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Abstract: In this paper, the solvability of some inverse problems for a nonlocal analogue of a
fourth-order parabolic equation was studied. For this purpose, a nonlocal analogue of the biharmonic
operator was introduced. When defining this operator, transformations of the involution type were
used. In a parallelepiped, the eigenfunctions and eigenvalues of the Dirichlet type problem for a
nonlocal biharmonic operator were studied. The eigenfunctions and eigenvalues for this problem were
constructed explicitly and the completeness of the system of eigenfunctions was proved. Two types of
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theorems for the existence and uniqueness of the solution were proved.
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1. Introduction

Let Q = Π × (0,T ), where Π = {x ∈ Rn : 0 < x j < p j, j = 1, . . . , n} is a parallelepiped,
p j > 0, and T > 0. Consider the mappings S j : Rn → Rn, 1 ≤ j ≤ n of the type S jx =(
x1, . . . , x j−1, p j − x j, x j+1, . . . , xn

)
. Obviously, the mappings S j are involutions, i.e., S 2

j = I , where I
is the identity mapping. Let us consider all possible products of mappings S j, i.e., S i j = S iS i, or
S i jk = S iS iS k, .... The total number of such mappings, taking into account the identity mapping
S 0x = x, is equal to 2n. To number such mappings, we will use the binary number system, namely, if
0 ≤ i < 2n in the binary number system, the representation i ≡ (in . . . i1)2 = i1 + 2i2 + . . .+ 2n−1in, where
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ik = 0, 1, is valid. Therefore, introducing the vector i = (i1, . . . , in), we can consider mappings of the
type Si ≡ S i1

1 . . . S
in
n corresponding to the index i. Using these mappings, we introduce the operator

Lxv(x) =
2n−1∑
i=0

ai∆
2v(Six),

where a0, a1, a2, a3, . . . , a2n−1 is a set of real numbers, and ∆2 is a biharmonic operator.
Let us consider the following problems in the domain Q.
Problem 1. Find a pair of such functions {u(t, x), f (x)} that are smooth u(t, x) ∈ C

(
Q̄
)
, f (x) ∈ C

(
Π̄
)
,

ut(t, x), Lxu(t, x) ∈ C (Q), satisfy the equation

ut(t, x) + Lxu(t, x) = f (x)g(t), (t, x) ∈ Q, (1.1)

the boundary conditions

u(t, x)|t∈[0,T ], x∈∂Π = 0,
∂2u(t, x)
∂x2

i

∣∣∣∣∣∣
t∈[0,T ], x∈∂Π

= 0, i = 1, 2, ..., n, (1.2)

and the initial and final conditions
u(0, x) = φ(x), x ∈ Π̄, (1.3)

u(T, x) = ψ(x), x ∈ Π̄, (1.4)

where g(t), φ(x), ψ(x) are the given functions.
Problem 2. Find a pair of such functions {u(t, x), g(t)} that are smooth u(t, x) ∈ C

(
Q̄
)
, g(t) ∈

C [0,T ], ut(t, x), Lxu(t, x) ∈ C (Q) and satisfy conditions (1.1)–(1.3) and an additional condition

u(t, x0) = h(t), 0 ≤ t ≤ T, (1.5)

where x0 ∈ Π is a given fixed point, h(t), φ(x), and f (x) are the given functions, and h(0) = φ(x0).
Differential equations with involution are an important part of the general theory of functional

differential equations. As it is known, the first works on differential equations with involution were
written by Babbage [1] and continued by Carleman [2]. Various issues in the theory of differential
equations with involution were studied in a series of papers written by Przeworska-Rolewicz [3–5] The
case n = 1 is considered in several papers [6–11], where the solvability of inverse problems on finding
the righthand side of differential equations with involution is studied. Thus, in the work of Nasser
Al-Salti et al. [7], in the rectangular domain Ω = {(t, x) : 0 < t < T,−π < x < π} for the equation

ut(t, x) − uxx(t, x) − εuxx(t, π − x) = f (x), (t, x) ∈ Ω,

inverse problems for determining a pair of functions {u(t, x), f (x)} have been studied. In this work, the
authors state that redefined initial and final conditions

u(0, x) = φ(x), u(T, x) = φ(x), −π < x < π,

as well as one of the boundary conditions, Dirichlet, Neumann, periodic, or antiperiodic conditions, can
be considered as additional conditions. The problem studied in the paper is solved using the method

AIMS Mathematics Volume 9, Issue 3, 6832–6849.



6834

of separation of variables. In this case, a spectral problem arises with respect to the spatial variable for
the equation with involution. For example, in the case of Dirichlet boundary conditions, we have

−X′′(x) − εX′′(π − x) = λX(x), −π < x < π, X(−π) = X(π) = 0.

It is proven that the eigenfunctions of this problem are the functions

X1k(x) = cos
(
k +

1
2

)
x, k ≥ 0; X2k(x) = sin kx, k ≥ 1,

and the corresponding eigenvalues are the numbers

λ1k = (1 − ε)
(
k +

1
2

)2

, k ≥ 0; λ2k = (1 + ε)k, k ≥ 1.

