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Abstract: With the widespread use of Internet, Internet of Things (IoT) devices have exponentially 

increased. These devices become vulnerable to malware attacks with the enormous amount of data on 

IoT devices; as a result, malware detection becomes a major problem in IoT devices. A reliable and 

effective mechanism is essential for malware detection. In recent years, research workers have 

developed various techniques for the complex detection of malware, but accurate detection continues 

to be a problem. Ransomware attacks pose major security risks to corporate and personal information 

and data. The owners of computer-based resources can be influenced by monetary losses, reputational 

damage, and privacy and verification violations due to successful assaults of ransomware. Therefore, 

there is a need to swiftly and accurately detect the ransomware. With this motivation, the study designs 

an Ebola optimization search algorithm for enhanced deep learning-based ransomware detection 

(EBSAEDL-RD) technique in IoT security. The purpose of the EBSAEDL-RD method is to recognize 

and classify the ransomware to achieve security in the IoT platform. To accomplish this, the 

EBSAEDL-RD technique employs min-max normalization to scale the input data into a useful format. 

Also, the EBSAEDL-RD technique makes use of the EBSA technique to select an optimum set of 

features. Meanwhile, the classification of ransomware takes place using the bidirectional gated 

recurrent unit (BiGRU) model. Then, the sparrow search algorithm (SSA) can be applied for optimum 

hyperparameter selection of the BiGRU model. The wide-ranging experiments of the EBSAEDL-RD 

approach are performed on benchmark data. The obtained results highlighted that the EBSAEDL-RD 

algorithm reaches better performance over other models on IoT security. 
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1. Introduction 

In recent times, the Internet of Things (IoTs) has exponentially increased with the usage of smart 

devices. IoT devices allow us to access from anywhere such as homes, vehicles, and offices to make 

day-to-day tasks simple [1] and are utilized in smart cities, care services, health, smart homes, smart 

grids, vehicular networks, and other industries. Also, they have special features, namely lower energy 

consumption, lighter protocols, and compact size which adapt them better [2]. Extended transportation 

of smart devices in advertising along with declined trust in identifying devices has made the web of 

things more and more versatile [3]. Malicious attacks or applications, like ransomware and malware 

families, constantly pose crucial security problems to cybersecurity and can result in catastrophic losses 

to the web, data centers, mobile applications, and computer systems across several businesses and 

industries [4]. Ransomware is mainly developed to prevent and block victims from accessing system 

databases by using a robust encrypting method that can be decrypted by attackers [5]. 

Removing the ransomware will lead the targeted victim to permanently lose data, therefore, 

targeted victims are compelled to comply with the attacker's demand [6]. Attackers transform 

traditional ransomware into new ransomware families through modern technology, which makes it 

more challenging to reverse the ransomware infection [7]. Ransomware is a variant and sophisticated 

threat affecting users around the world that limits users from accessing the data or system by encrypting 

or locking the system screen and the user files unless a ransom is paid [8]. Locker ransomware and 

crypto-ransomware are the two different types of ransomware based on attack strategies. Crypto 

ransomware prevents access to data or files and the access is denied to the device or computer in locker 

ransomware [9]. 

Conventional ransomware detection methods, like data-centric-based, event-based, and 

statistical-based approaches, are not suitable to combat the attacks. Thus, the high level of security and 

protection implemented by adopting innovative technology against these malware attacks has gained 

immense attention from researchers [10]. Due to their fixed architecture, classical machine learning 

(ML) techniques are unable to distinguish complicated cyberattacks from ever-growing cyber threats 

and adversaries' or attacker's resources and capabilities. The objective is to provide security on the 

device from different attacks by using the latest and advanced technologies that are capable of 

detecting the attacks with recognition accuracy in less time [11]. In this context, deep learning (DL) 

shows the real face of cyber data, either attack or legitimate, by identifying the slight changes or 

differences. Therefore, DL may quickly identify the anomalies and facilitate an in-depth analysis of 

network data [12]. Therefore, a DL-driven detection technique becomes cost-effective, adaptive, and 

highly scalable without exhausting the primitive devices, which is a breakthrough invention in cyber-

security [13]. 

