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Abstract: The most essential cause of the fracture of the dropper is the effect of alternating stress for 
a long time. Therefore, in order to ensure the safe operation of high-speed railways, the influence of 
moving loads on the stress of a dropper was investigated in this study. Due to a high-voltage catenary 
system, it is very difficult to measure the moving load. Thus, the uplift displacement measured by 
some software and hardware devices has been applied to the contact wire instead of the moving load. 
The response equation for the contact wire has been derived so as to determine the initial and 
boundary conditions of each dropper. Then it was combined with the equation for vibration analysis 
of the dropper and the stress of each dropper was calculated by using the finite-difference method 
based on a written MATLAB program. The results show that the dropper stress, during a certain 
period goes through two stages of immediate rebound and bending compression when the uplift 
displacement is large. After the pantograph passes, the vibration of the dropper tends to be smooth; 
also, dropper stress variation with timecan be described by three stages: immediate rebound, 
vibration attenuation, and bending compression. In addition, the maximum tensile stress of dropper 
Ⅳ was the highest. It indicates that dropper Ⅳ was more prone to fracture than other droppers. 
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1. Introduction  

The catenary system, mainly consisting of contact wire, messenger wire and droppers, is the 
source of power during the operation of high-speed trains. The power required for train operation is 
obtained through the contact between the pantograph and contact wire. The interaction could cause 
the violent vibration of the contact wire. Droppers are subjected to such irregular vibration and 
mechanical fatigue for long periods of time, which leads to frequent breakage and seriously affects 
the safe operation of trains. Therefore, it is necessary to study the fatigue characteristics of droppers. 

Regarding dropper fatigue, researchers have designed and developed devices that could 
implement fatigue testing under medium- and high-frequency vibration, even under conditions of 
repeated bending and vibration of the dropper [1,2]. However, these test devices could not determine 
the stress attributed to the vibration of the dropper. Therefore, it is very difficult to determine the 
stress variation in the dropper with time via experimentation. In a theoretical study on the fatigue 
characteristics of droppers, a catenary model was mainly established by using the finite-difference 
method [3], the finite-element method [4] and the mode superposition method [5]. Then, the fatigue 
life of the dropper was predicted and the respective influences of train speed, the external 
environment and the position of the dropper on its fatigue life were studied [6–8]. However, the most 
significant cause of dropper fracture is alternating stress on the dropper; thus, it is of great 
significance to study it. Unfortunately, little research has been done on the effects of dropper stress 
on its life. Various scholars [9,10] have applied a sinusoidal force to simulate the moving load on the 
contact wire and studied the influence of a moving load on the stress of the dropper. 

However, the catenary system is a high-voltage system, which makes it very difficult to measure 
the moving load. The novel aspect of the conducted research is that we have used some software and 
hardware devices to determine the displacement of the connection between the dropper and the 
contact wire when the pantograph passes; then, we applied this displacement to the contact wire 
instead of the moving load. Furthermore, we investigated its influence on dropper stress in this study. 
In the next study, we plan to utilize the results of this study to predict the fatigue life of droppers for 
practical application in safety estimation. 

2. Vibration analysis for the contact wire 

2.1. Catenary model 

To simplify the analysis, the mechanical structure of the pantograph was neglected and the 
pantograph was simplified to a continuous moving vertical force acting on the catenary. A 
pantograph-catenary system with a simple chain suspension as the catenary model has been 
established, as shown in Figure 1. The distance between two adjacent droppers was set as 10 m. The 
lengths of droppers Ⅰ and Ⅴ were 1.6 m [11], those of droppers Ⅱ and Ⅳ were 1.295 m, and that of 
dropper Ⅲ was 1.2547 m. 
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Figure 1. Mechanical model of simple chain suspension catenary. 

In Figure 1, c represents the distance between the initial position of load action and the origin O. 
F is the contact force between the pantograph and the catenary, which varies according to time t and 
position x, that is to say, F could be expressed as 𝐹𝐹(𝑥𝑥, 𝑡𝑡). If the pantograph operates at a speed of v, 
𝐹𝐹(𝑥𝑥, 𝑡𝑡) could be represented by the Dirac function (𝛿𝛿 function) [12], i.e., 𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 𝐹𝐹(𝑡𝑡)𝛿𝛿(𝑥𝑥 −
(𝑐𝑐 + 𝑣𝑣𝑣𝑣)). 

Since the catenary system is a high-voltage system, the measurement of moving load is not easy 
to achieve; therefore, we measured the displacement of the connection between the dropper and the 
contact wire by using a camera when the pantograph passes; we applied this displacement to the 
contact wire instead of the moving load. Therefore, 𝐹𝐹(𝑡𝑡) is expressed by the measured uplift 
displacement of the dropper, i.e., 

 𝐹𝐹(𝑡𝑡) = 𝐾𝐾𝐾𝐾(𝑡𝑡), (1) 

where K is the stiffness of the catenary; 𝜉𝜉(𝑡𝑡)  is the uplift displacement of the dropper. 
Regarding the stiffness of the catenary, the average stiffness of the catenary was applied, and its 
value was 3694 N/m [13]. The uplift displacement at the connection between the dropper and the 
contact wire was collected by hardware and software systems [14]. The hardware included a camera, 
rangefinder and other equipment, and the software entailed writing C++ data acquisition and data 
processing programs on a C++ platform. The specific process is as follows. 

First, the camera was used to take pictures at equal time intervals. Then the data processing 
software was used to calibrate the distance-to-pixel ratio of the pictures obtained via the camera, and 
the corresponding relationship between the image pixels and the actual height of the structure was 
established. Finally, we calculated the uplift displacement at the connection between the dropper and 
the contact wire by calculating pixel variation as the pantograph passed. 