Similar studies in the case of two spatial variables for classical equations were carried out
in [12–18], as well as for equations with involution in [19, 20]. The authors of this paper studied
inverse problems for equations of parabolic type with an operator of the fourth and higher orders in the
spatial variable (see, for example, [21–28]).

The methods used to solve the inverse problems in order to determine the right side of the equation
depend on whether the function f (x) or the function g(t) is unknown. In the case when the function f (x)
is unknown, the problem under consideration is usually solved using the Fourier method, whereas in
the case when the function g(t) is unknown, the problem is reduced to the Volterra integral equation
(see, for example, [18]).

As we have already noted, studies of direct and inverse problems for equations with involutive
transformed arguments were mainly carried out for equations with one and two spatial variables. For
equations with many variables, such problems are insufficiently studied. In this direction, we can only
note the work of Kozhanov and Bzheumikhova [25].

When studying Problems 1 and 2, a spectral problem arises for the nonlocal operator Lx. In the one-
dimensional case in [7], this problem is solved by finding a general solution to the studied equation and
using the boundary conditions to determine the eigenfunctions and eigenvalues. In the two-dimensional
case in [19], the corresponding spectral problem was solved by reducing it to four auxiliary problems.

In general, in the n− dimensional case, n ≥ 3, such spectral problems in a parallelepiped have not
been considered. When solving this problem, to denote the summation index we used the notation in
the binary number system. The transition to this system allowed us to construct eigenfunctions and
eigenvalues of this problem explicitly and to prove the completeness of the systems of eigenfunctions
in space L2 (Π).

It should be also noted that the use of differential equations with involution when modeling a specific
physical process of thermal diffusion in the case n = 1 is given in [7, 9], and in [29, 30] in the case
n = 2, where equations with involutive transformations, which have applications in modeling of optical
systems, are considered. In addition, the influence of nonlocality is graphically illustrated in [7] in the
one-dimensional case.

2. Eigenfunctions and eigenvalues of a nonlocal biharmonic operator

In this section, we study the eigenfunctions and eigenvalues of a Dirichlet type problem for a
nonlocal biharmonic equation.
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Consider the following boundary value problem.
Problem S. Find a function v(x) , 0 from the class v(x) ∈ C2

(
Π̄
)
∩C4 (Π) that satisfies the equation

Lxv(x) = λv(x), x ∈ Π, (2.1)

and boundary conditions

v(x)|∂Π =
∂2v(x)
∂x2

i

∣∣∣∣∣∣
∂Π

= 0, i = 1, 2, ..., n, (2.2)

where λ ∈ R.
If a0 = 1, a j = 0, j = 1, . . . , 2n − 1, then the problem coincides with the spectral problem with the

Dirichlet condition for the classical biharmonic operator.
Note that in the case of a sphere, a similar spectral problem for the nonlocal Laplace operator was

studied in [31]. Various boundary value problems for nonlocal harmonic and biharmonic equations are
studied in [32–34].

Let us consider a set of functions

vk(x) = vk1k2...kn(x) = C (n,p)
n∏

j=1

sin
k jπx j

p j
, (2.3)

where k = (k1k2...kn) ∈ Nn and C (n,p) = 2n/2
n∏

j=1

1
√p j
, p = (p1, . . . , pn).

The following statement is proved in [35].
Lemma 2.1. The system of functions {vk(x) : k ∈ Nn} is orthonormal and complete in space
L2 ((0, p1) × (0, p2) × ... × (0, pn)).

Let us introduce the following numbers εk =
2n−1∑
i=0

(−1)i·(k+e)ai, where k = (k1, k2, ..., kn), i =

(i1, . . . , in), i·k = i1k1+...+inkn, and e = (1, . . . , 1). Note that components of the vector k = (k1, k2, ..., kn)
can be calculated using mode 2 as in this case the εk value will not change. Taking this into account
we can state that the equality k + e = k∗ is valid, where the vector k∗ is conjugate to k. For example,
k = (0, 1, 0, 1)⇒ k∗ = (1, 0, 1, 0). Under these assumptions,

εk = εk mod 2 =

2n−1∑
i=0

(−1)i·k∗ai.

Theorem 2.1. Let the conditions εk , 0 be satisfied for all k ∈ Nn, then the system of functions
{vk(x) : k ∈ Nn} is a system of eigenfunctions of Problem S. The corresponding eigenvalues are
determined by the equalities

λk = εkµ
2
k, µk = π

2
n∑

j=1

k2
j

p2
j

, k = (k1, k2, . . . , kn) ∈ Nn. (2.4)

Proof. It is obvious that the functions vk(x), by their structure, satisfy conditions (2.2) vk(x)|∂Π = 0,
and as

∂2vk

∂x2
i

= C (n,p)
n∏

j=1, j,i

sin
k jπx j

p j
·
∂2

∂x2
i

(
sin

kiπxi

pi

)

= −

(
kiπ

pi

)2

C (n,p)
n∏

j=1, j,i

sin
k jπx j

p j
·

(
sin

kiπxi

pi

)
= −

(
kiπ

pi

)2

vk(x),
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they also satisfy conditions (2.2). Let us check whether Eq (2.1) is fulfilled. Applying the Laplace
operator to this function, we obtain

