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Abstract: In practice, a firm usually reduces the output of a project during exiting the project. We
intend to fully analyze the effects of the reduction on the entry-exit decision on the project. To this
end, we first obtain the closed expressions of the optimal activating time, optimal start time of the exit,
and the maximal expected present value of the project. With these expressions in hand, we completely
investigate the effects analytically and numerically. The results show us that the reduction affects the
entry-exit decision in different ways due to the different conditions in terms of the parameters involved
in the problem. The reduction does not affect the entry-exit decision provided that the firm never exits
the project. If the firm exits the project in a finite time, the reduction may postpone or advance the
activating time and start time of the exit.
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1. Introduction

The models involving entry-exit decisions apply to many situations, as stated in [1, 2]. Such models
may be described simply as follows. A firm decides when to invest in or when to abandon a project that
can bring profit. There is plenty of literature on models concerning how to schedule the timing under
the assumption that exiting the project does not take time, so we do not list them in detail, but refer
to [1–9]. The ideas of entry-exit decisions apply to many concrete issues, for example, relationships of
globalization and entrepreneurial entry-exit [10], when to invest or expand a start-up firm [11], when
to enter or exit stock markets [12], and how to make a schedule for buying carbon emission rights [13].

In practice, the exiting process may take a long time, so ignoring it is not reasonable. For example,
Brexit took more than 3 years, from June 23, 2016 to January 31, 2020
(https://www.britannica.com/topic/Brexit). The models [14, 15] take account of the time, but with
equal output rates in the regular production and exit periods. It is an apparent feature that the output
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rate of the project is usually reduced during the exit period. In this paper, we introduce a parameter to
describe the output rate during the exit period and completely discuss the effects of output reduction
on entry-exit decisions, under the assumption that the commodity price of the project follows a
geometric Brownian motion.

We use the optimal stopping theory to carry out the study and obtain the explicit expressions of
the optimal activating time and start time of the exit, which is one of the contributions of the paper.
With these explicit expressions in hand, we can carefully analyze the effects of output reduction on
entry-exit decisions, which is another contribution of the paper.

If the optimal choice is never to exit the project, the output reduction has no effect on the optimal
entry-exit decision.

If the optimal exit is in a finite time, the situation becomes complicated. However, we obtain
complete criterions, which determine the effects of output reduction on entry-exit decisions (see
Section 4).

We outline the structure of this paper. In Section 2, we describe the model in detail. In Section 3,
we determine an optimal entry-exit decision. In Section 4, we discuss the effects of output reduction
during exit period on entry-exit decisions. Some conclusions are drawn in Section 5.

2. The model

Assume that the price process P of one unit product follows

dP(t) = µP(t)dt + σP(t)dB(t) and P(0) = p, (2.1)

where µ ∈ R, σ, p > 0, and B is a one dimensional standard Brownian motion, which denotes
uncertainty. In this paper, all times are stopping times w.r.t. the filtration generated by the Brownian
motion B.

Since involving the construction period leads to complicated calculations and distracts us from
analyzing the effects of reduction on entry-exit decisions, and the effects of the construction period
have been discussed in [3, 15], we assume that there is no construction period (it may happen when the
firm buys a project). The firm activates the project at time τI with the entry cost KI and completes the
abandonment of the project during the time interval [τO, τO + δ], with the exit cost valued at KO at time
τO + δ. Without loss of generality, we assume that the firm produces one unit product per unit time
during the period [τI , τO] at the marginal cost C and α (0 ≤ α ≤ 1) unit products per unit time during
the time interval of exiting the project [τO, τO + δ].

To answer the two questions, what time is optimal to activate the project and what time is optimal
to start the abandonment procedure, we solve the optimization problem

J(p) = sup
τI≤τO

Ep
[ ∫ τO

τI

exp(−rt)(P(t) −C)dt + α
∫ τO+δ

τO

exp(−rt)(P(t) −C)dt

− exp(−rτI)KI − exp(−r(τO + δ))KO

]
.