Figure 2 shows the uplift displacement of the dropper when the high-speed train passed at 250 km/h. 
In Figure 3, the blue dots represent the data points extracted from Figure 2, and the green line shows 
the corresponding fitted curve. The function was fitted by applying Fourier analysis using a 
MATLAB program. 
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Figure 2. The uplift displacement of the dropper when the high-speed train passed at 250 km/h. 

 

Figure 3. The result of fitting the 10th order Fourier function. 

The expression of the fitting result is as follows: 

𝜉𝜉(𝑡𝑡) = 𝑎𝑎0 + �[𝑎𝑎𝑖𝑖 cos(𝜔𝜔𝜔𝜔𝜔𝜔) +
𝑁𝑁

𝑖𝑖=1

𝑏𝑏𝑖𝑖sin (𝜔𝜔𝜔𝜔𝜔𝜔)] 

−7.4918− 0.4187 cos(0.7775𝑡𝑡) + 9.0122 sin(0.7775𝑡𝑡) + 2.2174 cos(0.7775 × 2𝑡𝑡) 

−2.9705 sin(0.7775 × 2𝑡𝑡) + 8.1174 cos(0.7775 × 3𝑡𝑡) + 6.9552 sin(0.7775 × 3𝑡𝑡) 

−4.2450 cos(0.7775 × 4𝑡𝑡) + 7.2275 sin(0.7775 × 4𝑡𝑡) + 0.2611 cos(0.7775 × 5𝑡𝑡) 

−0.4608 sin(0.7775 × 5𝑡𝑡) + 0.3921 cos(0.7775 × 6𝑡𝑡) + 6.0768 sin(0.7775 × 6𝑡𝑡) 

−7.9237 cos(0.7775 × 7𝑡𝑡) + 0.6995 sin(0.7775 × 7𝑡𝑡)− 0.3638 cos(0.7775 × 8𝑡𝑡) 

−0.4300 sin(0.7775 × 8𝑡𝑡) + 1.0448 cos(0.7775 × 9𝑡𝑡) + 4.9803 sin(0.7775 × 9𝑡𝑡) 

−9.8124 cos(0.7775 × 10𝑡𝑡)− 7.6375 sin(0.7775 × 10𝑡𝑡). 
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Substituting 𝜉𝜉(𝑡𝑡) into Eq (1) yields 𝐹𝐹(𝑡𝑡). 

2.2. Differential equation to describe contact wire motion 

In order to determine the differential equation to describe contact wire motion, the contact wire 
was treated as a beam with equal sections. We conducted force analysis on a microscale segment of 
the contact wire, as shown in Figure 4. 

 

Figure 4. Force diagram for microscale segments of the contact wire that considers the tension. 

In Figure4, dx is the length of the contact wire of the microscale segment, 𝑓𝑓𝑟𝑟𝑑𝑑𝑑𝑑 is the damping 
of the segment when it moves vertically, 𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑 is the inertial force formed during the dynamic 
motion of the segment, 𝐹𝐹𝑠𝑠 is the shear force, M is the bending moment, and N is the tension acting 
on both ends of the segment. 

Based on D'Alembert's principle, we transformed the dynamical problem into a statics problem. 
The equilibrium equation in the vertical direction can be obtained as follows: 

 𝐹𝐹𝑠𝑠 − �𝐹𝐹𝑠𝑠 + 𝜕𝜕𝐹𝐹𝑠𝑠
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� − 𝑓𝑓𝑟𝑟𝑑𝑑𝑑𝑑 − 𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑 = 0, (2) 

where 𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑 is the inertial force of the transverse distribution of the microscale segment, which is 
equal to the product of the mass and acceleration of the corresponding segment, i.e., 

 𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

, (3) 

where 𝑦𝑦(𝑥𝑥, 𝑡𝑡) is the transverse displacement of the contact wire, which is a binary function of the 
section position x and time t,𝜌𝜌 is the density of the contact wire, and 𝐴𝐴 is the cross-sectional area of 
the contact wire. From Eqs (2) and (3), the equation of motion for the corresponding segment along 
the vertical direction could be obtained as follows: 

 𝜕𝜕𝐹𝐹𝑠𝑠
𝜕𝜕𝜕𝜕

= −𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝑓𝑓𝑟𝑟 . (4) 

Taking the right end of the corresponding segment as the moment center, the resultant moment 
of the corresponding segment is as follows: 

 𝑀𝑀 − �𝑀𝑀 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� + 𝑁𝑁 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝐹𝐹𝑠𝑠𝑑𝑑𝑑𝑑 − 𝑓𝑓𝑟𝑟𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
2
− 𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
2

= 0. (5) 

Ignoring the higher-order trace of Eq (5), we could get 

 𝐹𝐹𝑠𝑠 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑁𝑁 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝜕𝜕
. (6) 
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By introducing the bending rigidity 𝐸𝐸𝐸𝐸, the following relationship could be established from the 
mechanics of the materials: 

 𝑀𝑀 = 𝐸𝐸𝐸𝐸 𝜕𝜕
2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

. (7) 

Substituting Eq (7) into Eq (6), we could get 

 𝐹𝐹𝑠𝑠 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐸𝐸𝐸𝐸 𝜕𝜕

2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� − 𝑁𝑁 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

. (8) 

Substituting Eq (8) into Eq (4), we could obtain 

 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐸𝐸𝐸𝐸 𝜕𝜕

2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� − 𝑁𝑁 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

� = −𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝑓𝑓𝑟𝑟 , (9) 

where 𝑓𝑓𝑟𝑟 = 𝐶𝐶 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

, and 𝐶𝐶 is the damping coefficient for the contact wire itself. 
Thus, the equation to describe the free vibration of a beam with equal sections is as follows: 

