose 4; = 0.05, 2, = 0.03, 5, = 0.1, 5, =02, 6, = 1 x 107, & = 0.55, & = 4.88 x 1078,
w; = 0.17, w3 = 0.9, and ws = 0.05. The corresponding thresholds are
142

~958x10° and 422 =0.0047 < 1.
wpe; arA

2
Ry=133>1, Ry<1+2%

Thus, E; = (0.75,0.1333,0,0,0,0) is GS which matches with Theorem 5 (see Figure 3). This
simulates the case of an individual who neither has SARS-CoV-2 infection nor cancer.

(iii) We nominate 1; = 0.07, 1, = 0.03, s; = 0.1, 5, = 0.2, ¢ = 0.5, & = 0.55, & = 4.88 x 1078,
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wy =0.17, w3 = 1 x 107*, and ws = 0.2. This gives

2
Ry = 1.8667 > 1+ 2E — 1.5863,
wpe
1 1 0e, 1
Ry + 28 L 29D 169996 > 1+ 2B L OB _ 53135
a e wpa; e wpe; wda e
and 1 1
Ry< 1429  a% | ABE _ 59593 % 105,

wper  a156  wWpais$er
This causes E; = (0.6304,0.1675,0,0.01061,0,0) to be GS as verified in Theorem 6 (see
Figure 4). This imitates the case of a patient with SARS-CoV-2 infection but without cancer.

(iv) We pick out 1; = 0.06, 2, = 0.05, 5, = 0.1, 5, = 0.2, 6, = 1 X 1075, &, = 0.55, &, = 4.88 x 1078,
w; = 0.001, w3 = 0.001, and ws = 0.05. This corresponds to

P P 01
R+ 42 L D05 0080 x 105 < 1+ 28 4 89 _ 45572 % 105,
ar€; wpea wpe weay
1 2 e,
Ro+ B8 L 210D _ g3y 14 2B L300 5 651 % 107,
a6  wpaie wpe,  Wa 6
2 2
D 78571%10* > 1, 22 —66000> 1, L2 -1.1905> 1,
ar€ A€ arA;

a e + /1162614 n 6111162613 61162/12614

R, + 2
wme  wesié) wpea,  we siéa

2
A as N Abay, aihi€as ablie

=2.0634x10° <1+
wpe  wsié wersiflay WA

=3.1114 x 10"

and

ady | abds o eu13 100 < 14+ -2 - 18784 % 10,

ady  Aazsé; az$2¢&>
In parallel with Theorem 7, E¢ = (0.625,0.06742,0.1591,0.0073, 0, 0) is GS (see Figure 5). This
simulates the case of a cancer patient who has SARS-CoV-2 infection with inactive immune

responses.

(v) Weopt 4; = 0.06, 1, = 0.05, sy = 12,5, =02, ¢ = 1x 107, & = 0.55, & = 4.88 x 1078,
wy; =1 %107, w; = 0.9, and ws = 0.05. The resultant thresholds are

pl pl
Ro=16>1+2% _15 42 _ 1243851
ws &) aA,
and 1 1 1
Ry + 129 _ 335100 <14+ 22 4 2D _ 1 15% 108,
we;s1&y wsié) wpe

In agreement with Theorem 8, E7; = (0.625,0.0333,0.2,0,0.0098, 0) is GS (see Figure 6). In this
scenario, the cancer patient does not have SARS-CoV-2 infection, and the CTL immunity against

cancer cells is active.
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(vi) We select 4; = 0.07, 4, = 0.03, 5y =04, s, = 1.6,¢ =05, =0.55,& = 1.6, w, = 0.17,
w3 =1x107% and ws = 1 x 1078, This gives

Aiaz €105 Aazas
+ +

Ry =1.8667 > 1 + = 1.7895
wper a6 wpaysé;
and 1 N
D2 | 825 _ 00765 < 1+ 22— 1.0226.
axA, Aiaxsré&s az 8262

As indicated in Theorem 9, Eg = (0.6055,0.1862, 0, 0.0078, 0,0.0015) is GS (see Figure 7). Here,
the patient is solely affected by SARS-CoV-2 infection with an active immune response against
the virus.