(2.2)

We call stopping times τI and τO the activating times and start times of the exit, respectively, and we
call the function J the maximal expected present value of the project.
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3. An optimal entry-exit decision

If r ≤ µ, some straight calculations show us that

Ep

[∫ +∞

0
exp(−rt)(P(t) −C)dt

]
= +∞.

Thus, we obtain the following result.

Theorem 3.1. Assume that r ≤ µ, then τ∗I : = 0 is an optimal activating time and τ∗O: = +∞ is an
optimal start time of the exit, i.e., the firm should never exit the project. In addition, the function J
in (2.2) is given by J ≡ +∞.

In the rest of this section, we assume r > µ.
Taking τI = τO: = 0 in (2.2), we have

J(p) ≥ −KI +
α(1 − exp((µ − r)δ))

r − µ
p − exp(−rδ)KO − α

C
r

(1 − exp(−rδ)),

thus, in the remains of this section, we always assume that

rKI + exp(−rδ)rKO + α(1 − exp(−rδ))C ≥ 0

to avoid arbitrage opportunities.
Let λ1 and λ2 be the solutions to the equation

r − µλ −
1
2
σ2λ(λ − 1) = 0

with λ1 < λ2, then we have λ1 < 0 and λ2 > 1.

Theorem 3.2. Assume that r > µ. The following are true:

(i) If
(1 − α)C + (αC − rKO) exp(−rδ) ≤ 0,

then (τ∗I , τ
∗
O) is a solution to (2.2), where

τ∗I = inf{t : t > 0, P(t) ≥ pI}

and τ∗O = +∞. Here,

pI =
λ2

λ2 − 1
(r − µ)

(C
r
+ KI

)
.

In addition,

J(p) =


Bpλ2 , if p < pI ,

p
r − µ

−
C
r
− KI , if p ≥ pI ,

where

B =
pI

1−λ2

λ2(r − µ)
.
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(ii) If
(1 − α)C + (αC − rKO) exp(−rδ) > 0

and
α(1 − exp((µ − r)δ))pO − αC(1 − exp(−rδ)) − exp(−rδ)rKO − rKI ≤ 0, (3.1)

where
pO =

λ1

λ1 − 1
r − µ

1 − α + α exp((µ − r)δ)

(
(1 − α)

C
r
+ exp(−rδ)

(
α

C
r
− KO

))
,

then (τ∗I , τ
∗
O) is a solution to (2.2), where

τ∗I = inf{t : t > 0, P(t) ≥ pI}

and
τ∗O = inf{t : t > τ∗I , P(t) ≤ pO}.

Here, pI is the largest solution of the algebraic equation

A(λ2 − λ1)pλ1
I +

(λ2 − 1)
r − µ

pI − λ2

(C
r
+ KI

)
= 0.

In addition,

J(p) =


Bpλ2 , if p < pI ,

Apλ1 +
p

r − µ
−

C
r
− KI , if p ≥ pI ,

where
A =

1 − α + α exp((µ − r)δ)
λ1(µ − r)

pO
1−λ1

and

B = λ1λ
−1
2 Apλ1−λ2

I +
pI

1−λ2

λ2(r − µ)
.

Remark 3.3. We propose condition (3.1) to eliminate the possibility that the firm enters the project at
a trigger price lower than the optimal trigger price of the exit, i.e., the firm enters the project and then
immediately decides to exit the project.

In light of [14, Theorems 3.1 and 5.2], we have the following Lemma 3.4, which serves as
preparation for the proof of Theorem 3.2.

