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1. Introduction

Insurance companies use historical data for risk assessment. Asymmetric-bimodal data analysis
helps insurers understand varied risk levels and identify rare but severe events (tail risk) for better
preparation. Analyzing claims data distribution improves claims management, fraud detection, and
resource allocation. Reinsurance decisions, crucial for risk management, are guided by asymmetric-
bimodal analysis. The introduced IBXBXII model efficiently addresses bimodal and asymmetric
actuarial data, extending the adaptable BXII distribution commonly used in insurance. In summary,
asymmetric-bimodal insurance data analysis facilitated by the IBXBXII model is vital for accurate
risk assessment, pricing, compliance, and competitiveness, enabling data-driven decisions for financial
stability and long-term success.These parameters can be adjusted to fit data with different shapes and
tail characteristics (see [1–4]).

The BXII distribution assists insurers in setting premiums by offering insights into the potential
distribution of claim amounts. In summary, the BXII distribution is a versatile tool in the insurance
industry, influencing underwriting, reserving, solvency analysis, and risk transfer decisions. Its
capacity to model various claim severities and capture tail risk makes it a valuable asset for assessing
and managing risks associated with insurance claims. The following cumulative distribution function
(CDF) is related to the BXII model:

Fα1,α2(z)|(z≥0) = 1 − (zα2 + 1)−α1 , (1.1)

where both α2 > 0 and α1 > 0 controls the shape of the model. From Eq (1.1), if α2 = 1
(α1 = 1) we obtain the standard one-parameter Lomax (Lx) (the standard one-parameter log-
logistic (LL) model). Details and many mathematical properties, applications, and more useful
BXII extensions see [1–9]. Recently, many authors considered the extension of the BXII model
such as [7] (beta BXII (B BXII)), [8] (Kumaraswamy BXII (KMBXII)) and [9] (Marshall-Olkin
extended BXII (MOEBXII)), [10] (Marshall-Olkin Weibull-Burr XII), [11] (Compound class of unit
Burr XII), [12] (Unit-Power Burr X), [13] (inverse exponentiated Lomax power series), [14] (Chen
Burr-Hatke exponential), for more details [16–20]. After inverting the CDF of the type-X Burr-G (BX-
G) family of [15], we substitute the CDF of the BXII model in (1.1), then the CDF of the IBXBXII
model can be expressed as

Fζ,α1,α2 (z) = 1 −
(
1 − exp

{
−

[
(zα2 + 1)α1 − 1

]−2
})ζ
. (1.2)

Staying in (1.2) and if ζ = 1, we get the inverted Rayleigh BXII (IRBXII) model. For α2 = 1, we
get the inverted BX Lomax (IBXLx) model. If α1 = 1, we get the inverted BX log-logistic (BXLL)
model. For ζ = α2 = 1, we get the inverted Rayleigh Lomax (IRLx) model. If ζ = α1 = 1, we get the
inverted Rayleigh log-logistic (IRLL) model. The PDF of the IBXBXII is given by

fζ,α1,α2 (z) = 2ζα1 α2zα1−1 [
1 − (zα2 + 1)−α1

]−3 Aζ,α1,α2 (z) (zα2 + 1)−2α1−1

exp
{[

(zα2 + 1)α1 − 1
]−2

} , (1.3)

where Aζ,α1,α2 (z) =
(
1 − exp

{
−

[
(zα2 + 1)α1 − 1

]−2
})ζ−1

. The hazard rate function (HRF) of the

IBXBXII model can be derived directly using (1.2) and (1.3) via the following formula fζ,α1 ,α2 (z)
1−Fζ,α1 ,α2 (z) .
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The updated distribution was applied in three ways. Firstly, it effectively evaluated entropy through
four models, demonstrated via numerical comparisons. Secondly, its superior quality in various fields
was highlighted by comparing it to competing distributions, particularly in applied modeling. Real-
world applications were demonstrated with four datasets. Thirdly, the distribution analyzed actuarial
data, assessing risks, and determining maximum insurance claims and revenue losses, showcasing its
suitability for modeling and actuarial risk assessment, especially in right-skewed data. The IBXBXII
model outperformed the MOOP estimator for positively skewed data but was surpassed for negatively
skewed data. Regression analysis indicated a pronounced right skew, suggesting the distribution’s
preference for right-skewed insurance data. Computer simulations confirmed its effectiveness in
mathematical modeling and actuarial risk assessments, showcasing its wide applicability against
common distributions.

• The paper highlights the new distribution’s versatility with four applications in medicine,
engineering, dependability, and economics, showcasing its adaptability across diverse industries.
Comparisons with established models in applied modeling reveal instances where the new
distribution outperforms existing ones, providing valuable insights for practitioners. This aids in
the selection of the most suitable distribution for specific needs, contributing to informed decision-
making in various contexts.
• The study will compare the BXBXII distribution with various well-known BXII extensions,

including Marshall-Olkin BXII (MARBXII), Topp-Leone BXII (TOLBXII), 5-paramters beta
BXII (FBBXII), Beta BXII, beta exponentiated BXII (BEXBXII), 5-paramters Kumaraswamy
BXII (FKMBXII), Zografos-Balakrishnan BXII (ZOBBXII), and Kumaraswamy modified BXII
(KMBXII), in modeling veterinary medicine data (specifically, the survival times of guinea pigs).
The evaluation will be based on criteria such as Akaike information, Bayesian information,
Hannan-Quinn information, and Consistent Akaike information.
• The study focuses on modeling engineering data, specifically breaking stress data, through

a comparison of the BXBXII distribution with various well-known BXII extensions. These
extensions include the MARBXII distribution, TOLBXII distribution, ZOBBXII distribution,
Beta BXII distribution, FKMBXII distribution. The assessment will employ criteria such as
Akaike information, Bayesian information, Hannan-Quinn information, and Consistent Akaike
information.
• In modeling econometrics data (the revenue data data), the BXBXII distribution will be compared

with many well-known BXII extensions such as the standard BXII, MARBXII, TOLBXII,
ZOBBXII, FBBXII, Beta BXII, BEXBXII, FKMBXII, and KMBXII distributions under the the
Akaike information criteria (INFC), Bayesian INFC, Hannan-Quinn INFC, Consistent Akaike
INFC.
• In modeling medicine data (the leukemia data), the BXBXII distribution will be compared with

many well-known BXII extensions such as the standard BXII, MARBXII, TOLBXII, ZOBBXII,
FBBXII, Beta BXII, BEXBXII, FKMBXII and KMBXII distributions under the Akaike INFC,
Bayesian INFC, Hannan-Quinn INFC, Consistent Akaike INFC.
• The inclusion of two case studies, one on Value-at-Risk (VaR) modeling and the other on Mean of

Order-P analysis underscores the practical relevance of the research. These case studies allow for
the evaluation of the new distribution’s performance in real-life scenarios, which can be invaluable
for decision-makers and analysts.
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The remaining parts of the paper can be structured in the following manner: Section 2 presents some
properties. Section 3 gives some measures of entropy with numerical analysis. The main risk indicators
are given in Section 4, the MOOP methodology for risk analysis is illustrated in Section 4. Section 5
presents a simulation study for assessing the estimation method. Section 6 offers a comparative study
under four applications. Two actuarial case studies are presented in Section 7. Section 8 assesses the
MOOP value at risk. Some conclusions are offered in Section 9.

2. Properties

2.1. Exploring flexibility and the quantile function

Figure 1 gives some plots of PDF for the IBXBXII distribution. Due to Figure 1, it is seen that the
new PDF of the IBXBXII distribution can an unimodal PDF with a right tail. Figure 1 gives some plots
of HRF for the IBXBXII distribution. Due to Figure 1, it is seen that the new HRF of the IBXBXII
distribution can be J-HRF and upside-down HRF. Figure 1 illustrates the importance of the BXBXII
distribution in modeling the real-life data sets that have upside-down HRF.
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Figure 1. Plots of PDF and HRF for the IBXBXII distribution.

The quantile function (QF) of the new model is obtained by inverting (1.2) as Q (u; ζ, α1, α2) =

F−1 (u; ζ, α1, α2) , u ∈ (0, 1). Then, the QF of the IBXBXII distribution is provided after some
reductions by

Q (u; ζ, α1, α2) =

(1+
{
log

[
1 − (1 − u)−

1
ζ

]} 1
α2

) 1
α1

− 1


1
α2

. (2.1)

Based (2.1), Bowley’s skewness (γ1) and Moor’s kurtosis (γ2) are given by

γ1 =
Q

(
7
8 ; ζ, α1, α2

)
− Q

(
5
8 ; ζ, α1, α2

)
+ Q

(
3
8 ; ζ, α1, α2

)
− Q

(
1
8 ; ζ, α1, α2

)
Q

(
6
8 ; ζ, α1, α2

)
− Q

(
2
8 ; ζ, α1, α2

) , (2.2)
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and

γ2 =
Q

(
6
8 ; ζ, α1, α2

)
− 2Q

(
4
8 ; ζ, α1, α2

)
+ Q

(
2
8 ; ζ, α1, α2

)
Q

(
6
8 ; ζ, α1, α2

)
− Q

(
2
8 ; ζ, α1, α2

) , (2.3)

respectively. The plots of the γ1 and γ2 for the IBXBXII distribution is given in Figure 2 at ζ = 0.5.
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Figure 2. Plots of the γ1 and γ2 of the IBXBXII distribution at ζ =0.5.