Alohali et al. [14] developed a sine cosine algorithm with a DL-based ransomware detection and 

classification (SCADL-RWDC) algorithm in the IoT platform. This algorithm employs the SCA-

feature selection (SCA-FS) system to increase the recognition accuracy. Also, the proposed method 

implements the Hybrid Grey Wolf Optimizer GWO (HGWO) with the GRU technique to classify 
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ransomware. The author in [15], introduced a new method to avoid crypto-ransomware by identifying 

block cipher techniques for IoT environment. This method has extracted the features in the opcode of 

binary documents for the microcontroller named 8-bit Alf and Vegard’s RISC (AVR) processor. 

In [16], developed a static analysis model based on N-gram opcodes with DL algorithm. At first, the 

proposed method splits the N-gram sequence into numerous patches as well as provides every patch 

to self-attention-based CNN (Conventual Neural Network) (SA-CNN). Next, the efficiency of SA-

CNNs must be combined and implemented in a bi-directional SA network to achieve the outcome of 

ransomware classification. In [17], an IoT-based IDS and classification system based-CNN (IoT-

IDCS-CNN) method was presented. The performance assessment utilizes parallel processing to use 

strong compute unified device architectures (CUDA) based Nvidia graphical processing unit (GPU) 

and high speed I9-core-based Intel CPU. 

In [18], an optimum graph-CNN-enabled ransomware detection (OGCNN-RWD) method was 

developed for cyber-security in the IoT infrastructure. This study presents learnable enthusiasm to 

teach learning-based optimizer (LETLBO) techniques for the subcategory of the FS method. The 

GCNN architecture has been employed to classify ransomware, and hyperparameters should be 

effectively preferred by the harmony search algorithm (HSA). In [19], the main objective is to examine 

a lightweight DL method that increases the detection rate with a decreased computation rate for 

confirming the real-time application of malware monitoring in limited IoT devices. The architecture 

has been employed for RNN, LSTM, and the bi-directional-LSTM-DL method under a vanilla 

configuration trained with conventional malware databases. 

Basnet et al. [20] projected the DL-based ransomware identification technique in SCADA-

controlled electric vehicle charging stations (EVCS) with evaluation studies of 3 DL techniques such 

as LSTM-RNN, 1D-CNN, and DNN. Ransomware was determined the Distributed Denial-of-Service 

DDoS (distributed denial-of-service) attack prefers to change the state of charge (SOC) configuration 

by surpassing the control threshold of SOC. In [21], various assessment of malware evaluation of 

sample was determined. The 3 malware identification algorithms based on visualization methods (i.e., 

clustering technique, probabilistic method, and DL algorithm) were developed. Afterwards, a 

developed measure depends on the risk of instances that could be utilized for evaluation. 

In the domain of IoT cybersecurity, researchers like Alohali et al. ([14]) have proposed innovative 

approaches, such as the SCADL-RWDC algorithm integrating sine cosine slgorithm and deep learning, 

while Basnet et al. ([20]) focused on DL-based ransomware identification in SCADA-controlled 

electric vehicle charging stations. These studies collectively offer a variety of methodologies, from 

SCA-FS to OGCNN-RWD, contributing to the advancement of ransomware detection and overall 

cybersecurity in IoT environments. 

The presented article develops an EBSAEDL-RD approach in IoT security. In order to achieve 

this, the EBSAEDL-RD approach utilizes min-max normalization to scale input data effectively and 

incorporates the EBSA method for optimal feature selection. Ransomware classification is performed 

using the bidirectional gated recurrent unit (BiGRU) method, with the sparrow search algorithm (SSA) 

employed for fine-tuning hyperparameters. Extensive experiments employing the EBSAEDL-RD 

approach are conducted on a benchmark dataset. 

2. The proposed model 

In this study, we design a new EBSAEDL-RD algorithm in IoT security. The purpose of the 
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EBSAEDL-RD technique is to recognize and classify the ransomware to achieve security in the IoT 

platform. To achieve this, the EBSAEDL-RD technique contains different types of processes, namely 

min-max normalization, EBSA-based feature selection, BiGRU classification, and SSA-based 

hyperparameter tuning. Figure 1 illustrates the working flow of the EBSAEDL-RD technique. 