Lemma 3.4. If (τ∗1, τ
∗
2) is a solution to the optimization problem

J̃(p) := sup
τI≤τO

Ep
[ ∫ τO

τI

exp(−rt)(P(t) −C)dt − exp(−rτI)KI − exp(−rτO)(l1P(τO) + l0)
]
, (3.2)

it is also a solution to (2.2) and J(x) = J̃(x), where

l1 :=
α(1 − exp((µ − r)δ))

µ − r

and
l0 := α

C
r

(1 − exp(−rδ)) + exp(−rδ)KO.
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Proof. By the strong Markov property of the process {(s + t, P(t)), t ≥ 0}, where s ∈ R, we have

Ep
[ ∫ τO

τI

exp(−rt)(P(t) −C)dt + α
∫ τO+δ

τO

exp(−rt)(P(t) −C)dt − exp(−rτI)KI − exp(−r(τO + δ))KO

]
= Ep
[ ∫ τO

τI

exp(−rt)(P(t) −C)dt + α exp(−rτO)EP(τO)
[ ∫ δ

0
exp(−rt)(P(t) −C)dt

]
− exp(−rτI)KI − exp(−r(τO + δ))KO

]
.

Thus, we need to calculate

αEP(τO)
[ ∫ δ

0
exp(−rt)(P(t) −C)dt

]
− exp(−rδ)KO

= α

∫ δ

0
exp(−rt)(exp(µt)P(τO) −C)dt − exp(−rδ)KO

= −l1P(τO) − l0.

The proof is complete. □

Remark 3.5. The proof of Lemma 3.4 has an economic meaning as follows. We first discount the
benefit during the abandonment period to time τO, then discount this value to time zero.

With the help of Lemma 3.4, we can prove Theorem 3.2.

Proof of Theorem 3.2. (1) By Lemma 3.4, we solve problem (3.2),

sup
τI≤τO

Ep
[ ∫ τO

τI

exp(−rt)(P(t) −C)dt − exp(−rτI)KI − exp(−rτO)(l1P(τO) + l0)
]

= sup
τI≤τO

Ep
[

exp(−rτI)
∫ τO−τI

0
exp(−rt)(P(t + τI) −C)dt

− exp(−rτI)KI − exp(−rτO)(l1P(τO) + l0)
]

= sup
τI

Ep
[

exp(−rτI)(G(P(τI)) − KI)
]

=: H(p), (3.3)

where
G(p) := sup

τO

Ep
[ ∫ τO

0
exp(−rt)(P(t) −C)dt − exp(−rτO)(l1P(τO) + l0)

]
. (3.4)

(2) Assume
(1 − α)C + (αC − rKO) exp(−rδ) ≤ 0.

We first solve problem (3.4) and then problem (3.3).
For problem (3.4), noting

Ep
[ ∫ ∞

0
exp(−rt)(P(t) −C)dt

]
=

p
r − µ

−
C
r
,
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we see that

Ep
[ ∫ ∞

0
exp(−rt)(P(t) −C)dt

]
≥ −l1 p − l0,

which implies
τ∗O = +∞

and
G(p) =

p
r − µ

−
C
r
.

Set
h(p) :=

p
r − µ

−
C
r
− KI .

Since
{p : p > 0 and rh(p) − µph′(p) ≥ 0} = {p : p ≥ C + rKI},

the exercise region of problem (3.3) takes the form [pI ,+∞) for some

pI ≥ C + rKI .

The function H satisfies
rH − µpH′ −

1
2
σ2 p2H′′ = 0

on the continuation region (0, pI) and is Lipschitz continuous on (0,+∞) and C1 continuous at pI .
Thus, we get

H(p) = Bpλ2

and B and pI solve 
Bpλ2

I =
pI

r − µ
−

C
r
− KI ,

λ2Bpλ2−1
I =

1
r − µ

,

by which we finish the proof of (i).
(3) Assume

(1 − α)C + (αC − rKO) exp(−rδ) > 0

and (3.1) hold. We again first solve problem (3.4) and then problem (3.3).
Set

g(p) := −l1 p − l0.