2.2. Moments

If
∣∣∣∣ ν1
ν2

∣∣∣∣ < 1 and ν3 > 0 is a real non-integer, the following power series holds

(
1 −

ν1

ν2

)ν3

=

∞∑
ς=0

(−1)ς
Γ (1 + ν3)

ς! Γ (1 + ν3 − ς)

(
ν1

ν2

)ς
. (2.4)

Applying (2.4) to Aζ,α1,α2 (z) and inserting the expansion of Aζ,α1,α2 (z) into (1.3), we get

fζ,α1,α2 (z) = 2ζα1 α2zα1−1 [
1 − (zα2 + 1)−α1

]−3 (zα2 + 1)−2α1−1

∞∑
ς=0

(−1)ς Γ (ζ)
ς! Γ (ζ − ς)

exp
[
− (ς + 1)

[
(zα2 + 1)α1 − 1

]−2
]︸                                     ︷︷                                     ︸

Bς,α1 ,α2 (z)

. (2.5)

Then, applying the power series to Bς,α1,α2 (z) and inserting the expansion of Bς,α1,α2 (z) into (2.5), the
Eq (2.5) can be summarized as

fζ,α1,α2 (z) = 2ζα1 α2zα1−1 (zα2 + 1)−α1−1

×

∞∑
ς,κ=0

(−1)ς+κ (ς + 1)κ Γ (ζ)
ς! κ!Γ (ζ − ς)

[1 − (zα2 + 1)]−2κ−3

[(zα2 + 1)]−2κ−1︸            ︷︷            ︸
Bκ,α1 ,α2 (z)

. (2.6)

Applying (2.4) to Bκ,α1,α2 (z), Eq (2.6) can be written as
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fζ,α1,α2 (z) =

∞∑
~=0

∆~gα∗1,α2(z) (2.7)

where

∆~ =

∞∑
ς,κ, j=0

2ζ
(−1)ς+κ+ j+~ (ς + 1)κ Γ (ζ) Γ (2κ + 2) Γ ( j − 2 (κ + 1))

ς! κ! j!~!Γ (ζ − ς) Γ (2κ + 2 − j) Γ ( j − 2 (κ + 1) − ~) (1 + ~)
,

and gα∗1,α2(z) = α∗1α2zα1−1 (zα2 + 1)−α
∗
1−1 is the PDF of the BXII model with parameters α∗1 = α1 (1 + ~)

and α2. Similarly, the CDF of the IBXBXII can also be expressed as a mixture of BXII CDFs given by

Fζ,α1,α2 (z) =

∞∑
~=0

∆~Gα∗1,α2(z)

where Gα∗1,α2(z) is the CDF of the BXII model with parameters α∗1 and α2. Let W be a random variable
having the BXII distribution with parameters α1 and α2. Then, the nth ordinary and incomplete
moments of W are, respectively, given by µ′n|n<α1α2 = α1 B

(
α1 −

n
α2
, n
α2

+ 1
)
, and Υn(z)|n<α1α2 =

α1 B
(
zα2;α1 −

n
α2
, n
α2

+ 1
)
, where B(a1, a2) =

∫ ∞
0

ta1−1 (1 + t)−(a1+a2)dt, and B(z; a1, a2) =
∫ z

0
ta1−1 (1 +

t)−(a1+a2)dt are the beta and the incomplete beta functions of the second type, respectively. So, several
structural properties of the IBXBXII model can be obtained from (2.5) and those properties of the BXII
distribution. The nth ordinary moment of Z is given by

µ′n,Z = E(Zn) =

∞∑
~=0

∆~

∫ ∞

0
zn gα∗1,α2(z)dz.

Then,

µ′n,Z = E(Zn) =

∞∑
~=0

∆~α
∗
1 B

(
α∗1 −

n
α2
,

n
α2

+ 1
)
|n < α1α2. (2.8)

The nth incomplete moment, say Υs(t), of the IBXBXII distribution is given by

Υs(t) =

∞∑
~=0

∆~α
∗
1 B

(
tα2;α∗1 −

s
α2
,

s
α2

+ 1
)
|s < α1α2. (2.9)

Table 1 gives expected value (E(Z)) , variance (V(Z)) , skewness (S (Z)) and kurtosis (K(Z)) for the
IBXBXII model. Table 2 gives E(Z), V(Z), S (Z) and K(Z) for the BXII model. From Tables 1 and 2
we note that the S IBXBXII(Z) of the IBXBXII model ∈ (-26.0701, 51.49378) however S BXII(Z) of the
BXII model ∈ (0.86282, 4.64757). The KIBXBXII(Z) of the IBXBXII model ∈ (-602.017 to 2957.860)
however the KBXII(Z) of the BXII model ∈ (3.07, 73.80). Figure 3 (top left panel) gives 3D plot for
the skewness of the IBXBXII distribution at ζ = 2.5. Figure 3 (top right panel) presents 3D plot for
the kurtosis of the IBXBXII distribution at ζ = 2.5. Figure 3 (bottom right panel) shows 3D plot for
the coefficient of variation (CV) of the IBXBXII distribution at ζ = 2.5. Figure 3 (bottom left panel)
displays 3D plot for the index of dispersion (ID) of the IBXBXII distribution at ζ = 2.5. Based on
Figure 3 (top left panel), we note that at ζ = 2.5 the skewness of the IBXBXII distribution can have
positive and negative values. Due Figure 3 (top right pane), it is seen that at ζ = 2.5 the kurtosis of the
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IBXBXII distribution is always positive and less that 3. According to Figure 3 (bottom right panel),
we note that the CV of the IBXBXII distribution at ζ = 2.5 can have U shape. According to Figure 3
(bottom left panel), it is concluded that the ID of the IBXBXII distribution at ζ = 2.5 ∈ (0, 1) .

Table 1. E(Z),V(Z), S (Z) and K(Z) for the IBXBXII model.

ζ α1 α2 E(Z) V(Z) S (Z) K(Z)
1 3 2 0.81543166 0.022730081 1.607457 8.11645

20 0.62372778 0.000991441 0.032010 3.01156
50 0.60097949 0.000596520 -0.149218 3.01841
100 0.58720877 0.000432940 -0.252641 3.07572
500 0.56232022 0.000237130 -0.423748 3.25830
1000 0.55368533 0.000191146 -0.473076 3.15282
2000 0.54594558 0.000157149 -0.523666 3.41765
5000 0.53682011 0.000124283 -0.574841 3.51511

10000 0.53060272 0.000105681 -0.607892 3.58415

150 1 5 0.07414597 4.74804×10−5 -0.133600 2957.86
2 0.27199933 0.000162344 -0.274436 3.08417
3 0.41969961 0.000172811 -0.322432 3.13870
4 0.52139129 0.000150478 -0.346657 3.16935
5 0.59389776 0.000125188 -0.361268 3.18888

3 1 1 0.8674569 0.110564801 2.297332 17.2822
2 0.3617870 0.012992946 1.599782 8.576392
5 0.1305731 0.001346009 1.308430 6.46725

10 0.0631470 0.000291877 1.223986 16.9348
25 0.0247642 4.29055×10−5 -5.10736 113.501
35 0.0176226 2.15464×10−5 -26.0701 285.1312
45 0.0136780 1.29135×10−5 30.28077 -392.66
50 0.0123013 1.04287×10−5 51.49378 -602.02
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Table 2. E(Z), V(Z), S (Z) and K(Z) for the BXII model.

a b E(Z) V(Z) S (Z) K(Z)
1 5 0.250000 0.1041667 4.64751 73.8001
5 0.682424 0.0289951 0.040149 3.07002

15 0.873845 0.0058751 -0.553252 3.71623
35 0.942924 0.0013088 -0.755678 4.26811
50 0.959545 0.0006708 -0.804447 4.42885
75 0.972765 0.0003089 -0.843332 4.56514

100 0.979473 0.0001768 -0.862816 4.60851
0.831252 0.0049489 -0.673595 3.83723

15 0.5 1.113879 0.0442417 2.131816 15.3416
1 1.007348 0.0151023 0.598998 5.10838

10 0.873846 0.0058750 -0.553252 3.71623
25 0.780286 0.0041837 -0.742638 3.92925
50 0.744512 0.0037574 -0.765126 3.96261
100 0.710636 0.0034003 -0.776273 3.97973
200 0.678424 0.0030882 -0.781829 3.98853
500 0.638154 0.0027274 -0.785153 3.99380

1000 0.609315 0.0024848 -0.786258 3.99556
5000 0.547307 0.0020034 -0.787144 3.99698
10000 0.522589 0.0018267 -0.787255 3.99832
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Figure 3. 3D plots for the IBXBXII distribution at ζ = 2.5.
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3. Measures of entropy

One of the most important measures of uncertainty is entropy. Many different types of entropy may
be utilized to assess risk and reliability.

3.1. Rényi entropy

The Rényi entropy (RE) (see [28]) measure is determined using the following the following formula:

Rω =
1

1 − ω
log

[
Jω (ζ, α1, α2)

]
, ω > 0, ω , 1, (3.1)

where Jω (ζ, α1, α2) =
∫ ∞

0

[
fζ,α1,α2 (z)

]ω
dz. Now we have to compute Jω (ζ, α1, α2). Then,

Jω (α1, α2, ζ) = (2ζα1α2)ω
∫ ∞

0
zwα1−ω(1 + zα2)−2ωα1−ω

[
1 − (1 + zα2)−α1

]−3ω

× exp
{
−ω

[
1 − (1 + zα2)−α1

]−2} (1 − exp
{
−ω

[
1 − (1 + zα2)−α1

]−2})ωζ−ωdz.

By employing the binomial expansion to the last term in the above equation, we get

Jω (α1, α2, ζ) = (2ζα1α2)ω
∞∑

i=0

(−1)i
(
ωζ − ω

i

) ∫ ∞

0
zwα1−ω(1 + zα2)−2ωα1−ω

×
[
1 − (1 + zα2)−α1

]−3ω exp
{
− (i + 1)ω

[
1 − (1 + zα2)−α1

]−2} dz.

By applying the exponential expansion to the last term in the last equation, we have

Jω (ζ, α1, α2) = (2ζα1α2)ω
∞∑

ς, j=0

(−1)ς+ j [(ς + 1)ω] j

j!

(
ωζ − ω

ς

)
×

∫ ∞

0
zwα1−ω(1 + zα2)−2ωα1−ω

[
1 − (1 + zα2)−α1

]−3ω−2 jdz.