(vii) We consider 1; = 0.06, 1, = 0.06, s, = 1.6, 5, = 0.2, = 1.4x 107", & = 0.55, &, = 4.88x 1078,
w; = 0.001, w3 = 0.001, and ws = 0.05. This gives

e siéaz +wfls1'§:1

=1.8808 > 1,
e  peas  liea
A16a Aa Aja
Ro+ 2 =33679 > 1 + ——+ + 15— 3325,
we;s1& wsiér  wpe
1 1 A A 1 ad €a 67
R, + ae + 1€204 a) 1622613 ajeArdy —207143 > 1 + 143 + 204 121 264 aovA €
me  wesiél  wpeay  wesiE1ar wper  wsi€1  wesiEla;  we
=22.2262
and
A A A A A A
X 162044 164405 _ 5017x107 <1+ €1ds 143 204 + 1a3ds €1020405
wesié waisi€15:6 a6, wper  wsi€) wpars;  wa;si€ré

=1.1129 x 108.
As proved in Theorem 10, £, = (0.6422,0.0357,0.15,0.0059,0.01316, 0) is GS (Figure 8). The
CTL immunity against cancer cells is activated in the cancer patient infected with SARS-CoV-2.
(viii) We pick up 4; = 0.06, 1, = 0.06, s; = 1.6, s, = 1.9, ¢ = 14X 107, & = 12,6 = 1.9,
w; = 0.001, w3 = 0.001, and ws = 0.000001. The corresponding thresholds are
€1as5 /12614 €] /1261405
a6 wsié way 5161526,

ady  €dras

= 1.4875,

Ro=16>1+

= 14655 > 1+ 2%~ 13166

axA, A1azs26 (250 ) )
and
/1162614 /1162614615 €1ds5 /11613 /12614 /11613615 6]/12614615
Ry + + =5.5569 > 1 + +
wesiEl wasié156 ai$6,  wpe  wsi§ wpais;  waisié &
=3.4110.

As indicated in Theorem 11, E» = (0.641,0.03657,0.1499,0.006,0.006,0.0123) is GS (see
Figure 9). The CTL and antibody immune responses are activated in the cancer patient infected
with SARS-CoV-2.
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Figure 2. The numerical results of system (2.1) for 4; = 0.03, 1, = 0.03, s; = 0.1, s, = 0.2,
e =055 6 = 0556 =488 x 1078, w, = 0.17, w3 = 0.6, and ws = 0.05. The point
Ey=1(1,0,0,0,0,0) is GS.
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Figure 3. The numerical results of system (2.1) for 4; = 0.05, 4, = 0.03, s; = 0.1, s, = 0.2,
€ =1x1073, 6 =0.55,& =488 x 1078, w, = 0.17, w3 = 0.9, and ws = 0.05. The point
E, =1(0.75,0.1333,0,0,0,0) is GS.
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Figure 4. The numerical results of system (2.1) for 4; = 0.07, 4, = 0.03, s; = 0.1, s, = 0.2,
€ =05,6 =055& =488x 108, w, = 0.17, w3 = 1 x 107, and ws = 0.2. The point
E; =(0.6304,0.1675,0,0.01061, 0, 0) is GS.

AIMS Mathematics Volume 9, Issue 3, 7212-7252.



7236

—Set 1 —Set 1
--=-Set2|] --=-Set 2| ]
-------- Sets --------Seta
0.3
0.2
0.1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t t
(a) Nutrient (b) Epithelial cells
T T T T T T 0.06 T T T T T T T T T
——Set 1 ——Set 1
———-Get2 ====Set2
1 0.05 1
-------- Sets --------Seta
0.04
—_
t’ 0.03
N
0.02
0.01
0 L L L L L L L L L O ', "\ L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t t
(c¢) Cancer cells (d) SARS-CoV-2
0.03 T T T T T T T T T 0.01 T T T T T T T T T
——Set 1 ——Set 1
0.009 !
0025 —-—-Set2| | —-—-Set2
TR e Set3 L Set 3|
0.007 *
0.02 r
0006 3
~~ H ~—
+ H +~ H
~— 001511 ~—0.005F 3
H 0004 %
001F 3
: 0.003
0.002
0005F %
5 0.001
N
0\_. o 0
0 20 40 60 80 100 120 140 160 180 200 80 100 120 140 160 180 200
t t
(e) Anti-cancer CTLs (f) Antibodies

