
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(3): 6528–6554.
DOI: 10.3934/math.2024318
Received: 30 October 2023
Revised: 27 December 2023
Accepted: 29 December 2023
Published: 06 February 2024

Research article

A nonmonton active interior point trust region algorithm based on CHKS
smoothing function for solving nonlinear bilevel programming problems

B. El-Sobky1,*, Y. Abo-Elnaga2, G. Ashry1 and M. Zidan3

1 Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
2 Department of basic science, Tenth of Ramadan City, Higher Technological Institute, Egypt
3 Department of Physics and Engineering Mathematics, Faculty of Engineering-Tanta University,

Egypt

* Correspondence: Email: bothina-elsobky@alexu.edu.eg.

Abstract: In this paper, an approach is suggested to solve nonlinear bilevel programming
(NBLP) problems. In the suggested method, we convert the NBLP problem into a standard
nonlinear programming problem with complementary constraints by applying the Karush-Kuhn-
Tucker condition to the lower-level problem. By using the Chen-Harker-Kanzow-Smale (CHKS)
smoothing function, the nonlinear programming problem is successively smoothed. A nonmonton
active interior-point trust-region algorithm is introduced to solve the smoothed nonlinear programming
problem to obtain an approximately optimal solution to the NBLP problem. Results from simulations
on several benchmark problems and a real-world case about a watershed trading decision-making
problem show how the effectiveness of the suggested approach in NBLP solution development.

Keywords: nonlinear bilevel problem; nonmonton trust-region; CHKS smoothing function;
active-set; interior-point
Mathematics Subject Classification: 49N35, 49N10, 93D52, 93D22, 65K05

1. Introduction

A nested optimization problem with two levels in a hierarchy, i.e the upper-level and lower-level
decision-making, is known as the bilevel programming problem. Each level has distinct constraints and
objective functions. Both of them have their objective functions and constraints. The decision-maker
at the upper level always takes the lead, followed by those at the lower level. The objective function
and constraint of the upper-level programming depend on their decision variables and the optimum
solution of the lower-level programming. The decision maker at the lower level must maximize its
objective function by using the variables provided by the decision maker at the upper level, who in

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024318

6529

turn chooses the variables after having full knowledge of the lower level’s potential responses. Bilevel
mathematical programming stresses the system’s non-cooperative nature, in contrast to many objective
mathematical programming methodologies. This hierarchical model has several applications, including
resource allocation, decentralized control, and network design issues. The successful application of this
hierarchical model depends on how well it is solved when handling realistic complications, etc. [3].
Bilevel mathematical programming has attracted a lot of attention, and many effective algorithms have
been presented. There are currently several methods for solving NBLP problems and they can be
divided into four categories: the Karush-Kuhn-Tucker condition approach [1,15,17,19,21], the penalty
function approach [24, 29], the descent approach [22, 36], and the evolutionary approach [41].

In this paper, a class of NBLP problems is reduced to a traditional nonlinear programming problem
with complementary constraints. The lower-level problem is then substituted by its Karush-Kuhn-
Tucker optimality conditions. The CHKS smoothing function is then used to smooth it.

The smoothed nonlinear programming problem (SNLP) is solved by using the nonmonton active
interior-point trust-region technique to obtain an approximately optimal solution to the nonlinear
bilevel programming problem. In the nonmonton active interior-point trust-region technique, the
smoothed nonlinear programming problem is transformed into an equality-constrained optimization
problem with bounded variables by using an active-set approach and the penalty method; for more
details see [12–15, 18, 19]. To solve the equality- constrained optimization problem with bounded
variables, Newton’s interior-point approach [6] is used. Because Newton’s interior-point method is a
local method, it might not converge if the starting point is far from a stationary point. A trust-region
strategy is used to treat this problem and ensure convergence to the stationary point from any starting
point. A trust-region technique can induce strong global convergence and it is a very important
method for solving unconstrained and constrained optimization problems; see [10–14, 16–19]. One
advantage of the trust-region technique is that it does not require the models objective function to be
convex. However, in the traditional trust-region strategy, we must use some criteria to determine
whether the trial step is acceptable after solving a trust-region subproblem. Otherwise, the
trust-region radius needs to be reduced. A method for calculating the trust-region radius ∆k at each
iteration is an important part of trust-region techniques. The standard trust-region strategy is
predicated on the objective function and the model agreement. The trust region’s radius is updated by
paying attention to the ratio tk =

Aredk
Predk

where Aredk refers to the actual reduction and Predk refers to
the predicted reduction. It can be deduced that whenever tk is close to 1, there will be a good
agreement between the model and the objective function over a current trust region. It is well-known
that the standard trust-region radius ∆k is independent of the gradient and Hessian of the objective
function, so we are not able to know if the radius ∆k is convenient for the whole implementation. This
condition might lead to an increase in the number of subproblems that must be resolved in the
method’s inner phases which reduces the method’s efficiency.

To overcome this problem many authors proposed various nonmonotone trust-region methods, for
example, see [9, 31, 37, 38, 43, 44]. Motivated by the nonmonotone trust-region strategy in [31], we
use it in our method. It is generally promising and efficient, and it can overcome the aforementioned
shortcomings.

Furthermore, the usefulness of the CHKS smoothing function with the nonmonton active
interior-point trust-region algorithm to solve the NBLP problems was examined by using several
benchmark problems and a real-world case about a watershed trading decision-making problem.

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6530

Numerical experiments show that the suggested method surpasses rival algorithms in terms of
efficacy.

This paper is organized as follows: Section 2 introduces the mathematical formulation of the
NBLP problem, basic definitions of the CHKS smoothing functions , and the smoothing method for
the nonlinear complementarity problem to obtain the SNLP problem. Section 3 introduces the
nonmonton active interior-point trust region algorithm for solving the SNLP problem. Results from
simulations on several benchmark problems and a real-world case about a watershed trading
decision-making problem are reported in Section 4. The conclusion is given in Section 5.

2. Mathematical model for SNLP problem

In this paper, we will consider the following NBLP problem

min
au≤y≤bu

fu(y, z)

s.t. cu(y, z) ≤ 0,
min

al≤z≤bl
fl(y, z),

s.t. cl(y, z) ≤ 0,

(2.1)

where y ∈ ℜn1 and z ∈ ℜn2 . The functions fu : ℜn1+n2 →ℜ, fl : ℜn1+n2 →ℜ, cu : ℜn1+n2 →ℜm1 , and
cl : ℜn1+n2 →ℜm2 are assumed to be at least twice continuously differentiable function in our method.