Again utilizing the binomial theory, then

Jω (ζ, α1, α2) =

∞∑
ς, j,k=0

=ς, j,k

∫ ∞

0
zwα1−ω(1 + zα2)−(2ω+k)α1−ωdz, (3.2)

where

=ς, j,k = (−1)ς+ j [(ς + 1)ω] j

j! (2ζα1α2)−ω

(
ωζ − ω

ς

) (
3ω + 2 j + k − 1

k

)
.

Let v = zα2 , then

Jω (ζ, α1, α2) =

∞∑
ς, j,k=0

=ς, j,k

α2

∫ ∞

0
v

wα1
α2
− ω
α2

+ 1
α2
−1(1 + v)−(2ω+k)α1−ωdv,

then
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Jω (ζ, α1, α2) =

∞∑
ς, j,k=0

=ς, j,k

α2
B


κ (α1, α2;w,−ω) ,[
κ (α1;ω, k)

−κ (α1, α2;w,ω)

]  , (3.3)

where κ (α1;ω, k) = (2ω + k)α1 + ω and κ (α1, α2;w,ω) = wα1
α2

+ ω
α2
− 1

α2
> 0. Inserting (3.3) in (3.2),

then the RE of the IBXBXII distribution is

Rω =
1

1 − ω
log

 ∞∑
ς, j,k=0

=ς, j,k

α2
B


κ (α1, α2;w,−ω) ,[
κ (α1;ω, k)

−κ (α1, α2;w,ω)

] 
 , ω > 0, ω , 1, (3.4)

where κ (α1, α2;w,−ω) = wα1
α2
− ω

α2
+ 1

α2
. This approach can lead to more balanced and robust portfolios

see [35, 36] for mare details.

3.2. Arimoto entropy

Due to [31], the Arimoto entropy (AE) measure is determined using the following the following
formula:

Aω =
ω

1 − ω

[
(Jω (ζ, α1, α2))

1
ω − 1

]
, ω > 0, ω , 1. (3.5)

Inserting (3.3) into (3.5), then the AE of the IBXBXII distribution is

Aω =
ω

1 − ω


 ∞∑
ς, j,k=0

=ς, j,k

α2
B


κ (α1, α2;w,−ω) ,[
κ (α1;ω, k)

−κ (α1, α2;w,ω)

] 


1
ω

− 1

 , ω > 0, ω , 1. (3.6)

For more details see [32].

3.3. Tsallis entropy

The Tsallis entropy (TE) (see [31]) measure is determined using the following the following
formula:

Tω =
1

ω − 1
[
1 − Jω (ζ, α1, α2)

]
, ω > 0, ω , 1. (3.7)

Inserting (3.3) into (3.7), then the TE of the IBXBXII distribution is

Tω =
1

ω − 1

1 − ∞∑
ς, j,k=0

=ς, j,k

α2
B


κ (α1, α2;w,−ω) ,[
κ (α1;ω, k)

−κ (α1, α2;w,ω)

] 
 , ω > 0, ω , 1. (3.8)

For more details see [35].

3.4. Havrda-Charvat entropy

Due to [25], the Havrda and Charvat entropy (HCE) measure is determined using the following the
following formula:

HCω =
1

21−ω − 1

[
(Jω (ζ, α1, α2))

1
ω − 1

]
, ω > 0, ω , 1. (3.9)
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Inserting (3.3) into (3.9), then the HCE of the IBXBXII distribution is

HCω =
1

21−ω − 1


 ∞∑
ς, j,k=0

=ς, j,k

α2
B


κ (α1, α2;w,−ω) ,[
κ (α1;ω, k)

−κ (α1, α2;w,ω)

] 


1
ω

− 1

 , ω > 0, ω , 1. (3.10)

Havrda-Charvat entropy is a valuable tool for optimizing portfolio diversification by considering not
only individual assets’ risk and return but also their pairwise relationships, see [33] for more details.
Tables 3 and 4 mention some numerical results of Rω, Aω, Tω, and HCω for the IBXBXII distribution
at ζ=2.0. Table 3 gives some numerical results of Rω, HCω, Tω, and Aω for the IBXBXII distribution
at ω = 0.3 and 0.6. Table 4 gives some numerical results of Rω, HCω, Tω, and Aω for the IBXBXII
distribution at ω = 1.2 and 2.0. We can note that from Tables 3 and 4 when α2 is fixed and the values
of α1 are increases then the values of Rω, Aω, Tω and HCω are decreases. Also, when α1 is fixed and
the values of α2 are increases then the values of Rω, Aω, Tω, and HCω are decreases. Also when α1 and
α2 are fixed and ω is increase then the values of Rω, Aω, Tω, and HCω are decreases.

Table 3. Some numerical results of Rω, HCω, Tω, and Aω for the IBXBXII distribution at ω
= 0.3 and 0.6.

α2 α1 ω = 0.3 ω = 0.6
Rω HCω Tω Aω Rω HCω Tω Aω

1.5 0.5 0.831 137.364 4.022 36.765 -0.122 -0.534 -0.265 -0.256
1.0 0.220 3.612 0.607 0.967 -0.337 -1.264 -0.667 -0.606
1.2 0.115 1.369 0.291 0.366 -0.379 -1.382 -0.737 -0.662
1.5 0.003 0.028 0.007 0.007 -0.425 -1.500 -0.810 -0.719

2 0.5 0.383 10.925 1.219 2.924 -0.465 -1.597 -0.871 -0.765
1.0 0.029 0.266 0.067 0.071 -0.468 -1.604 -0.875 -0.769
1.2 -0.038 -0.296 -0.085 -0.079 -0.464 -1.594 -0.869 -0.764
1.5 -0.110 -0.713 -0.231 -0.191 -0.456 -1.575 -0.857 -0.755

2.5 0.5 0.146 1.907 0.379 0.510 -0.683 -2.034 -1.168 -0.975
1.0 -0.097 -0.651 -0.207 -0.174 -0.564 -1.813 -1.013 -0.869
1.2 -0.143 -0.861 -0.295 -0.230 -0.532 -1.747 -0.969 -0.837
1.5 -0.193 -1.033 -0.382 -0.277 -0.493 -1.661 -0.912 -0.796

3 0.5 -0.014 -0.114 -0.031 -0.030 -0.840 -2.268 −1.347 -1.087
1.0 -0.192 -1.030 -0.380 -0.276 -0.640 -1.959 -1.114 -0.939
1.2 -0.225 -1.124 -0.435 -0.301 -0.591 -1.866 -1.049 -0.894
1.5 -0.260 -1.206 -0.490 -0.323 -0.530 -1.743 -0.966 -0.835

3.5 0.5 -0.133 -0.819 -0.276 -0.219 -0.961 -2.414 −1.468 -1.157
1.0 -0.268 -1.222 -0.501 -0.327 -0.705 -2.069 -1.194 -0.991
1.2 -0.293 -1.269 -0.537 -0.340 -0.642 -1.962 -1.116 -0.940
1.5 -0.318 -1.311 -0.573 -0.351 -0.567 -1.819 -1.017 -0.872
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Table 4. Some numerical results of Rω, HCω, Tω, and Aω for the IBXBXII distribution at ω
= 1.2 and 2.

α2 α1 ω = 1.2 ω = 2
Rω HCω Tω Aω Rω HCω Tω Aω

1.5 0.5 3.032 5.312 3.763 4.126 1.175 1.483 0.933 1.483
1.0 1.690 3.687 2.704 2.864 0.468 0.833 0.659 0.833
1.2 1.391 3.195 2.365 2.481 0.311 0.602 0.511 0.602
1.5 1.044 2.551 1.909 1.981 0.130 0.278 0.259 0.278

2 0.5 3.221 5.481 3.866 4.257 1.105 1.440 0.922 1.440
1.0 1.508 3.394 2.503 2.636 0.327 0.627 0.529 0.627
1.2 1.123 2.704 2.018 2.100 0.153 0.323 0.297 0.323
1.5 0.676 1.765 1.338 1.371 -0.047 -0.112 -0.115 -0.112

2.5 0.5 3.307 5.553 3.909 4.313 1.041 1.397 0.909 1.397
1.0 1.373 3.164 2.343 2.457 0.220 0.447 0.397 0.447
1.2 0.937 2.333 1.752 1.812 0.036 0.081 0.080 0.081
1.5 0.430 1.176 0.899 0.914 -0.176 -0.449 -0.499 -0.449

3 0.5 3.347 5.587 3.930 4.339 0.983 1.355 0.896 1.355
1.0 1.267 2.974 2.210 2.310 0.134 0.285 0.265 0.285
1.2 0.797 2.035 1.536 1.581 -0.057 -0.135 -0.139 -0.135
1.5 0.251 0.709 0.546 0.551 -0.276 -0.749 -0.890 -0.749

3.5 0.5 3.364 5.601 3.938 4.350 0.932 1.316 0.883 1.316
1.0 1.180 2.814 2.096 2.185 0.062 0.137 0.133 0.137
1.2 0.686 1.788 1.355 1.389 -0.133 -0.331 -0.359 -0.331
1.5 0.112 0.324 0.251 0.252 -0.359 -1.022 -1.284 -1.022

4. Main risk indicators

In this work, we consider the main four indicators of risks called the value-at-risk (V1), tail value-
at-risk (V2), tail variance (V3) and tail mean variance (V4). These indicators are used for analyzing the
actuarial data sets below. Let Z denotes a random variable of losses (or gains). The value-at-risk of Z
at the 100q% level, say V1 or π (q), is the 100q% quantile of the distribution of Z under the IBXBXII
distribution can be expressed as:

V1 = Pr (Z > Q (u; ζ, α1, α2)) | (q = 99%) = 1%.

