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1. Introduction 

Let 𝑏 be a constant such that 𝑏 ∈ (0, 1), 𝐿 is the singular parabolic operator such that 𝐿𝑢 =

𝑢𝑡 − 𝑢𝑥𝑥 − 𝑏𝑢𝑥/𝑥, 𝑇 is a positive real number, 𝑝 ⩾ 1, 𝑞 ⩾ 1, and 𝛿(𝑥) is the Dirac delta function. 

In this paper, we investigate the following system of singular parabolic initial-boundary value 

problems with concentrated nonlinear source functions: 

{

𝐿𝑢 = 𝛿(𝑥 − 𝑏)𝑣𝑝, 𝐿𝑣 = 𝛿(𝑥 − 𝑏)𝑢𝑞, in (0, 1) × (0, 𝑇),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), for 𝑥 ∈ [0, 1],

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑣(0, 𝑡) = 𝑣(1, 𝑡) = 0, for 𝑡 ∈ (0, 𝑇).

    (1.1) 

It is assumed that the initial conditions 𝑢0(𝑥) and 𝑣0(𝑥) are nonnegative functions on [0, 1] such 

that 𝑢0(𝑏) and 𝑣0(𝑏) are positive, and they satisfy conditions below: 
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{

𝑏(𝑢0)𝑥

𝑥
+ (𝑢0)𝑥𝑥 + 𝛿(𝑥 − 𝑏)𝑣0

𝑝
⩾ 0 in (0, 1),

𝑏(𝑣0)𝑥

𝑥
+ (𝑣0)𝑥𝑥 + 𝛿(𝑥 − 𝑏)𝑢0

𝑞
⩾ 0 in (0, 1).

      (1.2) 

The singular operator 𝐿 is associated with axially symmetric solutions to the heat equation [1]. 

This operator is also related to axially symmetric potentials of elliptic equations [2–5] when 𝑢𝑡 =  0. 

If 𝑏 = (𝑁 − 1)/2, from [6], 𝐿𝑢 represents the backward differential equation corresponding to the 

radial component of N-dimensional Brownian motion. In addition, 𝐿𝑢  can describe a stochastic 

process of a chain of random walks [7]. Further, 𝐿𝑢 = 0 is interpreted as the Fokker-Planck equation 

of a diffusion problem in which 𝑏  represents the drift [8]. Feller [8] discussed the existence and 

uniqueness of solution of 𝐿𝑢 = 0  over the domain (0,∞) , Colton [9] investigated the Cauchy 

problem of 𝐿𝑢 = 0, and Brezis et al. [6] studied the differentiability of solution. In addition, Alexiades [10] 

investigated the existence and uniqueness of solution over a domain with moving boundary for 𝐿𝑢 =

𝑓(𝑥, 𝑡). Chan and Chen [11] studied the singular quenching problem below: 

𝐿𝑢 =
1

1−𝑢
.          (1.3) 

To a given 𝑏 , they determined the critical length of 𝑢  numerically through evaluating the 

approximated solution of the integral solution of (1.3). 

For 𝑥 ∈ ℝ𝑁 , Escobedo and Herrero [12] studied the blow-up of the Cauchy problem of the 

following semilinear parabolic system: 

𝑢𝑡 − Δ𝑢 = 𝑣
𝑝,

𝑣𝑡 − Δ𝑣 = 𝑢
𝑞.

 

They proved that 𝑢 and 𝑣 blow up in a finite time when 𝑝𝑞 > 1 and (max{𝑝, 𝑞} + 1)/(𝑝𝑞 − 1) ⩾

𝑁/2. Levine [13] obtained a similar result for the homogeneous Dirichlet boundary-value problem. 

In this paper, we prove the existence and uniqueness of solutions 𝑢  and 𝑣 . Under some 

assumptions on 𝑢0(𝑥) and 𝑣0(𝑥), we show that they blow up in a finite time if 𝑝 ⩾ 1, 𝑞 ⩾ 1, and 

𝑝𝑞 > 1. We further prove that 𝑢 and 𝑣 both blow up simultaneously at 𝑥 = 𝑏, then we obtain the 

result that 𝑢 and 𝑣 both blow up totally in (0,1). 

2. Existence and uniqueness of the solution 

Let 𝐺(𝑥, 𝜉, 𝑡 − 𝑠) be the Green’s function of 𝐿𝑢 = 0. For any 𝑥 and 𝜉 ∈ [0,1], where 𝑡 and 𝑠 

are variables and they belong to (−∞,∞), 𝐺(𝑥, 𝜉, 𝑡 − 𝑠) satisfies the problem below: 

𝐿𝐺 = 𝛿(𝑡 − 𝑠)𝛿(𝑥 − 𝜉) for 𝑠 < 𝑡, 𝑥 ∈ (0, 1),

𝐺(𝑥, 𝜉, 𝑡 − 𝑠) = 0 for 𝑡 < 𝑠, 𝐺(0, 𝜉, 𝑡 − 𝑠) = 𝐺(1, 𝜉, 𝑡 − 𝑠) = 0.
 

By Chan and Wong [14], the Green’s function of the operator 𝐿 is given by 

𝐺(𝑥, 𝜉, 𝑡 − 𝑠) = ∑ 𝜉𝑏∞
𝑛=1 𝜙𝑛(𝜉)𝜙𝑛(𝑥)𝑒

−𝜆𝑛(𝑡−𝑠),      (2.1) 

where 𝜆𝑛 for 𝑛 = 1, 2, 3, … are the eigenvalues of the Sturm-Liouville problem 

𝑑2Φ

𝑑𝑥2
+
𝑏

𝑥

𝑑Φ

𝑑𝑥
+ 𝜇Φ = 0, Φ(0) = 0 = Φ(1),       (2.2) 

where 𝜇  is an unknown constant. Let 𝜙𝑛(𝑥)  be the corresponding eigenfunction of 𝜆𝑛 . The 
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mathematical formula of 𝜙𝑛(𝑥) is 

𝜙𝑛(𝑥) =
21/2𝑥𝜈𝐽𝜈(𝜆𝑛

1/2
𝑥)

|𝐽𝜈+1(𝜆𝑛
1/2
)|

, 

where 𝐽𝜈 is the Bessel function of the first kind of order 𝜈 = (1 − 𝑏)/2. The first eigenvalue 𝜆1 of (2.2) 

is positive and 𝜙1(𝑥) satisfies: 𝜙1(𝑥) > 0 in (0,1) and ∫ 𝑥𝑏𝜙1𝑑𝑥
1

0
= 1. For ease of computation, 

let us state the result of Lemma 1 of Chan and Wong. 

Lemma 2.1. There exist positive constants 𝑘1 and 𝑘2 such that 

(a) |𝜙𝑛(𝑥)| ⩽ 𝑘1𝑥
−𝑏/2 for 𝑥 in (0, 1]; 

(b) |𝜙𝑛(𝑥)| ⩽ 𝑘2𝜆𝑛
1/4
 for 𝑥 on [0, 1]. 