The NBLP problem (2.1) was reduced to the following one-objective optimization problem using
Karush-Kuhn-Tucker optimality assumptions for the lower level problem:

min
y,z

fu(y, z)

s.t. cu(y, z) ≤ 0,
∇z fl(y, z) + ∇zcl(y, z)λ = 0,
cl(y, z) ≤ 0,
λ jcl j(y, z) = 0, j = 1, ...,m2,

λ j ≥ 0, j = 1, ...,m2,

au ≤ y ≤ bu,

al ≤ z ≤ bl,

(2.2)

where λ ∈ ℜm2 is a multiplier vector associated with the inequality constraint cl(y, z). Problem (2.2)
with the nonlinear complementarity condition is non-convex and non-differentiable; moreover, the
regularity assumptions required to handle smooth optimization problems are never satisfied and it is
not good to use our approach to solve problem (2.2). Due to this, we use the CHKS smoothing function
to overcome this problem, see [5, 26, 35].

Definition 2.1. The Chen-Mangasarian smoothing function is represented by the notation ϕ̂(g, h) :
ℜ2 → ℜ and defined by the expression ϕ̂(g, h) = g + h −

√
(g − h)2. By introducing a smoothing

parameter ϵ̃ ∈ R into the the smoothing function ϕ̂(g, h), we obtain the CHKS smoothing function

ϕ̂(g, h, ϵ̃) = g + h −
√

(g − h)2 + 4ϵ̃2. (2.3)

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6531

The Chen-Mangasarian smoothing function has the property ϕ̂(g, h) = 0 if and only if g ≥ 0, h ≥ 0,
gh = 0 but it is non-differentiable at g = h = 0. But, the CHKS smoothing function has the property
ϕ̂(g, h, ϵ̃) = 0 if and only if g ≥ 0, h ≥ 0, and gh = ϵ̃2 for ϵ̃ ≥ 0, and the function is smoothing for g,h,
and ϵ̃ ≥ 0.

Consequently, by using the CHKS smoothing function (2.3), the problem (2.2) can be approximated
as follows:

min
y,z

fu(y, z)

s.t. cu(y, z) ≤ 0,
∇z fl(y, z) + ∇zcl(y, z)λ = 0,

λ j − cl j −

√
(λ j + cl j)2 + 4ϵ̃2 = 0, j = 1, ...,m2,

au ≤ y ≤ bu,

al ≤ z ≤ bl.

(2.4)

The above smoothed nonlinear programming problem can be summarized as follows

min
x

fu(x)

s.t. cu(x) ≤ 0,
ce(x) = 0,
βa ≤ x ≤ βb,

(2.5)

where x = (y, z, λ)T ∈ ℜn where n = n1 + n2 + m2,

ce(x) = [∇z fl(y, z) + ∇zcl(y, z)λ, λ j − cl j −

√
(λ j + cl j)2 + 4ϵ̃2], j = 1, ...,m2. The functions

fu(x) : ℜn → ℜ, cu(x) : ℜn → ℜm1 , and ce(x) : ℜn → ℜn2+m2 are twice continuously differentiable
and m1 < n. We denote the feasible set E = {x : βa ≤ x ≤ βb} and the strict interior feasible set
int(E) = {x : βa < x < βb} where βa ∈ {ℜ

⋃
{−∞}}n, βb ∈ {ℜ

⋃
{∞}}n, and βa < βb.

Several methods that have been suggested to solve the smoothed nonlinear programming
problem (2.5), see [11, 12, 16, 17, 19]. The nonmonton active interior-point trust-region algorithm is
proposed in this paper to solve problem (2.5) and a detailed description of this algorithm is clarified in
the following section.

3. Nonmontone active-set interior-point trust-region algorithm

In this section, firstly, we will offer a detailed description of the active-set strategy with the penalty
method to convert problem (2.5) to an equality-constrained optimization problem with bounded
variables. Second, the basic steps for using Newton’s interior-point method to solve the
equality-constrained optimization problem are presented clearly. Thirdly, the main steps for the
nonmontone trust-region algorithm are presented. Finally, the main steps for solving problem 2.1 are
introduced.

3.1. An active-set strategy

Motivated by the active-set strategy proposed in [8] and used in [10–14], we define a 0-1 diagonal
matrix D(x) ∈ ℜm1×m1 , whose diagonal entries are defined as follows:

di(x) =
{

1 if cui(x) ≥ 0,
0 if cui(x) < 0.

(3.1)

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6532

Problem (2.5) is transformed into the following equality-constrained optimization problem using the
previous matrix.

min
x

fu(x)

s.t. ce(x) = 0,
cu(x)T D(x)cu(x) = 0,
βa ≤ x ≤ βb.

The previous problem is transformed into the following problem by using a penalty method

min
x

fu(x) + σu
2 ∥D(x)cu(x)∥2

s.t. ce(x) = 0,
βa ≤ x ≤ βb,

(3.2)

where σu is a positive parameter.

3.2. Newton’s interior-point method

Motivated by the interior point method in [6], we let L(x, µe, λa, λb) be a Lagrangian function
associated with problem (3.2) and it is defined as follows

L(x, µe, λa, λb) = ℓ(x, µe;σu) − λT
a (x − βa) − λT

b (βb − x), (3.3)

where
ℓ(x, µe) = fu(x) + µT

e ce(x), (3.4)

and
ℓ(x, µe;σu) = ℓ(x, µe) +

σu

2
∥D(x)cu(x)∥2, (3.5)

such that µe, λa, and λb represent the Lagrange multiplier vectors associated with the equality constraint
ce(x) and inequality constraints (x − βa) and (βb − x) respectively. A point x∗ ∈ E will be a local
minimizer of problem (3.2) if there exists multiplier vectors µe∗ ∈ ℜ

m1 , λa∗ ∈ ℜ
n
+, and λb∗ ∈ ℜ

n
+ such

that (x∗, µe∗ , λa∗ , λb∗) satisfies the following Karush-Kuhn-Tucker conditions,

∇xℓ(x∗, µe∗;σe∗) − λa∗ + λb∗ = 0, (3.6)
ce(x∗) = 0, (3.7)

λa∗
(j)(x(j)

∗ − βa
(j)) = 0, (3.8)

λb∗
(j)(βb

(j) − x(j)
∗) = 0, (3.9)

where
∇xℓ(x∗, µe∗;σu∗) = ∇xℓ(x∗, µe∗) + σu∗∇cu(x∗)D(x∗)cu(x∗), (3.10)

and
∇xℓ(x∗, µe∗) = ∇ fu(x∗) + ∇ce(x∗)µe∗ . (3.11)

Let V(x) be a diagonal matrix whose diagonal elements are as follows:

v(j)(x) =


√

(x(j) − βa
(j)), if (∇xℓ(x∗, µe∗;σu∗))

(j) ≥ 0 and βa
(j) > −∞,√

(βb
(j) − x(j)), if (∇xℓ(x∗, µe∗;σu∗))

(j) < 0 and βb
(j) < +∞ ,

1, otherwise.
(3.12)

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6533

For more details see [11, 12, 20]. Using the scaling matrix V(x), conditions (3.6)–(3.9) are equivalent
to the following nonlinear system,

V2(x)∇xℓ(x∗, µe∗;σu∗) = 0, (3.13)
ce(x) = 0. (3.14)

For the following reasons, the nonlinear systems (3.13) and (3.14) is continuous but not everywhere
differentiable.