A straight calculation shows that

{p : p > 0 and rg − µpg′(p) − p +C ≥ 0} =
(
0,

(1 − α)C + (αC − rKO) exp(−rδ)
1 − α(1 − exp((µ − r)δ))

)
,

which means the exercise region of problem (3.4) takes the form (0, pO] for some

pO ≤
(1 − α)C + (αC − rKO) exp(−rδ)

1 − α(1 − exp((µ − r)δ))
.
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The function G satisfies
rG − µpG′ −

1
2
σ2 p2G′′ − p +C = 0

on the continuation region (pO,+∞) and is Lipschitz continuous on (0,+∞) and C1 continuous at pO.
Thus, we get

G(p) = Apλ1 +
p

r − µ
−

C
r
,

and A and pO solve 
Apλ1

O +
pO

r − µ
−

C
r
= −l1 pO − l0,

λ1Apλ1−1
O +

1
r − µ

= −l1,

which implies coefficient A and the optimal exit trigger pricer of (ii).
To solve problem (3.4), we define

h(p) := G(p) − KI .

In light of (3.1),
{p : p > 0 and rh(p) − µph′(p) ≥ 0} = {p : p ≥ C + rKI},

thus, the exercise region of problem (3.3) takes the form [pI ,+∞) for some

pI ≥ C + rKI .

The function H satisfies
rH − µpH′ −

1
2
σ2 p2H′′ = 0

on the continuation region (0, pI) and is Lipschitz continuous on (0,+∞) and C1 continuous at pI .
Thus, we get

H(p) = Bpλ2 ,

and B and pI solve 
Bpλ2

I = Apλ1
I +

pI

r − µ
−

C
r
− KI ,

λ2Bpλ2−1
I = λ1Apλ1−1

I +
1

r − µ
,

by which we finish the proof of (ii). □

4. Discussions

We analyze the effects of output reduction during the exit period on entry-exit decisions.
If r ≤ µ, the firm has an optimal time τ∗I = 0 to activate the project and should never exit the project.

Thus, the reduction does not affect entry-exit decisions.
If r > µ and

(1 − α)C + (αC − rKO) exp(−rδ) ≤ 0,
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the optimal time to activate the project is given by

τ∗I = inf{t : t > 0, P(t) ≥ pI},

where
pI =

λ2

λ2 − 1
(r − µ)

(C
r
+ KI

)
.

Thus, the reduction does not affect the optimal activating time. As same as the case of r ≤ µ, the firm
should never exit the project and the reduction does not affect exit decisions.

Assume that r > µ and
(1 − α)C + (αC − rKO) exp(−rδ) > 0.

We first analyze the effects of reduction on the optimal start time of the exit. By (ii) of Theorem 3.2,
the optimal trigger price is an increasing function of α if

exp(−µδ)(C − rKO) > C − exp(−rδ)rKO,

a decreasing function if
exp(−µδ)(C − rKO) < C − exp(−rδ)rKO,

and a constant function if
exp(−µδ)(C − rKO) = C − exp(−rδ)rKO.

We list some examples to illustrate the analysis. Taking

r = 0.2, µ = −0.1, σ = 0.3, δ = 2, C = 5, KI = 20, and KO = −10,

we have
exp(−µδ)(C − rKO) > C − exp(−rδ)rKO,

then the optimal trigger price is an increasing function of α. See Figure 1. If we replace µ = −0.1 with
µ = 0.1, we have a decreasing function. See Figure 2.

α

pO

0.2 0.4 0.6 0.8

5.5

6.0

Figure 1. α-pO-increasing.
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pO

Α

0.2 0.4 0.6 0.8

2.20

2.25

2.30

Figure 2. α-pO-decreasing.

We conclude that:

(1) If
exp(−µδ)(C − rKO) > C − exp(−rδ)rKO,

as the reduction increases (i.e., α decreases), the firm will postpone the exit.

(2) If
exp(−µδ)(C − rKO) < C − exp(−rδ)rKO,

as the reduction increases, the firm will advance the exit.