 

Figure 1. Workflow of EBSAEDL-RD technique. 

2.1. Min-Max normalization 

Initially, the EBSAEDL-RD method exploits min-max normalization. In the context of 

ransomware detection, min-max normalization is a preprocessing stage for IoT security [22]. This 

method is used to standardize and scale mathematical features within a certain range, between 0 and 

1. In the field of IoT security, where the recognition of ransomware threats is of great significance, 

normalizing input data ensures that dissimilar feature sizes do not excessively impact the performance 

of ML algorithms. The min-max normalization facilitates the effective utilization of diverse features 

in detecting patterns indicative of ransomware attacks by transforming the data into a consistent scale. 

This normalization method improves the accuracy and robustness of prediction techniques, 

contributing to the general efficiency of ransomware detection systems in protecting the IoT 

environment from possible security attacks. 

2.2. Feature selection 

The EBSAEDL-RD technique makes use of the EBSA technique to select an optimum set of 
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features. Ebola optimization search algorithm (EOSA), a recent meta-heuristic technique, draws 

inspiration from the propagation model of Ebola virus disease introduced by Oyelade and Ezugwu 

[23]. The explanation of the EOSA technique is discussed below: 

1) Set each scalar and vector quantity which are parameters and individuals. Individuals in the set: 

Infected (I), Susceptible (S), Vaccinated (V), Dead (D), Recovered (R), Hospitalized (H), and 

Quarantine (Q) with the initial value. 

2) The index case (I) is randomly generated from inclined individuals. 

3) The index case is set as global and local optimum and the fitness values. 

4) When the iteration count is not exhausted infected individuals exist, 

a. Generate and update their location depending on their movement for every susceptible 

individual. Note that the infected state is further moved, then there exists more infection, 

hence short displacement defines exploitation or else exploration. 

i. Generate diseased individual (𝑛𝐼) depend on (a).  

ii. Add that case to the I 

b. Calculate the individual number and add it to H, D, R, B, V, and Q through the 

corresponding rate based on the dimension of I 

c. Update S and I based on I. 

d. Pick the present finest from I and compute it with global finest. 

e. If the terminating criteria are not met, then return to step 6. 

5) Return global best and each solution. 

The mathematical modelling is given as follows: update of Funeral (F), Exposed (E), S, I, H, V, 

R, Q, and D are directed by a method of difference equation derived. The differential calculus aims to 

get the rates of change of quantities in terms of time 𝑡: 

𝜕𝑆(𝑡)

𝜕𝑡
= 𝜋 − (𝛽1𝐼 + 𝛽3𝐷 + 𝛽4𝑅 + 𝛽2(PE)𝜂)𝑆 − (𝜏𝑆 + ᴦ𝐼)   (1) 

𝜕𝐼(𝑡)

𝜕𝑡
= (𝛽1𝐼 + 𝛽3𝐷 + 𝛽4𝑅 + 𝛽2(𝑃𝐸)𝜆)𝑆—(ᴦ + 𝛾)𝐼—(𝜏 )𝑆    (2) 

𝜕𝐻(𝑡)

𝜕𝑡
= 𝛼𝐼 − (𝛾 + 𝜛)𝐻        (3) 

𝜕𝑅(𝑡)

𝜕𝑡
 = 𝛾𝐼 − ᴦ𝑅          (4) 

𝜕𝑉(𝑡)

𝜕𝑡
= 𝛾𝐼 − (𝜇 + 𝜗)𝑉        (5) 

𝜕𝐷(𝑡)

𝜕𝑡
= (𝜏𝑆 + ᴦ𝐼) − 𝛿𝐷        (6) 

𝜕𝑄(𝑡)

𝜕𝑡
= (𝜋𝐼 − (𝛾𝑅 + ᴦ𝐷)) − 𝜉𝑄      (7) 

In the EBSA approach, the fitness function (FF) is intended to have a balance between the number 

of features chosen in every solution (minimum) and the classifier outcome (maximum) attained, Eq (8) 

shows the FF to calculate the solution. 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
        (8) 

In Eq (8), 𝛼 and 𝛽 are the significance of classifier quality and subset length, ∈ [1,0] and 𝛽 =

1 − 𝛼. 𝛾𝑅(𝐷) indicates the classifier error rate, |𝑅| stands for the cardinality of the selected subset, 

and |𝐶| refers to the overall amount of features in the dataset (parameters). 