According to [34], the indicator V1 satisfies all coherence requirements if the distribution of losses (or
distribution of gains) is restricted to the normal distribution. In most cases, the data sets that deal with
insurance have a bias either toward the left or the right, and on occasion, it is bimodal. Because of this,
it is inappropriate to apply the normal distribution to the process of describing insurance claims. For
this purpose, the indicator V2 may be a useful indicator in such cases, where

V2 =
1

1 − q
ς (Z; π (q) ,∞) ,
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where ς (Z; π (q) ,∞) =
∞∫

π(q)
z fζ,α1,α2 (z) dz. Then,

V2 =
α1

1 − q

∞∑
~=0

∆~ (1 + ~)

 B
(
α∗1 −

1
α2
, 1
α2

+ 1
)

− B
(
π (q)α2 ;α∗1 −

1
α2
, 1
α2

+ 1
)  |1 < α1α2,

where B
(
π (q)α2 ;α∗1 −

1
α2
, 1
α2

+ 1
)
> 0. The indicator V2 refers to average of all V1 at the confidence

level q, which means that the indicator V2 provides more actuarial information about the tail of the
IBXBXII distribution, see [29]. Due to [29, 30] it can also be expressed as V2 = V1 + e (V1) , where
e (V1) is the function of mean excess loss evaluated at the 100q%th quantile. [24] presented an explicit
expressions for the indicator V2 indicator under the multivariate normal distribution, the indicator V2

under the IBXBXII distribution can be obtained as

V3 = V
[
Z2; π (q)

]
− V2

2,

where

V
[
Z2; π (q)

]
= α1

∞∑
~=0

∆~ (1 + ~)

 B
(
α∗1 −

2
α2
, 2
α2

+ 1
)

− B
(
π (q)α2 ;α∗1 −

2
α2
, 2
α2

+ 1
)  |2 < α1α2,

where B
(
π (q)α2 ;α∗1 −

2
α2
, 2
α2

+ 1
)
> 0. Finally, due to [26], the V4 indicator can be estimated from

V4 = V2 + πV3|0<π<1.

According to [23], the Mean of Order-P (MOOP) methodology serves as an alternative approach in
value-at-risk (VaR) analysis, offering a distinct perspective by considering the order or rank of returns.
VaR is a widely used risk management statistic to quantify potential investment or portfolio losses over
a specific time horizon with a certain confidence level.

5. Assessing the estimation method

Let Θ =(ζ, α1, α2)ᵀ be the parameter vector of our model. For determining the maximum likelihood
estimations (MAXLE) of Θ, we deriving the log-likelihood function (`ζ,α1,α2). The goal of this section
is to investigate the MAXLE’s behavior, which was addressed in the previous section. The Monte
Carlo analysis is used to assess the efficacy of the recommended estimate methods. R, a statistical
programming language, will be used to do the calculation. The Monte Carlo simulation is done using a
variety of approved estimating approaches. Under the following assumptions, the IBXBXII distribution
may be used to generate a thousand random data elements:

Step 1: Generated random data of the IBXBXII distribution from Eq (2.1) with α1, α2, and ζ given
sample size n = 25, 50, 100, 200 and 300.

Step 2: Calculate the MLEs of α1, α2, and ζ utilizing the true value of these parameters.

Step 3: Repeating Step 1 to Step 1 number of times 5000 and saving all estimates.

Step 4: Calculating the statistical measures of performance for point and interval estimates: Mean
square errors (C1), lower limit (C2), upper limit (C3) of 90% and 95% confidence interval and
average length (C4).
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All the results of the Monte Carlo simulation for each case for the given parameters: (ζ, α1, α2) are
reported in Tables 5–8. From these tabulated values, one can indicate that: As n increases, the C2 and
C4 decreases.

Table 5. Point and interval simulation results for the IBXBXII distribution at α1=0.5, α2=1.5
and ζ=0.5.

n MAXLE C1 90% 95%
C2 C3 C4 C2 C3 C4

25 α1 0.5192 0.1137 0.3513 0.6871 0.3358 0.3192 0.7193 0.4001
α2 2.0599 1.7948 -3.0266 7.1465 10.1731 -4.0006 8.1205 12.1211
ζ 0.4743 0.2179 -0.6169 1.5655 2.1824 -0.8258 1.7745 2.6003

50 α1 0.4991 0.0909 0.3707 0.6275 0.2568 0.3462 0.6521 0.3059
α2 2.4692 1.4596 -1.7495 6.6879 8.4375 -2.5574 7.4958 10.0532
ζ 0.3758 0.2129 -0.4399 1.1915 1.6314 -0.5961 1.3477 1.9438

100 α1 0.4618 0.0056 0.3841 0.5994 0.2153 0.3635 0.6200 0.2565
α2 1.7169 1.4084 -2.0831 5.5169 7.6000 -2.8108 6.2446 9.0554
ζ 0.5191 0.0754 -0.3177 1.3560 1.6737 -0.4780 1.5162 1.9942

200 α1 0.4877 0.0023 0.4035 0.5718 0.1683 0.3874 0.5879 0.2006
α2 1.6821 1.2229 -1.0977 4.4620 5.5596 -1.6300 4.9943 6.6242
ζ 0.4948 0.0590 -0.0846 1.0741 1.1587 -0.1955 1.1851 1.3806

300 α1 0.5039 0.0012 0.4400 0.5679 0.1279 0.4277 0.5801 0.1524
α2 1.5210 1.1090 -0.7268 4.5688 5.2956 -1.2338 5.0759 6.3097
ζ 0.4420 0.0330 -0.0766 0.9605 1.0371 -0.1759 1.0598 1.2356
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Table 6. Point and interval simulation results for the IBXBXII distribution at α1=0.9, α2=0.6
and ζ=0.4.

n MAXLE C1 90% 95%
C2 C3 C4 C2 C3 C4

25 α1 0.9048 0.1077 0.6901 1.1195 0.4294 0.6489 1.1606 0.5117
α2 0.5067 1.1646 -2.5296 3.5430 6.0725 -3.1110 4.1244 7.2354
ζ 0.4638 0.1774 0.0255 0.9022 0.8767 -0.0585 0.9861 1.0446

50 α1 0.9051 0.0702 0.7366 1.0736 0.3370 0.7043 1.1059 0.4015
α2 0.7728 1.0684 -1.2408 3.4664 4.7073 -1.6915 4.9171 6.6086
ζ 0.3462 0.1479 0.0636 0.8288 0.7652 0.0095 0.8830 0.8734

100 α1 0.9152 0.0559 0.7910 1.0395 0.2485 0.7672 1.0632 0.2961
α2 0.7666 0.5973 -1.9020 2.4352 4.3372 -2.4130 3.9462 6.3592
ζ 0.3758 0.1153 0.0245 0.7271 0.7026 -0.0427 0.7944 0.8371

200 α1 0.8843 0.0444 0.8447 1.0239 0.1792 0.8180 1.0507 0.2327
α2 0.3641 0.4164 -1.4883 2.2165 3.7048 -1.8430 2.5712 4.4142
ζ 0.4642 0.1076 0.2013 0.7271 0.5258 0.1510 0.7775 0.6265

300 α1 0.9025 0.0386 0.8125 0.9926 0.1801 0.7952 1.0099 0.2146
α2 0.6634 0.6231 -0.8207 2.1476 2.9683 -1.1049 2.4318 3.5367
ζ 0.4097 0.0875 0.1937 0.6258 0.4322 0.1523 0.6672 0.5149

Table 7. Point and interval simulation results for the IBXBXII distribution at α1=0.8, α2=0.5
and ζ=0.5.

n MAXLE C1 90% 95%
C2 C3 C4 C2 C3 C4

25 α1 0.7908 0.0998 0.6261 0.9555 0.3295 0.5945 0.9871 0.3925
α2 0.9671 1.0789 -1.6168 3.5511 5.1679 -2.1116 4.0459 6.1575
ζ 0.3983 0.2643 0.0141 0.7825 0.7684 -0.0595 0.8561 0.9156

50 α1 0.8171 0.0621 0.6729 0.9613 0.2884 0.6453 0.9889 0.3437
α2 0.7095 1.1214 -1.5445 2.9635 4.5080 -1.9761 3.3951 5.3712
ζ 0.5095 0.2376 0.1477 0.8713 0.7237 0.0784 0.9406 0.8622

100 α1 0.8046 0.0321 0.6921 0.9171 0.2250 0.6705 0.9386 0.2681
α2 0.8810 0.9905 -1.2841 3.0461 4.3301 -1.6987 3.4606 5.1593
ζ 0.4517 0.1712 0.1169 0.7864 0.6695 0.0528 0.8505 0.7978

200 α1 0.7986 0.0689 0.6889 0.9082 0.2193 0.6679 0.9292 0.2613
α2 0.6635 1.2782 -1.3298 2.6569 3.9867 -1.7116 3.0386 4.7502
ζ 0.5313 0.2214 0.2273 0.8353 0.6079 0.1691 0.8935 0.7243

300 α1 0.8106 0.0556 0.7312 0.8901 0.1590 0.7159 0.9054 0.1894
α2 0.6300 0.8947 -0.7001 1.9601 2.6601 -0.9548 2.2148 3.1695
ζ 0.5055 0.1442 0.2834 0.7275 0.4441 0.2409 0.7701 0.5292
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Table 8. Point and interval simulation results for the IBXBXII distribution at α1=α2=ζ=0.5.

n MAXLE C1 90% 95%
C2 C3 C4 C2 C3 C4

25 α1 0.4927 0.0827 0.2777 0.9078 0.6301 0.1557 0.9298 0.7742
α2 0.3132 0.7077 -1.6453 2.2718 3.9171 -2.0204 2.6468 4.6672
ζ 0.5506 0.1466 0.1563 0.9448 0.7886 0.0808 1.0204 0.9396

50 α1 0.4832 0.0792 0.1100 0.6563 0.5463 0.1960 0.8703 0.6743
α2 0.3960 1.2828 -1.1539 1.9458 3.0997 -1.4506 2.2426 3.6932
ζ 0.4989 0.1361 0.2249 0.7729 0.5480 0.1725 0.8254 0.6529

