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Abstract: The relationship between cancer and the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection is controversial. While SARS-CoV-2 can worsen the status of a cancer
patient, many remission cases after SARS-CoV-2 infection have been recorded. It has been suggested
that SARS-CoV-2 could have oncolytic properties, which needs further investigations. Mathematical
modeling is a powerful tool that can significantly enhance experimental and medical studies. Our
objective was to propose and analyze a mathematical model for oncolytic SARS-CoV-2 with immunity.
The basic properties of this model, including existence, uniqueness, nonnegativity, and boundedness of
the solutions, were confirmed. The equilibrium points were computed, and their existence conditions
were determined. The global stability of the equilibria was proven using the Lyapunov theory.
Numerical simulations were implemented to validate the theoretical results. It was found that the model
has thirteen equilibrium points that reflect different infection states. Based on the model’s results, the
infection of cancer cells by SARS-CoV-2 can lead to a reduction in the concentration of cancer cells.
Additionally, the induction of cytotoxic T lymphocytes (CTLs) decreases the number of cancer cells,
potentially resulting in cancer remission or an improvement in the overall health of cancer patients.
This theoretical result aligns with numerous studies highlighting the oncolytic role of SARS-CoV-2.
In addition, given the limited availability of real data, further studies are essential to better comprehend
the role of immune responses and their impact on the oncolytic role of SARS-CoV-2.
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Abbreviation

N: nutrient, it is produced from a source at a fixed rate, cells grow as a result of consuming nutrient;
M: epithelial cells, the type of cells in the lungs that are infected by SARS-CoV-2; C cancer cells: the
cells characterized by uncontrolled growth that become infected by SARS-CoV-2; V: the free SARS-
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CoV-2 particles, the virus responsible for COVID-19, these particles infect epithelial and cancer cells;
T : anti-cancer CTLs, the immune cells that specifically target and eliminate cancer cells; A: antibodies,
they are used by the immune system to eliminate virus particles from the body

1. Introduction

COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
While there has been a decline in reported cases and deaths globally, SARS-CoV-2 is still spreading in
many countries [1]. SARS-CoV-2 passes into host cells by way of a transmembrane protein known as
the angiotensin-converting enzyme 2 receptor [2]. It principally causes infection in alveolar epithelial
type-II cells of the lungs [3, 4]. However, other organs can be infected by SARS-CoV-2. The impact
of COVID-19 on cancer patients has opened up a wide field of research. This group of patients is
vulnerable to COVID-19 due to weakened immune system or ongoing anti-cancer treatments [5]. The
question of whether SARS-CoV-2 induces remission in cancer patients or exacerbates the severity of
the disease remains controversial [5, 6].

The interconnection between cancer and viruses has become one of the most important topics in
oncology and virology [7]. Some viruses, called oncolytic viruses (OVs), have the ability to infect
cancer cells. These viruses can be found in nature or genetically modified to replicate in cancer cells
without infecting normal cells [5,8]. OVs kill cancer cells after massive replication inside them and by
inducing a specific antitumor immune response [5, 8]. Examples of OVs include adenovirus, vaccinia
virus, Coxsackievirus, and herpes simplex virus [8,9]. Talimogene laherparepvec is the only approved
oncolytic virotherapy [6, 10]. Talimogene laherparepvec is an engineered herpes virus used to treat
advanced melanoma through immediate injection into the tumor [10].

The impact of COVID-19 on cancer patients is bidirectional. It has been indicated that SARS-CoV-2
infection can enhance cancer progression [5,7,8,11]. On the other hand, cancer remission after SARS-
CoV-2 infection has been reported in many patients [6, 12–14]. For example, Pasin et al. [15] reported
the case of a patient with refractory natural killer (NK)/T-cell lymphoma who experienced a transient
remission during SARS-CoV-2 infection. As angiotensin-converting enzyme 2 is expressed in NK
cells, the authors in [15] proposed that SARS-CoV-2 could own some oncolytic properties. Challenor
and Tucker [16] presented the case of a remission in a patient with classical Hodgkin lymphoma after
SARS-CoV-2 infection. Another case was reported by Sollini et al. [17] involving a patient with
follicular lymphoma who achieved full remission after SARS-CoV-2 infection. The authors in [16,17]
supposed that the infection stimulated an antitumor immune response. Kandeel et al. [18] reported the
remission of two cases with acute leukemia. Antwi-Amoabeng et al. [19] presented a case in which a
patient with multiple myeloma had remission following SARS-CoV-2 infection. The patient received
a single dose of chemotherapy. However, the authors mentioned that the remission in this case was
parallel to the remission in patients who got four doses of chemotherapy. Ohadi et al. [20] reported
a case of mycosis fungoides that went into remission after the coronavirus infection. Other cases of
remission were reported in [6].

The above remission cases suggest that SARS-CoV-2 could have an oncolytic role in many types
of cancer. It may infect and destroy cancer cells to expose the tumor-associated antigens. These
antigens stimulate an immune response against cancer cells, leading to cancer remission [18]. Hence,
there is an urgent need to understand the relationship between SARS-CoV-2 infection and cancer.
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This understanding may enable the engineering of SARS-CoV-2 for use as an efficient therapy against
certain types of cancer. Mathematical modeling is a strong tool that is often employed to assist
experiments and medical research [21, 22]. Mathematical models have been used to understand the
dynamics of many infectious diseases and test hypotheses that may be challenging to assess
experimentally. The analysis of these models can offer predictions of outcomes and aid in identifying
optimal treatment strategies.

Many mathematical models about SARS-CoV-2 [23–25], cancer [26], SARS-CoV-2/cancer [27],
and oncolytic virotherapy [28–32] have been constructed and studied. However and to the best of our
knowledge, no oncolytic SARS-CoV-2 models have been established yet. Such models are important
to understand the effect of the infection of cancer cells by SARS-CoV-2 and the role of different
immune responses during this coinfection. In this work, we propose an oncolytic SARS-CoV-2
virotherpy model. The construction of this model follows similar principles of those used in [33]. We
conduct a comprehensive mathematical analysis of this model including assessments of boundedness,
nonnegativity, and global stability of equilibrium points. In addition, we implement some numerical
simulations.

This paper is structured as follows. Section 2 introduces the model under consideration. Section 3
demonstrates that all solutions are bounded and have zero or positive values. Furthermore, it computes
the equilibrium solutions of the proposed model. Section 4 verifies the global properties of these
solutions. Section 5 is dedicated to numerical simulations. The last section discusses the results and
provides a glimpse of the future vision.

2. Oncolytic SARS-CoV-2 model with immune responses

In formulating the model, we consider the following assumptions:

(i) The nutrient is produced from a source at a fixed rate, while it is depleted due to its consumption by
epithelial cells and cancer cells. Additionally, depletion occurs as a result of natural death;

(ii) Epithelial cells proliferate as a result of nutrient consumption, and their numbers decrease due to
either viral infection or natural death;

(iii) Cancer cells replicate as a result of nutrient utilization, and their numbers decline due to viral
infection, attacks by cytotoxic T lymphocytes (CTLs), or natural cell death;

(iv) Free virus particles increase as a consequence of infecting epithelial cells and cancer cells, but they
diminish due to the removal by antibodies or natural death;

(v) CTLs are stimulated by infected cancer cells, while antibodies are stimulated by free virus particles;

(vi) CTLs and antibodies undergo decay through natural processes;

(vii) The induction of CTLs by SARS-CoV-2 infection is implied in the stimulation rate of CTLs;

(viii) The model does not contain infected components for epithelial cells and cancer cells.

The proposed ordinary differential equation (ODE) model consists of six nonlinear equations and
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takes the form 

dN(t)
dt
= α − λ1N(t)M(t) − λ2N(t)C(t) − ωN(t),

dM(t)
dt
= θλ1N(t)M(t) − ϵ1M(t)V(t) − (ω + ω1)M(t),

dC(t)
dt
= θλ2N(t)C(t) − ϵ2C(t)V(t) − ξ1C(t)T (t) − (ω + ω2)C(t),

dV(t)
dt
= pϵ1M(t)V(t) + pϵ2C(t)V(t) − ξ2V(t)A(t) − (ω + ω3)V(t),

dT (t)
dt
= s1ξ1C(t)T (t) − (ω + ω4)T (t),

dA(t)
dt
= s2ξ2V(t)A(t) − (ω + ω5)A(t),

(2.1)

where N(t), M(t), C(t), V(t), T (t), and A(t) typify the concentrations of nutrient, epithelial cells, cancer
cells, SARS-CoV-2 particles, anti-cancer CTLs, and antibodies. The nutrient is released from its source
at rate α and declines at rate ωN. Epithelial cells expend nutrient at rate λ1NM, reproduce at rate
θλ1NM, and get infected by SARS-CoV-2 at rate ϵ1MV . Cancer cells expend nutrient at rate λ2NC,
grow at rate θλ2NC, and become infected at rate ϵ2CV . SARS-CoV-2 replicates as a result of infecting
epithelial cells and cancer cells at rates pϵ1MV and pϵ2CV , respectively. CTLs kill cancer cells at
rate ξ1CT and reproduce at rate s1ξ1CT . Antibodies eliminate SARS-CoV-2 at rate ξ2VA and get
stimulated at rate s2ξ2VA. Epithelial cells, cancer cells, SARS-CoV-2 particles, CTLs, and antibodies
die at natural rates ω1M, ω2C, ω3V , ω4T , and ω5A, respectively. The parameters in model (2.1) are
postulated to take positive values. Figure 1 provides a schematic diagram of the model. For simplicity,
we consider the following

a1 ≡ ω + ω1, a2 ≡ ω + ω2, a3 ≡ ω + ω3, a4 ≡ ω + ω4, a5 ≡ ω + ω5.