By theorems of the Bessel-Fourier series expansion of Watson [15, pp. 591 and 594], 

∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉
1

0
  converges to 𝑢0(𝑥)  for 𝑥 ∈ [0,1]  when 𝑡 → 0 . By the result of Chan and 

Wong, the integral solution of (1.1) is given by 

{
𝑢(𝑥, 𝑡) = ∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉

1

0
+ ∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣𝑝(𝑏, 𝑠)𝑑𝑠

𝑡

0
,

𝑣(𝑥, 𝑡) = ∫ 𝐺(𝑥, 𝜉, 𝑡)𝑣0(𝜉)𝑑𝜉
1

0
+ ∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑢𝑞(𝑏, 𝑠)𝑑𝑠

𝑡

0
.
    (2.3) 

We let 

𝐻(𝑥, 𝑡, 𝑢0, 𝑣) = ∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉
1

0

+∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣𝑝(𝑏, 𝑠)𝑑𝑠
𝑡

0

, 

𝐼(𝑥, 𝑡, 𝑣0, 𝑢) = ∫ 𝐺(𝑥, 𝜉, 𝑡)𝑣0(𝜉)𝑑𝜉
1

0

+∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑢𝑞(𝑏, 𝑠)𝑑𝑠
𝑡

0

, 

then the integral solution represented by (2.3) is equivalent to 

{
𝑢(𝑥, 𝑡) = 𝐻(𝑥, 𝑡, 𝑢0, 𝑣),

𝑣(𝑥, 𝑡) = 𝐼(𝑥, 𝑡, 𝑣0, 𝑢).
        (2.4) 

In the following, we show that the integral solution represented by (2.4) is a unique continuous solution 

of (1.1). To achieve this, let us construct two sequences: {𝑢𝑚} and {𝑣𝑚}; they satisfy the iteration 

process 

{

𝐿𝑢𝑚 = 𝛿(𝑥 − 𝑏)𝑣𝑚−1
𝑝

, 𝐿𝑣𝑚 = 𝛿(𝑥 − 𝑏)𝑢𝑚−1
𝑞

, in (0, 1) × (0, 𝑇),

𝑢𝑚(𝑥, 0) = 𝑢0(𝑥), 𝑣𝑚(𝑥, 0) = 𝑣0(𝑥), for 𝑥 ∈ [0, 1],

𝑢𝑚(0, 𝑡) = 𝑢𝑚(1, 𝑡) = 0, 𝑣𝑚(0, 𝑡) = 𝑣𝑚(1, 𝑡) = 0, for 𝑡 ∈ (0, 𝑇),

  (2.5) 

for 𝑚 = 1, 2 ,  We assume the initial iteration: 𝑢0(𝑥, 𝑡) = 𝑢0(𝑥)  and 𝑣0(𝑥, 𝑡) = 𝑣0(𝑥)  on 

[0, 1] × [0, 𝑇). By (2.4), the integral solution of {𝑢𝑚} and {𝑣𝑚} in (2.5) is given by 

{
𝑢𝑚(𝑥, 𝑡) = 𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚−1),

𝑣𝑚(𝑥, 𝑡) = 𝐼(𝑥, 𝑡, 𝑣0, 𝑢𝑚−1).
       (2.6) 

By Lemma 4 of Chan and Wong, 𝐺 (𝑥, 𝜉, 𝑡 − 𝑠)  is a positive function in the set 
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{(𝑥, 𝜉; 𝑡, 𝑠): 𝑥 and 𝜉 are in (0, 1), and 𝑡 > 𝑠 ⩾  0} . It indicates that 𝑢𝑚 > 0  and 𝑣𝑚 > 0  in 

(0, 1) × (0, 𝑇). The following lemma shows that {𝑢𝑚} and {𝑣𝑚} are nondecreasing sequences and 

they are continuous functions. 

Lemma 2.2. The sequences {𝑢𝑚}  and {𝑣𝑚}  described by (2.6) are monotone nondecreasing: 

𝑢0(𝑥) ⩽ 𝑢1(𝑥, 𝑡) ⩽ ⋯ ⩽ 𝑢𝑚(𝑥, 𝑡) ⩽ ⋯ , 𝑣0(𝑥) ⩽ 𝑣1(𝑥, 𝑡) ⩽ ⋯ ⩽ 𝑣𝑚(𝑥, 𝑡) ⩽ ⋯   and {𝑢𝑚}  and 

{𝑣𝑚} are continuous on [0,1] × [0, 𝑇). 

Proof. From (1.2), we deduce 𝐻(𝑥, 𝑡, 𝑢0, 𝑣0) ⩾ 0 and 𝐼(𝑥, 𝑡, 𝑣0, 𝑢0) ⩾ 0, then by (2.6) with 𝑚 = 1, 

we obtain 

{
𝑢1(𝑥, 𝑡) − 𝑢0(𝑥) ⩾ 𝐻(𝑥, 𝑡, 𝑢0, 𝑣0) − 𝐻(𝑥, 𝑡, 𝑢0, 𝑣0) = 0,

𝑣1(𝑥, 𝑡) − 𝑣0(𝑥) ⩾ 𝐼(𝑥, 𝑡, 𝑣0, 𝑢0) − 𝐼(𝑥, 𝑡, 𝑣0, 𝑢0) = 0,
 

for 𝑥 ∈ [0,1] . Therefore, 𝑢1(𝑥, 𝑡) − 𝑢0(𝑥) ⩾ 0  and 𝑣1(𝑥, 𝑡) − 𝑣0(𝑥) ⩾ 0  for 𝑥 ∈ [0,1] . Suppose 

that it is true for 𝑚 = 𝑘 ; it gives 𝑢𝑘(𝑥, 𝑡) − 𝑢𝑘−1(𝑥, 𝑡) ⩾ 0  and 𝑣𝑘(𝑥, 𝑡) − 𝑣𝑘−1(𝑥, 𝑡) ⩾ 0  for 

(𝑥, 𝑡) ∈ [0,1] × [0, 𝑇). Suppose 𝑚 = 𝑘 + 1, and 𝐺 (𝑥, 𝜉, 𝑡 − 𝑠) is a positive function for 𝑡 > 𝑠 

𝑢𝑘+1(𝑥, 𝑡) − 𝑢𝑘(𝑥, 𝑡) = 𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑘) − 𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑘−1) ⩾ 0. 

Similarly, we have 𝑣𝑘+1(𝑥, 𝑡) − 𝑣𝑘(𝑥, 𝑡) ⩾ 0  for (𝑥, 𝑡) ∈ [0,1] × [0, 𝑇) . By the mathematical 

induction, the sequences of solutions {𝑢𝑚} and {𝑣𝑚} are monotone nondecreasing. 

To prove that 𝑢𝑚(𝑥, 𝑡)  and 𝑣𝑚(𝑥, 𝑡)  are continuous on [0,1] × [0, 𝑇) , let us consider (2.6) 

with 𝑚 = 1. It yields 

𝑢1(𝑥, 𝑡) = 𝐻(𝑥, 𝑡, 𝑢0, 𝑣0) = ∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉
1

0

+∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣0
𝑝
(𝑏, 𝑠)𝑑𝑠

𝑡

0

. 

We show that 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)  and 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣0
𝑝
(𝑏, 𝑠)  are integrable. Let us prove that 

∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣0
𝑝
(𝑏, 𝑠)𝑑𝑠

𝑡

0
 is bounded for 𝑥 ∈ [0,1] and 𝑡 > 0. By (2.1), we have 

∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣0
𝑝
(𝑏, 𝑠)𝑑𝑠

𝑡

0

⩽ ∑|𝜙𝑛(𝑏)||𝜙𝑛(𝑥)|

∞

𝑛=1

∫ 𝑒−𝜆𝑛(𝑡−𝑠)𝑣0
𝑝
(𝑏)𝑑𝑠

𝑡

0

. 