Figure 5. The numerical results of system (2.1) for 4; = 0.06, 4, = 0.05, s; = 0.1, s, = 0.2,
€ =1x107, 6 =0.55,& =4.88%x 1078, w, = 0.001, w3 = 0.001, and ws = 0.05. The point
E¢ = (0.625,0.06742,0.1591,0.0073, 0, 0) is GS.
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Figure 6. The numerical results of system (2.1) for 4; = 0.06, 4, = 0.05, s; = 1.2, s, = 0.2,
€ =1x107,6 =055 &6 =488 x 1078, w, = 1 x 107, w3 = 0.9, and ws = 0.05. The
point E; = (0.625,0.0333,0.2,0,0.0098, 0) is GS.

AIMS Mathematics Volume 9, Issue 3, 7212-7252.



7238

1 T T 0.3 T T
——Set 1] | ——Set 1
—-—-Set 2 o5l --=-Set2| |
-------- Sets - --------Seta
&
02F \3
%
0.3
0.2
0.1
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
t t
(a) Nutrient (b) Epithelial cells
0.1 T T 0.06 T T
——Set 1 ——Set 1
0.09 i
--=-Set 2 oo —-=-Set2| |
0085 e Set 3| Y e Set3
0.07
0.04
—
t’ 0.03
N
0.02
0.01
4
/3
60 80 100 120 140 160 180 200 0 1000 2000 3000 4000 5000 6000 7000 8000
t t
(c¢) Cancer cells (d) SARS-CoV-2
0.03 T T 0.06 T T
——Set 1 ——Set 1
—-=-Set 2 --=-Set 2
.02 1 . 1
005:- -------- Seta 005 -------- 5913
002 f ] 004
~~ ~~
+~ H =
~— 0015 % ! ~— 0.03
& : <
oot} 1 002
oost % 1 0.01
0 N ‘.”".. 0 \‘ PO o T T T T
0 20 40 60 80 100 120 140 160 180 200 0 1000 2000 3000 4000 5000 6000 7000 8000
t t
(e) Anti-cancer CTLs (f) Antibodies

Figure 7. The numerical results of system (2.1) for 4; = 0.07, 4, = 0.03, s; = 0.4, s, = 1.6,
e =05 6 =0556=16,w =017, w3 = 1 x107% and ws = 1 x 107, The point
Eg = (0.6055,0.1862,0,0.0078, 0,0.0015) is GS.
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Figure 8. The numerical results of system (2.1) for 4; = 0.06, 4, = 0.06, s; = 1.6, s, = 0.2,
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point Ey; = (0.6422,0.0357,0.15,0.0059,0.01316, 0) is GS.
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Figure 9. The numerical results of system (2.1) for 4; = 0.06, 4, = 0.06, s; = 1.6, s, = 1.9,
6 =14x10" 6 =12,& =19, w, = 0.001, w; = 0.001, and ws = 0.000001. The point
E» =(0.641,0.03657,0.1499, 0.006, 0.006, 0.0123) is GS.
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To observe the impact of €, (the infection rate of cancer cells by SARS-CoV-2) on the concentration
of cancer cells before stimulating any immune responses, we increase the value of € in case (iv).
When we set €, = 0.7, we get C¢ = 0.125. Additionally, if we raise €, to 0.9, we find C¢ = 0.097.
Figure 10 shows the impact of increasing €, on the decrease in the concentration of cancer cells for
other values of €. Thus, the infection of cancer cells by SARS-CoV-2 can lead to a reduction in cancer
cells concentration, consequently resulting in a remission or an improvement in the patient’s situation.
Similarly, when we increase the value of &; (the killing rate of cancer cells by CTLs) in case (viii),
the concentration of cancer cells decreases to lower values (See Figure 11). In fact, these results align
with many studies that suggest the ability of SARS-CoV-2 to infect cancer cells and induce immune
responses, leading to cancer remission [15-19].