 𝐸𝐸𝐸𝐸 𝜕𝜕
4𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

− 𝑁𝑁 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝐶𝐶 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

= 0. (10) 

We make the hypothesis as follows: 

 𝑦𝑦(𝑥𝑥, 𝑡𝑡) = 𝑌𝑌(𝑥𝑥)𝑇𝑇(𝑡𝑡). (11) 

By substituting Eq (11) into Eq (10), Eq (10) could be converted into the following equation: 

 𝐸𝐸𝐸𝐸𝑌𝑌′′′′(𝑥𝑥)𝑇𝑇(𝑡𝑡) − 𝑁𝑁𝑌𝑌′′(𝑥𝑥)𝑇𝑇(𝑡𝑡) + 𝜌𝜌𝜌𝜌𝜌𝜌(𝑥𝑥)𝑇𝑇′′(𝑡𝑡) + 𝐶𝐶𝐶𝐶(𝑥𝑥)𝑇𝑇′(𝑡𝑡) = 0. (12) 

Separating the variables in Eq (12), we could obtain 

 𝐸𝐸𝐸𝐸𝑌𝑌′′′′(𝑥𝑥)−𝑁𝑁𝑌𝑌′′(𝑥𝑥)
𝑌𝑌(𝑥𝑥)

= −𝜌𝜌𝜌𝜌𝑇𝑇′′(𝑡𝑡)+𝐶𝐶𝑇𝑇′(𝑡𝑡)
𝑇𝑇(𝑡𝑡) = 𝜔𝜔, (13) 

where 𝜔𝜔 is a constant. 
Multiplying 𝑌𝑌(𝑥𝑥) to the right-hand side of the equation yields 

 𝐸𝐸𝐸𝐸𝑌𝑌′′′′(𝑥𝑥) −𝑁𝑁𝑌𝑌′′(𝑥𝑥) − 𝜔𝜔𝜔𝜔(𝑥𝑥) = 0. (14) 

The four eigenvalues of Eq (14) can be obtained by calculation as follows: 

𝜆𝜆1,2 = ±�
𝑁𝑁

2𝐸𝐸𝐸𝐸
+ �(

𝑁𝑁
2𝐸𝐸𝐸𝐸

)2 +
𝜔𝜔
𝐸𝐸𝐸𝐸

= ±𝑘𝑘1, 

𝜆𝜆3,4 = ±𝑖𝑖�−
𝑁𝑁

2𝐸𝐸𝐸𝐸
+ �(

𝑁𝑁
2𝐸𝐸𝐸𝐸

)2 +
𝜔𝜔
𝐸𝐸𝐸𝐸

= ±𝑖𝑖𝑘𝑘2. 

Then, the general solution of Eq (14) is given by 

𝑌𝑌(𝑥𝑥) = 𝐵𝐵1𝑒𝑒𝑘𝑘1𝑥𝑥 + 𝐵𝐵2𝑒𝑒−𝑘𝑘1𝑥𝑥 + 𝐵𝐵3𝑒𝑒𝑖𝑖𝑖𝑖2𝑥𝑥 + 𝐵𝐵4𝑒𝑒−𝑖𝑖𝑖𝑖2𝑥𝑥. 

Given the following: 



6574 

AIMS Mathematics  Volume 9, Issue 3, 6568–6585. 

�𝑒𝑒
±𝑘𝑘1𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐h𝑘𝑘1𝑥𝑥 ± 𝑠𝑠𝑠𝑠𝑠𝑠h𝑘𝑘1𝑥𝑥,
𝑒𝑒±𝑖𝑖𝑖𝑖2𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘2𝑥𝑥 ± 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘2𝑥𝑥.

 

𝑌𝑌(𝑥𝑥) takes the following form: 

 𝑌𝑌(𝑥𝑥) = 𝐷𝐷1𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑘𝑘1𝑥𝑥 + 𝐷𝐷2𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑘𝑘1𝑥𝑥 + 𝐷𝐷3𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘2𝑥𝑥 + 𝐷𝐷4𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘2𝑥𝑥. (15) 

Since there are supports at both ends of the contact wire, the displacement and bending moment 
at both ends are equal to zero. Hence, we have the following boundary conditions: 

 �

𝑌𝑌(0) = 0,
𝑌𝑌′′(0) = 0,
𝑌𝑌(𝑙𝑙) = 0,
𝑌𝑌′′(𝑙𝑙) = 0.

 (16) 

Thus, we could get 

𝐷𝐷1 = 𝐷𝐷2 = 𝐷𝐷3 = 0, 

𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘2𝑙𝑙 = 0. 

Then, we have 

𝑘𝑘2 =
𝑖𝑖𝑖𝑖
𝑙𝑙

(𝑖𝑖 = 1,2,3, … ). 