• It may be non-differentiable when v(j) = 0. To overcome this problem, restricting x ∈ int(E).
• It may be non-differentiable when v(j) has an infinite upper bound and a finite lower bound, and

(∇xℓ(x∗, µe∗;σu∗))
(j) = 0. To overcome this problem, we define a vector θ(x) whose components

θ(j)(x) = ∂((v
(j))2)
∂x(j) , j = 1, ..., n are defined as follows

θ(j)(x) =


1, if (∇xℓ(x, µe;σu))(j) ≥ 0 and βa

(j) > −∞,
−1, if (∇xℓ(x, µe;σu))(j) < 0 and βb

(j) < +∞ ,
0, otherwise.

(3.15)

If we use Newton’s method to solve the nonlinear systems (3.13) and (3.14), we get

[V2(x)∇2
xℓ(x, µe;σu) + diag(∇xℓ(x, µe;σu))diag(θ(x))]∆x + V2(x)∇ce(x)∆µe = −V2(x)∇xℓ(x, µe;σu),

(3.16)
∇ce(x)T∆x = −ce(x), (3.17)

where
∇2

xℓ(x, µe;σu) = H + σu∇cu(x)D(x)∇cu(x)T , (3.18)

and H is the Hessian of the Lagrangian function (3.4) or an approximation to it.
Restricting x ∈ int(E) is necessary to ensure that the matrix V(x) is nonsingular. Therefore, putting

∆x = V(x)s in both Eqs (3.16) and (3.17) and multiplying both sides of equation (3.16) by V−1(x),
we get

[V(x)∇2
xℓ(x, µe;σu)V(x) + diag(∇xℓ(x, µe;σu))diag(θ(x))]s + V(x)∇ce(x)∆µe = −V(x)∇xℓ(x, µe;σu),

(3.19)
(V(x)∇ce(x))T s = −ce(x). (3.20)

It should be noted that the step sk produced by the systems (3.19) and (3.20) is equivalent to the step
produced by resolving the following quadratic programming subproblem,

min
x
ℓ(x, µe;σu) + V(x)∇xℓ(x, µe;σu)T s + 1

2 sT Bs

s.t. ce(x) + V(x)∇ce(x)T s = 0,
(3.21)

where

B = G(x) + σuV(x)∇cu(x)D(x)∇cu(x)T V(x), (3.22)

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6534

and

G(x) = V(x)H(x)V(x) + diag(∇xℓ(x, µe;σu))diag(θ(x)). (3.23)

While Newton’s approach has the advantage of being quadratically convergent under reasonable
assumptions, it also has the disadvantage of requiring that the starting point be close to the solution.
The nonmonotone trust-region globalization approach is used to ensure convergence from any starting
point. The nonmonotone trust-region globalization strategy is a crucial method for solving a smooth
nonlinear unconstrained or constrained optimization problem that can produce substantial global
convergence. In the following section, we present the main steps of the nonmontone trust-region
algorithm to solve quadratic subproblem (3.21).

The main steps of the process to apply the nonmontone trust-region algorithm to solve the quadratic
subproblem (3.21) are described in the section that follows.

3.3. The nonmontone trust region algorithm

The trust-region subproblem associated with the problem (3.21) is given by

min
x
ℓ(x, µe;σu) + V(x)∇xℓ(x, µe;σu)T s + 1

2 sT Bs

s.t. ce(x) + V(x)∇ce(x)T s = 0,
∥s∥ ≤ δk,

(3.24)

where δk is the radius of the trust-region.
Due to the possibility of no intersecting points existing between the hyperplane of the linearized

constraints ce(x)+V(x)∇ce(x)T s = 0 and the constraint ∥s∥ ≤ δk, subproblem (3.26) may be infeasible.
There is no guarantee that this will remain true even if they do intersect if δk is reduced; see [7]. To
solve this problem, we used a reduced Hessian strategy. This strategy was suggested in [2, 32] and
subsequently implemented in [12, 13, 16–18, 20]. This strategy divides the step sk into two orthogonal
components: the normal component sn

k for improving feasibility and the tangential component st
k for

improving optimality. That is, sk = sn
k + st

k and st
k = Z̃k s̄t

k where Z̃k is a matrix whose columns form a
basis for the null space of (Vk∇cek)

T .

• To compute sn
k

Obtaining the normal component sn
k by solving the following trust-region subproblem

min
x

1
2∥cek + Vk∇cek

T sn∥2 s.t.∥sn∥ ≤ ζδk, (3.25)

for some ζ ∈ (0, 1).
A conjugate gradient method [34] which is very cheap if the problem is large-scale and the Hessian

is indefinite, is used to compute the normal component sn
k . The main steps involved in applying the

conjugate gradient method to solve subproblem (3.25) are presented in the following algorithm.

Algorithm 3.1. : (A conjugate gradient method to calculate sn
k)

Step 1. Set sn
0 = 0, rn0 = −Vk∇cekcek and pn0 = rn0; pick ϵ > 0.

Step 2. For i=0,1,.... do

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6535

Compute γni =
rni

T rni
pni

T Vk∇cek∇cT
ek Vk pni

.
Compute τni such that ∥sn

i + τn pni∥ = δk.
If γni ≤ 0, or if γni > τni , then set sn

k = sn
i + τni pni and stop.

Otherwise set sn
i+1 = sn

i + γni pni and
rn

i+1 = rni − γniVk∇cek∇cT
ek

Vk pni .

If
∥rni+1 ∥

∥rn0 ∥
≤ ϵ0 ,

set sn
k = sn

i+1 and stop.

Compute β̂i =
rni+1

T rni+1
rni

T rni
, and the new direction pni+1 = rni+1 + β̂i pni .