2.3. BiGRU based classification 

In this phase, the classification of ransomware takes place using the BiGRU model. BiGRU is an 

RNN that has been effectively utilized for solving time‐series sequence data challenges due to its bi-

directional learning system that improves the learning of temporal designs from the time‐sequence 

data [24]. All the BiGRU blocks comprise a cell that stores data. All the blocks are composed of update 

and reset gates and the cells assist in addressing the disappearing gradient problems. BiGRU contains 

2 GRU units: reset and update gates. The reset gate integrates novel input with preceding memory and 

the update gate determines the preceding memory to recollect. The input dataset is fed into feedback 

and feedforward networks in terms of time, and these two are linked to one resultant layer. The BiGRU 

gates are planned to store data extensively in either backward or forward ways if the optimum solution 

than feedforward networks. The bi-directional method offers the ability to employ either past or future 

contexts from the sequences. BGRU has been formulated as: 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗,  ℎ𝑡

⃖⃗ ⃗⃗ ⃗]        (9) 

where ℎ𝑡
⃗⃗  ⃗ and ℎ𝑡

⃖⃗ ⃗⃗ are the feedforward and the backward blocks, respectively. 

The last resultant layer at time 𝑡 is: 

𝑦𝑡 = 𝜎(𝑊𝑦ℎ𝑡 + 𝑏𝑦)       (10) 

where 𝜎 stands for the activation function, 𝑊𝑦 denotes the weighted, and 𝑏𝑦 represents the bias 

vector. 

Every GRU block is composed of 4 modules: reset gate 𝑟𝐼 with equivalent weights and biases 

𝑊𝑟 ,  𝑈𝑟 , 𝑏𝑟, input vector 𝑥𝑙 with equivalent weights and biases, output vector ℎ𝑡 with its weights and 

biases 𝑊ℎ,  𝑈ℎ, 𝑏ℎ, and update gate 𝑧𝐼 with equivalent weights and biases 𝑊𝑧,  𝑈𝑧, 𝑏𝑧. The gating 

units are defined as follows: 

Primarily, for 𝑡 = 0, the resultant vector is ℎ0 = 0 

𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)     (11) 

𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)      (12) 

ℎ𝑡 = 𝑧𝑡ℎ𝑡−1 + (1 − 𝑧𝑡) ⊗ ∅ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊗ ℎ𝑡−1) + 𝑏ℎ)  (13) 

where 𝑊, 𝑈, 𝑎𝑛𝑑 𝑏 denote the parameter matrices and vectors, 𝜎𝑔 defines the sigmoid function, ⊗ 

indicates the Hadamard product, 𝜎𝑔 and ∅ℎ imply the activation functions, and ∅ℎ signifies the 

hyperbolic tangent. Figure 2 defines the infrastructure of the BiGRU model. 
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Figure 2. BiGRU architecture. 

Initially, the BGRU cells have been generated for the outcome of feedforward has been calculated 

(𝐹𝑡)  and the feedback propagation (𝐵𝑡)  is combined. These 4 approaches combine the solution, 

multiplication, concatenation (default), average, and summation. In this case, it is related to the 

solution of the entire combining model. The combining is defined as: 

𝑂𝑡
1 = 𝑐𝑜𝑛𝑐𝑎𝑡 ((𝐹𝑡

⃗⃗  ⃗), (𝐵𝑡
⃖⃗⃗⃗⃗)) 

Such that  

(𝐹𝑡
⃗⃗  ⃗) = (ℎ1

⃗⃗⃗⃗ , ℎ2
⃗⃗⃗⃗ , ℎ3

⃗⃗⃗⃗ , … , ℎ𝑡
⃗⃗  ⃗) 

and 

(𝐵𝑡
⃖⃗⃗⃗⃗) = (ℎ𝑡

⃖⃗ ⃗⃗ , ℎ𝑡+1
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, ℎ𝑡+2

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, ℎ𝑡+3
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, … ℎ𝑛

⃖⃗ ⃗⃗⃗)     (14) 

Then, the FC layer has been utilized to increase the BiGRU solution with its bias and weight. 