Figure 1. Schematic diagram of model (2.1).
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3. Basic properties

The following theorem demonstrates the existence and uniqueness of the solutions of model (2.1).

Theorem 1. Assume that the initial values (N0,M0,C0,V0,T0, A0) ∈ R6 are given. There exists t0 >

0 and continuously differentiable functions N,M,C,V,T, A: [0, t0) → R such that (N,M,C,V,T, A)
satisfies model (2.1) and

(N(0),M(0),C(0),V(0),T (0), A(0)) = (N0,M0,C0,V0,T0, A0) .

Proof. As the system of ODEs given in (2.1) is autonomous, it is enough to prove that the function f :
R6 → R6 defined by

f (z) =



α − λ1z1z2 − λ2z1z3 − ωz1

θλ1z1z2 − ϵ1z2z4 − a1z2

θλ2z1z3 − ϵ2z3z4 − ξ1z3z5 − a2z3

pϵ1z2z4 + pϵ2z3z4 − ξ2z4z6 − a3z4

s1ξ1z3z5 − a4z5

s2ξ2z4z6 − a5z6


is locally Lipschitz in its z argument. We observe that the Jacobian matrix

∇ f (z) =



−λ1z2 − λ2z3 − ω −λ1z1 −λ2z1 0 0 0
θλ1z2 θλ1z1 − ϵ1z4 − a1 0 −ϵ1z2 0 0
θλ2z3 0 θλ2z1 − ϵ2z4 − ξ1z5 − a2 −ϵ2z3 −ξ1z3 0

0 pϵ1z4 pϵ2z4 pϵ1z2 + pϵ2z3 − ξ2z6 − a3 0 −ξ2z4

0 0 s1ξ1z5 0 s1ξ1z3 − a4 0
0 0 0 s2ξ2z6 0 s2ξ2z4 − a5


is linear in z and consequently locally bounded for all z ∈ R6. Therefore, f has a continuous and
bounded derivative on any compact subset of R6, and so f is locally Lipschitz in z. According to the
classical Picard-Lindelöf theorem [34], there exists a unique solution z(t) to the ODE

dz(t)
dt
= f (z(t))

on the time interval [0, t0] for some t0 > 0 [35]. □

Next, we prove the nonnegativity and boundedness of the solutions of model (2.1).

Theorem 2. Let τi > 0 (i = 1, 2, 3, 4, 5), then the set

Ω =

{
(N,M,C,V,T, A) ∈ R6

+ : 0 ≤ N(t) ≤ τ1, 0 ≤ M(t),C(t) ≤ τ2, 0 ≤ V(t) ≤ τ3, 0 ≤ T (t) ≤ τ4, 0 ≤ A(t) ≤ τ5

}
is positively invariant set for system (2.1).

Proof. For system (2.1), we obtain

dN
dt
|N=0 = α > 0,

dM
dt
|M=0 = 0,

dC
dt
|C=0 = 0,

dV
dt
|V=0 = 0,

dT
dt
|T=0 = 0,

dA
dt
|A=0 = 0.
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This shows that
(N(t),M(t),C(t),V(t),T (t), A(t)) ∈ R6

+

for t ≥ 0 whenever
(N(0),M(0),C(0),V(0),T (0), A(0)) ∈ R6

+.

To prove the boundedness, we consider the function

χ(t) = N(t) +
1
θ

M(t) +
1
θ

C(t) +
1
θp

V(t) +
1
θs1

T (t) +
1
θps2

A(t).

By computing
dχ(t)

dt
, we get

dχ(t)
dt
= α − ωN(t) −

a1

θ
M(t) −

a2

θ
C(t) −

a3

θp
V(t) −

a4

θs1
T (t) −

a5

θps2
A(t)

≤ α − κ

[
N(t) +

1
θ

M(t) +
1
θ

C(t) +
1
θp

V(t) +
1
θs1

T (t) +
1
θps2

A(t)
]

= α − κχ(t),

where
κ = min {ω, a1, a2, a3, a4, a5} .

This implicates that
0 ≤ χ(t) ≤ τ1 if χ(0) ≤ τ1, for t ≥ 0,

where
τ1 =

α

κ
.

Consequently, we have N(t) ≤ τ1, M(t) ≤ τ2, C(t) ≤ τ2, V(t) ≤ τ3, T (t) ≤ τ4, and A(t) ≤ τ5, where

τ2 = θτ1, τ3 = θpτ1, τ4 = θs1τ1, and τ5 = θps2τ1. Thus, the set Ω is positively invariant [36]. □

Theorem 3. Model (2.1) has thirteen equilibrium points as follows:

(1) The trivial equilibrium E0 always exists;

(2) The uninfected-epithelial equilibrium E1 exists if R0 > 1;

(3) The uninfected-cancer equilibrium E2 exists if R1 > 1;

(4) The infected-epithelial equilibrium E3 exists if

R0 > 1 +
λ1a3

ωpϵ1
;

(5) The infected-cancer equilibrium E4 exists if

R1 > 1 +
λ2a3

ωpϵ2
;

(6) The uninfected-cancer equilibrium with CTLs E5 exists if

R1 > 1 +
λ2a4

ωs1ξ1
;
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(7) The infected epithelial-cancer equilibrium without immunity E6 exists if

R1 +
a1ϵ2
a2ϵ1
+

a1λ2a3

ωpϵ1a2
< 1 +

λ2a3

ωpϵ2
+
αθλ1ϵ2
ωϵ1a2

,

R0 +
a2ϵ1
a1ϵ2
+
λ1a2a3

ωpa1ϵ2
< 1 +

λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2
,

a1ϵ2
a2ϵ1

> 1,
λ1ϵ2
λ2ϵ1

> 1, and
a1λ2

a2λ1
> 1;

(8) The uninfected epithelial-cancer equilibrium with CTLs E7 exists if

R0 > 1 +
λ2a4

ωs1ξ1
and

a1λ2

a2λ1
> 1;

(9) The infected-epithelial equilibrium with antibodies E8 exists if

R0 > 1 +
λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2
;

(10) The infected-cancer equilibrium with antibodies E9 exists if

R1 > 1 +
λ2a3

ωpϵ2
+
ϵ2a5

a2s2ξ2
+
λ2a3a5

ωpa2s2ξ2
;

(11) The infected-cancer equilibrium with CTLs and antibodies E10 exists if

R1 > 1 +
λ2a4

ωs1ξ1
+
ϵ2a5

a2s2ξ2
+
ϵ2λ2a4a5

ωs1ξ1a2s2ξ2
and

pϵ2a4

s1ξ1a3
> 1;

(12) The infected epithelial-cancer equilibrium with CTLs E11 exists if

λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

> 1,

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
> 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
and

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2
> 1 +

λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

;

(13) The infected epithelial-cancer equilibrium with CTLs and antibodies E12 exists if

R0 > 1 +
ϵ1a5

a1s2ξ2
+
λ2a4

ωs1ξ1
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
,

a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
> 1 +

ϵ2a5

a2s2ξ2

and

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
> 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
.
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Proof. To get the equilibria of system (2.1), we solve the following system:

0 = α − λ1NM − λ2NC − ωN,

0 = θλ1NM − ϵ1MV − a1M,

0 = θλ2NC − ϵ2CV − ξ1CT − a2C,

0 = pϵ1MV + pϵ2CV − ξ2VA − a3V,

0 = s1ξ1CT − a4T,

0 = s2ξ2VA − a5A.

Then, we obtain

(1) The trivial equilibrium

E0 = (N0, 0, 0, 0, 0, 0) = (
α

ω
, 0, 0, 0, 0, 0).

This point always exists. This point has no biological meaning as all components vanish except for the
nutrient.

(2) The uninfected-epithelial equilibrium E1 = (N1,M1, 0, 0, 0, 0). The components N1 and M1 are
defined as:

N1 =
a1

θλ1
, M1 =

ω

λ1
(R0 − 1) ,

where
R0 =

αθλ1

ωa1
.