Given sn
k , let q(Vksk) be the quadratic form of the function (3.5) and let it be defined as follows

q(Vksk) = ℓ(xk, µek ;σuk) + V∇xℓ(xk, µek ;σuk)
T s +

1
2

sT
k Bksk. (3.26)

• To compute st
k

To compute the tangential component st
k = Z̃k s̄t

k, solve the following trust-region subproblem

min
x

[Z̃T
k ∇qk(Vksn

k) + Bksn
k]T s̄t + 1

2 s̄tT Z̃T
k BkZ̃k s̄t

s.t. ∥Z̃k s̄t∥ ≤ ∆k,
(3.27)

where ∇qk(Vksn
k) = Vk∇xℓ(xk, µek ;σuk) + Bksn

k and ∆k =

√
δ2

k − ∥s
n
k∥

2. The main steps involved in
applying the conjugate gradient method to solve subproblem (3.27) are presented in the following
algorithm.

Algorithm 3.2. (A conjugate gradient method to compute st
k)

Step 1. Set s̄t
0 = sn

k , rt0 = −Z̃T
k ∇qk(Vksn

k) + Bksn
k , pt0 = rt0 .

Step 2. For i=0,1,.... do

Compute γti =
rT

ti
rti

pT
ti

Z̃T
k BkZ̃k pti

.

Compute τti such that ∥s̄t
i + τt pti∥ = ∆k .

If γti ≤ 0, or if γti > τti , then set s̄t
k = s̄t

i + τti pti and stop.
Otherwise set s̄t

i+1 = s̄t
i + γti pti and

rti+1 = rti − γtiZ̃
T
k BkZ̃k pti .

If
∥rti+1 ∥

∥rt0 ∥
≤ ϵ ,

set s̄t
k = s̄t

i+1 and stop.

Compute β̄i =
rT

ti+1
rti+1

rT
ti

rti
, and pti+1 = rti+1 + β̄i pti .

After computing sk, we set xk+1 = xk +Vksk. To ensure that the matrix Vk is nonsingular, we need to
guarantee that xk+1 ∈ intE. So, the damping parameter φk is required at every iteration k.

• To obtain the damping parameter φk

The following algorithm clarifies the fundamental steps required to obtain the damping
parameter φk.

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6536

Algorithm 3.3. (Damping parameter φk)
Step 1. Compute the parameter ωk as follows

ω(i)
k =


β(i)

a −x(i)
k

V (i)
k s(i)

k
, if β(i)

a > −∞ and V (i)
k s(i)

k < 0

1, otherwise.

Step 2. Compute the parameter υk as follows

υ(i)
k =


β(i)

b −x(i)
k

V (i)
k s(i)

k
, if β(i)

b < ∞ and V (i)
k s(i)

k > 0

1, otherwise.

Step 3. Compute the damping parameter φk as follows

φk = min{1, {min
i
{ω(i)

k , υ
(i)
k }}. (3.28)

Step 4. Set xk+1 = xk + φkVksk.

To determine whether the scaled step φkVksk will be accepted or no, we need a merit function that
connects the objective function and the constraints such that progress in the merit function equates to
progress in solving the problem. The augmented Lagrangian function that follows is used as a merit
function,

Φ(x, µe;σu;σe) = fu(x) + µT
e ce(x) +

σu

2
∥D(x)cu(x)∥2 + σe∥ce(x)∥2, (3.29)

where σe is the penalty parameter.
To test the scaled step, we use the following scheme to determine the Lagrange multiplier vector

µek+1 ,
min ∥∇ fuk+1 + ∇cek+1µe + σuk∇cuk+1 Dk+1cuk+1∥

2. (3.30)

The following actual reduction and the predicted reduction must be defined to determine if the point
(xk+1, µek+1) will be accepted in the next iteration or no. The actual reduction in the merit function in
moving from (xk, µek) to (xk + φkVksk, µek+1) is defined as

Aredk = Φ(xk, µek ;σuk ;σek) − Φ(xk + φkVksk, µek+1;σuk ;σek).

The predicted reduction Predk in the merit function (3.29) is defined as follows

Predk = qk(0) − qk(φkVksk) + σek[∥cek∥
2 − ∥cek + ∇cT

ek
φkVksk∥

2], (3.31)

where

qk(Vkφksk) = ℓ(xk, µek) + ∇xℓ(xk, µek)
TφkVksk +

1
2
φ2

k sT
k Gksk +

σuk

2
∥Dk(cuk + ∇cT

uk
φkVksk)∥2. (3.32)

To ensure that Predk ≥ 0, the penalty parameter σek must be updated.

• To update the penalty parameter σek

To ensure that Predk ≥ 0, we need to update the penalty parameter σek by using the following
algorithm.

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6537

Algorithm 3.4. (Process to update σek)
If

Predk ≤
σek

2
[∥cek∥

2 − ∥cek + ∇cT
ek
φkVksk∥

2], (3.33)

set
σek =

2[qk(φkVksk) − qk(0)]
∥cek∥

2 − ∥cek + ∇cT
ek
φkVksk∥

2 + b̃0, (3.34)

where b̃0 > 0 is a small fixed constant.
Else, set σek+1 = σek .
End if.

For more details, see [12].

• To test φkVksk and update δk

Motivated by the nonmonotone trust-region strategy in [31], we define

tk =
Ck − Φ(xk + φkVksk, µek+1;σuk ;σek)

Predk
(3.35)

where

Ck =


Φ(xk; µek ;σuk ;σek), if k = 0,

ξk−1Qk−1Ck−1+Φ(xk+φkVk sk ,µek+1 ;σuk ;σek)
Qk

, if k ≥ 1,
(3.36)

and

Qk =

{
1, if k = 0,

ξk−1Qk−1 + 1, if k ≥ 1,
(3.37)

such that 0 ≤ ξmin ≤ ξk−1 ≤ ξmax ≤ 1 and

ξk =

{
0.5ξ0, if k = 1,

0.5(ξk−1 + ξk−2), if k ≥ 2.
(3.38)

The procedure below introduces the trial step φkVksk for testing and updates the radius δk.

Algorithm 3.5. (Test φkVksk and update δk)
Step 0. Choose 0 < α1 < α2 ≤ 1, δmax > δmin, and 0 < ζ1 < 1 < ζ2.
Step 1. (Compute tk)

Compute ξk by using (3.38).
Compute Qk as defined in (3.37).
Compute Ck as defined in (3.36).
Compute tk =

Ck−Φ(xk+φkVk sk ,µek+1 ;σuk ;σek)
Predk

.

Step 2. (Update the trial step sk)

While tk < α1, or Predk ≤ 0,
set δk = ζ1∥sk∥.
To evaluate a new step sk, go to Algorithms (3.1) and (3.2).

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6538

Step 3. (Update δ)

If α1 ≤ tk < α2, then
set xk+1 = xk + φkVksk.
δk+1 = max(δmin, δk).
End if.
If tk ≥ α2, then
set xk+1 = xk + φkVksk.
δk+1 = min{max{δmin, ζ2δk}, δmax}.
End if.