Let 𝑘3 = max {𝑚𝑎𝑥𝑥∈[0,1]𝑣0(𝑥),𝑚𝑎𝑥𝑥∈[0,1]𝑢0(𝑥)}, then 

∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣0
𝑝
(𝑏, 𝑠)𝑑𝑠

𝑡

0

⩽ 𝑘3
𝑝
∑|𝜙𝑛(𝑏)||𝜙𝑛(𝑥)|

∞

𝑛=1

(1 − 𝑒−𝜆𝑛𝑡)

𝜆𝑛
. 

By Lemma 2.1, it gives 

∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣0
𝑝
(𝑏, 𝑠)𝑑𝑠

𝑡

0
⩽ 𝑘3

𝑝
𝑘1𝑘2𝑏

−𝑏/2∑
(1−𝑒−𝜆𝑛𝑡)

𝜆𝑛
3/4

∞
𝑛=1 .    (2.7) 

By Watson [15, p. 506], 𝑂(𝜆𝑛)  =  𝑂(𝑛
2) for 𝑛 large. This shows that the above series converges 

for 𝑡 > 0. The upper bound of the series is independent of 𝑥 for each fixed 𝑡 > 0. For each positive 

integer 𝑗 greater than 1, the finite series ∑ ∫ 𝑏𝑏𝜙𝑛(𝑏)𝜙𝑛(𝑥)𝑒
−𝜆𝑛(𝑡−𝑠) 𝑣0

𝑝
(𝑏, 𝑠) 𝑑𝑠

𝑡

0

𝑗
𝑛=1  is continuous 

for 𝑥 ∈ [0,1] and 𝑡 > 0. Further, by (2.7), this finite sum satisfies the following inequality: 
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∑∫ 𝑏𝑏𝜙𝑛(𝑏)𝜙𝑛(𝑥)𝑒
−𝜆𝑛(𝑡−𝑠) 𝑣0

𝑝
(𝑏, 𝑠) 𝑑𝑠

𝑡

0

𝑗

𝑛=1

⩽ 𝑘3
𝑝
𝑘1𝑘2𝑏

−𝑏/2∑
(1 − 𝑒−𝜆𝑛𝑡)

𝜆𝑛
3/4

∞

𝑛=1

. 

Therefore, ∑ ∫ 𝑏𝑏𝜙𝑛(𝑏)𝜙𝑛(𝑥)𝑒
−𝜆𝑛(𝑡−𝑠) 𝑣0

𝑝
(𝑏, 𝑠) 𝑑𝑠

𝑡

0

𝑗
𝑛=1   converges uniformly. As 𝑗 → ∞ , 

∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣0
𝑝
(𝑏, 𝑠)𝑑𝑠

𝑡

0
 is continuous for 𝑥 ∈ [0,1] and 𝑡 > 0. Through a similar computation, 

it yields 

∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉
1

0

⩽ 𝑘3∑|𝜙𝑛(𝑥)|

∞

𝑛=1

𝑒−𝜆𝑛𝑡∫ 𝜙𝑛(𝜉)𝑑𝜉
1

0

. 

By Lemma 2.1(a) and 𝜙𝑛(0) = 𝜙𝑛(1) = 0, the righthand series converges for 𝑥 ∈ [0,1] when 𝑡 > 0. 

By the similar computation above, we obtain ∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉
1

0
 as continuous for 𝑥 ∈ [0,1] and 

𝑡 > 0 . By (2.7), ∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣0
𝑝
(𝑏, 𝑠)𝑑𝑠

𝑡

0
→ 0  as 𝑡 → 0 . Since ∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉

1

0
  converges 

to 𝑢0(𝑥)  for 𝑥 ∈ [0,1]  when 𝑡 → 0 , it follows that lim
𝑡→0

𝑢1(𝑥, 𝑡) = 𝑢0(𝑥) . Therefore, 𝑢1(𝑥, 𝑡) =

𝐻(𝑥, 𝑡, 𝑢0, 𝑣0) is continuous on [0,1] × [0, 𝑇). By the mathematical induction and computation above, 
𝑢𝑚(𝑥, 𝑡)  is continuous on [0,1] × [0, 𝑇)  for 𝑚 = 1, 2, …  A similar computation proves that 
𝑣𝑚(𝑥, 𝑡) is continuous on [0,1] × [0, 𝑇) for 𝑚 = 1, 2,… This completes the proof. 

Let ℎ be a positive real number less than 𝑇. We show that sequences {(𝑢𝑚)𝑡} and {(𝑣𝑚)𝑡} 

are nonnegative functions over [0,1]. 
Lemma 2.3. (𝑢𝑚)𝑡 ⩾ 0 and (𝑣𝑚)𝑡 ⩾ 0 on [0,1] × (0, 𝑇) for 𝑚 = 1, 2,… 

Proof. To establish this result, we prove that 𝑢𝑚(𝑥, 𝑡 + ℎ) ⩾ 𝑢𝑚(𝑥, 𝑡) on [0,1] × [0, 𝑇 − ℎ] through 

the mathematical induction. When 𝑚 = 1 , we follow Lemma 2.2 to get 𝑢1(𝑥, ℎ) ⩾ 𝑢0(𝑥)  and 

𝑣1(𝑥, ℎ) ⩾ 𝑣0(𝑥). From (2.5), we deduce 

{

𝐿𝑢1(𝑥, 𝑡 + ℎ) = 𝛿(𝑥 − 𝑏)𝑣0
𝑝(𝑥) in (0, 1) × (0, 𝑇 − ℎ],

𝑢1(𝑥, ℎ) = 𝑢1(𝑥, ℎ) for 𝑥 ∈ [0, 1],

𝑢1(0, 𝑡 + ℎ) = 𝑢1(1, 𝑡 + ℎ) =  0 for 𝑡 ∈ (0, 𝑇 − ℎ],

 

and 

{

𝐿𝑣1(𝑥, 𝑡 + ℎ) = 𝛿(𝑥 − 𝑏)𝑢0
𝑞(𝑥) in (0, 1) × (0, 𝑇 − ℎ],

𝑣1(𝑥, ℎ) = 𝑣1(𝑥, ℎ) for 𝑥 ∈ [0, 1],

𝑣1(0, 𝑡 + ℎ) = 𝑣1(1, 𝑡 + ℎ) =  0 for 𝑡 ∈ (0, 𝑇 − ℎ].

 

When (2.5) is subtracted from the above two problems, we deduce 

{

𝐿(𝑢1(𝑥, 𝑡 + ℎ) − 𝑢1(𝑥, 𝑡)) = 𝛿(𝑥 − 𝑏)(𝑣0
𝑝(𝑥) − 𝑣0

𝑝(𝑥)) in (0, 1) × (0, 𝑇 − ℎ],

𝑢1(𝑥, ℎ) − 𝑢1(𝑥, 0) = 𝑢1(𝑥, ℎ) − 𝑢0(𝑥) ⩾ 0 for 𝑥 ∈ [0, 1],

𝑢1(0, 𝑡 + ℎ) − 𝑢1(0, 𝑡) = 𝑢1(1, 𝑡 + ℎ) − 𝑢1(1, 𝑡) =  0 for 𝑡 ∈ (0, 𝑇 − ℎ],

 

and 

{

𝐿(𝑣1(𝑥, 𝑡 + ℎ) − 𝑣1(𝑥, 𝑡)) = 𝛿(𝑥 − 𝑏)(𝑢0
𝑞(𝑥) − 𝑢0

𝑞(𝑥)) in (0, 1) × (0, 𝑇 − ℎ],

𝑣1(𝑥, ℎ) − 𝑣1(𝑥, 0) = 𝑣1(𝑥, ℎ) − 𝑣0(𝑥) ⩾ 0 for 𝑥 ∈ [0, 1],

𝑣1(0, 𝑡 + ℎ) − 𝑣1(0, 𝑡) = 𝑣1(1, 𝑡 + ℎ) − 𝑣1(1, 𝑡) =  0 for 𝑡 ∈ (0, 𝑇 − ℎ].