100 α1 0.6019 0.0192 0.3433 0.8606 0.5173 0.2938 0.9101 0.6164
α2 0.6360 0.2203 -0.0396 1.3117 1.3514 -0.1690 1.4411 1.6101
ζ 0.5470 0.0173 0.3951 0.6990 0.3039 0.3660 0.7281 0.3621

200 α1 0.4839 0.0172 0.3544 0.6335 0.2791 0.3277 0.6602 0.3325
α2 0.4683 0.1218 0.1140 0.7625 0.6485 0.0519 0.8246 0.7727
ζ 0.5418 0.0139 0.4391 0.6845 0.2454 0.4156 0.7080 0.2924

300 α1 0.5197 0.0065 0.4109 0.6685 0.2576 0.3862 0.6931 0.3069
α2 0.4841 0.0130 0.1768 0.7515 0.5747 0.1217 0.8065 0.6848
ζ 0.5113 0.0052 0.4590 0.6436 0.1846 0.4413 0.6613 0.2199

6. Reliability, economic, and medical data sets for comparing models

Now, in order to illustrate how flexible the IBXBXII model is, we will provide four applications
to four distinct collections of real data. These applications will highlight how the model may be
applied to a variety of situations. For the four real-life economic, reliability, and medical data sets, we
compare the IBXBXII distribution, with the standard BXII, MARBXII, TOLBXII, ZOBBXII, FBBXII,
Beta BXII, BEXBXII, FKMBXII and KMBXII distributions. We consider the following well-known
statistic tests (information criterion (INFC)): The Akaike INFC (CAI), Bayesian INFC (CBYS), Hannan-
Quinn INFC

(
CHQ

)
, Consistent Akaike INFC (CCA). The data set I (reliability data) refers to the

breaking stress data (see [27]. The data set II (reliability data) presents survival times of guinea pigs
see [21] ). The data set III is taxes revenue data (economic data). The data set IV is called leukemia
data (medical data). Plots and box plots, Quantile-Quantile “(Q-Q) plots, the total time in test (TTT)”
plots, and the “Kernel density” are some of the many helpful graphical tools that are utilized. The
Kernel density for each of the four different data sets is presented in Figure 4. The TTT for each of the
four data sets is represented in Figure 5, which may be found below. In Figure 6, the Q-Q is presented
for each of the four data sets individually. Box plots for each of the four genuine data sets are shown in
Figure 7, which may be found here. The “box plot” is used to look for and identify outliers, which are
defined as extreme observations (see Figures 6 and 7). The Q-Q plot, which can be found in Figure 6,
is used to evaluate the “normality” of the four different real data sets. Through the utilization of the
TTT tool, the initial HRF form can be investigated (see Figure 5). Exploration of the first PDF shape
can be accomplished with the help of the Kernel density tool (see Figure 4).

According to Figure 4, it can be seen that the Kernel density has the shape of a bimodal distribution
with a heavy tail for data set II, data set III, and data set IV respectively. The HRF is seen to be
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“monotonically increasing” for data set I, data set II, and data set III, and it is shown to be a bathtub
HRF (U-HRF) for data set IV based on what is seen in Figure 5. It can be seen from Figure 6 that both
data set II and data set III contain some values that are on the extreme end of the scale. On the other
hand, neither data Set I nor data set IV have any numbers that are particularly extreme. Additionally, it
can be demonstrated that the “normality” may be present for the data sets I and III. Figure 7 provides
evidence that the findings presented in Figure 2 are accurate; yet, because of Figure 2 (the panel on the
top right), it is clear that there is an extreme value. Figure 8’s top right panel displays the estimated
probability density function (EPDF) for data sets I. The EPDF for data set II can be found in the
panel located in the top left corner of Figure 8. The EPDF for data set III can be found in the panel
located in the bottom right corner of Figure 8. The EPDF for data set IV can be found in the panel
located in the bottom right corner of Figure 8. As a result of examining Figure 8, we have reached
the conclusion that the IBXBXII model offers an appropriate fitting to the histograms of all four data
sets. The empirical and theoretical CDFs for data set I are presented in the panel located in the upper
right-hand corner of Figure 9. The empirical and theoretical CDFs plot for data set II can be found in
the panel located in the top left corner of Figure 9. The empirical and theoretical CDFs plot for data
sets III may be seen in the panel located in the bottom right corner of Figure 9. The empirical and
theoretical CDFs shown for data set IV can be seen in the panel located in the bottom right corner of
Figure 9. The probability-probability (P-P) ratio for data set I is displayed in the panel located in the
upper right corner of Figure 10. The P-P plot for data set II may be seen in the panel located in the top
left corner of Figure 10. The P-P plot for data set III may be found in the panel located in the bottom
right corner of Figure 10. The P-P plot for data set IV may be found in the panel located in the bottom
right corner of Figure 10. The Kaplan-Meier survival analysis for data set I may be seen in the panel
on the upper right of Figure 11. The Kaplan-Meier survival plot (KMSP) for data set II is displayed in
the panel located in the top left corner of Figure 11. The KMSP for data set III can be seen in the panel
located in the bottom right corner of Figure 11. The KMSP for data set IV can be seen in the panel
located in the bottom right corner of Figure 11. As a result of examining Figure 8, we have reached
the conclusion that the IBXBXII offers an appropriate fitting to all four data sets. The KMSP for data
sets I is displayed in the panel located in the top right corner of Figure 9. The KMSP for data set II may
be seen in the panel located in the top left corner of Figure 9. The KMSP for data set III can be seen in
the panel located in the bottom right corner of Figure 9. The KMSP for data set IV can be seen in the
panel located in the bottom right corner of Figure 9. As a result of looking at Figure 8, we have come
to the conclusion that the IBXBXII offers an appropriate fitting to the empirical survival functions for
all four data sets.
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Figure 4. NKDE plots.
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Figure 5. TTT plots.
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Figure 6. Q-Q plots.
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Figure 7. Box plots.
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Figure 8. EPDF plots.
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Figure 9. Empirical and theoretical CDFs.
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Figure 10. P-P plots.
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Figure 11. Kaplan-Meier survival plot.

Table 9 (the second column) gives the MLEs, SEs and CL values, respectively, for the data set I.
Table 10 (the second column) shows the MLEs, SEs and CL values, respectively, for the data set II.
Table 11 (the second column) presents the MLEs, SEs and CL values, respectively, for the data
set III. Table 12 (the second column) provides the MLEs, SEs, and CL values, respectively, for the
data set IV. Table 9 (the third column) presents the CAI, CBYS, CHQ and CCA, Kolmogorov-Smirnov
test (KS ) and P-value (PV), respectively, for the data set I. Table 10 (the third column) shows the
CAI, CBYS, CHQ and CCA, KS and PV , respectively, for the data set II. Table 11 (the third column)
gives the CAI, CBYS, CHQ and CCA, KS and PV , respectively, for the data set III. Table 12 (the
third column) shows the CAI, CBYS, CHQ and CCA, KS and PV , respectively, for the data set IV.
Based on the values in Tables 9–12, the IBXBXII model has the best fits as compared to BXII
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extensions in the four applications with small values of CAI, CBYS, CHQ, CCA and KS (and biggest
corresponding PV) where for data set I CAI =291.101, CBYS =298.910, CHQ =294.152, CCA =291.121,
KS =0.076266 and PV =0.6059. For data set II CAI =205.242, CBYS =212.102, CHQ =208.888,
CCA =206.967, KS =0.10192 and PV =0.4431. For data set III CAI =381.016, CBYS =387.076,
CHQ =382.985, CCA =384.667, KS =0.065129 and PV =0.9638. Finally for data set IV CAI =310.001,
CBYS =315.323, CHQ =311.201, CCA =312.901, KS =0.14037 and PV =0.5339.

Table 9. Comparing the competing models under the data set I.

Competing Models ζ̂, α̂1, α̂2, α̂, β̂ CAI, CBYS, CCA, CHQ,KS , PV

BXII —, 5.9415, 0.1876, — 382.943, 388.125, 383.062, 385.052,0.1198,0.4446
—, (1.2792) ,(0.0442), —

MARBXII —, 1.1923,4.8343,838.731, — 305.782, 313.681, 306.093, 308.966,0.08819,0.5698
—, (0.9524),(4.8965),(229.347), —

TOLBXII —, 1.3503,1.0612,13.7228, — 323.542, 331.35, 323.772, 326.708,0.1037,0.4598
—, (0.3782) ,(0.3837) ,(8.4003), —

KMBXII 48.1034 ,79.5116 ,0.351 ,2.7340, — 303.764, 314.250, 304.182, 308.010,0.08990,0.5957
(19.3481) ,(58.182) ,(0.093) ,(1.0763) , —

BTBXII 359.6834 ,260.094 ,0.1753 ,1.1235 , — 305.642, 316.036, 306.061, 309.853,0.08733,0.5543
(57.943) ,(132.203),(0.0132),(0.2433), —

BEXBXII 0.3831, 11.944, 0.9375, 33.4021, 1.7053 305.822, 318.844, 306.433, 311.091,0.08609,0.5509
(0.073), (4.634), (0.264), (6.281),(0.474)

FBBXII 0.4214, 0.8354, 6.1115, 1.6746, 3.4505 304.264, 317.314, 304.892, 309.536,0.08436,0.5777
(0.02), (0.944), (2.316), (0.227), (1.960)

FKMBXII 0.5427,4.2237, 5.3137, 0.4116, 4.1527 305.530, 318.552, 306.144, 310.803,0.08743,0.5554
(0.132), (1.884), (2.316), (0.495), (1.993)

ZOBBXII 123.1443,0.3632, 139.2447, —, — 302.963, 310.718, 303.251, 306.134,0.09064,0.5815
(243.03), (0.3435), (318.551), —, —

IBXBXII 1564.531, 0.2255, 0.3834, —, — 291.101, 298.910, 291.121, 294.152,0.076266,0.6059
(8.1451), (0.00248), (0.00962), —, —
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Table 10. Comparing the competing models under the data set II.