• To update the parameter σuk

To update σuk , we use a scheme proposed in [39]. Let a tangential predicted decrease T pred which
is obtained by the tangential component st

k be given by

T predk(s̄t
k) = qk(Vksn

k) − qk(Vk(sn
k + Z̃k s̄t

k)), (3.39)

the main steps used to update the parameter σuk is clarified by the following algorithm.

Algorithm 3.6. (Updating σuk)
Step 1. Set σu0 = 1.
Step 2. If

T predk ≥ ∥Vk∇cuk Dkcuk∥min{∥Vk∇cuk Dkcuk∥, δk}, (3.40)

then σuk+1 = σuk ,
else, σuk+1 = 2σuk .
End if

Finally, the nonmontone trust-region algorithm is terminated when either

∥Z̃T
k Vk∇xℓ(xk, µek)∥ + ∥Vk∇cuk Dkcuk∥ + ∥cek∥ ≤ ε1

or ∥sk∥ ≤ ε2, for some ε1, ε2 > 0.

• Nonmonotone trust-region algorithm

In the algorithm that follows, we will outline the main steps of the nonmonotone trust-region
algorithm in order to solve subproblem (3.21).

Algorithm 3.7. (The nonmonotone trust-region algorithm)
Step 0. Start with x0 ∈ intE. Compute D0, V0, µe0 , and θ0. Set σu0 = 1, σe0 = 1, and b̃0 = 0.1.
Choose ε1 > 0 and ε2 > 0. Choose δmin, δmax, and δ0 such that δmin ≤ δ0 ≤ δmax.
Choose α1, α2, ζ1, and ζ2 such that 0 < ζ1 < 1 < ζ2, and 0 < α1 < α2 < 1. Set k = 0.
Step 1. (Termination)
If ∥Z̃T

k Vk∇xℓ(xk, µek)∥ + ∥Vk∇cuk Dkcuk∥ + ∥cek∥ ≤ ε1, then stop the algorithm.
Step 2. (Computing step Vkφksk)

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6539

Evaluate the normal component step sn
k by using Algorithm (3.1).

Evaluate the tangential step s̄t
k by using Algorithm (3.2).

Set sk = sn
k + Z̃k s̄t

k.
If ∥sk∥ ≤ ε2, then stop the algorithm.
Else, compute the parameter φk by using (3.28).
Set xk+1 = xk + Vkφksk.
End if.

Step 3. Evaluate Dk+1 which is defined by (3.1).
Step 4. (Updating the multiplier vector µek+1)
Computing the Lagrange multiplier vector µek+1 by using (3.30).
Step 5. (Updating the penalty parameter σe)
Using Algorithm (3.4) to update the penalty parameter σek .
Step 6. Compute tk as defined in (3.35) by using both Qk as defined in (3.37) and Ck as defined in (3.36).
Using Algorithm (3.5) to test the scaling step φkVksk and update the radius of the trust-region.
Step 7. Updating the parameter σuk using Algorithm (3.6).
Step 8. Utilize (3.12) to evaluate the matrix Vk+1.
Step 9. Set k = k + 1 and go to Step 1.

The global convergence theory for Algorithm (3.7) is similar to the global convergence theory of
the algorithm presented in ([12]) when used to solve a general nonlinear programming problem.

3.4. CHKS nonmontone active-set interior-point trust-region algorithm

We will outline the main steps of the nonmontone active-set interior-point trust-region algorithm
based on the CHKS smoothing function to resolve problem (2.1) in the following algorithm.

Algorithm 3.8. (CHKS nonmontone active-set interior-point trust-region algorithm)
Step 1. Reduce the nonlinear bilevel programming problem (2.1) to the one-objective optimization
problem (2.2) using Karush-Kuhn-Tucker optimality assumptions for the lower level problem.
Step 2. Use the CHKS smoothing function to convert non-deferential problem (2.2) to smoothing
problem (2.4).
Step 3. Utilize an active-set strategy to convert the nonlinearly constrained optimization problem (2.4)
to the equality constrained optimization problem with bounded variables (3.2).
Step 4. Utilize an interior-point method with the diagonal scaling matrix V(x) given in (3.12) to obtain
the nonlinear system [(3.13) - (3.14)].
Step 5. Utilize Newton’s method with diagonal matrix θ as defined in (3.15), to solve the nonlinear
system [(3.13)-(3.14)] and obtain the equivalent subproblem (3.21).
Step 6. Solve subproblem (3.21) by using nonmonton trust-region given by Algorithm (3.7).

4. Computational tests and comparisons

In this section, we introduce an extensive variety of possible numeric NBLP problems to illustrate
the validity of the proposed Algorithm (3.8) to solve problem (2.1).

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6540

4.1. Numerical examples

We shall introduced the MATLAB numerical results for Algorithm (3.8) with a starting point x0 ∈

int(E). The parameter setting that follows was utilized: α1 = 10−2, α2 = 0.75, ζ1 = 0.5, ζ2 = 2,
δmin = 10−3, δ0 = max(∥scp

0 ∥, δmin), δmax = 103δ0, ε1 = 10−10, and ε2 = 10−12.
To demonstrate the efficacy of the suggested Algorithm (3.8) in obtaining the solution to NBLP

problem (2.1), we offer a wide variety of possible numeric NBLP problems in this section. Fifteen
benchmark instances from [4, 22, 27, 30, 33] were used to test the proposed Algorithm (3.8).

To check the consistency of the results, 10 independent runs using different initial starting points
were carried out for each test example. Table 1 summarizes the statistical data for all examples and
demonstrates that the proposed Algorithm (3.8) results are approximate or equal to those of the
compared algorithms in the method proposed in [18] and the literature.

Table 1. Comparison of the results of Algorithm (3.8) with those of various existing
methods(ref).