Afterwards, a Softmax regression layer generates a predictive utilization in the FC layer. The weighted 

classification layer has been utilized for computing the weighted cross‐entropy loss function to predict 

score and training target that assists in addressing the class imbalanced problems. The next loss can be 

utilized as: 

(𝑝,𝑡) = −(1 − (𝑝𝑡)
𝛾)log2(𝑝𝑡) ∗ 𝜃𝑖       (15) 

where (𝑝,𝑡) defines the assessed probability of all the classes, 𝛾 ≥ 0 refers to the discount factor 

parameter that is tuned to better evaluate, and 𝜃𝑖 refers to the logic weight of all the classes. 

2.4. Hyperparameter tuning using SSA model 

Finally, the SSA can be applied for optimal hyperparameter selection of the BiGRU model. SSA 
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developed that pretends to antipredatory and predatory performance of sparrows [25]. In the SSA 

model, the individuals are separated into producers by huge energy assets, joiners discover food 

through producers and vigilantes who are highly answerable for cautionary. The uniqueness of finders 

and joiners is not stable. Any individual who finds a superior food source becomes a producer while 

others become a joiner. Since the producer's ratio to joiners is constant in a cluster, during the foraging 

procedure, producers are highly responsible for searching regions for plentiful food and delivering 

guidelines to other joiners who constantly discover producers by optimal food. As soon as vigilantes 

discover a hunter, they guide an alarm sign via song and the producer takes the joiner far away to a 

protected region once a sign attains a definite threshold. At the edge of the cluster, other sparrows 

rapidly moved to the security area, but the sparrows who were in the middle had to move arbitrarily in 

confidence of receiving nearer to other sparrows. Let us assume that the complete number of sparrows 

is 𝑚, 𝑗 signifies spatial distribution, the ratio of the producer to joiner is between 7:1 and 3:1, and 

W𝑠 denotes protection threshold of cautionary signal, Then, 𝑆𝑖,𝑗 = (𝑆1,𝑗 ,  𝑆2,𝑗 , … ,  𝑆𝔪,𝑗) refers to the 

location of 𝑖‐th sparrow in flight. So, the location of producer, joiner, and vigilante upgraded affording 

to Eqs (16–18). 𝑅2 ≥ 𝑊𝑠 in Eq. (16), signifies vigilantes discover a hunter, all sparrows must rapidly 

fly to harmless places, and 𝑅2 < 𝑊𝑠 then the producer continues its search in a wider region. If I >
𝑚

2
  in Eq (17), then 𝑡ℎ𝑒 𝑖𝑡ℎ joiner with inferior fitness value is most probably a hungry sparrow. If 

𝑓𝑖 = 𝑓𝑏 shows that the sparrow is in mid of the swarm, and 𝑓𝑖 > 𝑓𝑏 then the sparrow is at the edge of 

the swarm in Eq (18). 

𝑆𝑖,𝑗
𝑘+1 = {

𝑆𝑖,𝑗
k + 𝑄 ⋅ 𝐿, 𝑅2 ≥ 𝑊𝑠

𝑆𝑖,𝑗
𝑘 ⋅ exp (

−𝑖

𝛼⋅𝑖𝑡𝑒𝑟max 
) , 𝑅2 < 𝑊𝑠

      (16) 

𝑆i,j
𝑘+1 = {

𝑄 ⋅ exp (
𝑆𝑤𝑜𝑟𝑠𝑡
𝑘 −𝑆i,j

𝑘

𝑖2
) , 𝑖 >

𝔪

2

𝑆𝑏
k+1 + |𝑆𝑖,j

k − 𝑆𝑏
k+1| ⋅ 𝐴+ ⋅ 𝐿, 𝑖 ≤

𝔪

2

      (17) 