Competing Models ζ̂, α̂1, α̂2, α̂, β̂ CAI, CBYS, CCA, CHQ,KS , PV

BXII —, 3.1027, 0.4656, —, — 209.602, 214.135, 209.772, 211.4010.1443,0.3921
—, (0.5383), (0.0772), —, —

MARBXII —, 2.2593,1.5343, 6.7605, — 209.743, 216.564, 210.093, 212.4420.1236,0.428
—, (0.8643), (0.9074), (4.5872), —

TOLBXII —, 2.3934,0.4518,1.7967, — 211.803, 218.633, 212.132, 214.5220.1399,0.3999
—, (0.9071), (0.2444),(0.9156), —

KMBXII 14.103,7.426, 0.5256, 2.2746, — 208.763, 217.862, 209.363, 212.318,0.1443,0.4008
(10.803), (11.851), (0.2702),(0.993), —

BTBXII 2.5557, 6.0585,1.8076,0.29465, — 210.443, 219.543, 211.033, 214.062,0.1341,0.4102
(1.8588), (10.3909), (0.9551),(0.4663), —

BEXBXII 1.8755, 2.9910, 1.7803, 1.3414, 0.5716 212.10, 223.50, 213.020, 216.603,0.1443,0.3988
(0.090), (1.711), (0.722), (0.812), (0.324)

FBBXII 0.6217, 0.5496, 3.8386, 1.3817, 1.6656 206.803, 218.202, 207.731, 211.310,0.1332,0.4333
(0.543), (1.010), (2.781), (2.313), (0.435)

FKMBXII 0.5577, 0.3084, 3.992, 2.1314, 1.4754 206.503, 217.940, 207.414, 211.002,0.1212,0.4302
(0.441), (0.311), (2.083), (1.836), (0.366)

IBXBXII 314.671, 0.17453, 0.46435, —, — 205.242, 212.102, 206.967, 208.888,0.1019,0.4431
1.0877, 0.03459, 0.039101, —, —

Table 11. Comparing the competing models under the data set III.

Competing Models ζ̂, α̂1, α̂2, α̂, β̂ CAI, CBYS, CCA, CHQ,KS , PV

BXII —, 5.61548, 0.07243, —, — 518.426, 522.642, 518.467, 520.084,0.15959,0.61871
—, (15.0466), (0.1945), —, —

MARBXII —, 8.0172, 0.4188, 70.3579, — 387.222, 389.38, 387.626, 389.68,0.069958,0.8654
—, (22.0836), (0.3132), (63.8311), —

TOLBXII —, 91.324, 0.0127, 141.0737, — 385.944, 392.184, 386.384, 388.403,0.069437,0.9301
—, (15.071), (0.0024), (70.0287), —

KMBXII 18.137, 6.854, 10.697, 0.0867, — 385.583, 393.940, 386.312, 388.836,0.06823,0.9242
(3.611), (1.034), (1.164), (0.0125), —

BTBXII 26.7256, 9.7555, 27.3639, 0.0210, — 385.563, 394.103, 386.340, 389.104,0.06837,0.9239
(9.472), (2.718), (12.353), (0.006), —

BEXBXII 2.9245, 2.914, 3.274, 12.485, 0.372 387.044, 397.424, 388.174, 391.09,0.069655,0.9111
(0.546), (0.555), (1.249), (6.888), (0.77)

FBBXII 30.447, 0.587, 1.086, 5.168, 7.8626 386.742, 397.144, 387.827, 390.84,0.06811,0.9054
(91.74), (1.01), (1.025), (8.26), (15.02)

FKMBXII 12.8784, 1.2255, 1.6615, 1.4112, 3.7324 386.962, 397.326, 388.019, 391.062,0.06854,0.9054
(3.421), (0.1315), (0.032), (0.15), (1.11)

IBXBXII 5.37643, 1.44954, 0.14449, —, — 381.016, 387.076, 382.985, 384.667,0.065129,0.9638
0.62791, 1.4225, 0.12549, —, —
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Table 12. Comparing the competing models under the data set IV.

Competing Models ζ̂, α̂1, α̂2, α̂, β̂ CAI, CBYS, CCA, CHQ,KS , PV

BXII —, 58.723,0.0064, —, — 328.201, 331.139, 328.601, 329.191,0.1300,0.4876
—, (42.383), (0.0044), —, —

MARBXII —, 11.8321, 0.0777, 12.2541, — 315.543, 320.011, 316.373, 317.044,0.1366,0.5043
—, (4.3686), (0.015), (7.776), —

TOLBXII —,0.2814, 1.8834 ,50.2166, — 316.261, 320.732, 317.049, 317.763,0.1366,0.5121
—, (0.2884), (2.4024), (176.54), —

KMBXII 9.2014, 36.4254, 0.2411,0.9421, — 317.363, 323.303, 318.719, 319.343,0.1355,5066
(10.052), (35.652), (0.1645), (1.0432), —

BTBXII 96.104, 52.121, 0.104, 1.227, — 316.462, 322.405, 317.829, 318.422,0.1372,0.5133
(41.201), (33.490), (0.023), (0.326), —

BEXBXII 0.08214, 5.0324, 1.5317, 31.2523, 0.3122 317.58, 325.064, 319.804, 320.095,0.1350,0.5054
(0.071), (3.852), (0.0124), (12.943), (0.032)

FBBXII 15.1943, 32.0477, 0.2313, 0.5814, 21.851 317.826, 325.342, 320.089, 320.363,0.1341,0.5021
(11.601), (9.8721), (0.093), (0.073), (35.2)

FKMBXII 14.7322, 15.2815, 0.2934, 0.8392, 0.0344 317.736, 325.212, 319.918, 320.262,0.1374,0.5000
(12.366), (18.871), (0.222), (0.854), (0.082)

DBXII 251.2325, 0.08153, 0.42013, —, — 310.001, 315.323, 311.201, 312.901,0.14037,0.5339
2.3291, 0.0363, 0.050710, —, —

7. Two actuarial case studies

Risk analysis plays a crucial role in managing bimodal insurance claims data, offering assistance
to insurance companies and risk managers in navigating the unique challenges presented by this
distribution. Bimodal distributions in such data often stem from distinct groups of claims, such
as low-frequency high-severity and high-frequency low-severity claims. The Value at Risk (VaR)
indicator holds particular significance in this scenario, as it quantifies potential losses within a specified
confidence interval, providing insights into adverse market movements or events. The presence of fat
tails in bimodal insurance claims data suggests a heightened likelihood of extreme events, and VaR
analysis aids insurers in quantifying and managing associated risks by offering valuable information
on the size and frequency of extreme losses. In this Section, we consider new actuarial data sets,
the first one is a new bimodal insurance claims data set and the second referred as the insurance
revenue data (see https://data.world/data sets/insurance). These insurance claims data have been
described graphically in Figures 12 and 13. Figure 12 gives the Cullen and Frey plot, nonparametric
kernel density estimation plot, TTT, and box plots under the bimodal insurance-claims data set.
Figure 13 gives the Q-Q plot plot, Scatter plot, the autocorrelation function (ACF) plot, and the partial
autocorrelation function (partial ACF) plot under the the bimodal insurance-claims data set.
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Figure 12. The Cullen and Frey plot, nonparametric kernel density estimation plot, TTT and
box plots under the the bimodal insurance-claims data set.
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Figure 13. The Q-Q plot, Scatter plot, the ACF plot and the partial ACF plot under the
bimodal insurance-claims data set.

Figure 12 (the top left panel) gives the Cullen and Frey plot under the insurance-claims data set.
Due to the Cullen and Frey plot, it is seen that the insurance-claims data set does not follow any of
the mentioned distributions. Figure 12 (the top right panel) gives the nonparametric kernel density
estimation plot under the bimodal insurance-claims data set. According to the nonparametric kernel
density estimation plot it is seen that the insurance-claims data set is a bimodal data. Figure 12 (the
bottom left panel) gives the TTT plot under the bimodal insurance-claims data set. Due to Figure 12
(the bottom left panel), the TTT plot under the bimodal insurance-claims data set indicates that the
bimodal insurance-claims data set has an increasing HRF. Figure 12 (the bottom right panel) gives
the box plot under the bimodal insurance-claims data set which indicates that the bimodal insurance-
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claims data set has no extreme observations. Figure 13 (the top left panel) gives the Q-Q plot under
the bimodal insurance-claims data set which indicates that the bimodal insurance-claims data set has
no extreme observations. Figure 13 (the top right panel) gives the scatter plot under the bimodal
insurance-claims data set. Figure 13 (the bottom left panel) gives the ACF plot under the bimodal
insurance-claims data set. The partial autocorrelation function (partial ACF) plot is a graphical
representation used in time series analysis to understand the relationship between a time series and
its lagged values while controlling for intermediate lags. Figure 13 (the bottom right panel) gives
the partial ACF plot under the bimodal insurance-claims data set. The insurance insurance-revenue
data have been described graphically in Figures 14 and 15. Figure 14 gives the Cullen and Frey plot,
nonparametric kernel density estimation plot, TTT, and box plots under the insurance-revenue data set.
Figure 15 gives the Q-Q plot plot, Scatter plot, the ACF plot, and the partial ACF plot under the the
insurance-revenue data set.

Figure 14. The Cullen and Frey plot, nonparametric kernel density estimation plot, TTT and
box plots under the revenues data set.
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Figure 15. The Q-Q plot, Scatter plot, the ACF plot and the partial ACF plot under the
revenue data set.