As N1 > 0, the equilibrium E1 exists if R0 > 1. This equilibrium represents a healthy individual without
cancer or SARS-CoV-2 infection.

(3) The uninfected-cancer equilibrium E2 = (N2, 0,C2, 0, 0, 0), where

N2 =
a2

θλ2
, C2 =

ω

λ2
(R1 − 1) ,

where
R1 =

αθλ2

ωa2
.

As N2 > 0, the point E2 exists if R1 > 1. This equilibrium represents the case of a person who has
cancer, but without SARS-CoV-2 infection.

(4) The infected-epithelial equilibrium E3 = (N3,M3, 0,V3, 0, 0), where

N3 =
αpϵ1

ωpϵ1 + λ1a3
, M3 =

a3

pϵ1
,

and

V3 =
ωpa1

ωpϵ1 + λ1a3

(
R0 − 1 −

λ1a3

ωpϵ1

)
.

Clearly, N3 > 0, M3 > 0, and V3 > 0 if

R0 > 1 +
λ1a3

ωpϵ1
.
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Hence, E3 exists if

R0 > 1 +
λ1a3

ωpϵ1
.

The person here suffers from SARS-CoV-2 infection, but he is cancer-free.

(5) The infected-cancer equilibrium E4 = (N4, 0,C4,V4, 0, 0), where

N4 =
αpϵ2

ωpϵ2 + λ2a3
, C4 =

a3

pϵ2
,

and

V4 =
ωpa2

ωpϵ2 + λ2a3

(
R1 − 1 −

λ2a3

ωpϵ2

)
.

Notably, N4 > 0, C4 > 0, and V4 > 0 if

R1 > 1 +
λ2a3

ωpϵ2
.

Thus, E4 exists if

R1 > 1 +
λ2a3

ωpϵ2
.

In this scenario, the cancer patient is experiencing a SARS-CoV-2 infection with the disappearance
of healthy epithelial cells.

(6) The uninfected-cancer equilibrium with CTLs E5 = (N5, 0,C5, 0,T5, 0), where

N5 =
αs1ξ1

λ2a4 + ωs1ξ1
, C5 =

a4

s1ξ1
,

and

T5 =
ωs1a2

λ2a4 + ωs1ξ1

(
R1 − 1 −

λ2a4

ωs1ξ1

)
.

Clearly, N5 > 0, C5 > 0, and T5 > 0 if

R1 > 1 +
λ2a4

ωs1ξ1
.

Hence, E5 exists if

R1 > 1 +
λ2a4

ωs1ξ1
.

CTLs are activated to eliminate cancer cells in a patient who has experienced the disappearance of
healthy epithelial cells.
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(7) The infected epithelial-cancer equilibrium without immunity E6 = (N6,M6,C6,V6, 0, 0), where

N6 =

a2

(
a1ϵ2
a2ϵ1
− 1

)
θλ2

(
λ1ϵ2
λ2ϵ1
− 1

) ,

M6 =

ωϵ2

(
1 +
λ2a3

ωpϵ2
+
αθλ1ϵ2
ωϵ1a2

− R1 −
a1ϵ2
a2ϵ1
−

a1λ2a3

ωpϵ1a2

)
ϵ1λ2

(
a1ϵ2
a2ϵ1
− 1

) (
λ1ϵ2
λ2ϵ1
− 1

) ,

C6 =

ωa1ϵ2

(
1 +
λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2
− R0 −

a2ϵ1
a1ϵ2
−
λ1a2a3

ωpa1ϵ2

)
ϵ1a2λ2

(
a1ϵ2
a2ϵ1
− 1

) (
λ1ϵ2
λ2ϵ1
− 1

) ,

V6 =

λ1a2

(
a1λ2

a2λ1
− 1

)
ϵ1λ2

(
λ1ϵ2
λ2ϵ1
− 1

) .
We note that the components are positive if

R1 +
a1ϵ2
a2ϵ1
+

a1λ2a3

ωpϵ1a2
< 1 +

λ2a3

ωpϵ2
+
αθλ1ϵ2
ωϵ1a2

,

R0 +
a2ϵ1
a1ϵ2
+
λ1a2a3

ωpa1ϵ2
< 1 +

λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2
,

a1ϵ2
a2ϵ1

> 1,
λ1ϵ2
λ2ϵ1

> 1, and
a1λ2

a2λ1
> 1.

Thus, E6 is defined when the above conditions are met. In this scenario, the cancer patient has
SARS-CoV-2 infection with inactive immune responses.

(8) The uninfected epithelial-cancer equilibrium with CTLs E7 = (N7,M7,C7, 0,T7, 0), where

N7 =
a1

θλ1
, M7 =

ω

λ1

(
R0 − 1 −

λ2a4

ωs1ξ1

)
, C7 =

a4

s1ξ1
, T7 =

a2

ξ1

(
a1λ2

a2λ1
− 1

)
.

Accordingly, N7 > 0, C7 > 0, M7 > 0 if

R0 > 1 +
λ2a4

ωs1ξ1
,

and T7 > 0 if
a1λ2

a2λ1
> 1.

Therefore, E7 exists when

R0 > 1 +
λ2a4

ωs1ξ1
and

a1λ2

a2λ1
> 1.
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Here, the cancer patient has active CTL immunity that works on killing cancer cells.

(9) The infected-epithelial equilibrium with antibodies E8 = (N8,M8, 0,V8, 0, A8), where

N8 =
ϵ1a5 + a1s2ξ2
θλ1s2ξ2

, M8 =
ωa1s2ξ2

λ1 (ϵ1a5 + a1s2ξ2)

(
R0 − 1 −

ϵ1a5

a1s2ξ2

)
, V8 =

a5

s2ξ2
,

A8 =
ωpa1ϵ1s2

λ1 (ϵ1a5 + a1s2ξ2)

(
R0 − 1 −

λ1a3

ωpϵ1
−
ϵ1a5

a1s2ξ2
−
λ1a3a5

ωpa1s2ξ2

)
.

Thus, the components are positive and E8 exists if

R0 > 1 +
ϵ1a5

a1s2ξ2
and R0 > 1 +

λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2
.

Notably, the first condition is naturally satisfied when the second condition is met.
The SARS-CoV-2 patient has active antibody immunity against the virus.

(10) The infected-cancer equilibrium with antibodies E9 = (N9, 0,C9,V9, 0, A9), where

N9 =
ϵ2a5 + a2s2ξ2
θλ2s2ξ2

, C9 =
ωa2s2ξ2

λ2 (ϵ2a5 + a2s2ξ2)

(
R1 − 1 −

ϵ2a5

a2s2ξ2

)
, V9 =

a5

s2ξ2
,

A9 =
ωpa2ϵ2s2

λ2 (ϵ2a5 + a2s2ξ2)

(
R1 − 1 −

λ2a3

ωpϵ2
−
ϵ2a5

a2s2ξ2
−
λ2a3a5

ωpa2s2ξ2

)
.

We note that E9 is defined when

R1 > 1 +
λ2a3

ωpϵ2
+
ϵ2a5

a2s2ξ2
+
λ2a3a5

ωpa2s2ξ2
,

where the other condition
R1 > 1 +

ϵ2a5

a2s2ξ2

is naturally met when the previous condition is satisfied.
The infected cancer patient who suffers from the disappearance of epithelial cells has active

antibody immunity against the virus.

(11) The infected-cancer equilibrium with CTLs and antibodies E10 = (N10, 0,C10,V10,T10, A10),
where

N10 =
αs1ξ1

λ2a4 + ωs1ξ1
, C10 =

a4

s1ξ1
, V10 =

a5

s2ξ2
,

T10 =
ωs1a2

λ2a4 + ωs1ξ1

(
R1 − 1 −

λ2a4

ωs1ξ1
−
ϵ2a5

a2s2ξ2
−
ϵ2λ2a4a5

ωs1ξ1a2s2ξ2

)
,

A10 =
a3

ξ2

(
pϵ2a4

s1ξ1a3
− 1

)
.

Thus, E10 is biologically accepted when

R1 > 1 +
λ2a4

ωs1ξ1
+
ϵ2a5

a2s2ξ2
+
ϵ2λ2a4a5

ωs1ξ1a2s2ξ2
and

pϵ2a4

s1ξ1a3
> 1.
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This point represents the case of a cancer patient who is infected, with active immune responses,
but experiencing the disappearance of epithelial cells.