Problem (y∗, z∗) f ∗u (y∗, z∗) f ∗u (y∗, z∗) f ∗u
f ∗l f ∗l f ∗l

name Algorithm (3.8) Algorithm (3.8) Method [18] Method [18] Ref. Ref.
TP1 (0.8438, 0.7657, 0) -2.0769 (.8465,0.7695,0) -2.0772 (0.8438, 0.7657, 0) -2.0769

-0.5863 -0.5919 -0.5863
TP2 (0.6111, 0.3890, 0, 0.64013 (0.6111,0.3890,0, 0.64013 (0.609, 0.391, 0, 0.6426

0, 1.8339) 1.6816 0, 1.8339) 1.6816 0, 1.828) 1.6708
TP3 (0.97, 3.14, -8.92 (0.97, 3.14 -8.92 (0.97, 3.14, -8.92

2.6, 1.8) -6.05 2.6, 1.8) -6.05 2.6, 1.8) -6.05
TP4 (.5,.5,.5,.5) -1 (0.5, 0.5, 0.5, 0.5) -1 (0.5, 0.5, 0.5, 0.5) -1

0 0 0
TP5 (9.9998, 9.9998) 99.9996 (9.9953,9.9955) 99.907 (10.03, 9.969) 100.58

3.7160e-07 1.8628e-04 0.001
TP6 (1.8884, 0.89041, 0) -1.2067 (1.8889,0.88889, -1.4074 NA 3.57

7.6062 6.8157e-06) 7.6172 2.4
TP7 (1, 0) 17 (1,0) 17 (1, 0) 17

1 1 1
TP8 (0.75,0.75, -2.25 (0.7513,0.7513, -2.2480 (

√
3/2,
√

3/2, -2.1962
0.75, 0.75) 0 0.752,0.752) 0

√
3/2,
√

3/2) 0
TP9 (11.25, 5) 2250 (11.25,5) 2250 (11.25,5) 2250

197.753 197.753 197.753
TP10 (1,0,0) 0 (1,0,1) 1 (1,0,1) 1

0 -1 -1
TP11 (25, 30, 5.0024 (25, 30,5, 10) 5 (25,30,5,10) 5

4.9996, 10) 1.5000e-06 0 0
TP12 (3,5) 9 (3,5) 9 (3,5) 9

0 0 0
TP13 (0, 2, 1.875, -18.679 (0,2,1.875,0.9063) -12.68 (0,2,1.875,0.9063) -12.68

0.90625) -1.0156 -1.016 -1.016
TP14 (10.016, 0.81967) 81.328 (10,0.011) 8.1978e+01 (10.04,0.1429) 82.44

-0.33593 0 0.271
TP15 (0,0.9,0,0.6,0.4) -29.2 (0,0.9,0,0.6,0.4) -29.2 (0,0.9,0,0.6,0.4) -29.2

3.2 3.2 3.2

For purposes of comparison, in Table 2 we have provided the corresponding results of the average
number of iterations (iter), the average number of function evaluations (nfunc), and the average
amount of CPU time (CPUs) in seconds as obtained via the method in [18]. The results in Table 2

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6541

demonstrate that the proposed Algorithm (3.8) results are approximative or the best of those obtained
via the comparative algorithms in the literature. Results show that our proposed method is capable of
handling the NBLP problem (2.1) whether the upper or lower levels are convex or not, and the
calculated results converge to the optimal solution that is approximate or equal to the optimal solution
stated in the literature. Finally, it is evident from a comparison of the solutions obtained via the
proposed Algorithm (3.8) and those found in the literature that the proposed Algorithm (3.8) is
capable of finding the best solution to some problems under conditions of a small amount of time,
fewer function evaluations, and fewer iterations.

Table 2. Comparison of the results of Algorithm (3.8) with those of the method in [18], with
respect to the number of iterations, the number of function evaluations, and time.

Problem iter nfunc CPU(s) iter nfunc CPUs
name Algorithm (3.8) Algorithm (3.8) Algorithm (3.8) Method [18] Method [18] Method [18]
TP1 10 11 1.54 10 13 1.62
TP2 8 9 1.78 9 12 1.87
TP3 6 8 2.1 7 8 2.52
TP4 10 12 1.76 12 13 1.92
TP5 6 8 1.65 6 7 1.523
TP6 7 9 3.5 8 10 3.95
TP7 11 13 1.8 11 12 1.652
TP8 4 5 1.569 11 12 0.953
TP9 9 11 2.23 8 10 1.87
TP10 4 7 2.887 5 6 3.31
TP11 9 11 3.542 10 13 3.632
TP12 4 5 1.12 7 9 1.33
TP13 5 7 2.1 5 8 1.998
TP14 5 6 1.87 5 6 1.97
TP15 5 6 20.212 6 7 20.125

Test Problem 1 [28]:
min

y1
fu = z2

1 + z2
2 + y2

1 − 4y1

s.t. 0 ≤ y1 ≤ 2,
min
z1,z2

fl = z2
1 + 0.5z2

2 + z1z2+

(1 − 3y1)z1 + (1 + y1)z2,

s.t. 2z1 + z2 − 2y1 ≤ 1,
z1 ≥ 0, z2 ≥ 0.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 1 is converted to the following SNLP problem

min
y1,z1,z2,λ

fu = z2
1 + z2

2 + y2
1 − 4y1

s.t. 2z1 + z2 + (1 − 3y1) + (1 + y1) + 2λ = 0,
z1 + z2 + (1 + y1) + λ = 0,
λ − (2z1 + z2 − 2y1 − 1) −

√
(λ + 2z1 + z2 − 2y1 − 1)2 + 4ϵ̃2 = 0,

0 ≤ y1 ≤ 2,
z1 ≥ 0, z2 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, z
∗
1, z
∗
2) =

(0.8438, 0.7657, 0), fu = −2.0769, and fl = −0.5863.

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6542

Test Problem 2 [28]:

min
y1,y2

fu = z2
1 + z2

3 − z1z3 − 4z2 − 7y1 + 4y2

s.t. y1 + y2 ≤ 1,
y1 ≥ 0, y2 ≥ 0

min
z1,z2,z3

fl = z2
1 + 0.5z2

2 + 0.5z2
3 + z1z2+

(1 − 3y1)z1 + (1 + y2)z2,

s.t. 2z1 + z2 − z3 + y1 − 2y2 + 2 ≤ 0,
z1 ≥ 0; z2 ≥ 0 z3 ≥ 0.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 2 is converted to the following SNLP problem

min
y1,y2,z1,z2,z3,λ

fu = z2
1 + z2

3 − z1z3 − 4z2 − 7y1 + 4y2

s.t. 2z1 + z2 + (1 − 3y1) + 2λ = 0,
z1 + z2 + (1 + y2) + λ = 0,
z3 − λ = 0,
λ − (2z1 + z2 − z3 + y1 − 2y2 + 2) −

√
(λ + 2z1 + z2 − z3 + y1 − 2y2 + 2)2 + 4ϵ̃2 = 0,

y1 + y2 ≤ 1,
y1 ≥ 0; y2 ≥ 0 z1 ≥ 0; z2 ≥ 0 z3 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, y
∗
2, z
∗
1, z
∗
2, z
∗
3) =

(0.6111, 0.3890, 0, 0, 1.8339) , fu = 0.64013, and fl = 1.6816.