𝑆i,j
𝑘+1 = {

𝑆𝑏𝑒𝑠𝑡
𝑘 + 𝛽 ⋅ |𝑆i,j

𝑘 − 𝑆𝑏𝑒𝑠𝑡
𝑘 |, 𝑓𝑖 > 𝑓𝑏

𝑆𝑖,𝑗
k + 𝑘 ⋅ (

|𝑆i,j
𝑘 −𝑆𝑤𝑜𝑟𝑠𝑡

𝑘 |

(𝑓𝑖−𝑓𝑤)+𝜀
) , 𝑓𝑖 = 𝑓𝑏

      (18) 

where 𝑆𝑖,𝑗
k+1 signifies the location of 𝑗𝑡ℎ element of 𝑖𝑡ℎ sparrow at (𝑘 + 1)‐th iteration, 𝑆𝑖,𝑗

k  

represents the position of 𝑗𝑡ℎ dimension of 𝑖𝑡ℎ sparrow at 𝑘𝑡ℎ iteration, 𝑆𝑏𝑒𝑠𝑡
k+1  denotes location of 

best producer at (𝑘 + 1)‐th iteration, 𝐿 demonstrates a medium of every element inside is 1, 𝑆𝑏𝑒𝑠𝑡
k  

is the global optimum solution at the 𝑘𝑡ℎ  iteration, 𝑆𝑤𝑜𝑟𝑠𝑡
k   is the global worst place at 𝑡ℎ𝑒 𝑘𝑡ℎ 

iteration, Q denotes an arbitrary amount that follows the standard distribution, 𝑅2 directs the value of 

the alarm signal for all sparrows, 𝑊𝑠  signifies the protection threshold of the alarm signal that is 

equivalent to 0.8, 𝑓𝑖 and 𝑓𝑏 are said to be present and global best fitness value respectively, 𝑖𝑡𝑒𝑟max 

refers to the maximal amount of iterations, 𝛼 and 𝜅 signify random numbers in [0,1], 𝜀 defines 

the error constant, and 𝛽 denotes the control parameter.  

The SSA method derives an FF to acquire higher efficiency of classification. It describes a 

positive integer to characterize the enhanced accuracy of candidate solutions. Here, the decline of the 

classifier error rate is regarded as an FF, 
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100        (19) 

3. Results, analysis, and discussion 

The ransomware detection outcomes of the EBSAEDL-RD method are tested using a dataset [26] 

encompassing 840 samples as defined by Table 1. 

Figure 3 defines the confusion matrices achieved by the EBSAEDL-RD algorithm under epochs 

from 500 to 3000. The experimental values imply that the EBSAEDL-RD algorithm has efficient 

recognition of the goodware and ransomware samples under two classes. 

Table 1 Details of dataset. 

Classes No. of Instances 

Goodware 420 

Ransomware 420 

Total Instances 840 

 

Figure 3. Confusion matrices of the EBSAEDL-RD model (a–f) epochs 500–3000. 

Table 2 and Figure 4 show the ransomware detection of the EBSAEDL-RD technique is 

investigated under distinct epochs. The outcome inferred that the EBSAEDL-RD method reaches 
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effectual detection of the goodware and ransomware. On 500 epochs, the EBSAEDL-RD method 

attains an average 𝑎𝑐𝑐𝑢𝑦 of 98.69%, 𝑠𝑒𝑛𝑠𝑦 of 98.69%, 𝑠𝑝𝑒𝑐𝑦 of 98.69%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.69%, and 

MCC of 97.39%. On 1000 epochs, the EBSAEDL-RD system achieved an average 𝑎𝑐𝑐𝑢𝑦 of 99.88%, 

𝑠𝑒𝑛𝑠𝑦 of 99.88%, 𝑠𝑝𝑒𝑐𝑦 of 99.88%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.88%, and MCC of 99.76%. On 2000 epochs, the 

EBSAEDL-RD methodology reached an average 𝑎𝑐𝑐𝑢𝑦 of 99.52%, 𝑠𝑒𝑛𝑠𝑦 of 99.52%, 𝑠𝑝𝑒𝑐𝑦 of 

99.52%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.52%, and MCC of 99.05%. On 2500 epochs, the EBSAEDL-RD algorithm 

achieved an average 𝑎𝑐𝑐𝑢𝑦  of 99.17%, 𝑠𝑒𝑛𝑠𝑦  of 99.17%, 𝑠𝑝𝑒𝑐𝑦  of 99.17%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.17%, 

and MCC of 98.34%. Lastly, on 3000 epochs, the EBSAEDL-RD technique obtained an average 

𝑎𝑐𝑐𝑢𝑦 of 99.05%, 𝑠𝑒𝑛𝑠𝑦 of 99.05%, 𝑠𝑝𝑒𝑐𝑦 of 99.05%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.05%, and MCC of 98.10%. 