∆vk(x) = −

 n∑
i=1

(
kiπ

pi

)2 vk(x),

which means that

∆2vk(x) = µ2
kvk(x), µk = π

2

 n∑
i=1

k2
i

p2
i

 .
Hence, for any m ∈ {1, 2, ..., n}, we get

∆2vk(S mx) = µ2
kvk(x1, ..., xm−1, pm − xm, xm+1, ..., xn)

= µ2
kC (p) sin

kmπ(pm − xm)
pm

·

n∏
j=1, j,m

sin
k jπx j

p j

= µ2
kC (p) (−1)km+1 sin

kmπxm

pm
·

n∏
j=1, j,m

sin
k jπx j

p j

= µ2
kC (p) (−1)km+1

n∏
j=1

sin
k jπx j

p j
=(−1)km+1µ2

kvk(x).

Let 0 ≤ i ≤ 2n − 1, which corresponds to vector i = (i1, . . . , in). If im = 1, then

∆2vk(S im
m x) = µ2

kC (p) sin
kmπ(pm − xm)

pm
·

n∏
j=1, j,m

sin
k jπx j

p j
= (−1)km+1µ2

kvk(x).

Obviously, this equality is also valid for the case im = 0. Thus, we get

∆2vk(S im
m x) = (−1)im(km+1)µ2

kvk(x). (2.5)

In the general case, the following equality holds:

∆2vk (Six) = ∆2vk
(
S i1

1 . . . S
in
n x

)
= (−1)i1(k1+1)+i2(k2+1)+...+in(kn+1)µ2

kvk(x)

= (−1)i·(k+1)µ2
kvk(x) = (−1)i·k∗µ2

kvk(x),

where k = (k1, k2, ..., kn), i = (i1, . . . , in), i · k = i1k1 + ... + inkn and e = (1, . . . , 1).
Now, if we apply the operator Lx to the function vk, then from the previous equalities it follows that

Lxvk(x) =
2n−1∑
i=0

ai∆
2vk (Six) =

2n−1∑
i=0

ai(−1)i·k∗µ2
kvk (x)

= µ2
kvk(x)

2n−1∑
i=0

(−1)i·k∗ai

 = εk mod 2µ
2
kvk(x).

Thus, in addition to conditions (2.2), the function vk(x) also satisfies the equality Lxvk(x) = λkvk(x),
i.e., Eq (2.1). The theorem is proved.
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Remark 2.1. If the condition εk mod 2 > 0 is satisfied for any k ∈ Nn, then all eigenvalues of Problem S
are positive.

Example 2.1. Let n = 2, then Eq (2.1) takes the form

a0∆
2v(x1, x2) + a1∆

2v(p1 − x1, x2) + a2∆
2v(x1, p2 − x2) + a2∆

2v(p1 − x1, p2 − x2) = λv(x1, x2),

and the boundary conditions are written as

v(0, x2) = v(p1, x2) = 0, 0 ≤ x2 ≤ p2; v(x1, 0) = v(x1, p2) = 0, 0 ≤ x1 ≤ p1,

vx1 x1(0, x2) = vx1 x1(p1, x2) = 0, 0 ≤ x2 ≤ p2; vx2 x2(x1, 0) = vx2 x2(x1, p2) = 0, 0 ≤ x1 ≤ p1.

Eigenfunctions are specified in accordance with (2.3) as

v(m,k)(x) =
2
√

p1 p2
sin

mπx1

p1
sin

kπx2

p2
, m, k = 1, 2, ...,

and the corresponding eigenvalues are

λ(m,k) = ε(m,k)π
4
(
m2

p2
1

+
k2

p2
2

)2

, m, k = 1, 2, . . . ,

where ε(m,k) is
ε(m,k) = ε(m,k) mod 2 = a0 + (−1)m+1a1 + (−1)k+1a2 + (−1)k+ma3

= a0 + (−1)m∗a1 + (−1)k∗a2 + (−1)k∗+m∗a3.

More precisely, ε(m,k) can be written as

ε(2m−1,2k−1) = a0 + a1 + a2 + a3; ε(2m−1,2k) = a0 + a1 − a2 − a3;
ε(2m,2k−1) = a0 − a1 + a2 − a3; ε(2m,2k) = a0 − a1 − a2 + a3,

where m, k = 1, 2, ....

3. Study of convergence of Fourier series

Let

h(x) =
∞∑

k1=1

...

∞∑
kn=1

hk1...knvk1...kn(x) =
∑
k∈Nn

hkvk(x) (3.1)

be the Fourier series expansion of the function h(x) by the system {vk(x) : k ∈ Nn}, where

hk = (h, vk) ≡
∫ p1

0
...

∫ pn

0
h(x1, x2, ..., xn)vk1...kn(x1, x2, ..., xn) dx1...dxn. (3.2)

Further, we will use the symbol C to denote an arbitrary constant whose value does not affect our
conclusions.