The following expression can be obtained: 

 𝑌𝑌𝑖𝑖(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖
𝑙𝑙
𝑥𝑥(𝑖𝑖 = 1,2,3, … ). (17) 

If the pantograph travels forward at the speed 𝑣𝑣, then the forced vibration of the beam is given by 

 𝐸𝐸𝐸𝐸 𝜕𝜕
4𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

− 𝑁𝑁 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝐶𝐶 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝐹𝐹(𝑡𝑡)𝛿𝛿�𝑥𝑥 − (𝑐𝑐 + 𝑣𝑣𝑣𝑣)�. (18) 

Substituting Eq (1) into Eq (18) yields 

 𝐸𝐸𝐸𝐸 𝜕𝜕
4𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

− 𝑁𝑁 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝐶𝐶 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝐾𝐾(𝑡𝑡)𝛿𝛿�𝑥𝑥 − (𝑐𝑐 + 𝑣𝑣𝑣𝑣)�. (19) 

Then, the solution of Eq (19) could be expressed as 

 
1

( , ) ( ) ( )i i
i

y x t Y x q t
∞

=

=∑ . (20) 

Substituting Eq (20) into Eq (19), we could obtain 

'''' '' '' '

1
[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( ) ( ( ))i i i i i i i i

i
EIY x q t NY x q t AY x q t CY x q t K t x c vtρ ξ δ

∞

=

− + + = − +∑ . (21) 

Then, multiply both sides of Eq (21) by 𝑌𝑌𝑗𝑗(𝑥𝑥) and integrate x along the beam length to get 
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'''' ''

0 0
1 1

'' '

0 0
1 1

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ( )) ( )

l l

i j i i j i
i i

l l

i j i i j i
i i

l

j

EI Y x Y x q t dx N Y x Y x q t dx

A Y x Y x q t dx C Y x Y x q t dx

K t x c vt Y x dx

ρ

ξ δ

∞ ∞

= =

∞ ∞

= =

− +

+

= − +

∑ ∑∫ ∫

∑ ∑∫ ∫

∫

  (22) 

We have 

𝑌𝑌𝑖𝑖
(2𝑛𝑛)(𝑥𝑥) = (−1)𝑛𝑛(

𝑖𝑖𝑖𝑖
𝑙𝑙

)2𝑛𝑛𝑌𝑌𝑖𝑖(𝑥𝑥), 

� 𝑌𝑌𝑖𝑖(𝑥𝑥)𝑌𝑌𝑗𝑗(𝑥𝑥)𝑑𝑑𝑑𝑑 =
𝑙𝑙
2

(𝑖𝑖 = 𝑗𝑗)
𝑙𝑙

0
, 

� 𝑌𝑌𝑖𝑖(𝑥𝑥)𝑌𝑌𝑗𝑗(𝑥𝑥)𝑑𝑑𝑑𝑑 = 0(𝑖𝑖 ≠ 𝑗𝑗)
𝑙𝑙

0
, 

� 𝛿𝛿(𝑥𝑥 − (𝑐𝑐 + 𝑣𝑣𝑣𝑣))
𝑙𝑙

0
𝑌𝑌𝑗𝑗(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑌𝑌𝑗𝑗(𝑐𝑐 + 𝑣𝑣𝑣𝑣). 

Thus, Eq (22) is transformed into the following equation: 

 �𝐸𝐸𝐸𝐸𝑗𝑗
4𝜋𝜋4

2𝑙𝑙3
+ 𝑁𝑁𝑗𝑗2𝜋𝜋2

2𝑙𝑙
� 𝑞𝑞𝑗𝑗(𝑡𝑡) + 𝐶𝐶𝐶𝐶

2
𝑞𝑞𝑗𝑗′ (𝑡𝑡) + 𝜌𝜌𝜌𝜌𝜌𝜌

2
𝑞𝑞𝑗𝑗′′(𝑡𝑡) = 𝐾𝐾𝐾𝐾(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗(𝑐𝑐+𝑣𝑣𝑣𝑣)

𝑙𝑙
. (23) 

Equation (23) is a second-order ordinary differential equation, which is solved numerically by 
applying a finite-difference method [15]. First, [0,𝑇𝑇] is divided into 𝑁𝑁 equal intervals, and the 
divided points are obtained as follows: 

𝑡𝑡𝑖𝑖 = 𝑖𝑖 ∙ ∆𝑡𝑡 , 𝑖𝑖 = 0,1, … ,𝑁𝑁, 

where 𝑡𝑡𝑖𝑖 is the node; ∆𝑡𝑡 is the time step. 
We use 𝑞𝑞𝑖𝑖 to represent the value of function 𝑞𝑞(𝑡𝑡) at node 𝑡𝑡𝑖𝑖, and then we apply a central 

difference scheme; it follows that 

𝑑𝑑2𝑞𝑞
𝑑𝑑𝑡𝑡2

=
𝑞𝑞𝑖𝑖+1 − 2𝑞𝑞𝑖𝑖 + 𝑞𝑞𝑖𝑖−1

∆𝑡𝑡2
, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑞𝑞𝑖𝑖+1 − 𝑞𝑞𝑖𝑖−1

2 ∙ ∆𝑡𝑡
. 

Let 

𝑎𝑎 =
𝜌𝜌𝜌𝜌𝜌𝜌

2
, 

𝑏𝑏 =
𝐶𝐶𝐶𝐶
2

, 

𝑝𝑝 =
𝐸𝐸𝐸𝐸𝑗𝑗4𝜋𝜋4

2𝑙𝑙3
+
𝑁𝑁𝑗𝑗2𝜋𝜋2

2𝑙𝑙
, 

𝑀𝑀(𝑡𝑡) = 𝐾𝐾𝐾𝐾(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗𝑗𝑗(𝑐𝑐 + 𝑣𝑣𝑣𝑣)

𝑙𝑙
. 
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Then, the finite-difference scheme of Eq (23) is given by 

 𝑎𝑎 ∙ 𝑞𝑞𝑖𝑖+1−2𝑞𝑞𝑖𝑖+𝑞𝑞𝑖𝑖−1
∆𝑡𝑡2

+ 𝑏𝑏 ∙ 𝑞𝑞𝑖𝑖+1−𝑞𝑞𝑖𝑖−1
2∙∆𝑡𝑡

+ 𝑝𝑝 ∙ 𝑞𝑞𝑖𝑖 = 𝑀𝑀(𝑡𝑡𝑖𝑖). (24) 