0.16

o o
) >

o

Cancer cells

Figure 10. The effect of varying the infection rate of cancer cells by SARS-CoV-2 (&) on
the concentration of cancer cells in case (iv).

Cancer cells

I I I I I I
0.5 0.6 0.7 0.8 1 11 12 13

0.9
&

Figure 11. The effect of varying the killing rate of cancer cells by CTLs (£;) on the
concentration of cancer cells in case (viii).
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6. Conclusions and discussion

Cancer remission after SARS-CoV-2 infection has been observed in many patients. This remission
has been transient or complete, and it has been recorded with various types of cancer such as NK/T-cell
lymphoma [15], Hodgkin lymphoma [16], follicular lymphoma [17], acute leukemia [18], and other
types of cancer [6]. This has raised an urgent need to understand the relationship between cancer
and SARS-CoV-2. This paper proposes and analyzes an oncolytic SARS-CoV-2 model. The model
has 13 equilibrium points, and we focused our analysis on the points with the most important biological
significance as follows:

(1) The trivial equilibrium E, whichis GSif Ry < 1 and R; < 1. At this point, all populations disappear
except for the nutrient.
/11a3 01/12

(2) The uninfected-epithelial equilibrium E; is GSif Ry > 1, Ry < 1 + , and < 1. Here, the
wpe; arAy

patient is free from both SARS-CoV-2 infection and cancer.
(3) The infected-epithelial equilibrium Ej is GS if

/11(13 ar€| /7.1(12(13 /11(13 a’gél/lz
Ro>1+ , Ry+—+ >1+ +
wpe; aj e wpaie wpe; wda e

and A 1
143 €1ds 1a3ds
+ +

wper a6 wpaysé; '

The patient here has only SARS-CoV-2 infection.

(4) The infected epithelial-cancer equilibrium without immunity E¢ is GS when

a e a1/7.2613 /12a3 Cl’@/th
Ry + + <1+ + ,
aj e wpe a wpe we as
ar€| /11612613 /11a3 aHel/lz
Ry + + <1+ + ,
a e wpape wWpEe; wai e
a6 416 aydr
— > 1, — > 1, _— > 1,
ar€ A€ ardy
aj e /11€2d4 al/l] €as 61162/12a4 /11613 /12614 611/1165614 09/1162
R + + > <1+ + 5 +
a6 wes€ wpeia,  We S1§1ay wper  wsi§1 wesifla,  wWaay
and

a Ay € dras €ds
+ <1+ .
amdy  Aiarsé& ar$26»

Here, the cancer patient has SARS-CoV-2 infection with inactive immunity.

(5) The uninfected epithelial-cancer equilibrium with CTLs E; is GS when

/12a4 aj /12

Ry>1+ > 1

b
wSlfl axA,
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and
/1162614 /12614 /11613
— <1+ +

we i€ ws1&1 CUPEl'

Here, the cancer patient with active CTL immunity does not have SARS-CoV-2 infection.

R0+

(6) The infected-epithelial equilibrium with antibodies Eg is GS if

Adiaz €10s Aiazas
+

Ry>1+
wper a1, wpa; s

and
al/lz 61/7.2615 €rds
+ <1+

amd;  Ljarsré, 26

The patient is cancer-free and suffers only from SARS-CoV-2 infection with active immunity
against the virus.

(7) The infected epithelial-cancer equilibrium with CTLs E}; is GS when

e siélaz  wesié
+ > 1,
A&  pea,  Aeay

/1162614 /12(14 /11(13
—> 1+ +

Ry + s
we;s1&) wsi§)  wpe
2
a e /116204 a1/11€2613 61162/1204 /11613 /12614 a1/11€2614 (1’9/1162
Ry + + + > >1+ + 5
a6 wes|€ wpeia,  We S1§1ay wper  wsi§ wesiéla,  wEAy
and
/1162(14 /1162(14(15 €1d5 /11a3 /12(14 /11(13(15 61/12(14(15
Ry + + <1l+ + .
we s wapsi€1526 aié;  wper  wsi§ wpars;  waisi€r$ré

In this case, the cancer patient has SARS-CoV-2 with active CTLs against the cancer cells.