Table 2. Ransomware detection of the EBSAEDL-RD system under different epochs. 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

Epoch - 500 

Goodware 99.52 99.52 97.86 98.70 97.39 

Ransomware 97.86 97.86 99.52 98.68 97.39 

Average 98.69 98.69 98.69 98.69 97.39 

Epoch - 1000 

Goodware 99.76 99.76 100.00 99.88 99.76 

Ransomware 100.00 100.00 99.76 99.88 99.76 

Average 99.88 99.88 99.88 99.88 99.76 

Epoch - 1500 

Goodware 99.52 99.52 99.52 99.52 99.05 

Ransomware 99.52 99.52 99.52 99.52 99.05 

Average 99.52 99.52 99.52 99.52 99.05 

Epoch - 2000 

Goodware 99.76 99.76 99.29 99.52 99.05 

Ransomware 99.29 99.29 99.76 99.52 99.05 

Average 99.52 99.52 99.52 99.52 99.05 

Epoch - 2500 

Goodware 99.52 99.52 98.81 99.17 98.34 

Ransomware 98.81 98.81 99.52 99.16 98.34 

Average 99.17 99.17 99.17 99.17 98.34 

Epoch - 3000 

Goodware 99.52 99.52 98.57 99.05 98.10 

Ransomware 98.57 98.57 99.52 99.04 98.10 

Average 99.05 99.05 99.05 99.05 98.10 
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Figure 4. Average outcome of EBSAEDL-RD system under various epochs. 

The 𝑎𝑐𝑐𝑢𝑦 curves for training (TR) and validation (VL) depicted in Figure 5 for the EBSAEDL-

RD approach under epochs 500–3000 offer appreciated insights into its outcome. Specifically, there is 

a consistent development in both TR as well as TS 𝑎𝑐𝑐𝑢𝑦 with maximum epochs, demonstrating the 

model's ability to learn and distinguish designs in both TR and TS data. The rising trend in TS 𝑎𝑐𝑐𝑢𝑦 

underlines the model's adaptability to the TR dataset and its capability to create accurate predictions 

on unnoticed data, emphasizing robust generalized abilities. 

Figure 6 offers a widespread outline of the TR and TS loss performances for the EBSAEDL-RD 

system on distinct epochs 500–3000. The TR loss constantly diminishes as the model increases its 

weights to reduce classifier errors on both databases. The loss curves exemplify the model's alignment 

with the TR data, emphasizing its proficiency to capture designs successfully in both databases. The 

continuous refinement of parameters in the EBSAEDL-RD approach is noticeable, intended to 

diminish discrepancies among predictions and actual TR labels. 

Concerning the PR curve existing in Figure 7, the findings affirm that the EBSAEDL-RD 

methodology under epoch 1000 consistently achieves improved PR values across each class. These 

results underscore the model's effective capacity for discriminating between various classes, 

highlighting its effectiveness in correctly distinguishing classes. 

Additionally, in Figure 8, we existing ROC curves generated by the EBSAEDL-RD algorithm 

under epoch 1000, demonstrating its proficiency in distinguishing among class labels. These curves 

provide appreciated insights into how the tradeoff between TPR and FPR differs across dissimilar 

classification epochs and thresholds. The results underscore the model's correct classification solution 

under two class labels, highlighting its efficacy in addressing diverse classification tests. 
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Figure 5. 𝐴𝑐𝑐𝑢𝑦  curve of the EBSAEDL-RD method (a–f) epochs 500–3000. 
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Figure 6. Loss curve of the EBSAEDL-RD system (a–f) epochs 500–3000. 
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Figure 7. PR curve of the EBSAEDL-RD algorithm under epoch 1000. 