AIMS Mathematics Volume 9, Issue 3, 6832–6849.



6838

Lemma 3.1. Let the function h(x) be continuous in a closed domain Π̄ and have continuous partial
derivatives ∂ jh(x)

∂x1...∂x j
, 1 ≤ j ≤ n in Π̄. If the conditions

h(0, x2, ..., xn) = h(p1, x2, ..., xn) = 0, 0 ≤ x j ≤ p j, j = 2, ..., n,
h(x1, 0, ..., xn) = h(x1, p2, ..., xn) = 0, 0 ≤ x j ≤ p j, j = 1, ..., n, j , 2,
. . .

h(x1, ..., xn−1, 0) = h(x1, ..., xn−1, pn) = 0, 0 ≤ x j ≤ p j, j = 1, ..., n − 1

(3.3)

are satisfied, then the number series
∑

k∈Nn
|hk| converges.

Proof. If h(x) ∈ C
(
Π̄
)

and the function ∂h(x)
∂x1

is continuous, then integrating the integral in (3.2) by parts
over the variable x1 and taking into account equality (3.3), we obtain

hk = hk1...kn =
1
k1

h1,0,..,0
k1...kn

,

where
h1,0,..,0

k1...kn
= C

∫ p1

0
...

∫ pn

0

∂h(x1, x2, ..., xn)
∂x1

v1,0,..,0
k1...kn

(x1, x2, ..., xn)dx1...dxn,

v1,0,..,0
k1...kn

(x1, x2, ..., xn) = cos
k1πx1

p1
·

n∏
j=2

sin
k jπx j

p j
.

Applying this process to all j ∈ {2, 3, ..., n} , we get

hk = hk1...kn =
1

k1k2...kn
h1,1,..,1

k1...kn
,

where
h1,1,..,1

k1...kn
= C

∫ p1

0
...

∫ pn

0

∂nh(x1, x2, ..., xn)
∂x1...∂xn

v1,1,..,1
k1...kn

(x1, x2, ..., xn)dx1...dxn,

v1,1,..,1
k1...kn

(x1, x2, ..., xn) =
n∏

j=1

cos
k jπx j

p j
.

Using the Cauchy-Bunyakovsky inequality, we obtain

∑
k∈Nn

|hk| ≤

∞∑
k1=1

...

∞∑
kn=1

∣∣∣∣∣ 1
k1...kn

h1,1,..,1
k1...kn

∣∣∣∣∣ ≤
√√
∞∑

k1=1

...

∞∑
kn=1

1
k2

1...k
2
n

√√
∞∑

k1=1

...

∞∑
kn=1

∣∣∣h1,1,..,1
k1...kn

∣∣∣2.
As the system

{
v1,1,..,1

k1...kn
(x1, x2, ..., xn)

}
is orthogonal in space L2 (Π) and ∂nh(x1,x2,...,xn)

∂x1...∂xn
∈ L2 (Π), then due

to Bessel’s inequality, the series
∞∑

k1=1
...
∞∑

kn=1

∣∣∣h1,1,..,1
k1...kn

∣∣∣2 converges. Moreover, the series

∞∑
k1=1

...

∞∑
kn=1

1
k2

1...k
2
n
=

∞∑
k1=1

1
k2

1

...

∞∑
kn=1

1
k2

n
< ∞

also converges. This implies the assertion of the lemma.
The following assertion is proved in a similar way.
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Lemma 3.2. Let a function h(x) belong to a class C4
(
Π̄
)

and have continuous partial derivatives of the

form ∂n+4h(x)
∂x1...∂x5

j ...∂xn
for j ∈ {1, 2, ..., n} in Π̄. If the functions h(x), ∂

2h(x)
∂x2

j
, and ∂4h(x)

∂x4
j

satisfy conditions (3.3),

the number series
∞∑

k1=1
...
∞∑

k j=1
...
∞∑

kn=1
k4

j

∣∣∣hk1...k j...kn

∣∣∣ converges.

If the functions h(x), ∂
2h(x)
∂x2

j
, and ∂4h(x)

∂x4
j

satisfy conditions (3.3), the number series

∞∑
k1=1

...

∞∑
k j=1

...

∞∑
kn=1

k4
j

∣∣∣hk1...k j...kn

∣∣∣
converges.
Proof. Let the functions h(x) and ∂2h(x)

∂x2
j
, ∂

4h(x)
∂x4

j
satisfy conditions (3.3), then integrating the integral four

times over the variable x j in the equality

hk1...kn =
C

k1...kn

∫ p1

0
...

∫ pn

0

∂nh(x1, x2, ..., xn)
∂x1...∂xn

v1,1,..,1
k1...kn

(x1, x2, ..., xn) dx1...dxn,

we get

hk1...kn =
1

k1k2...k5
j ...kn

h1,1,..,5,...,1
k1k2...k j...kn

,

where

h1,1,..,5,...,1
k1k2...k j...kn

= C
∫ p1

0
...