Thus, we obtain 

 � 𝑎𝑎
∆𝑡𝑡2

+ 𝑏𝑏
2∙∆𝑡𝑡

� 𝑞𝑞𝑖𝑖+1 + �𝑝𝑝 − 2𝑎𝑎
∆𝑡𝑡2
� 𝑞𝑞𝑖𝑖 + � 𝑎𝑎

∆𝑡𝑡2
− 𝑏𝑏

2∙∆𝑡𝑡
� 𝑞𝑞𝑖𝑖−1 = 𝑀𝑀(𝑡𝑡𝑖𝑖). (25) 

We apply the initial and boundary conditions 𝑞𝑞(0) = 𝑞𝑞(𝑇𝑇) = 0. 
Let 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑝𝑝 −

2𝑎𝑎
∆𝑡𝑡2

𝑎𝑎
∆𝑡𝑡2

+
𝑏𝑏

2 ∙ ∆𝑡𝑡
0 ⋯ 0 0

𝑎𝑎
∆𝑡𝑡2

−
𝑏𝑏

2 ∙ ∆𝑡𝑡
𝑝𝑝 −

2𝑎𝑎
∆𝑡𝑡2

𝑎𝑎
∆𝑡𝑡2

+
𝑏𝑏

2 ∙ ∆𝑡𝑡
⋯ 0 0

0
𝑎𝑎
∆𝑡𝑡2

−
𝑏𝑏

2 ∙ ∆𝑡𝑡
𝑝𝑝 −

2𝑎𝑎
∆𝑡𝑡2

⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 ⋯
𝑎𝑎
∆𝑡𝑡2

−
𝑏𝑏

2 ∙ ∆𝑡𝑡
𝑝𝑝 −

2𝑎𝑎
∆𝑡𝑡2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝑄𝑄 = (𝑞𝑞1,𝑞𝑞2,⋯ , 𝑞𝑞𝑁𝑁−1)𝑇𝑇 , 

𝑟𝑟 = (𝑀𝑀(𝑡𝑡1),𝑀𝑀(𝑡𝑡2),⋯ ,𝑀𝑀(𝑡𝑡𝑁𝑁−1))𝑇𝑇. 

Then 

 𝐴𝐴𝐴𝐴 = 𝑟𝑟. (26) 

Equation (26) is a tridiagonal system of equations. Therefore, the 𝑞𝑞 value of each time 
node could be obtained by using a MATLAB program to implement the forward elimination and 
backward substitution. 

The influence of the higher order is very small; thus, only the first five orders need to be 
calculated. Therefore, the response equation for the contact wire is given by 

 
5

1
( , ) ( ) ( )j j

j
y x t Y x q t

=

=∑ .  (27) 

3. Calculation of dropper stress 

3.1. Vibration analysis for the dropper 

In order to study the stress variation of a dropper in the process of vibration, the force analysis 
of its microscale segment was carried out, as shown in Figure 5. 
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Figure 5. Force analysis diagram for the dropper. 

In Figure 5, 𝑓𝑓𝑥𝑥  and 𝑓𝑓𝑦𝑦  are the forces applied on the corresponding segment along the 
horizontal direction and the vertical direction, respectively. 𝑚𝑚 is the bending moment, 𝐹𝐹𝑁𝑁 is the 
axial tension, 𝐹𝐹𝑆𝑆 is the shear force, 𝜃𝜃 is the angle between the corresponding segment and the 
horizontal direction. 

To simplify the calculation, we can introduce dimensionless variables: 

𝑥̅𝑥 =
𝑥𝑥
𝐿𝐿

 ,𝑦𝑦� =
𝑦𝑦
𝐿𝐿

 , 𝑠̅𝑠 =
𝑠𝑠
𝐿𝐿

 , 𝑣𝑣𝑥𝑥��� =
𝑣𝑣𝑥𝑥
�𝑔𝑔𝑔𝑔

 , 𝑣𝑣𝑦𝑦��� =
𝑣𝑣𝑦𝑦
�𝑔𝑔𝑔𝑔

 ,𝑓𝑓𝑥𝑥� =
𝑓𝑓𝑥𝑥

𝐸𝐸𝑑𝑑𝐴𝐴𝑑𝑑
 ,𝑓𝑓𝑦𝑦� =

𝑓𝑓𝑦𝑦
𝐸𝐸𝑑𝑑𝐴𝐴𝑑𝑑

, 

𝑚𝑚� =
𝑚𝑚

𝐸𝐸𝑑𝑑𝐴𝐴𝑑𝑑𝐿𝐿
 , 𝑡𝑡̅ =

𝑡𝑡
�𝐿𝐿 𝑔𝑔⁄

 , 𝜇𝜇 =
𝜌𝜌𝑑𝑑𝑔𝑔𝑔𝑔
𝐸𝐸𝑑𝑑

 , 𝜆𝜆2 =
𝐸𝐸𝑑𝑑𝐴𝐴𝑑𝑑𝐿𝐿2

𝐸𝐸𝑑𝑑𝐼𝐼𝑑𝑑
 , 𝑐𝑐𝑑𝑑��� =

𝑐𝑐𝑑𝑑�𝑔𝑔𝑔𝑔
𝐸𝐸𝑑𝑑𝐴𝐴𝑑𝑑

, 

where 𝑥𝑥 and 𝑦𝑦 are the position coordinates, 𝑠𝑠 is the arc coordinate, 𝐿𝐿 represents the total length of 
the dropper,  𝑣𝑣𝑥𝑥  and 𝑣𝑣𝑦𝑦  are the velocities of motion in the x direction and the y direction, 
respectively, 𝑔𝑔 is the acceleration of gravity, 𝐸𝐸𝑑𝑑 is the elastic modulus of the dropper, 𝐴𝐴𝑑𝑑 is the 
cross-sectional area of the dropper, 𝑡𝑡 is time, 𝜌𝜌𝑑𝑑 is the density of the dropper, 𝐸𝐸𝑑𝑑𝐼𝐼𝑑𝑑 is the bending 
stiffness of the dropper, and 𝑐𝑐𝑑𝑑 is the dropper damping coefficient. 