(12) The infected epithelial-cancer equilibrium with CTLs E11 = (N11,M11,C11,V11,T11, 0), where

N11 =
αϵ1s1ξ1

λ1ϵ2a4

(
λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

− 1
) ,

M11 =
ϵ2a4

ϵ1s1ξ1

(
s1ξ1a3

pϵ2a4
− 1

)
, C11 =

a4

s1ξ1
,

V11 =

ωa1s1ξ1

(
R0 +

λ1ϵ2a4

ωϵ1s1ξ1
− 1 −

λ2a4

ωs1ξ1
−
λ1a3

ωpϵ1

)
λ1ϵ2a4

(
λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

− 1
) ,

T11 =
ωϵ1s1a2

λ1ϵ2a4

(
λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

− 1
)(R1 +

a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2

− 1 −
λ1a3

ωpϵ1
−
λ2a4

ωs1ξ1
−

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
−
αθλ1ϵ2
ωϵ1a2

)
.

It is easy to observe that N11, V11, and T11 are positive and E11 exists when
λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

> 1,

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
> 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
and

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2
> 1 +

λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

.

At this point, the infected cancer patient has active CTLs and inactive antibody immune response.

(13) The infected epithelial-cancer equilibrium with CTLs and antibodies
E12 = (N12,M12,C12,V12,T12, A12), where

N12 =
ϵ1a5 + a1s2ξ2
θλ1s2ξ2

,

M12 =
ωa1s2ξ2

λ1 (ϵ1a5 + a1s2ξ2)

(
R0 − 1 −

ϵ1a5

a1s2ξ2
−
λ2a4

ωs1ξ1
−
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2

)
,

C12 =
a4

s1ξ1
, V12 =

a5

s2ξ2
,

T12 =
a2s2

s1ξ1

(
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
− 1 −

ϵ2a5

a2s2ξ2

)
,

A12 =
ωpa1ϵ1s2

λ1 (ϵ1a5 + a1s2ξ2)

(
R0 +

λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
− 1 −

ϵ1a5

a1s2ξ2
−
λ1a3

ωpϵ1

−
λ2a4

ωs1ξ1
−
λ1a3a5

ωpa1s2
−
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2

)
.
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We observe that the components are positive and E12 is defined if

R0 > 1 +
ϵ1a5

a1s2ξ2
+
λ2a4

ωs1ξ1
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
,

a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
> 1 +

ϵ2a5

a2s2ξ2

and

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
> 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
.

This point imitates the case of cancer patient with SARS-CoV-2 infection and active immune
responses. □

In the next sections, we will focus our analysis on the equilibria E0, E1, E3, E6, E7, E8, E11, and E12

as we are interested in the points where the epithelial cells component (M) does not vanish.

4. Global properties

The following theorems are aimed to establish the global stability of equilibria through nominating
Lyapunov functions. Let Y

′

i be the largest invariant subset of

Yi =

{
(N,M,C,V,T, A) |

dΣi

dt
= 0

}
,

where i = 0, 1, 3, 6, 7, 8, 11, 12.

Theorem 4. The equilibrium E0 is globally asymptotically stable (GS) when R0 ≤ 1 and R1 ≤ 1.

Proof. We consider

Σ0(t) = N0

(
N
N0
− 1 − ln

N
N0

)
+

1
θ

M +
1
θ

C +
1
θp

V +
1
θs1

T +
1
θps2

A.

Then, we get

dΣ0

dt
=

(
1 −

N0

N

)
(α − λ1NM − λ2NC − ωN) +

1
θ

(θλ1NM − ϵ1MV − a1M)

+
1
θ

(θλ2NC − ϵ2CV − ξ1CT − a2C) +
1
θp

(pϵ1MV + pϵ2CV − ξ2VA − a3V)

+
1
θs1

(s1ξ1CT − a4T ) +
1
θps2

(s2ξ2VA − a5A)

=

(
1 −

N0

N

)
(α − ωN) + λ1N0M + λ2N0C −

a1

θ
M −

a2

θ
C −

a3

θp
V −

a5

θps2
A

= −
ω (N − N0)2

N
+

a1

θ
(R0 − 1) M +

a2

θ
(R1 − 1) C −

a3

θp
V −

a5

θps2
A.
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We see that
dΣ0

dt
≤ 0

if R0 ≤ 1 and R1 ≤ 1. Furthermore,
dΣ0

dt
= 0

when N = N0 and M = C = V = A = 0. This gives

dC
dt
= 0.

From the third equation of model (2.1), we obtain T = 0. Hence, Y
′

0 = {E0} and by LaSalle’s
invariance principle (LP) [37], E0 is GS if R0 ≤ 1 and R1 ≤ 1. □

Theorem 5. Let R0 > 1. Then, the equilibrium E1 is GS if

R0 ≤ 1 +
λ1a3

ωpϵ1

and
a1λ2

a2λ1
≤ 1.

Proof. We opt

Σ1(t) = N1

(
N
N1
− 1 − ln

N
N1

)
+

1
θ

M1

(
M
M1
− 1 − ln

M
M1

)
+

1
θ

C +
1
θp

V +
1
θs1

T +
1
θps2

A.

Then, we get

dΣ1

dt
=

(
1 −

N1

N

)
(α − λ1NM − λ2NC − ωN) +

1
θ

(
1 −

M1

M

)
(θλ1NM − ϵ1MV − a1M)

+
1
θ

(θλ2NC − ϵ2CV − ξ1CT − a2C) +
1
θp

(pϵ1MV + pϵ2CV − ξ2VA − a3V)

+
1
θs1

(s1ξ1CT − a4T ) +
1
θps2

(s2ξ2VA − a5A) . (4.1)

At equilibrium, E1 solves the system 
α = λ1N1M1 + ωN1,

λ1N1M1 =
a1

θ
M1.

Applying the above equations to collect (4.1) gives

dΣ1

dt
=

(
1 −

N1

N

)
(ωN1 − ωN) + λ1N1M1

(
2 −

N1

N
−

N
N1

)
+

(
λ2N1 −

a2

θ

)
C +

(
ϵ1
θ

M1 −
a3

θp

)
V −

a4

θs1
T −

a5

θps2
A
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= −
ω (N − N1)2

N
+ λ1N1M1

(
2 −

N1

N
−

N
N1

)
+

a2

θ

(
a1λ2

a2λ1
− 1

)
C

+
ωϵ1
θλ1

(
R0 − 1 −

λ1a3

ωpϵ1

)
V −

a4

θs1
T −

a5

θps2
A.

Hence,
dΣ1

dt
≤ 0

if
R0 ≤ 1 +

λ1a3

ωpϵ1
and

a1λ2

a2λ1
≤ 1.

In addition,
dΣ1

dt
= 0

if N = N1 and C = V = T = A = 0. Consequently,

dN
dt
= 0

and the first equation of (2.1) gives M = M1. Therefore, Y
′

1 = {E1} and E1 is GS when

R0 > 1, R0 ≤ 1 +
λ1a3

ωpϵ1
and

a1λ2

a2λ1
≤ 1

according to LP [37]. □

Theorem 6. Let
R0 > 1 +

λ1a3

ωpϵ1
.

Then, the equilibrium E3 is GS if

R0 +
a2ϵ1
a1ϵ2
+
λ1a2a3

ωpa1ϵ2
≥ 1 +

λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2

and
R0 ≤ 1 +

λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2
.

Proof. We construct

Σ3(t) = N3

(
N
N3
− 1 − ln

N
N3

)
+

1
θ

M3

(
M
M3
− 1 − ln

M
M3

)
+

1
θ

C +
1
θp

V3

(
V
V3
− 1 − ln

V
V3

)
+

1
θs1

T +
1
θps2

A.

Then, we get

dΣ3

dt
=

(
1 −

N3

N

)
(α − λ1NM − λ2NC − ωN) +

1
θ

(
1 −

M3

M

)
(θλ1NM − ϵ1MV − a1M)

+
1
θ

(θλ2NC − ϵ2CV − ξ1CT − a2C) +
1
θp

(
1 −

V3

V

)
(pϵ1MV + pϵ2CV − ξ2VA − a3V)

+
1
θs1

(s1ξ1CT − a4T ) +
1
θps2

(s2ξ2VA − a5A) .

(4.2)
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The equilibrium conditions at E3 are
α = λ1N3M3 + ωN3,

λ1N3M3 =
ϵ1
θ

M3V3 +
a1

θ
M3,

ϵ1
θ

M3V3 =
a3

θp
V3.

(4.3)

By using (6), Eq (4.2) becomes

dΣ3

dt
=

(
1 −

N3

N

)
(ωN3 − ωN) + λ1N3M3

(
2 −

N3

N
−

N
N3

)
+

(
λ2N3 −

a2

θ
−
ϵ2
θ

V3

)
C

+

(
ξ2
θp

V3 −
a5

θps2

)
A −

a4

θs1
T

= −
ω (N − N3)2

N
+ λ1N3M3

(
2 −

N3

N
−

N
N3

)
+

ωpa1ϵ2
θ (λ1a3 + ωpϵ1)

(
1 +
λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2
− R0 −

a2ϵ1
a1ϵ2
−
λ1a2a3

ωpa1ϵ2

)
C

+
ωa1ξ2

θ (λ1a3 + ωpϵ1)

(
R0 − 1 −

λ1a3

ωpϵ1
−
ϵ1a5

a1s2ξ2
−
λ1a3a5

ωpa1s2ξ2

)
A −

a4

θs1
T.