(3) If
exp(−µδ)(C − rKO) = C − exp(−rδ)rKO,

the reduction does not affect the exit.

To analyze the effects of reduction on the optimal time to activate the project, we define two
functions as follows:

f (p) := A(λ2 − λ1)pλ1

and
g(p) := −

(λ2 − 1)
r − µ

p + λ2

(C
r
+ KI

)
according to (ii) of Theorem 3.2. Thus, the functions f and g intersect at two points, say, (p1, f (p1))
and (p2, f (p2)) with p1 < p2, and the optimal trigger price pI of activating the project is given by
pI = p2.

To capture the behavior of pI as α varies, we only need to examine the behavior of the coefficient A
as α varies. Setting

M :=(C − exp(−rδ)rKO)(1 − exp((µ − r)δ))
+ (1 − λ1) exp(−rδ)(C − rKO −C exp(µδ) + exp((µ − r)δ)rKO)
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and
N := −C(1 − exp(−rδ))(1 − exp((µ − r)δ)),

after some calculations, we find that:

(1) If M/N ≤ 0, A is increasing on [0, 1] and pI is decreasing on [0, 1].

(2) If M/N ≥ 1, A is decreasing on [0, 1] and pI is increasing on [0, 1].

(3) If 0 < M/N < 1, A is decreasing on [0,M/N] and increasing on [M/N, 1] and pI is increasing on
[0,M/N] and decreasing on [M/N, 1].

Numerical examples help us understand the analysis above.
Figure 3 demonstrates the decreasing of pI (r = 0.2, µ = −0.1, σ = 0.3, δ = 0.6, C = 5, KI = 20,

and KO = −10). Figure 4 demonstrates the increasing of pI (r = 0.2, µ = 0.1, σ = 0.3, δ = 2, C = 5,
KI = 20, and KO = −10), and Figure 5 demonstrates the non-monotonicity of pI (r = 0.2, µ = −0.1,
σ = 0.3, δ = 0.6, C = 5, KI = 20, and KO = −10).

pI

α
0.2 0.4 0.6 0.8 1.0

14.930

14.935

14.940

14.945

14.950

Figure 3. α-pI-decreasing.

pI

Α

0.2 0.4 0.6 0.8 1.0

12.155

12.160

12.165

12.170

Figure 4. α-pI-increasing.
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pI

α
0.2 0.4 0.6 0.8 1.0

15.34

15.35

15.36

15.37

15.38

15.39

15.40

Figure 5. α-pI-non-monotonicity.

In other words, here are the effects of the reduction on the optimal time of activating the project:

(1) If M/N ≤ 0, as the reduction increases (i.e., α decreases), the firm will postpone activating the
project.

(2) If M/N ≥ 0, as the reduction increases, the firm will advance activating the project.

(3) If 0 < M/N < 1, as the reduction increases, the firm will postpone activating the project then
advance activating the project.

5. Conclusions

There is an apparent phenomenon that firms usually reduce their output rate during stopping the
regular production of a project. We intend to analyze the effects of reduction on the optimal entry-exit
decision. Since the papers [3, 15] have investigated the effects of the construction period on entry-exit
decisions, we assume that the project has been constructed and the production immediately starts for
concentrating on the study of the effects of reduction.

We introduce the output rate into the models [14, 15] and describe the problem using the optimal
stopping theory, obtaining explicit solutions in Theorems 3.1 and 3.2. These explicit solutions help us
in discovering the effects of reduction on the optimal entry-exit decision.

We carefully examine the effects of reduction. According the analysis listed in Section 4, we come
to the effects of reduction as follows. If the firm should never exit the project to obtain the maximal
profit, the reduction does not affect the optimal entry-exit decision. However, if the firm exits the
project in finite time, the effects show in a complicated manner. We study the effects analytically and
numerically, and provide the relations of the parameters involved in the model that can determine the
effects.
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