(8) The infected epithelial-cancer equilibrium with CTLs and antibodies E; is GS if

€1d5 /12614 61/12614615
Ro>1+ ,
a6, wsiér wasi€156
aidy  €dyas €ds
ad;  A1ay$6 ar$26,
and
/1162614 /1162(14(15 €1d5 /11(13 /12614 /11(13(15 61/12(14(15
Ry + + > 1+ + .
we s wapsi€1526 aisé;  wper  wsi§ wpays;  waisi€srés

The cancer patient has SARS-CoV-2 infection with active immune responses against the cancer
cells and virus particles.

AIMS Mathematics Volume 9, Issue 3, 7212-7252.



7244

We found complete agreement between the theoretical contributions and numerical simulations.
The global stability conditions of equilibrium points determine various infection scenarios, such as
patients having only SARS-CoV-2, cancer, both SARS-CoV-2 and cancer, or no infections. These
conditions are dependent on the parameters of model (2.1), emphasizing the importance of carefully
selecting their values. Furthermore, our findings indicate that the infection rate of cancer cells by
SARS-CoV-2 (&) and the killing rate of these cells by CTLs (&) contribute to the reduction in the
concentration of cancer cells. Based on these results, SARS-CoV-2 has the potential to lead to cancer
remission or improve health conditions by either infecting cancer cells or inducing an anti-cancer
immune response. This outcome aligns with recent studies suggesting an oncolytic role of
SARS-CoV-2 [15-19]. In comparison to existing works, our model is the first to propose and analyze
the oncolytic effect of SARS-CoV-2 in cancer patients. As such, these results warrant further
investigation and comparison with the outcomes of experimental studies. Then, the model can be
utilized in studies aiming to employ SARS-CoV-2 as oncolytic virotherapy to target cancer cells.
However, a main limitation of this work is the absence of real data to estimate the values of the
parameters in model (2.1), given the limited availability of such data in this direction. We utilized
values from the literature and made assumptions for some parameters. Consequently, model (1) can
be developed by:

(i) Estimating parameter values through fitting with real data once sufficient information becomes
available;

(i1) Testing the model results against real data;

(i11) Studying the effect of immune responses on the oncolytic role of SARS-CoV-2 and when they
can be supportive;

(iv) Including the direct induction of CTLs by SARS-CoV-2;

(v) Adding more components to the model, such as infected cancer cells and infected epithelial
cells, for a deeper understanding of the model’s dynamics;

(vi) Considering time delays that occur during different biological processes;

(vii) Accounting for parameters and model uncertainties by performing sensitivity analysis and
other methods once experimental or real data becomes available.

These enhancements would contribute to a better understanding of the model and facilitate improved
predictions.
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Appendix

Appendix A

Proof of Theorem 7. We nominate

1 M M 1
260) :N(,(ﬁ—l—lnﬁ)+5M6(——l—ln—)+5C6(£—1—ln£)

N N M; Mg Cs Ce
1 \% \% 1
Vo= —1-In—|+—T+—A.
Op Vs Ve 81 Opsz

dx
By evaluating d_t6’ we get

dx N, 1 M,
d—: = (1 - Wﬁ)(a ~ LNM = ,NC - wN) + (1 - ﬁé)(e/llNM — MV —a,M)

1/ cC
+o (1 - Eﬁ) OLNC — 6,CV - £CT - a,C)
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1 V.
b= (1 _ —6)(p61MV + peCV — 5 VA - asV)
Op |%