We observe that
dΣ3

dt
≤ 0

if
R0 +

a2ϵ1
a1ϵ2
+
λ1a2a3

ωpa1ϵ2
≥ 1 +

λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2

and
R0 ≤ 1 +

λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2
.

In addition,
dΣ3

dt
= 0 when N = N3, M = M3, V = V3 and C = T = A = 0. Thus, Y

′

3 = {E3} and LP [37]

implies that E3 is GS when

R0 > 1 +
λ1a3

ωpϵ1
with the above conditions. □

Theorem 7. Let the existence conditions of E6 be satisfied. Then, the equilibrium E6 is GS if

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2
≤ 1 +

λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

and
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
≤ 1 +

ϵ2a5

a2s2ξ2
.

Proof. See Appendix A. □

AIMS Mathematics Volume 9, Issue 3, 7212–7252.



7228

Theorem 8. Let

R0 > 1 +
λ2a4

ωs1ξ1
and

a1λ2

a2λ1
> 1.

Then, the equilibrium E7 is GS if

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
≤ 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
.

Proof. See Appendix B. □

Theorem 9. Let

R0 > 1 +
λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2
.

Then, E8 is GS if
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
≤ 1 +

ϵ2a5

a2s2ξ2
.

Proof. See Appendix C. □

Theorem 10. Let
λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

> 1,

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
> 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
and

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2
> 1 +

λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

.

Then, E11 is GS if

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
≤ 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
.

Proof. See Appendix D. □

Theorem 11. Let

R0 > 1 +
ϵ1a5

a1s2ξ2
+
λ2a4

ωs1ξ1
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
,

a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
> 1 +

ϵ2a5

a2s2ξ2

and

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
> 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
.

Then, the equilibrium E12 is GS.
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Proof. We nominate

Σ12(t) =N12

(
N

N12
− 1 − ln

N
N12

)
+

1
θ

M12

(
M

M12
− 1 − ln

M
M12

)
+

1
θ

C12

(
C

C12
− 1 − ln

C
C12

)
+

1
θp

V12

(
V

V12
− 1 − ln

V
V12

)
+

1
θs1

T12

(
T

T12
− 1 − ln

T
T12

)
+

1
θps2

A12

(
A

A12
− 1 − ln

A
A12

)
.

Then, we get

dΣ12

dt
=

(
1 −

N12

N

)
(α − λ1NM − λ2NC − ωN) +

1
θ

(
1 −

M12

M

)
(θλ1NM − ϵ1MV − a1M)

+
1
θ

(
1 −

C12

C

)
(θλ2NC − ϵ2CV − ξ1CT − a2C) +

1
θp

(
1 −

V12

V

)
(pϵ1MV + pϵ2CV − ξ2VA − a3V)

+
1
θs1

(
1 −

T12

T

)
(s1ξ1CT − a4T ) +

1
θps2

(
1 −

A12

A

)
(s2ξ2VA − a5A) .

(4.4)

By using the conditions of equilibrium state at E12

α = λ1N12M12 + λ2N12C12 + ωN12,

λ1N12M12 =
ϵ1
θ

M12V12 +
a1

θ
M12,

λ2N12C12 =
ϵ2
θ

C12V12 +
ξ1
θ

C12T12 +
a2

θ
C12,

ϵ1
θ

M12V12 +
ϵ2
θ

C12V12 =
ξ2
θp

V12A12 +
a3

θp
V12,

ξ1
θ

C12T12 =
a4

θs1
T12,

ξ2
θp

V12A12 =
a5

θps2
A12.

Equation (4.4) is transformed into

dΣ12

dt
= −
ω (N − N12)2

N
+ λ1N12M12

(
2 −

N12

N
−

N
N12

)
+ λ2N12C12

(
2 −

N12

N
−

N
N12

)
.

We note that
dΣ12

dt
≤ 0 and

dΣ12

dt
= 0 at E12. Based on LP [37], E12 is GS when the existence conditions

are met. □

5. Numerical simulations

The ode45 solver of Matlab is utilized to effectuate the numerical simulations. ode45 is the default
solver for ODEs in Matlab. It utilizes an explicit Runge-Kutta formula and generally performs well
with a wide range of ODE problems. Nevertheless, when dealing with stiff problems or situations
demanding high accuracy, alternative solvers like ode15s, ode23s, and ode23t may prove more efficient.
We consider three different groups of initial conditions:
(1) (N(0),M(0),C(0),V(0),T (0), A(0)) = (0.0001, 0.01, 0.03, 0.01, 0.001, 0.001);
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(2) (N(0),M(0),C(0),V(0),T (0), A(0)) = (0.1, 0.03, 0.06, 0.05, 0.002, 0.003);
(3) (N(0),M(0),C(0),V(0),T (0), A(0)) = (0.6, 0.06, 0.1, 0.06, 0.03, 0.01).

The chosen sets of initial conditions are arbitrary, as the global stability is guaranteed for any initial
values. To affirm the global stability of E0, E1, E3, E6, E7, E8, E11, and E12, we partition the numerical
simulations into eight classes. We change the values of λ1, λ2, s1, s2, ϵ1, ϵ2, ξ2, ω2, ω3, and ω5 to obtain
the global stability of the equilibrium in each case. The other values are fixed and given in Table 1.

Table 1. Parameters’ values of system (2.1).

Parameter Value Source

α 0.02 [33]
λ1 Varied –
λ2 Varied –
ω 0.02 [33]
ω1 0.01 [38]
ω2 Varied –
ω3 Varied –
ω4 0.1 [38]
ω5 Varied –
θ 0.8 [33]
ϵ1 Varied –
ϵ2 Varied –
p 0.24 [39]
ξ1 0.5 [38]
ξ2 Varied –
s1 Varied –
s2 Varied –

Thus, we have

(i) We opt λ1 = 0.03, λ2 = 0.03, s1 = 0.1, s2 = 0.2, ϵ1 = 0.55, ϵ2 = 0.55, ξ2 = 4.88 × 10−8,
ω2 = 0.17, ω3 = 0.6, and ω5 = 0.05. This yields R0 = 0.8 < 1 and R1 = 0.1263 < 1. Thus,
E0 = (1, 0, 0, 0, 0, 0) is GS as indicated in Theorem 4 (see Figure 2). This point has no significant
biological interpretation as all populations, except the nutrient’s component, tend to zero.

(ii) We choose λ1 = 0.05, λ2 = 0.03, s1 = 0.1, s2 = 0.2, ϵ1 = 1 × 10−5, ϵ2 = 0.55, ξ2 = 4.88 × 10−8,
ω2 = 0.17, ω3 = 0.9, and ω5 = 0.05. The corresponding thresholds are

R0 = 1.33 > 1, R0 < 1 +
λ1a3

ωpϵ1
= 9.58 × 105 and

a1λ2

a2λ1
= 0.0947 < 1.

Thus, E1 = (0.75, 0.1333, 0, 0, 0, 0) is GS which matches with Theorem 5 (see Figure 3). This
simulates the case of an individual who neither has SARS-CoV-2 infection nor cancer.

(iii) We nominate λ1 = 0.07, λ2 = 0.03, s1 = 0.1, s2 = 0.2, ϵ1 = 0.5, ϵ2 = 0.55, ξ2 = 4.88 × 10−8,
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ω2 = 0.17, ω3 = 1 × 10−4, and ω5 = 0.2. This gives

R0 = 1.8667 > 1 +
λ1a3

ωpϵ1
= 1.5863,

R0 +
a2ϵ1
a1ϵ2
+
λ1a2a3

ωpa1ϵ2
= 10.9996 > 1 +

λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2
= 2.3135

and
R0 < 1 +

λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2
= 5.9593 × 108.

This causes E3 = (0.6304, 0.1675, 0, 0.01061, 0, 0) to be GS as verified in Theorem 6 (see
Figure 4). This imitates the case of a patient with SARS-CoV-2 infection but without cancer.