Figure 14 (the top left panel) gives the Cullen and Frey plot under the insurance-revenue data set.
Due to the Cullen and Frey plot, it is seen that the insurance-revenue data set does not follow any of
the mentioned distributions. Figure 14 (the top right panel) gives the nonparametric kernel density
estimation plot under the insurance-revenue data set. According to the nonparametric kernel density
estimation plot it is seen that the insurance revenue is semi-symmetric data. Figure 14 (the bottom
left panel) gives the TTT plot under the insurance-revenue data set. Due to Figure 14 (the bottom left
panel), the TTT plot under the insurance-revenue data set indicates that the insurance-revenue data set
has an increasing HRF. Figure 14 (the bottom right panel) gives the box plot under the insurance-
revenue data set which indicates that the insurance-revenue data set has no extreme observations.
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Figure 15 (the top left panel) gives the Q-Q plot under the insurance-revenue data set which indicates
that the insurance-revenues data set has no extreme observations. Figure 15 (the top right panel) gives
the scatter plot under the insurance-revenue data set. The primary function of the ACF plot is to
visualize the serial correlation or autocorrelation in a time series. Figure 15 (the bottom left panel)
gives the ACF plot under the insurance-revenue data set. Figure 15 (the bottom right panel) gives the
partial ACF plot under the insurance-revenue data set. In addition to the graphical analysis previously
presented, we can describe the data numerically by providing a numerical summary of the insurance
data used in actuarial risk analysis. Table 13 gives a summary of the two insurance data.

Table 13. Numerical description for the two actuarial data sets.

Summery↓ & Data→ Claims Revenue
Mean 2702.572 32360452
SD 1569.656 11641499

Skewness 0.2986363 0.2668196
Kurtosis 2.144497 2.264141

Max and Min 6283.001, 340.0001 58756474, 14021480
Median 2298.999 32090875
Length 28 64

Quantile (0.33%, 0.66%) 1694.9008, 3667.6184 27628461, 36090317
Quantile (0.25%, 0.75%) 1299.4998, 3949.2490 22426547, 39929985

Table 14 provides the risk analysis under the actuarial claims data set, where q =75%, 80%, 85%,
90%, 95%, 99% and 99.5%. Moreover, the MOOP V1|P = 2 are estimated under q =75%, 80%, 85%,
90%, 95%, 99% and 99.5%. Under actuarial claims data it is seen that:

(1) The V1 indicator increases as q increases, it started with 4.129296|q = 75% ended with 513.1953−
|q = 99.5%, where

V1|q = 75% < V1|q = 80% < ... < V1|q = 99.5%.

(2) The V2 indicator increases as q increases, it started with 13.30721|q = 75% ended with
1052.658−|q = 99.5%, where

V2|q = 75% < V2|q = 80% < ... < V2|q = 99.5%.

(3) The V3 indicator decreases as q increases, it started with 3.820954|q = 75% ended with
3.663571−|q = 95%, then the V3 indicator increases as q increases, it started with 5.879942|q =

75% ended with 13087.82|q = 99.5%, where

V3|q = 75% > V3|q = 80% > ... > V3|q = 95% < V3|q = 99% < V3|q = 99.5%.

(4) The V4 indicator increases as q increases, where

V4|q = 75% < V4|q = 80% < ... < V4|q = 99.5%.

(5) The e (V1) indicator decreases as q increases, where

e (V1) |q = 75% > e (V1) |q = 80% > ... > e (V1) |q = 99.5%.
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(6) The MOOP V1|P = 2 > V1 ∀ q|q =75%, 80%, 85%, 90%, 95%, 99% and 99.5%.

Table 14. Risk analysis under the actuarial claims data set.

q V1 V2 V3 V4 e (V1) MOOP V1|P = 2
75% 4.129296 13.30721 3.820954 44.46739 3.222634 9.3921611
80% 6.657118 21.37147 3.773506 70.61630 3.210319 15.767623
85% 9.342134 29.87662 3.737976 97.88235 3.198051 23.449813
90% 15.06109 47.79871 3.691046 154.8284 3.173656 29.980094
95% 34.07426 105.6841 3.663571 340.0352 3.101582 43.710911
99% 226.8363 585.4409 5.879942 2883.492 2.580896 456.88933

99.5% 513.1953 1052.658 16.45130 13087.82 2.051183 888.98398

Table 15 provides the risk analysis under the actuarial revenues data set, where q =75%, 80%, 85%,
90%, 95%, 99% and 99.5%. Moreover, the MOOP V1|P = 2 are estimated under q =75%, 80%, 85%,
90%, 95%, 99% and 99.5%. Under actuarial revenues data it is seen that:

(1) The V1 indicator increases as q increases, it started with 72.74761|q = 75% ended with
1134.023−|q = 99.5%, where

V1|q = 75% < V1|q = 80% < ... < V1|q = 99.5%.

(2) TheV2 indicator increases as q increases, it started with 248.409|q = 75% ended with 304.2253|q =

99.5%, where

V2|q = 75% < V2|q = 80% < ... < V2|q = 99.5%.

(3) The V3 indicator decreases as q increases, it started with 213.2133|q = 75% ended with
2786784|q = 99.5%, where

V3|q = 75% < V3|q = 80% < ... < V3|q = 99.5%.

(4) The V4 indicator increases as q increases, where

V4|q = 75% < V4|q = 80% < ... < V4|q = 99.5%.

(5) The e (V1) indicator decreases as q increases, where

e (V1) |q = 75% > e (V1) |q = 80% > ... > e (V1) |q = 99.5%.

(6) The MOOP V1|P = 2 > V1 ∀ q|q =75%, 80%, 85%, 90%, 95%, 99% and 99.5%.
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Table 15. Risk analysis under the actuarial revenues data set.

q V1 V2 V3 V4 e (V1) MOOP V1|P = 2
75% 72.74761 248.409 213.2133 30981.341 3.414669 102.761889
80% 136.3578 323.7453 712.8563 119648.02 2.374235 152.710913
85% 411.5226 393.8717 23278.87 3354443.5 0.9571083 604.810914
90% 423.1799 393.6161 26062.26 3710938.9 0.930139 664.909612
95% 435.3047 393.2293 29252.05 4113263.1 0.9033427 670.109439
99% 461.0562 392.0397 37140.02 5083795.7 0.8503079 716.221348

99.5% 1134.023 304.2253 2786784 192215514 0.2682709 1587.87301

8. Assessing the MOOP value at risk under the IBXBXII model

In the realm of risk assessment, the proposed distribution’s performance is evaluated by comparing
its distribution function to the Mean of Order-P (MOOP). This comparison is driven by the goal
of assessing the distribution’s effectiveness, especially in finance-related applications such as risk
estimation and extreme occurrences.

In this portion, we run a numerical simulation study to evaluate the performance of the estimators
of MOOP V1 based on the QF of the of the IBXBXII model and that of the methodology of the
MOOP. Specifically, we are interested in determining whether or whether the MOOP methodology
produces more accurate results. We generate samples of size n (n = 50, 150, 300 and 500) from the
new IBXBXII model with parameters ζ, α1 and α2 such that both negatively and positively skewed
PDFs are obtained for assessing the estimators and their performance. Furthermore, to assess the
adaptability of the suggested distribution, we generate sample data by simulating observations from
the widely recognized BXII distribution, which is characterized by the following survival function
with parameters α1 and α2:

S α1,α2(z)|(z≥0) = (1 + zα2)−α1

In this scenario, we make a conscientious choice about the shape parameter in order to accomplish
both a negative and a positive skewness. Because we have made this selection, we are able to test the
performance of the estimators under a variety of skewness circumstances. To determine the absolute
bias (ABS) and mean squared errors (MSEs) for every estimator, we run every simulation scenario
several times (where N is larger than or equal to 1000 times), and then produce multiple repeats of
those runs. To be more specific, we use the maximum likelihood technique for estimating purposes
when dealing with the IBXBXII distribution. In spite of this, when it comes to the MOOP value at
risk estimator, which is comparable to any semi-parametric estimator in extreme value statistics, the
selection of the parameter k, which reflects the number of top order statistics, becomes extremely
critical. This choice has an immediate and direct influence on both the bias and the variance,
particularly in respect to the tail index and, as a result, the high quantile (or value at risk). In addition,
for this specific estimator, an additional crucial consideration that arises regards the selection of the
parameter P.

The outcomes of our simulation study are presented in Tables 16–21. Tables 16–18 correspond to
the negatively skewed distributions, where we selected the value of the parameter as follows: (ζ = 150,
α1 = 2, α2 = 5; ζ = 50, α1 = 3, α2 = 2; ζ = 200, α1 = 3, α2 = 2). In those cases, it is noted
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that the S (Z) = −0.1336004, −0.1492178, −0.5236663 respectively. While Tables 19–21 pertain to
the positively skewed distributions when the samples are generated from the IBXBXII distribution,
where we selected the value of the parameter as follows: (ζ = 1, α1 = 3, α2 = 2; ζ = 20, α1 = 3, α2 =

2; ζ = 3, α1 = 1, α2 = 5). In those cases, it is noted that the S (Z) =1.6074570, 0.0320100, 1.308430
respectively. The results are reported for various quantile values, specifically 95%, 95% and 99.5%,
across different sample sizes.

Regarding the data that are skewed in a negative direction (see Tables 16–21). Tables 16–18
show that the MOOP estimate for V1 performs significantly better than the suggested IBXBXII
model estimator. In contrast, the MOOP estimator for indicator V1 is not superior to the suggested
IBXBXII model estimate when applied to data with a positively skewed distribution. The results of the
regressions and the average square errors both make it abundantly evident that the IBXBXII distribution
has a strong tail to the right. This is the conclusion that can be drawn from the information presented
here. In other words, the new distribution can be deemed more appropriate when the insurance data is
skewed to the right or has a long tail to the right. This is because both of these characteristics indicate
that the right side of the distribution is more prominent. It is important to point out that the outcomes
of the simulation trials revealed that the new distribution is suitable for mathematical modeling and
actuarial risk analysis in general. In a general sense, we are able to emphasize the following primary
results:

(1) MSE for the MOOP estimator for indicator V1 decreases as q increases.