Thus, the following equations could be obtained via force analysis. 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧��𝜕𝜕𝑥̅𝑥

𝜕𝜕𝑠̅𝑠
�
2

+ �𝜕𝜕𝑦𝑦�
𝜕𝜕𝑠̅𝑠
�
2
− 1 = 𝑓𝑓𝑥𝑥�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑦𝑦� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,

𝜕𝜕𝑚𝑚�
𝜕𝜕𝑠̅𝑠

= 𝑓𝑓𝑥𝑥�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑓𝑓𝑦𝑦�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑠̅𝑠

= 𝜆𝜆2𝑚𝑚� ,

s
f x

∂
∂ − 𝑐𝑐𝑑𝑑���𝑣𝑣𝑥𝑥��� = 𝜇𝜇 𝜕𝜕2𝑥̅𝑥

𝜕𝜕𝑡̅𝑡2
,

s
f y

∂

∂
− 𝑐𝑐𝑑𝑑���𝑣𝑣𝑦𝑦��� = 𝜇𝜇 𝜕𝜕2𝑦𝑦�

𝜕𝜕𝑡̅𝑡2
+ 𝜇𝜇,

𝑑𝑑𝑦𝑦�
𝑑𝑑𝑥̅𝑥

= 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.

 (28) 

The stress of the dropper can be calculated based on the above equation. 
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 𝜎𝜎 = 𝐹𝐹𝑁𝑁
𝐴𝐴𝑑𝑑

+ 𝑚𝑚
𝑤𝑤𝑧𝑧

, (29) 

where 𝐹𝐹𝑁𝑁 = 𝑓𝑓𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑤𝑤𝑧𝑧 is the section modulus in bending of the dropper. 

3.2. Initial and boundary conditions of each dropper 

The initial condition of a dropper is the case that 𝑡𝑡 = 0, which means that the dropper is not 
subjected to any external force and is in a natural straightened state. The x positions of the five 
droppers were 5, 15, 25, 35, and 45, respectively, which could be uniformly expressed as 
follows:  5 + 10(𝑖𝑖 − 1), 𝑖𝑖 = 1, 2, 3, 4, 5 . The y position was set as the arc coordinate of the 
corresponding segment of the dropper. 

The boundary conditions for dropper were applied as the conditions at the connection point 
between the dropper and the contact wire and the conditions at the connection point between the 
dropper and the messenger wire. In the case of the connection point between the dropper and the 
contact wire, the x positions were still 5, 15, 25, 35, and 45, respectively. The y position 
corresponded to the response of the contact wire at the x position of the dropper (x=5, 15, 25, 35, 45). 
The vibrational response of the messenger wire was not considered in this study. Assuming that 
the arc coordinate at the connection point between the dropper and the contact wire was 0, we set 
the arc coordinate at the connection point between the dropper and the messenger wire to be 
𝐿𝐿𝑖𝑖  (𝑖𝑖 = 1, 2, 3, 4, 5). 

For droppers at different positions, their initial and boundary conditions are different. However, 
the initial and boundary conditions of each dropper after introducing dimensionless variables could 
be uniformly expressed in the following form: 

�𝑥̅𝑥
(𝑠̅𝑠, 𝑡𝑡̅) =

5 + 10(𝑖𝑖 − 1)
𝐿𝐿𝑖𝑖

𝑦𝑦�(𝑠̅𝑠, 𝑡𝑡̅) = 𝑠̅𝑠
             ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑡𝑡̅ = 0, 

⎩
⎪
⎨

⎪
⎧𝑥̅𝑥(𝑠̅𝑠, 𝑡𝑡̅) =

5 + 10(𝑖𝑖 − 1)
𝐿𝐿𝑖𝑖

𝑦𝑦�(𝑠̅𝑠, 𝑡𝑡̅) = (�𝑌𝑌𝑗𝑗(𝑥𝑥)𝑞𝑞𝑗𝑗(𝑡𝑡)
5

𝑗𝑗=1

) 𝐿𝐿𝑖𝑖�
,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑠̅𝑠 = 0, 

�𝑥̅𝑥
(𝑠̅𝑠, 𝑡𝑡̅) =

5 + 10(𝑖𝑖 − 1)
𝐿𝐿𝑖𝑖

𝑦𝑦�(𝑠̅𝑠, 𝑡𝑡̅) ≤ 1
             ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑠̅𝑠 = 1, 

where 𝑖𝑖 is the number of the dropper, 𝐿𝐿𝑖𝑖  is the length of each dropper, 𝑠̅𝑠 is the dimensionless arc 
coordinate, 𝑡𝑡̅  is dimensionless time, 𝑥̅𝑥  and 𝑦𝑦�  are dimensionless position coordinates, 

∑
𝑗𝑗=1

5
𝑌𝑌𝑗𝑗(𝑥𝑥)𝑞𝑞𝑗𝑗(𝑡𝑡) is the response of the contact wire as described in Section 2.2. 

3.3. Parameters for the dropper and contact wire 

The elastic moduli of the dropper and the contact wire were measured by using a universal 
testing machine and electronic extensometer, and the bending stiffness was calculated based on the 
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Costello model [16]. When calculating the stress on a dropper, the specific values of the dropper and 
contact wire parameters were as shown in Tables 1 and 2, respectively. 