(iv) We pick out λ1 = 0.06, λ2 = 0.05, s1 = 0.1, s2 = 0.2, ϵ1 = 1 × 10−5, ϵ2 = 0.55, ξ2 = 4.88 × 10−8,
ω2 = 0.001, ω3 = 0.001, and ω5 = 0.05. This corresponds to

R1 +
a1ϵ2
a2ϵ1
+

a1λ2a3

ωpϵ1a2
= 1.0982 × 105 < 1 +

λ2a3

ωpϵ2
+
αθλ1ϵ2
ωϵ1a2

= 1.2572 × 105,

R0 +
a2ϵ1
a1ϵ2
+
λ1a2a3

ωpa1ϵ2
= 1.9341 < 1 +

λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2
= 2.6251 × 104,

a1ϵ2
a2ϵ1

= 7.8571 × 104 > 1,
λ1ϵ2
λ2ϵ1

= 66000 > 1,
a1λ2

a2λ1
= 1.1905 > 1,

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2

= 2.0634 × 109 < 1 +
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

= 3.1114 × 1010

and
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
= 2.8473 × 103 < 1 +

ϵ2a5

a2s2ξ2
= 1.8784 × 108.

In parallel with Theorem 7, E6 = (0.625, 0.06742, 0.1591, 0.0073, 0, 0) is GS (see Figure 5). This
simulates the case of a cancer patient who has SARS-CoV-2 infection with inactive immune
responses.

(v) We opt λ1 = 0.06, λ2 = 0.05, s1 = 1.2, s2 = 0.2, ϵ1 = 1 × 10−5, ϵ2 = 0.55, ξ2 = 4.88 × 10−8,
ω2 = 1 × 10−4, ω3 = 0.9, and ω5 = 0.05. The resultant thresholds are

R0 = 1.6 > 1 +
λ2a4

ωs1ξ1
= 1.5,

a1λ2

a2λ1
= 1.2438 > 1

and
R0 +

λ1ϵ2a4

ωϵ1s1ξ1
= 3.3 × 104 < 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
= 1.15 × 106.

In agreement with Theorem 8, E7 = (0.625, 0.0333, 0.2, 0, 0.0098, 0) is GS (see Figure 6). In this
scenario, the cancer patient does not have SARS-CoV-2 infection, and the CTL immunity against
cancer cells is active.
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(vi) We select λ1 = 0.07, λ2 = 0.03, s1 = 0.4, s2 = 1.6, ϵ1 = 0.5, ϵ2 = 0.55, ξ2 = 1.6, ω2 = 0.17,
ω3 = 1 × 10−6, and ω5 = 1 × 10−8. This gives

R0 = 1.8667 > 1 +
λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2
= 1.7895

and
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
= 0.0765 < 1 +

ϵ2a5

a2s2ξ2
= 1.0226.

As indicated in Theorem 9, E8 = (0.6055, 0.1862, 0, 0.0078, 0, 0.0015) is GS (see Figure 7). Here,
the patient is solely affected by SARS-CoV-2 infection with an active immune response against
the virus.

(vii) We consider λ1 = 0.06, λ2 = 0.06, s1 = 1.6, s2 = 0.2, ϵ1 = 1.4×10−1, ϵ2 = 0.55, ξ2 = 4.88×10−8,
ω2 = 0.001, ω3 = 0.001, and ω5 = 0.05. This gives

λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

= 1.8808 > 1,

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
= 3.3679 > 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
= 3.325,

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2
= 22.7143 > 1 +

λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

= 22.2262

and

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
= 5.917 × 107 < 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2

= 1.1129 × 108.

As proved in Theorem 10, E11 = (0.6422, 0.0357, 0.15, 0.0059, 0.01316, 0) is GS (Figure 8). The
CTL immunity against cancer cells is activated in the cancer patient infected with SARS-CoV-2.

(viii) We pick up λ1 = 0.06, λ2 = 0.06, s1 = 1.6, s2 = 1.9, ϵ1 = 1.4 × 10−1, ϵ2 = 1.2, ξ2 = 1.9,
ω2 = 0.001, ω3 = 0.001, and ω5 = 0.000001. The corresponding thresholds are

R0 = 1.6 > 1 +
ϵ1a5

a1s2ξ2
+
λ2a4

ωs1ξ1
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
= 1.4875,

a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
= 1.4655 > 1 +

ϵ2a5

a2s2ξ2
= 1.3166

and

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
= 5.5569 > 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2

= 3.4110.

As indicated in Theorem 11, E12 = (0.641, 0.03657, 0.1499, 0.006, 0.006, 0.0123) is GS (see
Figure 9). The CTL and antibody immune responses are activated in the cancer patient infected
with SARS-CoV-2.
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Figure 2. The numerical results of system (2.1) for λ1 = 0.03, λ2 = 0.03, s1 = 0.1, s2 = 0.2,
ϵ1 = 0.55, ϵ2 = 0.55, ξ2 = 4.88 × 10−8, ω2 = 0.17, ω3 = 0.6, and ω5 = 0.05. The point
E0 = (1, 0, 0, 0, 0, 0) is GS.
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Figure 3. The numerical results of system (2.1) for λ1 = 0.05, λ2 = 0.03, s1 = 0.1, s2 = 0.2,
ϵ1 = 1 × 10−5, ϵ2 = 0.55, ξ2 = 4.88 × 10−8, ω2 = 0.17, ω3 = 0.9, and ω5 = 0.05. The point
E1 = (0.75, 0.1333, 0, 0, 0, 0) is GS.
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Figure 4. The numerical results of system (2.1) for λ1 = 0.07, λ2 = 0.03, s1 = 0.1, s2 = 0.2,
ϵ1 = 0.5, ϵ2 = 0.55, ξ2 = 4.88 × 10−8, ω2 = 0.17, ω3 = 1 × 10−4, and ω5 = 0.2. The point
E3 = (0.6304, 0.1675, 0, 0.01061, 0, 0) is GS.
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Figure 5. The numerical results of system (2.1) for λ1 = 0.06, λ2 = 0.05, s1 = 0.1, s2 = 0.2,
ϵ1 = 1×10−5, ϵ2 = 0.55, ξ2 = 4.88×10−8, ω2 = 0.001, ω3 = 0.001, and ω5 = 0.05. The point
E6 = (0.625, 0.06742, 0.1591, 0.0073, 0, 0) is GS.
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Figure 6. The numerical results of system (2.1) for λ1 = 0.06, λ2 = 0.05, s1 = 1.2, s2 = 0.2,
ϵ1 = 1 × 10−5, ϵ2 = 0.55, ξ2 = 4.88 × 10−8, ω2 = 1 × 10−4, ω3 = 0.9, and ω5 = 0.05. The
point E7 = (0.625, 0.0333, 0.2, 0, 0.0098, 0) is GS.
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Figure 7. The numerical results of system (2.1) for λ1 = 0.07, λ2 = 0.03, s1 = 0.4, s2 = 1.6,
ϵ1 = 0.5, ϵ2 = 0.55, ξ2 = 1.6, ω2 = 0.17, ω3 = 1 × 10−6, and ω5 = 1 × 10−8. The point
E8 = (0.6055, 0.1862, 0, 0.0078, 0, 0.0015) is GS.
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Figure 8. The numerical results of system (2.1) for λ1 = 0.06, λ2 = 0.06, s1 = 1.6, s2 = 0.2,
ϵ1 = 1.4 × 10−1, ϵ2 = 0.55, ξ2 = 4.88 × 10−8, ω2 = 0.001, ω3 = 0.001, and ω5 = 0.05. The
point E11 = (0.6422, 0.0357, 0.15, 0.0059, 0.01316, 0) is GS.
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Figure 9. The numerical results of system (2.1) for λ1 = 0.06, λ2 = 0.06, s1 = 1.6, s2 = 1.9,
ϵ1 = 1.4 × 10−1, ϵ2 = 1.2, ξ2 = 1.9, ω2 = 0.001, ω3 = 0.001, and ω5 = 0.000001. The point
E12 = (0.641, 0.03657, 0.1499, 0.006, 0.006, 0.0123) is GS.
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To observe the impact of ϵ2 (the infection rate of cancer cells by SARS-CoV-2) on the concentration
of cancer cells before stimulating any immune responses, we increase the value of ϵ2 in case (iv).
When we set ϵ2 = 0.7, we get C6 = 0.125. Additionally, if we raise ϵ2 to 0.9, we find C6 = 0.097.
Figure 10 shows the impact of increasing ϵ2 on the decrease in the concentration of cancer cells for
other values of ϵ2. Thus, the infection of cancer cells by SARS-CoV-2 can lead to a reduction in cancer
cells concentration, consequently resulting in a remission or an improvement in the patient’s situation.
Similarly, when we increase the value of ξ1 (the killing rate of cancer cells by CTLs) in case (viii),
the concentration of cancer cells decreases to lower values (See Figure 11). In fact, these results align
with many studies that suggest the ability of SARS-CoV-2 to infect cancer cells and induce immune
responses, leading to cancer remission [15–19].
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Figure 10. The effect of varying the infection rate of cancer cells by SARS-CoV-2 (ϵ2) on
the concentration of cancer cells in case (iv).
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Figure 11. The effect of varying the killing rate of cancer cells by CTLs (ξ1) on the
concentration of cancer cells in case (viii).
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6. Conclusions and discussion

Cancer remission after SARS-CoV-2 infection has been observed in many patients. This remission
has been transient or complete, and it has been recorded with various types of cancer such as NK/T-cell
lymphoma [15], Hodgkin lymphoma [16], follicular lymphoma [17], acute leukemia [18], and other
types of cancer [6]. This has raised an urgent need to understand the relationship between cancer
and SARS-CoV-2. This paper proposes and analyzes an oncolytic SARS-CoV-2 model. The model
has 13 equilibrium points, and we focused our analysis on the points with the most important biological
significance as follows:

(1) The trivial equilibrium E0 which is GS if R0 ≤ 1 and R1 ≤ 1. At this point, all populations disappear
except for the nutrient.