 

By (2.3), 
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{
 
 

 
 𝑢1(𝑥, 𝑡 + ℎ) − 𝑢1(𝑥, 𝑡) = ∫ 𝐺(𝑥, 𝜉, 𝑡)(𝑢1(𝜉, ℎ) − 𝑢0(ξ))𝑑𝜉

1

0

⩾ 0,

𝑣1(𝑥, 𝑡 + ℎ) − 𝑣1(𝑥, 𝑡) = ∫ 𝐺(𝑥, 𝜉, 𝑡)(𝑣1(𝜉, ℎ) − 𝑣0(ξ))𝑑𝜉
1

0

⩾ 0.

 

Therefore, 𝑢1(𝑥, 𝑡 + ℎ) ⩾ 𝑢1(𝑥, 𝑡)  and 𝑣1(𝑥, 𝑡 + ℎ) ⩾ 𝑣1(𝑥, 𝑡)  on [0,1] × [0, 𝑇 − ℎ] . As ℎ → 0, 

it implies (𝑢1)𝑡 ⩾ 0 and (𝑣1)𝑡 ⩾ 0 over [0,1] × (0, 𝑇). Assume that this statement is true for 𝑚 = 𝑘. 

When 𝑚 = 𝑘 + 1, it follows a similar computation and Lemma 2.2 to achieve 

𝑢𝑘+1(𝑥, 𝑡 + ℎ) − 𝑢𝑘+1(𝑥, 𝑡) = ∫ 𝐺(𝑥, 𝜉, 𝑡)(𝑢𝑘+1(𝜉, ℎ) − 𝑢0(ξ))𝑑𝜉
1

0

 

+∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠) (𝑣𝑘
𝑝(𝑏, 𝑠 + ℎ) − 𝑣𝑘

𝑝(𝑏, 𝑠)) 𝑑𝑠
𝑡

0

⩾ 0. 

Thus, 𝑢𝑘+1(𝑥, 𝑡 + ℎ) ⩾ 𝑢𝑘+1(𝑥, 𝑡). Similarly, we obtain 𝑣𝑘+1(𝑥, 𝑡 + ℎ) ⩾ 𝑣𝑘+1(𝑥, 𝑡). When ℎ → 0, 

(𝑢𝑘+1)𝑡 ⩾ 0 and (𝑣𝑘+1)𝑡 ⩾ 0 over [0,1] × (0, 𝑇). By the mathematical induction, we conclude that 

(𝑢𝑚)𝑡 ⩾ 0 and (𝑣𝑚)𝑡 ⩾ 0 on [0,1] × (0, 𝑇) for 𝑚 = 1, 2,… This completes the proof. 

Lemma 2.4. Given 𝑡̅ > 0  there exist positive constants 𝛼1 and 𝛼2 (depending on 𝑡̅) both less than 1 

such that 

𝑚𝑎𝑥[0,1]×[0,𝑡̅]|𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚) − 𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚−1)| < 𝛼1 𝑚𝑎𝑥[0,1]×[0,𝑡̅]|𝑣𝑚 − 𝑣𝑚−1|, 

and 

𝑚𝑎𝑥[0,1]×[0,𝑡̅]|𝐼(𝑥, 𝑡, 𝑣0, 𝑢𝑚) − 𝐼(𝑥, 𝑡, 𝑣0, 𝑢𝑚−1)| < 𝛼2 𝑚𝑎𝑥[0,1]×[0,𝑡̅]|𝑢𝑚 − 𝑢𝑚−1|. 

Proof. By (2.6), we get 

|𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚) − 𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚−1)| ⩽ ∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)|𝑣𝑚
𝑝 (𝑏, 𝑠) − 𝑣𝑚−1

𝑝 (𝑏, 𝑠)|𝑑𝑠
𝑡

0

. 

Since 𝑝 ⩾ 1, the mean value theorem, and Lemma 2.2, there exists a positive constant 𝑘4 such that 

|𝑣𝑚
𝑝 (𝑏, 𝑠) − 𝑣𝑚−1

𝑝 (𝑏, 𝑠)| ⩽ 𝑝𝑘4
𝑝−1

max[0,1]×[0,𝑡]|𝑣𝑚 − 𝑣𝑚−1|, 

for 𝑠 ∈ [0, 𝑡]. Based on the above inequality, we obtain the expression 

|𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚) − 𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚−1)| ⩽ 𝑝𝑘4
𝑝−1

max[0,1]×[0,𝑡]|𝑣𝑚 − 𝑣𝑚−1|∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑑𝑠
𝑡

0

. 

We follow a similar method of Lemma 2.2 to obtain an upper bound of the integral of the Green’s function 
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∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑑𝑠
𝑡

0

⩽ ∑|𝜙𝑛(𝑏)||𝜙𝑛(𝑥)|

∞

𝑛=1

(1 − 𝑒−𝜆𝑛𝑡)

𝜆𝑛
⩽ 𝑘1𝑘2𝑏

−𝑏/2∑
(1 − 𝑒−𝜆𝑛𝑡)

𝜆𝑛
3/4

∞

𝑛=1

. 

The righthand series converges and tends to zero for positive 𝑡 being close to 0. Let us choose 𝑡 = 𝑡̅ 

sufficiently close to 0 such that 

𝛼1 = 𝑝𝑘4
𝑝−1

𝑘1𝑘2𝑏
−𝑏/2∑

(1 − 𝑒−𝜆𝑛𝑡̅)

𝜆𝑛
3/4

∞

𝑛=1

< 1. 

Hence, max[0,1]×[0,𝑡̅]|𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚) − 𝐻(𝑥, 𝑡, 𝑢0, 𝑣𝑚−1)| < 𝛼1max[0,1]×[0,𝑡̅]|𝑣𝑚 − 𝑣𝑚−1| . Similarly, 

we have 𝛼2 < 1  such that max[0,1]×[0,𝑡̅]|𝐼(𝑥, 𝑡, 𝑣0, 𝑢𝑚) − 𝐼(𝑥, 𝑡, 𝑣0, 𝑢𝑚−1)| < 𝛼2 max[0,1]×[0,𝑡̅]|𝑢𝑚 −

𝑢𝑚−1|. The proof is complete. 
Let 𝑘5  and 𝑘6  be positive constants greater than 𝑘3 . We prove that {𝑢𝑚}  and {𝑣𝑚}  are 

bounded above by 𝑘5 and 𝑘6, respectively, on [0, 1] × [0, 𝑡̅]. 
Lemma 2.5. For any 𝑘5 > 𝑘3 and 𝑘6 > 𝑘3  there exists 𝑡̅ > 0 such that 𝑘5 > 𝑢𝑚 and 𝑘6 > 𝑣𝑚 

on [0, 1] × [0, 𝑡̅] for 𝑚 = 1, 2,… 

Proof. Based on Lemma 2.2, we know that ∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉
1