Table 1. Parameters for the dropper. 

Density (𝑘𝑘𝑘𝑘 ∙
𝑚𝑚−3) 

Cross-sectional 
area (𝑚𝑚2) 

Elastic 
modulus (𝑃𝑃𝑃𝑃) 

Bending 
stiffness 
(𝑃𝑃𝑃𝑃 ∙ 𝑚𝑚4) 

Section 
modulus in 
bending (𝑚𝑚3) 

Damping 
coefficient 

8.9 × 103 1.29 × 10−5 83.29 × 109 2.53 6.7663 × 10−9 10 

Table 2. Parameters for the contact wire. 

Density (𝑘𝑘𝑘𝑘 ∙
𝑚𝑚−3) 

Cross-sectional 
area (𝑚𝑚2) 

Elastic 
modulus (𝑃𝑃𝑃𝑃) 

Bending 
stiffness (𝑃𝑃𝑃𝑃 ∙
𝑚𝑚4) 

Tension (𝑁𝑁) Damping 
coefficient 

8.9 × 103 1.58 × 10−4 118.49
× 109 233.92 3 × 104 1 

3.4. Numerical method 

Equation (28) is a group of partial differential equations, and it is difficult to obtain its analytical 
solution. Therefore, the finite-difference method was used to obtain the numerical solution in this 
study; the specific steps are as follows. 

(1) The dropper was discretized into 𝑛𝑛 units of equal length. The number of discrete elements 
and the selection of time step affect the accuracy of the numerical solution. The larger the number of 
discrete elements and the smaller the time step, the higher the accuracy of the numerical solution; 
however, the computational time also increases. For the 1.6-m-length droppers Ⅰ and Ⅴ, we selected 
the number of discrete elements (4, 8, 16, 32, 64, 128) for the trial calculation. We found that the 
calculated results did not converge when 𝑛𝑛 was less than or equal to 16. When 𝑛𝑛 was 32, the 
calculated results were not much different from those obtained for n=64 and 128; also, the resulting 
values of the dropper force from these elements were found to agree to within 4%. However, when 𝑛𝑛 
was 64 or 128, the computational time was very long. Therefore, the value of 𝑛𝑛 in this study was set 
to 32, and the dimensionless time step was 7.5 × 10−8. 

(2) We selected the finite-difference scheme. The partial differential with respect to the arc 
coordinate and time in the equations could be expressed approximately as follows: 

𝜕𝜕𝑥̅𝑥
𝜕𝜕𝑠̅𝑠

=
𝑥̅𝑥𝑖𝑖+1 − 𝑥̅𝑥𝑖𝑖

∆𝑠̅𝑠
, 

𝜕𝜕𝑦𝑦�
𝜕𝜕𝑠̅𝑠

=
𝑦𝑦�𝑖𝑖+1 − 𝑦𝑦�𝑖𝑖

∆𝑠̅𝑠
, 

𝜕𝜕𝑚𝑚�
𝜕𝜕𝑠̅𝑠

=
𝑚𝑚�𝑖𝑖+1 − 𝑚𝑚�𝑖𝑖

∆𝑠̅𝑠
, 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝑠̅𝑠

=
𝜃𝜃𝑖𝑖+1 − 𝜃𝜃𝑖𝑖

∆𝑠̅𝑠
, 

𝜕𝜕𝑓𝑓𝑥𝑥�
𝜕𝜕𝑠̅𝑠

=
𝑓𝑓𝑥𝑥� 𝑖𝑖+1 − 𝑓𝑓𝑥𝑥� 𝑖𝑖

∆𝑠̅𝑠
, 

𝜕𝜕𝑓𝑓𝑦𝑦�

𝜕𝜕𝑠̅𝑠
=
𝑓𝑓𝑦𝑦� 𝑖𝑖+1

− 𝑓𝑓𝑦𝑦� 𝑖𝑖
∆𝑠̅𝑠

, 

𝑑𝑑𝑦𝑦�
𝑑𝑑𝑥̅𝑥

=
𝑦𝑦�𝑖𝑖+1 − 𝑦𝑦�𝑖𝑖
𝑥̅𝑥𝑖𝑖+1 − 𝑥̅𝑥𝑖𝑖

, 

𝜕𝜕2𝑥̅𝑥
𝜕𝜕𝑡𝑡̅2

=
𝑥̅𝑥𝑖𝑖+2 − 2𝑥̅𝑥𝑖𝑖+1 + 𝑥̅𝑥𝑖𝑖

∆𝑡𝑡̅2
, 

𝜕𝜕2𝑦𝑦�
𝜕𝜕𝑡𝑡̅2

=
𝑦𝑦�𝑖𝑖+2 − 2𝑦𝑦�𝑖𝑖+1 + 𝑦𝑦�𝑖𝑖

∆𝑡𝑡̅2
. 

(3) Substituting the above expressions into the equations, the difference equations to describe 
dropper vibration could be obtained. 

(4) Combining the initial and boundary conditions, the stress variation diagram for the dropper 
could be obtained by writing a MATLAB program. 

4. Results 

When the high-speed train runs from left to right starting from the third dropper at a speed 
of 250 km/h, the stress variation of dropperⅠis as shown in Figure 6. 

 

Figure 6. The stress variation for dropper Ⅰ with time. 
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will change. It can be seen that the vibration of the dropper has obvious periodicity, and that the stress 
fluctuates quickly. In the first 2 seconds, a period of dropper stress goes through the two stages of 
immediate rebound and bending compression, and there is almost no attenuated vibration stage. In the 
last 5 seconds, one period of stress variation goes through three stages: immediate rebound, vibration 
attenuation, and bending compression, and the attenuation time gradually becomes longer. 