(2) The uninfected-epithelial equilibrium E1 is GS if R0 > 1, R0 ≤ 1 +
λ1a3

ωpϵ1
, and

a1λ2

a2λ1
≤ 1. Here, the

patient is free from both SARS-CoV-2 infection and cancer.

(3) The infected-epithelial equilibrium E3 is GS if

R0 > 1 +
λ1a3

ωpϵ1
, R0 +

a2ϵ1
a1ϵ2
+
λ1a2a3

ωpa1ϵ2
≥ 1 +

λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2

and
R0 ≤ 1 +

λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2
.

The patient here has only SARS-CoV-2 infection.

(4) The infected epithelial-cancer equilibrium without immunity E6 is GS when

R1 +
a1ϵ2
a2ϵ1
+

a1λ2a3

ωpϵ1a2
< 1 +

λ2a3

ωpϵ2
+
αθλ1ϵ2
ωϵ1a2

,

R0 +
a2ϵ1
a1ϵ2
+
λ1a2a3

ωpa1ϵ2
< 1 +

λ1a3

ωpϵ1
+
αθϵ1λ2

ωa1ϵ2
,

a1ϵ2
a2ϵ1

> 1,
λ1ϵ2
λ2ϵ1

> 1,
a1λ2

a2λ1
> 1,

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2
≤ 1 +

λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

and
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
≤ 1 +

ϵ2a5

a2s2ξ2
.

Here, the cancer patient has SARS-CoV-2 infection with inactive immunity.

(5) The uninfected epithelial-cancer equilibrium with CTLs E7 is GS when

R0 > 1 +
λ2a4

ωs1ξ1
,

a1λ2

a2λ1
> 1
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and

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
≤ 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
.

Here, the cancer patient with active CTL immunity does not have SARS-CoV-2 infection.

(6) The infected-epithelial equilibrium with antibodies E8 is GS if

R0 > 1 +
λ1a3

ωpϵ1
+
ϵ1a5

a1s2ξ2
+
λ1a3a5

ωpa1s2ξ2

and
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
≤ 1 +

ϵ2a5

a2s2ξ2
.

The patient is cancer-free and suffers only from SARS-CoV-2 infection with active immunity
against the virus.

(7) The infected epithelial-cancer equilibrium with CTLs E11 is GS when

λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

> 1,

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
> 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
,

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2
> 1 +

λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

and

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
≤ 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
.

In this case, the cancer patient has SARS-CoV-2 with active CTLs against the cancer cells.

(8) The infected epithelial-cancer equilibrium with CTLs and antibodies E12 is GS if

R0 > 1 +
ϵ1a5

a1s2ξ2
+
λ2a4

ωs1ξ1
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
,

a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
> 1 +

ϵ2a5

a2s2ξ2

and

R0 +
λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
> 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
.

The cancer patient has SARS-CoV-2 infection with active immune responses against the cancer
cells and virus particles.
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We found complete agreement between the theoretical contributions and numerical simulations.
The global stability conditions of equilibrium points determine various infection scenarios, such as
patients having only SARS-CoV-2, cancer, both SARS-CoV-2 and cancer, or no infections. These
conditions are dependent on the parameters of model (2.1), emphasizing the importance of carefully
selecting their values. Furthermore, our findings indicate that the infection rate of cancer cells by
SARS-CoV-2 (ϵ2) and the killing rate of these cells by CTLs (ξ1) contribute to the reduction in the
concentration of cancer cells. Based on these results, SARS-CoV-2 has the potential to lead to cancer
remission or improve health conditions by either infecting cancer cells or inducing an anti-cancer
immune response. This outcome aligns with recent studies suggesting an oncolytic role of
SARS-CoV-2 [15–19]. In comparison to existing works, our model is the first to propose and analyze
the oncolytic effect of SARS-CoV-2 in cancer patients. As such, these results warrant further
investigation and comparison with the outcomes of experimental studies. Then, the model can be
utilized in studies aiming to employ SARS-CoV-2 as oncolytic virotherapy to target cancer cells.
However, a main limitation of this work is the absence of real data to estimate the values of the
parameters in model (2.1), given the limited availability of such data in this direction. We utilized
values from the literature and made assumptions for some parameters. Consequently, model (1) can
be developed by:

(i) Estimating parameter values through fitting with real data once sufficient information becomes
available;

(ii) Testing the model results against real data;

(iii) Studying the effect of immune responses on the oncolytic role of SARS-CoV-2 and when they
can be supportive;

(iv) Including the direct induction of CTLs by SARS-CoV-2;

(v) Adding more components to the model, such as infected cancer cells and infected epithelial
cells, for a deeper understanding of the model’s dynamics;

(vi) Considering time delays that occur during different biological processes;

(vii) Accounting for parameters and model uncertainties by performing sensitivity analysis and
other methods once experimental or real data becomes available.

These enhancements would contribute to a better understanding of the model and facilitate improved
predictions.
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Appendix

Appendix A

Proof of Theorem 7. We nominate

Σ6(t) =N6

(
N
N6
− 1 − ln

N
N6

)
+

1
θ

M6

(
M
M6
− 1 − ln

M
M6

)
+

1
θ

C6

(
C
C6
− 1 − ln

C
C6

)
+

1
θp

V6

(
V
V6
− 1 − ln

V
V6

)
+

1
θs1

T +
1
θps2

A.

By evaluating
dΣ6

dt
, we get

dΣ6

dt
=

(
1 −

N6

N

)
(α − λ1NM − λ2NC − ωN) +

1
θ

(
1 −

M6

M

)
(θλ1NM − ϵ1MV − a1M)

+
1
θ

(
1 −

C6

C

)
(θλ2NC − ϵ2CV − ξ1CT − a2C)
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+
1
θp

(
1 −

V6

V

)
(pϵ1MV + pϵ2CV − ξ2VA − a3V)

+
1
θs1

(s1ξ1CT − a4T ) +
1
θps2

(s2ξ2VA − a5A) . (A.1)

At equilibrium, E6 fulfills the equations:

α = λ1N6M6 + λ2N6C6 + ωN6,

λ1N6M6 =
ϵ1
θ

M6V6 +
a1

θ
M6,

λ2N6C6 =
ϵ2
θ

C6V6 +
a2

θ
C6,

ϵ1
θ

M6V6 +
ϵ2
θ

C6V6 =
a3

θp
V6.

Thus, Eq (A.1) can be collected as

dΣ6

dt
=

(
1 −

N6

N

)
(ωN6 − ωN) + λ1N6M6

(
2 −

N6

N
−

N
N6

)
+ λ2N6C6

(
2 −

N6

N
−

N
N6

)
+

(
ξ1
θ

C6 −
a4

θs1

)
T +

(
ξ2
θp

V6 −
a5

θps2

)
A

= −
ω (N − N6)2

N
+ λ1N6M6

(
2 −

N6

N
−

N
N6

)
+ λ2N6C6

(
2 −

N6

N
−

N
N6

)
+

ωξ1

θλ2

(
a1ϵ2
a2ϵ1
− 1

) (
λ1ϵ2
λ2ϵ1
− 1

)(R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2

− 1 −
λ1a3

ωpϵ1
−
λ2a4

ωs1ξ1
−

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
−
αθλ1ϵ2
ωϵ1a2

)
T

+
λ1a2ξ2

θpϵ1λ2

(
λ1ϵ2
λ2ϵ1
− 1

) (
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
− 1 −

ϵ2a5

a2s2ξ2

)
A.

Thus,
dΣ6

dt
≤ 0

if

R1 +
a1ϵ2
a2ϵ1
+
λ1ϵ2a4

ωϵ1s1ξ1
+

a1λ1ϵ2a3

ωpϵ21a2
+

a1ϵ2λ2a4

ωϵ1s1ξ1a2
≤ 1 +

λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+

a1λ1ϵ
2
2a4

ωϵ21 s1ξ1a2
+
αθλ1ϵ2
ωϵ1a2

and
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
≤ 1 +

ϵ2a5

a2s2ξ2
.