Test Problem 3 [28]:

min
y1,y2

fu = 0.1(y2
1 + y2

2) − 3z1 − 4z2 + 0.5(z2
1 + z2

2)

s.t.
min
z1,z2

fl = 0.5(z2
1 + 5z2

2) − 2z1z2 − y1z1 − y2z2,

s.t. −0.333z1 + z2 − 2 ≤ 0,
z1 − 0.333z2 − 2 ≤ 0,
z1 ≥ 0, z2 ≥ 0.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 3 is converted to the following SNLP problem

min
y1,y2,z1,z2,λ1,λ2

fu = 0.1(y2
1 + y2

2) − 3z1 − 4z2 + 0.5(z2
1 + z2

2)

s.t. z1 − 2z2 − y1 − 0.333λ1 + λ2 = 0,
5z2 − 2z1 − y2 + λ1 − 0.333λ2 = 0,
λ1 − (−0.333z1 + z2 − 2) −

√
(λ1 − 0.333z1 + z2 − 2)2 + 4ϵ̃2 = 0,

λ2 − (z1 − 0.333z2 − 2) −
√

(λ2 + z1 − 0.333z2 − 2)2 + 4ϵ̃2 = 0,
y1 ≥ 0, y2 ≥ 0, z1 ≥ 0, z2 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, y
∗
2, z
∗
1, z
∗
2) =

(0.97, 3.14, 2.6, 1.8) , fu = −8.92, and fl = −6.05.

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6543

Test Problem 4 [28]:

min
y1,y2

fu = y2
1 − 2y1 + y2

2 − 2y2 + z2
1 + z2

2

S .T y1 ≥ 0, y2 ≥ 0
min
z1,z2

fl = (z1 − y1)2 + (z2 − y2)2,

s.t. 0.5 ≤ z1 ≤ 1.5,
0.5 ≤ z2 ≤ 1.5.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 4 is converted to the following SNLP problem

min
y1,y2,z1,z2

fu = y2
1 − 2y1 + y2

2 − 2y2 + z2
1 + z2

2

s.t 2(z1 − y1) = 0,
2(z2 − y2) = 0,
0.5 ≤ z1 ≤ 1.5,
0.5 ≤ z2 ≤ 1.5,
y1 ≥ 0, y2 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, y
∗
2, z
∗
1, z
∗
2) =

(0.5, 0.5, 0.5, 0.5) , fu = −1, and fl = 0.

Test Problem 5 [28]:
min

y
fu = y2 + (z − 10)2

s.t. −y + z ≤ 0,
0 ≤ y ≤ 15,

min
z

fl = (y + 2z − 30)2,

s.t. y + z ≤ 20,
0 ≤ z ≤ 20.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 5 is converted to the following SNLP problem

min
y,z,λ

fu = y2 + (z − 10)2

s.t 4(y + 2z − 30) + λ = 0,
λ − (y + z − 20) −

√
(λ + y + z − 20)2 + 4ϵ̃2 = 0,

−y + z ≤ 0,
0 ≤ y ≤ 15,
0 ≤ z ≤ 20.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that
(y∗, z∗) = (9.9998, 9.9998) , fu = 99.9996, and fl = 3.7160e − 07.

Test Problem 6 [28]:

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6544

min
y1

fu = (y1 − 1)2 + 2z2
1 − 2y1

s.t. y1 ≥ 0,
min
z1,z2

fl = (2z1 − 4)2 + (2z2 − 1)2 + y1z1,

s.t. 4y1 + 5z1 + 4z2 ≤ 12,
−4y1 − 5z1 + 4z2 ≤ −4,
4y1 − 4z1 + 5z2 ≤ 4,
−4y1 + 4z1 + 5z2 ≤ 4,
z1 ≥ 0, z2 ≥ 0.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 6 is converted to the following SNLP problem

min
y1,z1,z2,λ1,λ2,λ3,λ4

fu = (y1 − 1)2 + 2z2
1 − 2y1

s.t. 4(2z1 − 4) + y1 + 5λ1 − 5λ2 − 4λ3 + 4λ4 = 0,
4(2z2 − 1) + 4λ1 + 4λ2 + 5λ3 + 5λ4 = 0,
λ1 − (4y1 + 5z1 + 4z2 − 12) −

√
(λ1 + 4y1 + 5z1 + 4z2 − 12)2 + 4ϵ̃2 = 0,

λ2 − (−4y1 − 5z1 + 4z2 + 4) −
√

(λ2 − 4y1 − 5z1 + 4z2 + 4)2 + 4ϵ̃2 = 0,
λ3 − (4y1 − 4z1 + 5z2 − 4) −

√
(λ3 + 4y1 − 4z1 + 5z2 − 4)2 + 4ϵ̃2 = 0,

λ4 − (−4y1 + 4z1 + 5z2 − 4) −
√

(λ4 − 4y1 + 4z1 + 5z2 − 4)2 + 4ϵ̃2 = 0,
y1 ≥ 0, z1 ≥ 0, z2 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, z
∗
1, z
∗
2) =

(1.8884, 0.89041, 0) , fu = −1.2067, and fl = 7.6062.

Test Problem 7 [28]:
min

y
fu = (y − 5)2 + (2z + 1)2

s.t. y ≥ 0,
min

z
fl = (2z − 1)2 − 1.5yz,

s.t. −3y + z ≤ −3,
y − 0.5z ≤ 4,
y + z ≤ 7,
z ≥ 0.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 7 is converted to the following SNLP problem

min
y,z,λ1,λ2,λ3

fu = (y − 5)2 + (2z + 1)2

s.t. 4(2z − 1) − 1.5y + λ1 − 0.5λ2 + λ3 = 0,
λ1 − (−3y + z + 3) −

√
(λ1 − 3y + z + 3)2 + 4ϵ̃2 = 0,

λ2 − (y − 0.5z − 4) −
√

(λ2 + y − 0.5z − 4)2 + 4ϵ̃2 = 0,
λ3 − (y + z − 7) −

√
(λ2 + y + z − 7)2 + 4ϵ̃2 = 0,

y ≥ 0, z ≥ 0.

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6545

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗, z∗) = (1, 0) ,
fu = 17, and fl = 1.

Test Problem 8 [28]:

min
y1,y2

fu = y2
1 − 3y1 + y2

2 − 3y2 + z2
1 + z2

2

s.t. y1 ≥ 0, y2 ≥ 0,
min
z1,z2

fl = (z1 − y1)2 + (z2 − y2)2,

s.t. 0.5 ≤ z1 ≤ 1.5,
0.5 ≤ z2 ≤ 1.5.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 8 is converted to the following SNLP problem

min
y1,y2,z1,z2

fu = y2
1 − 3y1 + y2

2 − 3y2 + z2
1 + z2

2

s.t. 2(z1 − y1) = 0,
2(z2 − y2) = 0,
0.5 ≤ z1 ≤ 1.5,
0.5 ≤ z2 ≤ 1.5,
y1 ≥ 0, y2 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, y
∗
2, z
∗
1, z
∗
2) =

(0.75; 0.75; 0.75; 0.75) , fu = −2.25, and fl = 0.