0
 , ∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑣𝑚−1

𝑝
(𝑏, 𝑠)𝑑𝑠

𝑡

0
 , 

∫ 𝐺(𝑥, 𝜉, 𝑡)𝑣0(𝜉)𝑑𝜉
1

0
, and ∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠)𝑢𝑚−1

𝑞
(𝑏, 𝑠)𝑑𝑠

𝑡

0
 are bounded above when 𝑚 = 1, 2,… By 

Lemma 2.2 again, lim
𝑡→0

∫ 𝐺(𝑥, 𝜉, 𝑡)𝑣0(𝜉)𝑑𝜉
1

0
= 𝑣0(𝑥)  and lim

𝑡→0
∫ 𝐺(𝑥, 𝜉, 𝑡)𝑢0(𝜉)𝑑𝜉
1

0
= 𝑢0(𝑥)  on 

[0, 1], and 𝑘5 > 𝑘3 and 𝑘6 > 𝑘3. Thus, there exists 𝑡̅ > 0 such that 

𝑘5 > ∫ 𝐺(𝑥, 𝜉, 𝑡̅)𝑘3𝑑𝜉
1

0

+∫ 𝐺(𝑥, 𝑏, 𝑡̅ − 𝑠)𝑘6
𝑝
𝑑𝑠

𝑡̅

0

⩾ 𝐻(𝑥, 𝑡̅, 𝑢0, 𝑣0) = 𝑢1(𝑥, 𝑡̅), 

𝑘6 > ∫ 𝐺(𝑥, 𝜉, 𝑡̅)𝑘3𝑑𝜉
1

0

+∫ 𝐺(𝑥, 𝑏, 𝑡̅ − 𝑠)𝑘5
𝑞
𝑑𝑠

𝑡̅

0

⩾ 𝐼(𝑥, 𝑡̅, 𝑣0, 𝑢0) = 𝑣1(𝑥, 𝑡̅), 

for 𝑥 ∈ [0, 1] . By Lemma 2.3, (𝑢𝑚)𝑡 ⩾ 0  and (𝑣𝑚)𝑡 ⩾ 0 , which leads to 𝑘5 > 𝑢1  and 𝑘6 > 𝑣1 

on [0, 1] × [0, 𝑡̅]. Assume that it is true for 𝑚 = 𝑖, we follow a similar calculation to obtain 𝑘5 >

𝑢𝑖+1 and 𝑘6 > 𝑣𝑖+1 on [0, 1] × [0, 𝑡̅]. By the mathematical induction, we have 𝑘5 > 𝑢𝑚 and 𝑘6 >

𝑣𝑚 on [0, 1] × [0, 𝑡̅] for 𝑚 = 1, 2,… 

Let 𝑢(𝑥, 𝑡) = lim
𝑚→∞

𝑢𝑚(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) = lim
𝑚→∞

𝑣𝑚(𝑥, 𝑡). We have the result below. 

Theorem 2.6. The integral equation (2.3) has a unique continuous solution 𝑘5 > 𝑢(𝑥, 𝑡) ⩾ 𝑢0(𝑥) 

and 𝑘6 > 𝑣(𝑥, 𝑡) ⩾ 𝑣0(𝑥) on [0,1] × [0, 𝑡̅]. 

Proof. Based on Lemma 2.2 and Dini’s theorem, the sequences {𝑢𝑚} and {𝑣𝑚} converge uniformly 

to continuous solutions 𝑢(𝑥, 𝑡)  and 𝑣(𝑥, 𝑡)  such that 𝑘5 > 𝑢(𝑥, 𝑡) ⩾ 𝑢0(𝑥)  and 𝑘6 > 𝑣(𝑥, 𝑡) ⩾

𝑣0(𝑥) on [0,1] × [0, 𝑡̅]. By Lemma 2.4, 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) are unique. The proof is complete. 

Based on Lemma 2.3, we obtain that 𝑢𝑡 and 𝑣𝑡 are nonnegative. 
Lemma 2.7. 𝑢𝑡 ⩾ 0 and 𝑣𝑡 ⩾ 0 on [0,1] × (0, 𝑡̅]. 

Let 𝑡𝑏  be the supremum of 𝑡̅  such that the integral solution (2.3) has a unique continuous 
solution on [0,1] × [0, 𝑡̅]. We follow Theorem 3 of Chan [16] to obtain the result below. 
Theorem 2.8. If 𝑡𝑏 is finite  then 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) are unbounded somewhere on [0,1] when 𝑡 → 𝑡𝑏. 
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3. Blow-up of the solution 

In this section, let us assume that the initial data 𝑢0(𝑥)  and 𝑣0(𝑥)  both attain positive 
maximum at 𝑥 = 𝑏 only. By Theorem 2.6, 𝑢(𝑏, 𝑡) > 0 and 𝑣(𝑏, 𝑡) > 0 for 𝑡 > 0. Our first result 

is to prove that 𝑢 and 𝑣 both reach their maximum at 𝑥 = 𝑏, then we show that 𝑢 and 𝑣 blow up 

in a finite time. 
Lemma 3.1. 𝑢 and 𝑣 both attain their maximum at 𝑥 = 𝑏 for 𝑡 ⩾ 0. 

Proof. We prove this result using contradiction. From (1.1), it gives 

𝐿𝑢 = 𝛿(𝑥 − 𝑏)𝑣𝑝, in (0, 1) × (0, 𝑇),

𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑥 ∈ [0, 1],

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, for 𝑡 ∈ (0, 𝑇).

 

Let 𝑡 = 𝑡1 be the infimum of 𝑡 such that 𝑢(𝑥, 𝑡) attains another maximum at 𝑥1 for some 𝑥1 ∈

(0, 𝑏) ∪ (𝑏, 1) . As 𝑢(𝑥, 0) = 𝑢0(𝑥)  reaches its positive maximum at 𝑥 = 𝑏 , 𝑡1 > 0 , then 

𝑢𝑥(𝑥1, 𝑡1) = 0  and 𝑢𝑥𝑥(𝑥1, 𝑡1) < 0 . By Lemma 2.7, it yields 𝑢𝑡(𝑥1, 𝑡1) ⩾ 0 . Therefore, 

𝐿𝑢(𝑥1, 𝑡1) > 0 . It contradicts 𝐿𝑢 = 0  at 𝑥 ≠ 𝑏  for 𝑡 > 0 . Thus, 𝑢(𝑥, 𝑡)  attains its maximum at 

𝑥 = 𝑏 for 𝑡 ⩾ 0. Through a similar computation, we prove that 𝑣(𝑥, 𝑡) attains its maximum at 𝑥 = 𝑏 

for 𝑡 ⩾ 0. This completes the proof. 

We multiply (1.1) by 𝑥𝑏𝜙1(𝑥), and then integrate the expression with respect to 𝑥 over [0,1], 

∫ 𝑥𝑏𝜙1𝑢𝑡

1

0

𝑑𝑥 − ∫ 𝑥𝑏𝜙1(
𝑏

𝑥
𝑢𝑥 +

1

0

𝑢𝑥𝑥)𝑑𝑥 = ∫ 𝛿(𝑥 − 𝑏)𝑥𝑏𝜙1𝑣
𝑝

1

0

𝑑𝑥, 

∫ 𝑥𝑏𝜙1𝑣𝑡

1

0

𝑑𝑥 − ∫ 𝑥𝑏𝜙1(
𝑏

𝑥
𝑣𝑥 +

1

0

𝑣𝑥𝑥)𝑑𝑥 = ∫ 𝛿(𝑥 − 𝑏)𝑥𝑏𝜙1𝑢
𝑞

1

0

𝑑𝑥. 