∫ pn

0

∂n+4h(x1, x2, ..., xn)
∂x1...∂x5

j ...∂xn
v1,1,..,5,...,1

k1k2...k j...kn
(x1, x2, ..., xn) dx1...dxn,

v1,1,..,5,...,1
k1k2...k j...kn

(x1, x2, ..., xn) =
n∏

j=1

cos
k jπx j

p j
.

Using the Cauchy-Bunyakovsky inequality for
∞∑

k1=1
...
∞∑

kn=1

∣∣∣hk1...kn

∣∣∣, we obtain

∞∑
k1=1

...

∞∑
k j=1

...

∞∑
kn=1

k4
j

∣∣∣hk1...kn

∣∣∣ = ∞∑
k1=1

...

∞∑
kn=1

k4
j

k1k2...k5
j ...kn

∣∣∣∣h1,1,..,3,...,1
k1k2...k j...kn

∣∣∣∣
≤

√√
∞∑

k1=1

...

∞∑
kn=1

1
k2

1...k
2
j ...k2

n

√√
∞∑

k1=1

...

∞∑
kn=1

∣∣∣∣h1,1,..,3,...,1
k1k2...k j...kn

∣∣∣∣2.
As the system

{
v1,1,..,1

k1...kn
(x1, x2, ..., xn)

}
is orthogonal in space L2 (Π) and ∂nh(x1,x2,...,xn)

∂x1...∂xn
∈ L2 (Π), then

due to Bessel’s inequality, the series
∞∑

k1=1
...
∞∑

kn=1

∣∣∣h1,1,..,1
k1...kn

∣∣∣2 converges. This implies the statement of the

lemma.
Corollary 3.1. Let the conditions of Lemma 3.2 be satisfied, then the number series∑

k∈Nn

λk |hk| =

∞∑
k1=1

...

∞∑
k j=1

...

∞∑
kn=1

λk1...k j...kn

∣∣∣hk1...k j...kn

∣∣∣
converges.

The proof of this assertion follows from the representation of eigenvalues in the form λk1k2...kn =

εk1k2...knπ
4
( n∑

j=1

k2
j

p2
j

)2
and the assertion of Lemma 3.2.
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4. Uniqueness and existence of a solution to Problem 1

By definition, the solution to Problem 1 is expressed as functions u(t, x), f (x). If such functions
exist, they must be the elements of space L2 (Π) and, therefore, they can be represented as series

u(t, x) =
∞∑

k∈Nn

uk(t)vk(x) =
∞∑

k1=1

∞∑
kn=1

uk1...kn(t)vk1...kn(x), (4.1)

f (x) =
∑
k∈Nn

fkvk(x) =
∞∑

k1=1

. . .

∞∑
kn=1

fkvk(x), (4.2)

where uk(t) = uk1...kn(t) and fk = fk1...kn are the coefficients to be determined.
Substituting (4.1) and (4.2) into Eq (1.1) and equating the coefficients for vk(x), we obtain the

following problem for the coefficients uk(t):

∂uk(t)
∂t
= −λkuk(t) + fkg(t), (4.3)

uk(0) = φk, uk(T ) = ψk. (4.4)

The general solution to Eq (4.3) is the function

uk(t) = Ck · e−λkt + fk

∫ t

0
e−λk(t−τ)g(τ) dτ, k = (k1, ..., kn) ∈ Nn, (4.5)

where Ck are arbitrary constants. Let us introduce the notation

gk(t) =
∫ t

0
e−λk(t−τ)g(τ) dτ,

then uk(t) from (4.5) is represented in the form

uk(t) = Ck · e−λkt + fkgk(t), k = (k1, ..., kn) ∈ Nn.

Now, we will consider two cases separately: g(t) = 1 and g(t) , 1.
(I) Suppose g(t) = 1, then

gk(t) =
∫ t

0
e−λk(t−τ) dτ =

1
λk

(
1 − e−λkt

)
and uk(t) are represented as

uk(t) = Ck · e−λkt +
fk

λk

(
1 − e−λkt

)
.

If we use condition (4.4), we obtain

Ck = uk(0) = φk, ψk = uk(T ) = φke−λkT +
fk

λk

(
1 − e−λkT

)
,

then we find

fk = λk
ψk − φke−λkT

1 − e−λkT . (4.6)
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The solution to problem (4.3), (4.4) is represented as

uk(t) =
e−λkt − e−λkT

1 − e−λkT φk +
1 − e−λkt

1 − e−λkT ψk. (4.7)

Hence, the solution to Problem 1 can be written as

u(t, x) =
∞∑

k1=1

...

∞∑
kn=1

[
e−λkt − e−λkT

1 − e−λkT φk +
1 − e−λkt

1 − e−λkT ψk

]
vk(x), (4.8)

f (x) =
∞∑

k1=1

...

∞∑
kn=1

λk
ψk − φke−λkT

1 − e−λkT vk(x). (4.9)

By construction and also due to the properties of functions vk(x), the function u(t, x) from (4.8)
formally satisfies conditions (1.1)–(1.4). Let us examine the smoothness of the functions u(t, x)
and f (x).

Let the functions φ(x) and ψ(x) satisfy the conditions of Corollary 3.1, then the number series
∞∑

k1=1

...