The stress variation of dropper Ⅱ is shown in Figure 7. It can be seen that the stress variation of 
dropper Ⅱ was different from that of dropper Ⅰ. The biggest difference is that the maximum tensile 
stress of dropper Ⅱ was higher than that of dropper Ⅰ. 

 

Figure 7. The stress variation for dropper Ⅱ with time. 

According to Figure 8, the stress fluctuates quickly, which is the same as that for droppers Ⅰ and 
Ⅱ. The difference is the length of time to reach the maximum tensile and compressive stresses. In 
addition, the degree of vibration of dropper Ⅲ was more intense than that of droppers Ⅰ and Ⅱ. 

 

Figure 8. The stress variation for dropper Ⅲ with time. 
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The stress variation of dropper Ⅳ is shown in Figure 9. It is obvious that the maximum tensile 
stress value for dropper Ⅳ was higher than that for droppersⅠ, Ⅱ and Ⅲ. 

 

Figure 9. The stress variation for dropper Ⅳ with time. 

The stress variation of dropper Ⅴ was the same as that of dropper Ⅰ, as shown in Figure 10. They 
all went through the two stages of immediate rebound and bending compression in the earlier time, 
and then the three stages of immediate rebound, vibration attenuation, and bending compression in 
the later time. However, due to the different positionsin the catenary, the maximum tensile and 
compressive stress values for droppers Ⅴ and Ⅰ were different. 

 

Figure 10. The stress variation for dropper Ⅴ with time. 
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5. Discussion 

Because the dropper in the straightened state suffers significantly under the action of loading, 
the lifting force makes the dropper change to a relaxed state; then, the dropper returns to the 
stretched state because of gravity. Therefore, in a period, dropper stress variation with time can be 
categorized as having three stages, i.e., immediate rebound, vibration attenuation, and bending 
compression, but not all periods go through three stages. The moving load acting on the contact wire 
causes vibration of the contact wire, and this vibration propagatesto the left and right in the form of 
waves. Therefore, no matter where the moving load acts on the contact wire, all of the droppers in 
the catenary will vibrate; the dropper stress will also change with the vibration. When the moving 
load acts on a certain point of the contact wire, the amplitude of the dropper decreases as the distance 
between the dropper and the position where the load acts becomes farther; this is due to the energy 
loss of the wave during its propagation. However, because the moving load continues to act on the 
contact wire, the maximum tensile and compressive stress values for dropper Ⅳ were found to be 
higher than those for dropper Ⅲ. 

The catenary structure is symmetric, but because the moving load moves from left to right at a 
certain speed, the stress variations of five droppers are not symmetric across the catenary. By 
observing the stress variation of eachdropper, it was found that the stress variations of the droppers in 
different positions are different. Therefore, the influence of the position of the dropper on the stress 
should not be ignored. It was also found that the maximum tensile stress of dropper Ⅳ was higher than 
that of the other droppers, indicating that dropper Ⅳ is more likely to fracture than other droppers, which 
is consistent with the statistical results of Yu et al. [17]. Thus, the model in this paper is validated. 

When the train passes, there is an interaction between the contact wire and the dropper, but the 
force of the dropper on the contact wire was not considered when the force analysis was performed 
on the microscale segment of the contact wire in this study. In order to make the model more realistic, 
the force of the dropper on the contact wire should be taken into account in future studies. 

Exploring dynamic loading conditions that more accurately mirror real-life stressors on the 
railway system and incorporating the wear and degradation over time into the analysis could provide 
a more comprehensive understanding of dropper longevity. Further studies might also explore the 
impact of different parameters on dropper stress, the frequency of dropper vibration, and the 
potential for resonance-induced failures. Expanding the analysis to three dimensions could yield 
insights into the complex stress patterns that emerge under varied conditions. Probabilistic methods 
could be employed to gauge failure likelihood, thereby informing maintenance schedules and 
promoting the safe operation of high-speed railways. In addition, the influence of corrosion on 
dropper fatigue life should not be overlooked. Finally, integrating multiscale modeling could link 
material behavior at the micro-level with overall structural performance, offering a richer, more 
nuanced view of dropper stresses. It should be noted that risk analysis deals with inherent 
uncertainties that mainly arise from system complexity, insufficient data, and the applied risk 
model’s associated assumptions and incapability. The digitalized process systems can be monitored 
and maintained with the greatest efficiency and control among all existing process safety domains. 
Thus, it leads to overconfidence in instrumentation and data utilization, which adversely affects 
process safety [18]. In the future work, the integration of uncertainty modeling into our analysis 
would not only enhance the current study, it would also pave the way for future research to build 
upon a more solid and quantitatively assessed foundation. 
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6. Conclusions 

In this paper, the uplift displacement of droppers was applied to the contact wire instead of the 
moving load, and the influence on dropper stress was studied. The conclusions could be drawn as 
follows. 

(1) The variation in dropper stress with time generally goes through three stages: Immediate 
rebound, vibration attenuation, and bending compression. However, when the uplift 
displacement of a dropper suddenly increases and the dropper is greatly impacted, there is 
almost no vibration attenuation stage in the vibration process and there is a large bending 
deformation. 

(2) The variation of dropper stress is different for different positions; thus, the influence of the 
position of the dropper on thestress should not be ignored. 

(3) Themaximum tensile stress value for dropper Ⅳ was found to be higher than that for other 
droppers, indicating that dropper Ⅳ is more prone to fracture than other droppers. 
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