Using integration by parts and (2.2), it yields 

(∫ 𝑥𝑏𝜙1𝑢
1

0
𝑑𝑥)

𝑡
+ 𝜆1 (∫ 𝑥𝑏𝜙1𝑢

1

0
𝑑𝑥) = 𝑏𝑏𝜙1(𝑏)𝑣

𝑝(𝑏, 𝑡),    (3.1) 

(∫ 𝑥𝑏𝜙1𝑣
1

0
𝑑𝑥)

𝑡
+ 𝜆1 (∫ 𝑥𝑏𝜙1𝑣

1

0
𝑑𝑥) = 𝑏𝑏𝜙1(𝑏)𝑢

𝑞(𝑏, 𝑡).    (3.2) 

By Lemma 3.1, 𝑢(𝑥, 𝑡) ⩽ 𝑢(𝑏, 𝑡) and 𝑣(𝑥, 𝑡) ⩽ 𝑣(𝑏, 𝑡) on [0,1] for 𝑡 ⩾ 0, we have 

(∫ 𝑥𝑏𝜙1𝑢
1

0

𝑑𝑥)

𝑞

⩽ 𝑢𝑞(𝑏, 𝑡) and (∫ 𝑥𝑏𝜙1𝑣
1

0

𝑑𝑥)

𝑝

⩽ 𝑣𝑝(𝑏, 𝑡). 

Let 𝑘7 = 𝑏
𝑏𝜙1(𝑏). The system of differential equations of (3.1) and (3.2) becomes 

(∫ 𝑥𝑏𝜙1𝑢
1

0
𝑑𝑥)

𝑡
+ 𝜆1 (∫ 𝑥𝑏𝜙1𝑢

1

0
𝑑𝑥) ⩾ 𝑘7 (∫ 𝑥𝑏𝜙1𝑣

1

0
𝑑𝑥)

𝑝
,   (3.3) 

(∫ 𝑥𝑏𝜙1𝑣
1

0
𝑑𝑥)

𝑡
+ 𝜆1 (∫ 𝑥𝑏𝜙1𝑣

1

0
𝑑𝑥) ⩾ 𝑘7 (∫ 𝑥𝑏𝜙1𝑢

1

0
𝑑𝑥)

𝑞
.    (3.4) 

Let Ψ(𝑡) = ∫ 𝑥𝑏𝜙1𝑢
1

0
𝑑𝑥 and Λ(𝑡) = ∫ 𝑥𝑏𝜙1𝑣

1

0
𝑑𝑥, then (3.3) and (3.4) become 
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{
Ψ′ + 𝜆1Ψ ⩾ 𝑘7Λ

𝑝,

Λ′ + 𝜆1Λ ⩾ 𝑘7Ψ
𝑞 .

 

Let Γ > 0 and 𝐵 be a positive constant such that 

𝐵 > max{[𝑘7
2(𝑝 − 1)/(2𝜆1)]

1/(𝑝−1), Γ−1/(𝑝−1) Λ(0)⁄ , Γ−𝑝/(𝑝−1) [Λ′(0)(𝑝 − 1)]⁄ }.  (3.5) 

To obtain the result if either 𝑢 or 𝑣 blows up somewhere on [0,1] in a finite time, we study the 

blow-up of system of differential inequalities (3.3) and (3.4) when 𝑝 ⩾ 1, 𝑞 ⩾ 1, and 𝑝𝑞 > 1. We 

examine (3.3) and (3.4) in two different cases: (I) 𝑞 = 1, 𝑝 > 1, or 𝑝 = 1, 𝑞 > 1; (II) 𝑞 and 𝑝 > 1. 

To case (I), we prove either 𝑢 or 𝑣 to blow up in a finite time through constructing a lower solution. 

We then compare the solutions of case (I) with case (II) to show either 𝑢 or 𝑣 to blow up in a finite 

time by the Picard iterates. 

Lemma 3.2. (I) Suppose that 𝑞 = 1 and 𝑝 > 1  or 𝑝 = 1 and 𝑞 > 1  then either 𝑢 or 𝑣 blows 

up somewhere on [0,1] in a finite time. 

(II) Suppose that 𝑝 > 1 and 𝑞 > 1  and assume that 

(a) (Λ(0))
𝑝
𝑘7/𝜆1 ⩾ Ψ(0) and (Ψ(0))

𝑞
𝑘7/𝜆1 ⩾ Λ(0)  

(b) Ψ(0) ⩾ 1 or Λ(0) ⩾ 1  

then either 𝑢 or 𝑣 blows up somewhere on [0,1] in a finite time. 

Proof. Case (I): Suppose 𝑞 = 1 and 𝑝 > 1 and let 𝑈(𝑡) = ∫ 𝑥𝑏𝜙1𝑢
1

0
𝑑𝑥 and 𝑉(𝑡) = ∫ 𝑥𝑏𝜙1𝑣

1

0
𝑑𝑥. 

Let us consider the following system of ordinary differential equations: 

{
𝑈′ + 𝜆1𝑈 = 𝑘7𝑉

𝑝,

𝑉′ + 𝜆1𝑉 = 𝑘7𝑈,
         (3.6) 

with the initial conditions: 𝑈(0) = Ψ(0) and 𝑉(0) = Λ(0). We differentiate the second equation of (3.6) 
with respect to 𝑡 and then substitute it into the first one to obtain 

1

𝑘7
𝑉′′ +

2𝜆1
𝑘7

𝑉′ +
𝜆1
2

𝑘7
𝑉 = 𝑘7𝑉

𝑝, 

with the initial conditions: 𝑉(0) = Λ(0) > 0 and 𝑉′(0) = Λ′(0) > 0. For 𝑡 ∈ [0, Γ), we construct 

a lower solution of the above equation as 𝐸(𝑡) = (Γ − 𝑡)−1/(𝑝−1) 𝐵⁄  , where 𝐵  satisfies 𝑉(0) >

Γ−1/(𝑝−1) 𝐵⁄ = 𝐸(0) and 𝑉′(0) > Γ−𝑝/(𝑝−1) [𝐵⁄ (𝑝 − 1)]. The first and second derivatives of 𝐸(𝑡) are 

𝐸′(𝑡) =
1

𝐵(𝑝 − 1)(Γ − 𝑡)𝑝/(𝑝−1)
 and 𝐸′′(𝑡) =

𝑝

𝐵(𝑝 − 1)2(Γ − 𝑡)(2𝑝−1)/(𝑝−1)
. 

We evaluate the expression 𝐸′′/𝑘7 + 2𝜆1𝐸
′/𝑘7 + 𝜆1

2𝐸/𝑘7 − 𝑘7𝐸
𝑝 to have 

𝐸′′

𝑘7
+
2𝜆1
𝑘7

𝐸′ +
𝜆1
2

𝑘7
𝐸 − 𝑘7𝐸

𝑝 

=
𝑝

𝑘7𝐵(𝑝 − 1)
2(Γ − 𝑡)

2𝑝−1
𝑝−1

+
1

𝐵(Γ − 𝑡)
𝑝
𝑝−1

[
2𝜆1

𝑘7(𝑝 − 1)
−

𝑘7
𝐵𝑝−1

] +
𝜆1
2

𝐵𝑘7(Γ − 𝑡)
1
𝑝−1

. 
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By (3.5), we have 𝐸′′/𝑘7 + 2𝜆1𝐸
′/𝑘7 + 𝜆1

2𝐸/𝑘7 − 𝑘7𝐸
𝑝 > 0, then by the comparison theorem [17, 

p. 96], we have 𝑉(𝑡) ⩾ 𝐸(𝑡) for 𝑡 ∈ [0, Γ). As 𝐸(𝑡) → ∞ when 𝑡 → Γ, 𝑉(𝑡) blows up in a finite 

time less than or equal to Γ. Thus, 𝑈 + 𝑉 blows up in a finite time. By the comparison theorem, Ψ+ Λ 

blows up in a finite time. Hence, either 𝑢 or 𝑣 in (3.3) and (3.4) blows up on [0,1] in a finite time. 