∞∑
kn=1

λk (|φk| + |ψk|)

converges. As λk = εkµ
2
k and εk > 0 does not tend to 0, the functions 1

1−e−λkT and e−λkT

1−e−λkT are bounded.
For the coefficients fk from equality (4.6), we obtain

| fk| ≤ λk
1

1 − e−λkT |ψk| + λk
e−λkT

1 − e−λkT |φk| ≤ C (λk |φk| + λk |ψk|) .

Based on this estimate and the uniform boundedness of the moduli of the eigenfunctions
∣∣∣vk1...kn(x)

∣∣∣
from (2.3), we obtain absolute and uniform convergence of the functional series (4.9) in the closed
domain Π̄. Hence, the sum of this series, i.e., the function f (x), is continuous in the domain Π̄. For all
0 ≤ t ≤ T , there are estimates∣∣∣∣∣∣e−λkt − e−λkT

1 − e−λkT

∣∣∣∣∣∣ = e−λkT

∣∣∣∣∣∣eλk(T−t) − 1
1 − e−λkT

∣∣∣∣∣∣ ≤ C,

∣∣∣∣∣∣ 1 − e−λkt

1 − e−λkT

∣∣∣∣∣∣ ≤ C.

The series (4.8) satisfies the estimate∣∣∣∣∣∣∣
∞∑

k1=1

...

∞∑
kn=1

[
e−λkt − e−λkT

1 − e−λkT φk +
1 − e−λkt

1 − e−λkT ψk

]
vk(x)

∣∣∣∣∣∣∣
≤C

∞∑
k1=1

...

∞∑
kn=1

[
|φk| + |ψk|

]
< ∞.

This means that this series converges absolutely and uniformly in a closed domain Q̄ and, therefore
the function u(t, x), the sum of this series, belongs to the class C(Q̄).

Differentiating series (4.8) with respect to the variable t, we obtain

ut(t, x) =
∞∑

k1=1

...

∞∑
kn=1

[
−λk

e−λkt

1 − e−λkT φk + λk
e−λkt

1 − e−λkT ψk

]
vk(x). (4.10)
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If f (λ) = λe−λt , then maxλ≥0 f (λ) = f (1/t) = 1
t e−1, which means that λe−λt ≤ 1

δe for t ≥ δ. Therefore,
the series (4.10) satisfies the estimate

|ut(t, x)| ≤ C
∞∑

k1=1

...

∞∑
kn=1

[
|φk| + |ψk|

]
.

If the condition of Lemma 3.1 is satisfied, the last series converges, then for an arbitrary δ > 0,
series (4.10) converges absolutely and uniformly in the closed domain Q̄δ = [δ ≤ t ≤ T ] × Π̄ ⊂ Q.
Hence, ut(t, x) ∈ C

(
Q̄δ

)
. Thus, by virtue of arbitrariness of δ > 0, it follows that ut(t, x) ∈ C (Q). The

inclusion Lxu(t, x) ∈ C (Q) is proved in a similar way. Thus, functions (4.8) and (4.9) for g(t) = 1
satisfy all the conditions of Problem 1.

If in Problem 1 homogeneous conditions (4.2) are specified, then for the coefficients fk1...kn in
equality (4.6), we obtain that fk1...kn ≡ ( f , vk1k2...k1) = 0. Hence, the function f (x) is orthogonal to
all elements of the system {vk(x)}k∈Nn . Due to the completeness of this system and continuity of the
function f (x), we obtain f (x) ≡ 0, x ∈ Π̄.

Similarly, for the coefficients uk(t) from equality (4.5) we obtain uk(t) ≡ (u, vk) = 0. Hence, the
equality u(t, x) = 0, x ∈ Π̄ is valid for almost all t ∈ [0,T ]. Due to the continuity of the function u(t, x)
in Q̄, we obtain that u(t, x) ≡ 0, (t, x) ∈ Q̄. This implies the uniqueness of the solution to Problem 1.

Thus, we proved the following assertion.
Theorem 4.1. Let the functions φ(x) and ψ(x) in Problem 1 satisfy the conditions of Corollary 3.1,
g(t) = 1 and let the coefficients ai, i = 0, 1, ..., 2n − 1 be such that the conditions εk > 0 are satisfied.
The solution to the problem exists, is unique, and is represented in the form of series (4.8) and (4.9).

(II) Let us study Problem 1 for the case g(t) , 1. If we search for a solution to the problem in
the form of (4.1) and (4.2), then for unknown coefficients uk(t), we obtain problem (4.3) and (4.4).
Moreover, the general solution to Eq (4.3) is determined by equality (4.5). Substituting this function
into condition (4.4), we have

φk = uk(0) = Ck, ψk = uk(T ) = φk · e−λkT + fkgk(T ).