Also, it is easy to observe that
dΣ6

dt
= 0 when (N,M,C,V,T, A) = (N6,M6,C6,V6, 0, 0). Hence, Y

′

6 =

{E6} and E6 is GS when the existence conditions and the global stability conditions are met based on
LP [37]. □
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Appendix B

Proof of Theorem 8. We select

Σ7(t) =N7

(
N
N7
− 1 − ln

N
N7

)
+

1
θ

M7

(
M
M7
− 1 − ln

M
M7

)
+

1
θ

C7

(
C
C7
− 1 − ln

C
C7

)
+

1
θp

V +
1
θs1

T7

(
T
T7
− 1 − ln

T
T7

)
+

1
θps2

A.

Then, we obtain

dΣ7

dt
=

(
1 −

N7

N

)
(α − λ1NM − λ2NC − ωN) +

1
θ

(
1 −

M7

M

)
(θλ1NM − ϵ1MV − a1M)

+
1
θ

(
1 −

C7

C

)
(θλ2NC − ϵ2CV − ξ1CT − a2C) +

1
θp

(pϵ1MV + pϵ2CV − ξ2VA − a3V)

+
1
θs1

(
1 −

T7

T

)
(s1ξ1CT − a4T ) +

1
θps2

(s2ξ2VA − a5A) . (B.1)

By applying the equilibrium conditions at E7

α = λ1N7M7 + λ2N7C7 + ωN7,

λ1N7M7 =
a1

θ
M7,

λ2N7C7 =
ξ1
θ

C7T7 +
a2

θ
C7,

ξ1
θ

C7T7 =
a4

θs1
T7.

Equation (B.1) can be collected as

dΣ7

dt
=

(
1 −

N7

N

)
(ωN7 − ωN) + λ1N7M7

(
2 −

N7

N
−

N
N7

)
+ λ2N7C7

(
2 −

N7

N
−

N
N7

)
+

(
ϵ1
θ

M7 +
ϵ2
θ

C7 −
a3

θp

)
V −

a5

θps2
A

= −
ω (N − N7)2

N
+ λ1N7M7

(
2 −

N7

N
−

N
N7

)
+ λ2N7C7

(
2 −

N7

N
−

N
N7

)
+
ωϵ1
θλ1

(
R0 +

λ1ϵ2a4

ωϵ1s1ξ1
− 1 −

λ2a4

ωs1ξ1
−
λ1a3

ωpϵ1

)
V −

a5

θps2
A.

Thus,
dΣ7

dt
≤ 0

if
R0 +

λ1ϵ2a4

ωϵ1s1ξ1
≤ 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
.

Also,
dΣ7

dt
= 0 when (N,M,C,V,T, A) = (N7,M7,C7, 0,T7, 0). Hence, Y

′

7 = {E7} and by LP [37], E7 is
GS if

R0 > 1 +
λ2a4

ωs1ξ1
,

a1λ2

a2λ1
> 1
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and
R0 +

λ1ϵ2a4

ωϵ1s1ξ1
≤ 1 +

λ2a4

ωs1ξ1
+
λ1a3

ωpϵ1
.

□

Appendix C

Proof of Theorem 9. We nominate

Σ8(t) =N8

(
N
N8
− 1 − ln

N
N8

)
+

1
θ

M8

(
M
M8
− 1 − ln

M
M8

)
+

1
θ

C

+
1
θp

V8

(
V
V8
− 1 − ln

V
V8

)
+

1
θs1

T +
1
θps2

A8

(
A
A8
− 1 − ln

A
A8

)
.

Then, we have
dΣ8

dt
=

(
1 −

N8

N

)
(α − λ1NM − λ2NC − ωN) +

1
θ

(
1 −

M8

M

)
(θλ1NM − ϵ1MV − a1M)

+
1
θ

(θλ2NC − ϵ2CV − ξ1CT − a2C) +
1
θp

(
1 −

V8

V

)
(pϵ1MV + pϵ2CV − ξ2VA − a3V)

+
1
θs1

(s1ξ1CT − a4T ) +
1
θps2

(
1 −

A8

A

)
(s2ξ2VA − a5A) . (C.1)

At equilibrium, E8 fulfills the following:

α = λ1N8M8 + ωN8,

λ1N8M8 =
ϵ1
θ

M8V8 +
a1

θ
M8,

ϵ1
θ

M8V8 =
ξ2
θp

V8A8 +
a3

θp
V8,

ξ2
θp

V8A8 =
a5

θps2
A8.

Thus, Eq (C.1) can be collected as

dΣ8

dt
=

(
1 −

N8

N

)
(ωN8 − ωN) + λ1N8M8

(
2 −

N8

N
−

N
N8

)
+

(
λ2N8 −

a2

θ
−
ϵ2
θ

V8

)
C −

a4

θs1
T

= −
ω (N − N8)2

N
+ λ1N8M8

(
2 −

N8

N
−

N
N8

)
+

a2

θ

(
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
− 1 −

ϵ2a5

a2s2ξ2

)
C −

a4

θs1
T.

Hence,
dΣ8

dt
≤ 0

if
a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
≤ 1 +

ϵ2a5

a2s2ξ2
and

dΣ8

dt
= 0

when (N,M,C,V,T, A) = (N8,M8, 0,V8, 0, A8). Therefore, Y
′

8 = {E8} and based on LP [37], E8 is GS
when it exists and

a1λ2

a2λ1
+
ϵ1λ2a5

λ1a2s2ξ2
≤ 1 +

ϵ2a5

a2s2ξ2
.

□
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Appendix D

Proof of Theorem 10. We select

Σ11(t) =N11

(
N

N11
− 1 − ln

N
N11

)
+

1
θ

M11

(
M

M11
− 1 − ln

M
M11

)
+

1
θ

C11

(
C

C11
− 1 − ln

C
C11

)
+

1
θp

V11

(
V

V11
− 1 − ln

V
V11

)
+

1
θs1

T11

(
T

T11
− 1 − ln

T
T11

)
+

1
θps2

A.

Then, we have

dΣ11

dt
=

(
1 −

N11

N

)
(α − λ1NM − λ2NC − ωN) +

1
θ

(
1 −

M11

M

)
(θλ1NM − ϵ1MV − a1M)

+
1
θ

(
1 −

C11

C

)
(θλ2NC − ϵ2CV − ξ1CT − a2C)

+
1
θp

(
1 −

V11

V

)
(pϵ1MV + pϵ2CV − ξ2VA − a3V)

+
1
θs1

(
1 −

T11

T

)
(s1ξ1CT − a4T ) +

1
θps2

(s2ξ2VA − a5A) . (D.1)

At equilibrium, E11 fulfills the system

α = λ1N11M11 + λ2N11C11 + ωN11,

λ1N11M11 =
ϵ1
θ

M11V11 +
a1

θ
M11,

λ2N11C11 =
ϵ2
θ

C11V11 +
ξ1
θ

C11T11 +
a2

θ
C11,

ϵ1
θ

M11V11 +
ϵ2
θ

C11V11 =
a3

θp
V11,

ξ1
θ

C11T11 =
a4

θs1
T11.

Thus, Eq (D.1) can be collected as

dΣ11

dt
=

(
1 −

N11

N

)
(ωN11 − ωN) + λ1N11M11

(
2 −

N11

N
−

N
N11

)
+ λ2N11C11

(
2 −

N11

N
−

N
N11

)
+

(
ξ2
θp

V11 −
a5

θps2

)
A

= −
ω (N − N11)2

N
+ λ1N11M11

(
2 −

N11

N
−

N
N11

)
+ λ2N11C11

(
2 −

N11

N
−

N
N11

)
+

ωa1s1ξ1ξ2

θpλ1ϵ2a4

(
λ2ϵ1
λ1ϵ2
+

s1ξ1a3

pϵ2a4
+
ωϵ1s1ξ1
λ1ϵ2a4

− 1
)(R0 +

λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
− 1 −

ϵ1a5

a1s2ξ2

−
λ1a3

ωpϵ1
−
λ2a4

ωs1ξ1
−
λ1a3a5

ωpa1s2
−
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2

)
A.

Thus,
dΣ11

dt
≤ 0
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if
R0 +

λ1ϵ2a4

ωϵ1s1ξ1
+
λ1ϵ2a4a5

ωa1s1ξ1s2ξ2
≤ 1 +

ϵ1a5

a1s2ξ2
+
λ1a3

ωpϵ1
+
λ2a4

ωs1ξ1
+
λ1a3a5

ωpa1s2
+
ϵ1λ2a4a5

ωa1s1ξ1s2ξ2
.

Also,
dΣ11

dt
= 0

when (N,M,C,V,T, A) = (N11,M11,C11,V11,T11, 0). Therefore, Y
′

11 = {E11} and by LP [37], E11 is GS
when the existence and stability conditions are met. □
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