We follow a similar computation to obtain the same result when 𝑝 = 1 and 𝑞 > 1, with 𝑝 and Λ(0) 

being replaced by 𝑞 and Ψ(0), respectively, in (3.5). 

Case (II): Suppose that 𝑝 > 1  and 𝑞 > 1 . Let 𝑊(𝑡) = ∫ 𝑥𝑏𝜙1𝑢
1

0
𝑑𝑥  and 𝑌(𝑡) =

∫ 𝑥𝑏𝜙1𝑣
1

0
𝑑𝑥 be the solution of the following system of ordinary differential equations: 

{
𝑊′ + 𝜆1𝑊 = 𝑘7𝑌

𝑝,

𝑌′ + 𝜆1𝑌 = 𝑘7𝑊
𝑞,

 

with initial conditions: 𝑊(0) = Ψ(0) and 𝑌(0) = Λ(0). Multiplying the integrating factor 𝑒𝜆1𝑡 
on both sides, this system becomes 

𝑑

𝑑𝑡
𝑒𝜆1𝑡𝑊 = 𝑘7𝑒

𝜆1𝑡𝑌𝑝 and 
𝑑

𝑑𝑡
𝑒𝜆1𝑡𝑌 = 𝑘7𝑒

𝜆1𝑡𝑊𝑞. 

Using the Picard iterates, the approximated solutions of 𝑊 and 𝑌 are given by 

𝑊𝑚(𝑡) = 𝑒
−𝜆1𝑡 [𝑊(0) + 𝑘7 ∫ 𝑒𝜆1𝑠(𝑌𝑚−1)

𝑝𝑡

0
𝑑𝑠],     (3.7) 

𝑌𝑚(𝑡) = 𝑒
−𝜆1𝑡 [𝑌(0) + 𝑘7 ∫ 𝑒𝜆1𝑠(𝑊𝑚−1)

𝑞𝑡

0
𝑑𝑠],     (3.8) 

with 𝑊0 = 𝑊(0)  and 𝑌0 = 𝑌(0) , 𝑚 = 1, 2,…  By assumption (a), it yields 𝑊(0) ⩽ 𝑊1(𝑡) ⩽
𝑊2(𝑡)… ⩽ 𝑊𝑚(t) ⩽ ⋯ and 𝑌(0) ⩽ 𝑌1(𝑡) ⩽ 𝑌2(𝑡)… ⩽ 𝑌𝑚(t) ⩽ ⋯ Similarly, the representation of 
the approximated solutions of 𝑈 and 𝑉 are 

𝑈𝑚(𝑡) = 𝑒
−𝜆1𝑡 [𝑈(0) + 𝑘7 ∫ 𝑒𝜆1𝑠(𝑉𝑚−1)

𝑝𝑡

0
𝑑𝑠],     (3.9) 

𝑉𝑚(𝑡) = 𝑒
−𝜆1𝑡 [𝑉(0) + 𝑘7 ∫ 𝑒𝜆1𝑠𝑈𝑚−1

𝑡

0
𝑑𝑠],    (3.10) 

with 𝑈0 = 𝑈(0) and 𝑉0 = 𝑉(0), 𝑚 = 1, 2,… The system (3.9) and (3.10) is subtracted from (3.7) 

and (3.8) to yield 

𝑊𝑚(𝑡) − 𝑈𝑚(𝑡) = 𝑒
−𝜆1𝑡𝑘7∫ 𝑒𝜆1𝑠[(𝑌𝑚−1)

𝑝 − (𝑉𝑚−1)
𝑝]

𝑡

0

𝑑𝑠, 

𝑌𝑚(𝑡) − 𝑉𝑚(𝑡) = 𝑒
−𝜆1𝑡𝑘7∫ 𝑒𝜆1𝑠[(𝑊𝑚−1)

𝑞 − 𝑈𝑚−1]
𝑡

0

𝑑𝑠. 

We show that 𝑊𝑚(𝑡) ⩾ 𝑈𝑚(𝑡)  and 𝑌𝑚(𝑡) ⩾ 𝑉𝑚(𝑡)  for 𝑚 = 1, 2,…  through the mathematical 

induction. When 𝑚 = 1, 

𝑊1(𝑡) − 𝑈1(𝑡) = 𝑒
−𝜆1𝑡𝑘7∫ 𝑒𝜆1𝑠[(𝑌0)

𝑝 − (𝑉0)
𝑝]

𝑡

0

𝑑𝑠, 



6961 
 

AIMS Mathematics  Volume 9, Issue 3, 6951–6963. 

𝑌1(𝑡) − 𝑉1(𝑡) = 𝑒
−𝜆1𝑡𝑘7∫ 𝑒𝜆1𝑠[(𝑊0)

𝑞 − 𝑈0]
𝑡

0

𝑑𝑠 = 𝑒−𝜆1𝑡𝑘7∫ 𝑒𝜆1𝑠𝑈0[(𝑊0)
𝑞−1 − 1]

𝑡

0

𝑑𝑠. 

By assumption (b), 𝑊0 ⩾ 1. It concludes that 𝑊1(𝑡) = 𝑈1(𝑡) and 𝑌1(𝑡) ⩾ 𝑉1(𝑡). Assume that it is 

true for 𝑚 = 𝑖, so that 𝑊𝑖(𝑡) ⩾ 𝑈𝑖(𝑡) and 𝑌𝑖(𝑡) ⩾ 𝑉𝑖(𝑡). When 𝑚 = 𝑖 + 1, we have 

𝑊𝑖+1(𝑡) − 𝑈𝑖+1(𝑡) = 𝑒
−𝜆1𝑡𝑘7∫ 𝑒𝜆1𝑠[(𝑌𝑖)

𝑝 − (𝑉𝑖)
𝑝]

𝑡

0

𝑑𝑠 ⩾ 0, 

𝑌𝑖+1(𝑡) − 𝑉𝑖+1(𝑡) = 𝑒
−𝜆1𝑡𝑘7∫ 𝑒𝜆1𝑠𝑈𝑖[(𝑊𝑖)

𝑞−1 − 1]
𝑡

0

𝑑𝑠 ⩾ 0. 