Thus, if for all k ∈ Nn, the condition gk(T ) , 0, then

fk =
1

gk(T )

[
ψk − φk · e−λkT

]
, (4.11)

and

uk1...kn(t) =
[
1 −

gk1...kn(t)
gk1...kn(T )

e−λk1 ...kn (T−t)
]

e−λk1 ...kn tφk1...kn +
gk1...kn(t)
gk1...kn(T )

ψk1...kn . (4.12)

If in Problem 1, as in the case of g(t) = 1, homogeneous conditions (4.2) are given, we obtain
f (x) ≡ 0, x ∈ Π̄ and u(t, x) ≡ 0, (t, x) ∈ Q̄. Therefore, if the conditions gk(T ) , 0, k ∈ Nn are satisfied,
the solution to Problem 1 is unique. If for some m = (m1,m2, ...,mn) the equality gm(T ) = 0 holds,
then the homogeneous Problem 1 has a nonzero solution. Let us show that if this condition is satisfied,
a pair of functions

u(t, x) = fmgm(t)vm(x), f (x) = fmvm(x)

AIMS Mathematics Volume 9, Issue 3, 6832–6849.



6843

will be a solution to homogeneous Problem 1, where fm is an arbitrary constant. Indeed, applying the
operators ∂

∂t and Lx to the function u(t, x), we get

ut(t, x) = fm
∂gm(t)
∂t

vm(x) = fmg(t)vm(x) − λm fmgm(t)vm(x),

Lxu(t, x) = fmgm(t)Lvm(x) = −λm fmgm(t)vm(x).

Hence,
ut(t, x) − Lu(t, x) = fmg(t)vm(x) = f (x)g(t).

It is obvious that this function satisfies homogeneous conditions (1.2) and (1.3). Thus, we proved
the following assertion.
Theorem 4.2. If a solution to Problem 1 exists, then it is unique if, and only if, the conditions gk(T ) , 0
are satisfied for all k ∈ Nn.

Regarding the existence of a solution to Problem 1 in the case g(t) , 1, the following assertion
is valid.
Theorem 4.3. Let in Problem 1 the functions φ(x) and ψ(x) satisfy the conditions of Corollary 3.1, and
the coefficients ai, i = 0, 1, ..., 2n − 1 are such that the conditions εk > 0 are satisfied. A solution to the
problem exists and is represented in the form of series (4.8) and (4.9), where the coefficients fk and uk

are respectively determined by equalities (4.11) and (4.12).
Proof. If g(t) ∈ C[0,T ], |g(t)| ≥ g0 ≡ C, then according to the mean value theorem there is a point
ξ ∈ [0,T ] such that

gk(T ) =
∫ T

0
e−λk(T−τ)g(τ) dτ = g(ξ)

∫ T

0
e−λk(T−τ) dτ = g(ξ)

1 − e−λkT

λk
.

This gives us the following lower estimate:∣∣∣gk1...kn(T )
∣∣∣ = |g(ξ)|

1 − e−λk1 ...kn T

λk1...kn

≥
C

λk1...kn

. (4.13)

Using inequality (4.13) for fk from equality (4.11), we get

| fk| ≤
1

|gk(T )|

∣∣∣ψk − φk · e−λkT
∣∣∣ ≤ Cλk (|φk| + |ψk|) .

Similarly from equality (4.12), we obtain for uk(t),

|uk(t)| ≤
∣∣∣∣∣e−λkt −

gk(t)
gk(T )

e−λkT
∣∣∣∣∣ |φk| +

∣∣∣∣∣ gk(t)
gk(T )

∣∣∣∣∣ |ψk| .

As the function g(t) is continuous on the interval [0,T ], it follows that

|gk(t)| ≤
∫ t

0
e−λk(t−τ) |g(τ)| dτ ≤ max

0≤τ≤T
|g(τ)|

∫ T

0
e−λk(t−τ) dτ.

Hence,
∣∣∣∣ gk(t)
gk(T )

∣∣∣∣ ≤ C. Therefore, the estimate

|uk(t)| ≤ C (|φk| + |ψk|)
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is valid for uk(t). The estimate ∣∣∣∣∣∂uk(t)
∂t

∣∣∣∣∣ ≤ Cλk (|φk| + |ψk|)

is proved in a similar way. From these estimates and the convergence of the series

∞∑
k1=1

...

∞∑
kn=1

(|φk| + |ψk|),
∞∑

k1=1

...

∞∑
kn=1

λk (|φk| + |ψk|)

absolute and uniform convergence of series (4.8) and (4.9) follows. For the sums of these series we get
f (x) ∈ C

(
Π̄
)

and u(t, x) ∈ C
(
Q̄
)
.

The absolute and uniform convergence of the series

∂u(t, x)
∂t

=

∞∑
k1=1

...

∞∑
kn=1

∂uk(t)
∂t

vk(x), Lxu(t, x) =
∞∑

k1=1

...

∞∑
kn=1

uk(t)Lvk(x)

in an arbitrary closed domain Q̄δ ⊂ Q and δ > 0 is proved similar to the case g(t) = 1. Therefore, the
inclusions ∂u(t,x)

∂t , Lu(t, x) ∈ C (Q) are valid. The theorem is proved.