(2) MSE for the MOOP estimator for indicator V1 < MSE for the IBXBXII estimator for indicator V1

for all negative simulated data.

(3) MSE for the IBXBXII estimator for indicator V1 decreases as q increases.

(4) ABS for the MOOP estimator for indicator V1 < ABS for the IBXBXII estimator for indicator V1

for all negative simulated data.

(5) MSE for the MOOP estimator for indicator V1 > MSE for the IBXBXII estimator for indicator V1

for all positive simulated data.

(6) ABS for the MOOP estimator for indicator V1 < ABS for the IBXBXII estimator for indicator V1

for all positive simulated data.

(7) For n = 500, the results of the MSE for the MOOP estimator for indicator V1 get very close to the
MSE for the IBXBXII estimator for indicator V1 for all simulated data.

Nevertheless, regardless of whether the data are skewed to the right or the left, it is possible to
assert that the IBXBXII distribution meets the criteria for a competitive distribution when applied to
a sizeable sample. The fact that the bias and MSE of the estimators decreases as the sample size
increases is an indication of the empirical consistency of the estimators in general. This is true for
each and every circumstance that is taken into consideration. In addition to this, the IBXBXII model
provides an estimator of the indicator V1 that has both less of a bias and a smaller MSE value than
other estimators. Therefore, it is possible to consider the recommended estimator to be suitable for the
purpose of estimating indicator V1 in the event that the underlying distribution is either positively or
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negatively skewed. This is because the effect of using the suggested estimator is that the indicator can
be estimated.

Table 16. ABS and MSE under MOOP and IBXBXII with q = 0.95, ζ = 150, α1 = 2, α2 = 5.

ABS MSE
n|q = 95% IBXBXII MOOP IBXBXII MOOP

50 0.291323 0.002853 0.330868 0.083215
150 0.194507 0.011421 0.133234 0.010731
300 0.014406 0.003134 0.092030 0.002030
500 0.003816 0.000925 0.010032 0.000939

n|q = 99%
50 0.110880 0.012022 0.690910 0.900028

150 0.023221 0.008940 0.556034 0.602821
300 0.005154 0.006781 0.301054 0.321487
500 0.000440 0.004343 0.100090 0.011344

n|q = 99.5%
50 0.010091 0.008000 0.996891 0.800321

150 0.048500 0.007124 0.676731 0.742865
300 0.004111 0.006612 0.225555 0.420459
500 0.000390 0.003333 0.109092 0.010310

Table 17. ABS and MSE under MOOP and IBXBXII with q = 0.95, ζ = 50, α1 = 3, α2 = 2.

ABS MSE
n|q = 95% IBXBXII MOOP IBXBXII MOOP

50 0.278712 0.033333 0.879813 0.111981
150 0.194652 0.011219 0.776574 0.101098
300 0.167781 0.006999 0.534332 0.001919
500 0.100761 0.000210 0.276732 0.001111

n|q = 99%
50 0.918434 0.301121 0.924379 0.191466

150 0.400680 0.215133 0.194303 0.131043
300 0.105555 0.210149 0.033123 0.041953
500 0.006001 0.010531 0.030540 0.012522

n|q = 99.5%
50 0.978434 0.569832 0.990325 0.391466

150 0.404682 0.515433 0.175433 0.271043
300 0.160093 0.300693 0.100120 0.099009
500 0.016090 0.010532 0.006254 0.001558
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Table 18. ABS and MSE under MOOP and IBXBXII with q = 0.95, ζ = 200, α1 = 3, α2 = 2.

ABS MSE
n|q = 95% IBXBXII MOOP IBXBXII MOOP

50 0.299999 0.154981 0.176763 0.331323
150 0.149920 0.101034 0.555573 0.204315
300 0.197819 0.100913 0.313212 0.109103
500 0.006432 0.014315 0.200124 0.000154

n|q = 99%
50 0.129582 0.129811 0.156767 0.175454

150 0.111300 0.115934 0.087800 0.010777
300 0.003232 0.003659 0.007555 0.001716
500 0.008755 0.009149 0.005235 0.000666

n|q = 99.5%
50 0.129554 0.199811 0.153255 0.183333

150 0.104687 0.125432 0.074321 0.091099
300 0.010213 0.100655 0.001708 0.001654
500 0.006323 0.004343 0.005255 0.000931

Table 19. ABS and MSE under MOOP and IBXBXII with q = 0.95, ζ = 1, α1 = 3, α2 = 2.

ABS MSE
n|q = 95% IBXBXII MOOP IBXBXII MOOP

50 0.201392 0.354001 0.168891 0.313668
150 0.143245 0.301054 0.105521 0.214322
300 0.014312 0.190014 0.313212 0.119102
500 0.000213 0.001332 0.100124 0.000159

n|q = 99.5%
50 0.101644 0.104024 0.113338 0.355555

150 0.040434 0.100029 0.105445 0.100004
300 0.046667 0.029044 0.098122 0.016121
500 0.000335 0.003333 0.000878 0.005026

n|q = 99.5%
50 0.101432 0.100024 0.138812 0.212121

150 0.100787 0.031022 0.011111 0.146664
300 0.034301 0.009044 0.010243 0.100100
500 0.000214 0.003333 0.000077 0.000122
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Table 20. ABS and MSE under MOOP and IBXBXII with q = 0.95, ζ = 20, α1 = 3, α2 = 2.

ABS MSE
n|q = 95% IBXBXII MOOP IBXBXII MOOP

50 0.043344 0.114055 0.188822 0.200362
150 0.041050 0.101022 0.100012 0.114312
300 0.000312 0.090014 0.113214 0.010108
500 0.000219 0.000420 0.000199 0.000051

n|q = 99.5%
50 0.110991 0.112636 0.105144 0.112434

150 0.098229 0.111044 0.014171 0.051545
300 0.006364 0.005415 0.014111 0.001177
500 0.000646 0.000486 0.000609 0.000555

n|q = 99.5%
50 0.100451 0.102645 0.100120 0.111885

150 0.080822 0.031002 0.015678 0.046545
300 0.002366 0.004048 0.013993 0.001095
500 0.000214 0.000982 0.000575 0.000425

Table 21. ABS and MSE under MOOP and IBXBXII with q = 0.95, ζ = 20, α1 = 3, α2 = 2.

ABS MSE
n|q = 95% IBXBXII MOOP IBXBXII MOOP

50 0.209354 0.200211 0.019899 0.100999
150 0.153993 0.141454 0.012878 0.076761
300 0.100024 0.050519 0.003003 0.002708
500 0.000334 0.000111 0.000043 0.000044

n|q = 99.5%
50 0.102624 0.016951 0.100555 0.124343

150 0.043386 0.011043 0.013224 0.019543
300 0.003363 0.009434 0.005656 0.003111
500 0.000666 0.000765 0.000387 0.000222

n|q = 99.5%
50 0.090043 0.013648 0.110109 0.099882

150 0.033383 0.008143 0.017854 0.008548
300 0.001364 0.007488 0.004343 0.002090
500 0.000032 0.000552 0.000331 0.000121

9. Conclusions

In-depth scrutiny is conducted on the inverse Burr-X Burr-XII (IBXBXII) distribution, tailored
for asymmetric-bimodal loss data. This thorough investigation delves into various parameters,
encompassing skewness, kurtosis, moments, and others, aligning with the paper’s objectives focused
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on analyzing the distinctive properties of this novel distribution. The IBXBXII distribution proves
beneficial in three distinct scenarios, each serving a specific purpose. Firstly, the exploration
centers on entropy investigation, evaluating four entropy models -Rényi entropy, Arimoto entropy,
Tsallis entropy, and Havrda-Charvat entropy- via exhaustive analytical and numerical methods. A
comparative study using the IBXBXII distribution further illustrates its utility. Secondly, the research
underscores the significance of the new distribution and its applicability in mathematical, statistical,
and applied modeling across diverse fields, including economics, engineering, dependability, and
medicine. Through a meticulous comparison with alternative distributions commonly employed in
applied modeling, the IBXBXII distribution emerges as the most suitable choice, supported by four
real-world data applications demonstrating its favorable outcomes across various statistical tests. The
third aspect focuses on employing the IBXBXII distribution in the examination of actuarial risks,
particularly in scrutinizing probability distribution tails related to actuarial data. Case studies involving
bimodal actuarial data pertinent to insurance claims and revenues are incorporated, utilizing five risk
indicators to assess and calculate maximum potential losses.

Overall, the study provides a comprehensive exploration of the IBXBXII distribution, showcasing
its adaptability and effectiveness in diverse analytical scenarios, including entropy analysis, field
applications, and actuarial risk assessments.These indicators are used in the evaluation process. The
five indicators are compared under the new model with the Mean of Order-P (MOOP V1|P = 2)
methodology. The value at risk was numerically analyzed in each case using the five actuarial
indicators and using varying levels of statistical confidence. A comprehensive simulation study is
presented using samples of size n (n = 50, 150, 300 and 500|q = 95%, 99% and 99.5%) from the new
IBXBXII model such that both negatively and positively skewed densities are obtained for assessing
the estimators and their performance. The absolute bias and mean squared errors are used for assessing
the comparison between the IBXBXII model and MOOP methodology. In relation to the data that are
skewed negatively, the MOOP estimate for V1 performs noticeably better than the proposed IBXBXII
model estimator. On the other hand, when applied to data with a positively skewed distribution, the
MOOP estimator for indicator V1 is not superior than the proposed IBXBXII model estimate. The
IBXBXII distribution clearly has a big tail to the right, as seen by the average square errors and the
regression results. The provided information suggests that the new distribution is particularly suitable
for insurance data that exhibits right skewness or has a long tail to the right. In such cases, the new
distribution is considered more appropriate, as these characteristics indicate a more pronounced right
side of the distribution. The results of simulation tests further support the conclusion that the new
distribution is well-suited for mathematical modeling and actuarial risk analysis in general.
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