Thus, 𝑊𝑖+1(𝑡) ⩾ 𝑈𝑖+1(𝑡) and 𝑌𝑖+1(𝑡) ⩾ 𝑉𝑖+1(𝑡). By the mathematical induction, 𝑊𝑚(𝑡) ⩾ 𝑈𝑚(𝑡) 

and 𝑌𝑚(𝑡) ⩾ 𝑉𝑚(𝑡)  for 𝑚 = 1, 2,…  By the convergence of the Picard iterates [18, pp. 71–74], 

𝑈𝑚(𝑡) → 𝑈(𝑡) , 𝑉𝑚(𝑡) → 𝑉(𝑡) , 𝑊𝑚(𝑡) → 𝑊(𝑡) , and 𝑌𝑚(𝑡) → 𝑌(𝑡)  as 𝑚 → ∞ . Thus, 𝑊 + 𝑌 ⩾

𝑈 + 𝑉. As 𝑈 + 𝑉 blows up in a finite time, 𝑊 + 𝑌 blows up in a finite time. In case Λ(0) ⩾ 1 in 

assumption (b), we repeat the above procedure to compare the solution of (3.7) and (3.8) to Case (I) 

for 𝑝 = 1 and 𝑞 > 1 to obtain the same result. Hence, either 𝑢 or 𝑣 in (3.3) and (3.4) blows up 

on [0,1] in a finite time. This completes the proof. 

Theorem 3.3. If either 𝑢 or 𝑣 blows up at 𝑡 = 𝑡𝑏, then 𝑢 and 𝑣 blow up simultaneously at the 

point 𝑥 = 𝑏 at 𝑡 = 𝑡𝑏. 

Proof. Without loss of generality, we suppose that 𝑢 blows up somewhere at 𝑥∗ where 𝑥∗ ∈ (0,1) 

and 𝑥∗ ≠ 𝑏. Let 𝑎1 and 𝑎2 be positive real numbers such that 𝑥
∗ and 𝑏 ∈ [𝑎1, 𝑎2] ⊊ (0, 1). By (2.3), 

the integral solution of 𝑢(𝑥, 𝑡) at 𝑥 = 𝑏 is given by 

𝑢(𝑏, 𝑡) = ∫ 𝐺(𝑏, 𝜉, 𝑡
1

0

)𝑢0(𝜉)𝑑𝜉 + ∫ 𝐺(𝑏, 𝑏, 𝑡 − 𝑠
𝑡

0

)𝑣𝑝(𝑏, 𝑠)𝑑𝑠. 

By the mean value theorem, there exists 𝜃 ∈ (0, 𝑡) such that 

𝑢(𝑏, 𝑡) = ∫ 𝐺(𝑏, 𝜉, 𝑡
1

0

)𝑢0(𝜉)𝑑𝜉 + 𝐺(𝑏, 𝑏, 𝑡 − 𝜃 )∫ 𝑣𝑝(𝑏, 𝑠)
𝑡

0

𝑑𝑠. 

As 𝐺(𝑏, 𝑏, 𝑡 − 𝜃) > 0 for 𝑡 > 𝜃, there exists a positive constant 𝑘8 (depending on 𝑏 and 𝑡) such 

that 𝐺(𝑏, 𝑏, 𝑡 − 𝜃 ) ⩾ 𝑘8 and 

𝑢(𝑏, 𝑡) ⩾ ∫ 𝐺(𝑏, 𝜉, 𝑡
1

0

)𝑢0(𝜉)𝑑𝜉 + 𝑘8∫ 𝑣𝑝(𝑏, 𝑠)
𝑡

0

𝑑𝑠. 

Since 𝑢  does not blow up at 𝑏 , ∫ 𝑣𝑝(𝑏, 𝑠)
𝑡

0
𝑑𝑠  is bounded when 𝑡 → 𝑡𝑏 . Further, there exists a 

positive constant 𝑘9  (depending on 𝑥  and 𝑡 ) such that 𝐺(𝑥, 𝜉, 𝑡) ⩽ 𝑘9  for 𝑥 ∈ [𝑎1, 𝑎2] . Let us 

consider the integral solution of 𝑢(𝑥, 𝑡) at 𝑥 = 𝑥∗, which satisfies the following inequality: 
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𝑢(𝑥∗, 𝑡) ⩽ ∫ 𝐺(𝑏, 𝜉, 𝑡
1

0

)𝑢0(𝜉)𝑑𝜉 + 𝑘9∫ 𝑣𝑝(𝑏, 𝑠)
𝑡

0

𝑑𝑠. (3.11) 

Because ∫ 𝑣𝑝(𝑏, 𝑠)
𝑡

0
𝑑𝑠 is bounded when 𝑡 → 𝑡𝑏, we have 𝑢(𝑥

∗, 𝑡) being bounded when 𝑡 → 𝑡𝑏. It 

leads to a contradiction. Thus, 𝑏 is a blow-up point of 𝑢(𝑥, 𝑡). By (3.11), if we replace 𝑥∗ by 𝑏, 

then we have ∫ 𝑣𝑝(𝑏, 𝑠)
𝑡

0
𝑑𝑠 → ∞  as 𝑡 → 𝑡𝑏 . Thus, 𝑣(𝑥, 𝑡)  blows up at 𝑥 = 𝑏.  Hence, 𝑢(𝑥, 𝑡) 

and 𝑣(𝑥, 𝑡) blow up simultaneously at 𝑥 = 𝑏. 
Corollary 3.4. If u and v blow up at the point 𝑥 = 𝑏 at 𝑡 = 𝑡𝑏  then the blow-up set of u and v is (0,1). 

Proof. By Theorem 3.3, 𝑢(𝑏, 𝑡) → ∞ as 𝑡 → 𝑡𝑏. It implies ∫ 𝑣𝑝(𝑏, 𝑠)
𝑡

0
𝑑𝑠 → ∞ as 𝑡 → 𝑡𝑏. For 𝑥 ∈

[𝑎1, 𝑎2] ⊊ (0, 1), we know ∫ 𝐺(𝑥, 𝑏, 𝑡 − 𝑠
𝑡

0
)𝑣𝑝(𝑏, 𝑠)𝑑𝑠 ⩾ ∫ 𝑘8𝑣

𝑝(𝑏, 𝑠)
𝑡

0
𝑑𝑠 → ∞ as 𝑡 → 𝑡𝑏. By (2.3), 

we have 𝑢(𝑥, 𝑡) → ∞  as 𝑡 → 𝑡𝑏  for 𝑥 ∈ [𝑎1, 𝑎2] . Similarly, it yields 𝑣(𝑥, 𝑡) → ∞  as 𝑡 → 𝑡𝑏  for 
𝑥 ∈ [𝑎1, 𝑎2] if 𝑣(𝑏, 𝑡) → ∞ as 𝑡 → 𝑡𝑏. Since [𝑎1, 𝑎2] is any subset of (0, 1), the blow-up set of 𝑢 

and 𝑣 is (0, 1). This completes the proof. 

4. Conclusions 

In this paper, the existence and uniqueness of the solution of a system of singular parabolic 

problems with concentrated nonlinear reaction sources and homogeneous Dirichlet boundary condition: 

𝑢𝑡 − 𝑢𝑥𝑥 − 𝑏𝑢𝑥/𝑥 = 𝛿(𝑥 − 𝑏)𝑣
𝑝 , 𝑣𝑡 − 𝑣𝑥𝑥 − 𝑏𝑣𝑥/𝑥 = 𝛿(𝑥 − 𝑏)𝑢

𝑞  are established. The result is 

obtained by investigating the corresponding integral solutions. If 𝑝 ⩾ 1 , 𝑞 ⩾ 1 , and 𝑝𝑞 > 1 , we 

prove that either 𝑢 or 𝑣 blows up in a finite time through constructing a lower solution. Further, we 
show that 𝑢 and 𝑣 blow up simultaneously in a finite time at 𝑏, and they blow up everywhere in the 

domain except the boundary. 
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