1
+ 9— (51§1CT — a4T) + (Sz§2VA —asA). (Al)
S1

Ops,

At equilibrium, Eg fulfills the equations:

a = 41NgMg + 1,NgCg + wNg,
AiNsMo = 5 MoVe + = Mo,

0
/12N6C6 = %C6V6 + %Cﬁ,
€ € as
— MgV + —CVg = — V.
g Mo+ gleVe op 6
Thus, Eq (A.1) can be collected as
dx N, N, N N, N
%6 :(1 ——6)(wN6—wN)+/11N6M6 PJEEALIENA IS VAN DS AL
dt N N Ne N Ne
+ éC@—ﬂ T + é%— T )a
0 051 6p Ops,
N — Ng)? Ny N Ny N
:—u+/11N(,M6 2——6—— +/12N6C6 2——6——
N N Ne N Ns
N wé (R L 4e AM&ay  aidi&as  arglray
1
on[4e e 1 wme  we i€ wpela,  we s\Ea
2 ar€; /1261
1 Adias Aray 611/1165614 09/1162)
wper  wsié1 wersiflay WA
N Aaxéy (01/12 N aedas - &ds )
A aA Aiays ars
0p61/12( 1€ 1) 241 1025262 25262
/1261
Thus, p
26
— <0
dt
if
R1 + a e + /1162614 + 611/1162203 a162ﬂ2a4 <1+ /11&3 + /1204 aljlezza4 09/1162
MmeE  we sl wpea,  we s Eiar wper  wsi§ wesibla,  wWEAy
and
611/12 61/12615 < € ds
mdy  Liayséy 56

dx ,
Also, it is easy to observe that d_t6 = 0 when (N,M,C,V,T,A) = (Ng, Mg, Cs, Vs,0,0). Hence, Y, =

{E¢} and Eg is GS when the existence conditions and the global stability conditions are met based on
LP [37]. o
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Appendix B
Proof of Theorem 8. We select

Z7(t) :N7(ﬁ—l—1nﬁ)+éM7(£—l—ln£)+$c7(£—l—ln£)

N7 N7 M7 M7 C7 C7
1 1 T T 1
+—V+—Ty[—=-1-In—|+—A.
Hp 9S1 T7 T7 QpSZ

Then, we obtain

s N 1/ M
d—; = (1 - #)(a/ ~ LNM = L,NC - wN) + (1 - ﬁ)(mlNM —eMV —aM)
1/ C 1
+s (1 - ?7) (ONC = €CV = £CT = a:0) + - (pes MV + pexCV — £VA - V)
P
1 T, 1
— (1 - —)(s1§1CT —asT) + —— (5262 VA — asA) . (B.1)
05 T 6ps,

By applying the equilibrium conditions at E

a = AN M7 + ALN,C7 + wN7,
AN M7 = %IM%
& ap
LN;C; = =C;T7 + =C7,
2aby = pCaln+ G
& ay
=C;T; = —T,.
g “717 051 7
Equation (B.1) can be collected as
dx; ( N7) N, N N, N
— =1 - —)(wN7 —wN) + AINM7|2 — — — — |+ LN, C7|2 — — — —
dr N(w7w)177 N N, 20V707 N N,
€1 € as as
+|=-M;+=C;——|V-—A
(9 T ep) 0ps,
N - N;)* N, N N, N
SNV ey 2= SN e - o N
N N N; N N;
N we Ad16ay | Adray Aias as
o, ' wesié wsi§)  wpe Ops2
Thus, p
27
— <0
dt
if A A A
Ry + 16204 <1+ 204 143

we s ws1& CUP€1'

dx , )
Also, d_t7 =0 when (N,M,C,V,T,A) = (N7, M7,C;,0,T7,0). Hence, Y, = {E7} and by LP [37], E; is

GS if
/12614 aq /12

Ry>1+ > 1

2
wSlfl arA,
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and 1 1 1
Ry + 1©204 <1+ 204 + 103.
we; 1€ wsi§) wpe
O
Appendix C
Proof of Theorem 9. We nominate
N N 1 M M 1
Te() =Ng[— =1 -In— |+ -Mg[— -1 -In— | + -C
Ng Ng| 6 °\ My Mg] 6
1 \% \% 1 1 A A
+—Vs|——1-In—|+—T+—Ag[—-1-In—].
Gp Vg Vg 9S1 gpSZ Ag Ag
Then, we have
dx N, 1 M
d—: = (1 - Wg)(a ~ WLNM = L,NC - wN) + (1 - ﬁg) (OAUNM — e MV — a; M)
1 1 \%
+ 5 (OLNC = eCV = £CT - axC) + - (1 - 78) (pes MV + pexCV — VA — asV)
p
1 A
+— (&CT —aT) + (1 _ —8) (5:6.VA — asA). (C.1)
s, Ops, A