5. Uniqueness and existence of a solution to Problem 2

The main assertion regarding Problem 2 is the following theorem.
Theorem 5.1. Let εk > 0, the function φ(x), satisfy the conditions of Corollary 3.1, then if f (x0) , 0,
h(t) ∈ C1[0,T ], h(0) = φ(x0), the solution to Problem 2 exists and is unique.
Proof. If we assume that the function g(t) is known, then the solution to Problem 2 can be represented as

u(t, x) =
∞∑

k1=1

...

∞∑
kn=1

[
φk1...kn · e

−λkt + fk

∫ t

0
e−λk(t−τ)g(τ) dτ

]
vk(x), (5.1)

where
fk =

∫ p1

0
...

∫ pn

0
f (x)vk(x) dx1...dxn.

Let us suppose that x = x0 in (5.1), then

h(t) =
∞∑

k1=1

...

∞∑
kn=1

[
φk · e−λkt + fk

∫ t

0
e−λk(t−τ)g(τ) dτ

]
vk(x0)

= φ0(t) +
∞∑

k1=1

...

∞∑
kn=1

[
fk

∫ t

0
e−λk(t−τ)g(τ) dτ

]
vk(x0)

=

∞∑
k1=1

...

∞∑
kn=1

φk1...kn · e
−λktvk(x0) +

∞∑
k1=1

...

∞∑
kn=1

[
fk

∫ t

0
e−λk(t−τ)g(τ) dτ

]
vk(x0),

where

φ0(t) =
∞∑

k1=1

...

∞∑
kn=1

φk · e−λktvk(x0). (5.2)
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Denote r(t) = h(t) − φ0(t) and

K(t, τ) =
∞∑

k1=1

...

∞∑
kn=1

fke−λk(t−τ)vk(x0). (5.3)

For the function g(t), we obtain the following Volterra integral equation of the first kind∫ t

0
K(t, τ)g(τ) dτ = r(t). (5.4)

Lemma 5.1. If the function φ(x) satisfies the conditions of Corollary 3.1, then the function φ0(t)
from (5.2) is continuous and has a continuous derivative on the interval [0,T ].
Proof. Let us differentiate the series (5.2)

φ′0(t) = −
∞∑

k1=1

...

∞∑
kn=1

λkφk · e−λktvk(x0).

As for the points of the domain Q̄, we have the estimate
∣∣∣e−λktvk(x0)

∣∣∣ ≤ C, then

∣∣∣φ′0(t)
∣∣∣ ≤ ∞∑

k1=1

∞∑
kn=1

λk |φk|.

If the condition of Corollary 3.1 is satisfied, the last number series converges, then series (5.2)
converges absolutely and uniformly. Therefore, the sum of this series represents a continuous function,
i.e., φ0(t) ∈ C1[0,T ]. The lemma is proved.

Let us study the properties of the kernel K(t, τ). Differentiating series (5.3) with respect to t, we get

Kt(t, τ) = −
∞∑

k1=1

...

∞∑
kn=1

λk fke−λk(t−τ)vk(x0). (5.5)

For series (5.3) and (5.5), we obtain the estimates

|K(t, τ)| ≤
∞∑

k1=1

...

∞∑
kn=1

| fk|, |Kt(t, τ)| ≤
∞∑

k1=1

...

∞∑
kn=1

λk | fk|.

If the function f (x) satisfies the conditions of Corollary 3.1, then the number series

∞∑
k1=1

...

∞∑
kn=1

| fk|,

∞∑
k1=1

...

∞∑
kn=1

λk | fk|

converges. The series (5.3) and (5.5) converge absolutely and uniformly in the closed domain
[0,T ] × [0,T ]. Therefore, the functions K(t, τ) and Kt(t, τ) are continuous in this domain. Further,
differentiating equality (5.4), we obtain

K(t, t)g(t) +
∫ t

0
Kt(t, τ)g(τ) dτ = r′(t). (5.6)
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As

K(t, t) =
∞∑

k1=1

...

∞∑
kn=1

fkvk(x0) = f (x0) , 0,

the equality (5.6) is an integral Volterra equation of the second kind with a continuous kernel and a
continuous righthand side. According to the general theory, such an equation has a unique solution g(t)
from the class C[0,T ].

If we substitute this function into equality (5.1), then the pair of functions {u(t, x), g(t)} satisfies all
the conditions of Problem 2. The smoothness of the function and the uniqueness of the solution are
proved as in the case of Problem 1. The theorem is proved.

6. Conclusions

In this paper, the solvability of some inverse problems for a nonlocal analogue of the fourth-
order parabolic equation is studied. The nonlocal operator is introduced using involutive mappings.
Unlike previous works of the authors, in this paper the problems are studied in the n-dimensional
case. The considered problems are solved by applying the Fourier method and reducing them to the
Volterra integral equation. In this case, a spectral problem arises for the nonlocal analogue of the
biharmonic operator. The eigenfunctions and eigenvalues for this problem are found explicitly and the
completeness of the system of eigenfunctions is proved. Solutions to the main problems are constructed
in the form of series using a system of eigenfunctions. Further, it is planned to continue the study of
inverse problems for high order differential equations with involutions.
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2. T. Carleman, La théorie des équations intégrales singulières et ses applications, Ann. Inst. H.
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