 

Figure 8. ROC curve of the EBSAEDL-RD technique under epoch 1000. 
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In Table 3, the comparative results of the EBSAEDL-RD technique are portrayed [18]. Figure 9 

investigates the comparison study of the EBSAEDL-RD technique in terms of 𝑎𝑐𝑐𝑢𝑦. The outcomes 

show that the EBSAEDL-RD method gains improved 𝑎𝑐𝑐𝑢𝑦  values. Based on 𝑎𝑐𝑐𝑢𝑦 , the 

EBSAEDL-RD technique offers the greatest 𝑎𝑐𝑐𝑢𝑦  of 99.88% whereas the OGCNN-RWD, 

DWOML, Bagging, AdaBoostM1, ROF, DT, and RF systems offer lesser 𝑎𝑐𝑐𝑢𝑦 values of 99.67%, 

99.12%, 98.53%, 96.19%, 95.87%, 97.71%, and 98.86%, respectively. 

Table 3. Comparison analysis of the EBSAEDL-RD method with other techniques.  

Methods 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 

EBSAEDL-RD 99.88 99.88 99.88 

OGCNN-RWD 99.67 99.68 99.68 

DWOML 99.12 99.49 99.24 

Bagging 98.53 93.74 96.14 

AdaBoostM1 96.19 94.56 94.67 

Rotation Forest (ROF)  95.87 96.81 97.44 

Decision Tree (DT)  97.71 97.87 98.20 

Random Forest (RF)  98.86 98.82 98.32 

 

Figure 9. 𝐴𝑐𝑐𝑢𝑦 of the EBSAEDL-RD method compared with other systems. 
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Figure 10 scrutinizes the comparison analysis of the EBSAEDL-RD algorithm with respect to 

𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦. The outcome means that the EBSAEDL-RD methodology obtains superior 𝑠𝑒𝑛𝑠𝑦 

and 𝑠𝑝𝑒𝑐𝑦 values. Based on 𝑠𝑒𝑛𝑠𝑦, the EBSAEDL-RD method offers a higher 𝑠𝑒𝑛𝑠𝑦 of 99.88% 

whereas the OGCNN-RWD, DWOML, Bagging, AdaBoostM1, ROF, DT, and RF algorithms attain 

lower 𝑠𝑒𝑛𝑠𝑦 values of 99.68%, 99.49%, 93.74%, 94.56%, 96.81%, 97.87%, and 98.82%, respectively. 

According to 𝑠𝑝𝑒𝑐𝑦, the EBSAEDL-RD system offers an enhanced 𝑠𝑒𝑛𝑠𝑦 of 99.88% whereas the 

OGCNN-RWD, DWOML, Bagging, AdaBoostM1, ROF, DT, and RF systems reach reduced 𝑠𝑝𝑒𝑐𝑦 

values of 99.68%, 99.24%, 96.14%, 94.67%, 97.44%, 98.20%, and 98.32%, respectively. Accordingly, 

the EBSAEDL-RD system has been executed for enhanced ransomware detection. 

 

Figure 10. 𝑆𝑒𝑛𝑠𝑦 and 𝑆𝑝𝑒𝑐𝑦 of the EBSAEDL-RD technique compared with other approaches. 

4. Conclusions 

In this study, we design a new EBSAEDL-RD method in IoT security. The purpose of the 

EBSAEDL-RD technique is to recognize and classify the ransomware to achieve security in the IoT 

platform. To achieve this, the EBSAEDL-RD technique contains different types of processes, namely 

min-max normalization, EBSA-based feature selection, BiGRU classification, and SSA-based 

hyperparameter tuning. Initially, the EBSAEDL-RD technique employs min-max normalization to 

scale the input data into useful format. Then, the EBSAEDL-RD technique makes use of the EBSA 

method to select an optimum set of features. Meanwhile, the classification of ransomware takes place 

using the BiGRU model. At last, SSA can be applied for optimum hyperparameter selection of the 

BiGRU model. The wide-ranging experiments of the EBSAEDL-RD approach are performed on 
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benchmark data. The obtained results highlighted that the EBSAEDL-RD method reaches better 

performance over other models on IoT security. 
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