At equilibrium, Eg fulfills the following:
a = A4NgMg + wNg,
€1 aq
A NsMg = 5M8V8 + ng,

iMszs = éVsAfs + EVS,

0 6p Op
RV
6p Ops;

Thus, Eq (C.1) can be collected as

dXg Ny Ny N a6 a,
—:1——) Ng — wN) + A NsM. 2————+(/1N————V)C——T
dt( N(“)g“’)‘gg( N Ny T\ T T T T gy
N — Ny)? Ny N A pl
:—u+/11NgM8 2——8——+@ a12+ €1720s -1- €45 C—ﬂT.
N N Ng 9 612/11 /l]szQé:z Clezfz 9S1
Hence, p
23
— <0
dr
if A A dx
4% + 17245 <1+ ©ds and —2 =0
ad; a6 ar$26, dt

when (N,M,C,V,T,A) = (Ng, Mg, 0, Vg,0, Ag). Therefore, Yé = {Ey} and based on LP [37], Eg is GS

when it exists and 1 1
apAp €14205 €4as
+ <1+

ad;  Aaysé a5y’

O
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Appendix D
Proof of Theorem 10. We select

N N) 1 M M\ 1 C c
=00 :Nu(——l—ln—)+—M“(——l—ln—)+—C11(——l—ln—)

Ny Nu) 6 My, M, ] 6 Ci Ci
1 \% \% 1 T T 1
+—V11(——1—ln—)+—T11(——1—ln—)+ A.
Op Vi Vi) s Ty, T,.] 06ps;

Then, we have

ds N 1/ M
1 = (1 - %)(a ~ NM = 12NC = 0N) + (1 - ﬁ)(e/hNM —aMV - aM)

1/ C

+ 2 (1 - %) OLNC — 6,CV - &CT - axC)
1 Vi

+— (1 - —) (peMV + pe,CV — £VA — asV)
Op vV
1 T 1

+— (1 - —) ($16,CT = asT) + —— (5265 VA — asA) | D.1)
0s, T Opsz

At equilibrium, E; fulfills the system

a=4N M+ ,NCh + wNyy,
€] a
ANuMy, = §M11V11 + 6M11,
€ & a
LN C = =C1 Vi + =C T + =Cq4,
2NuCn = glnVn+ plnln+ 2t
€] € as
—M Vi1 +—=CV;; = =V,
g MY+ v gp”
& aq
=—CyTy = —Ti;.
g Ll o, 11
Thus, Eq (D.1) can be collected as
dXi ( Ny Ni N N N
— = 1——) Ny — wN) + 4UN (M |2 - — — — |+ LNIC |12 — — — —
dr N (wNj; — wN) 14V N Nii 2011011 N Ni;
(évn— e )
6p Ops,
N — Npp)? N N N N
:—u+/11N11M11 2-— - — |+ LNy (2 - = - —
N N Ny N Ny
N wai 1€ ( A16ay A1 6agas €1as
0 1
e si&laz wesié we i€l wa;s1&15:6 a1 526
Hp/11€2614 + + -1
e  pea,  Aiea
Aias Adray A1asas €1 rasas )A
wpe  wsi&) wpars;  wars&ié)
Thus, p
2
<0
dt
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if
RO + /1162(14 /1162614615 <1+ €1d5 /11613 + /12614 + /11a3a5 61/12614615 .
wersiér waisi€r156 aisé,  wper  wsi§ wpars;  waisi€r$ér
Also,
dr
when (N, M,C,V,T,A) = (N11, M11,C11, Vi1, T11,0). Therefore, Yi1 = {Ey;} and by LP [37], E{; is GS
when the existence and stability conditions are met. O
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