Test Problem 9 [23]:
min

y
fu = 16y2 + 9z2

s.t. −4y + z ≤ 0,
y ≥ 0,

min
z

fl = (y + z − 20)4,

s.t. 4y + z − 50 ≤ 0,
z ≥ 0.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 9 is converted to the following SNLP problem

min
y,z,λ

fu = 16y2 + 9z2

s.t 4(y + z − 20)3 + λ = 0,
λ − (4y + z − 50) −

√
(λ + 4y + z − 50)2 + 4ϵ̃2 = 0,

−4y + z ≤ 0,
y ≥ 0, z ≥ 0.

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6546

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗, z∗) =
(11.25, 5) , fu = 2250, and fl = 197.753.

Test Problem 10 [23]:
min

y1
fu = y3

1z1 + z2

s.t. 0 ≤ y1 ≤ 1,
min
z1,z2

fl = −z2

s.t. y1z1 ≤ 10,
z2

1 + y1z2 ≤ 1,
z2 ≥ 0.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 10 is converted to the following SNLP problem

min
y1,z1,z2,λ1,λ2

fu = y3
1z1 + z2

s.t. λ1y1 + 2λ2z1 = 0,
−1 + λ2y1 = 0,
λ1 − (y1z1 − 10) −

√
(λ1 + y1z1 − 10)2 + 4ϵ̃2 = 0,

λ2 − (z2
1 + y1z2 − 1) −

√
(λ2 + z2

1 + y1z2 − 1)2 + 4ϵ̃2 = 0,
0 ≤ y1 ≤ 1,
z2 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, z
∗
1, z
∗
2) =

(1, 0, 0), fu = 0, and fl = 0.

Test Problem 11 [40]:

min
y1,y2

fu = 2y1 + 2y2 − 3z1 − 3z2 − 60

s.t. y1 + y2 + z1 − 2z2 ≤ 40,
0 ≤ y1 ≤ 50,
0 ≤ y2 ≤ 50,

min
z1,z2

fl = (z1 − y1 + 20)2 + (z2 − y2 + 20)2,

s.t. y1 − 2z1 ≥ 10,
y2 − 2z2 ≥ 10,
−10 ≤ z1 ≤ 20,
−10 ≤ z2 ≤ 20.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 11 is converted to the following smooth nonlinear
programming problem

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6547

min
y1,y2,z1,z2,λ1,λ2

fu = 2y1 + 2y2 − 3z1 − 3z2 − 60

s.t. 2(z1 − y1 + 20) + 2λ1 = 0,
2(z2 − y2 + 20) + 2λ2 = 0,
λ1 − (10 − y1 + 2z1) −

√
(λ1 + 10 − y1 + 2z1)2 + 4ϵ̃2 = 0,

λ2 − (10 − y2 + 2z2) −
√

(λ2 + 10 − y2 + 2z2)2 + 4ϵ̃2 = 0,
y1 + y2 + z1 − 2z2 ≤ 40,
0 ≤ y1 ≤ 50,
0 ≤ y2 ≤ 50,
−10 ≤ z1 ≤ 20,
−10 ≤ z2 ≤ 20.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, y
∗
2, z
∗
1, z
∗
2) =

(25, 30, 4.9996, 10) , fu = 5.0024, and fl = 1.5000e − 06.

Test Problem 12 [23]:
min

y
fu = (y − 3)2 + (z − 2)2

s.t. −2y + z − 1 ≤ 0,
y − 2z + 2 ≤ 0,
y + 2z − 14 ≤ 0,
0 ≤ y ≤ 8,

min
z

fl = (z − 5)2

s.t. z ≥ 0.
Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 12 is converted to the following SNLP problem

min
y,z

fu = (y − 3)2 + (z − 2)2

s.t. 2(z − 5) = 0,
−2y + z − 1 ≤ 0,
y − 2z + 2 ≤ 0,
y + 2z − 14 ≤ 0,
0 ≤ y ≤ 8,
z ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗, z∗) = (3, 5) ,
fu = 9, and fl = 0.

Test Problem 13 [40]:
min
y1,y2

fu = −y2
1 − 3y2

2 − 4z1 + z2
2

s.t. y2
1 + 2y2 ≤ 4,

y1 ≥ 0, y2 ≥ 0,
min
z1,z2

fl = 2y2
1 + z2

1 − 5z2,

s.t. y2
1 − 2y1 + 2y2

2 − 2z1 + z2 ≥ −3,
y2 + 3z1 − 4z2 ≥ 4,
z1 ≥ 0, z2 ≥ 0.

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6548

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 13 is converted to the following SNLP problem.

min
y1,y2,z1,z2,λ1,λ2

fu = −y2
1 − 3y2

2 − 4z1 + z2
2

s.t. 2z1 + 2λ1 − 3λ2 = 0,
−5 − λ1 + 4λ2 = 0,

λ1 − (−y2
1 + 2y1 − 2y2

2 + 2z1 − z2 − 3) −
√

(λ1 − y2
1 + 2y1 − 2y2

2 + 2z1 − z2 − 3)2 + 4ϵ̃2 = 0,

λ2 − (−y2 − 3z1 + 4z2 − 4) −
√

(λ2 − y2 − 3z1 + 4z2 − 4)2 + 4ϵ̃2 = 0,
y2

1 + 2y2 ≤ 4,
y1 ≥ 0, y2 ≥ 0,
z1 ≥ 0, z2 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, y
∗
2, z
∗
1, z
∗
2) =

(0, 2, 1.875, 0.90625) , fu = −18.679, and fl = −1.0156.

Test Problem 14 [40]:
min

y
fu = (y − 1)2 + (z − 1)2

s.t. y ≥ 0,
min

z
fl = 0.5z2 + 500z − 50yz

s.t. z ≥ 0.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 14 is converted to the following SNLP problem.

min
y,z

fu = (y − 1)2 + (z − 1)2

s.t. z − 50y + 500 = 0
y ≥ 0, z ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that
(y∗, z∗) = (10.016, 0.81967) , fu = 81.328, and fl = −0.33593.

Test Problem 15 [40]:

min
y1,y2

fu = −8y1 − 4y2 + 4z1 − 40z2 − 4z3

s.t. y1 ≥ 0, y2 ≥ 0
min

z
fl = y1 + 2y2 + z1 + z2 + 2z3,

s.t. z2 + z3 − z1 ≤ 1,
2y1 − z1 + 2z2 − 0.5z3 ≤ 1,
2y2 + 2z1 − z2 − 0.5z3 ≤ 1,
zi ≥ 0, i = 1, 2, 3.

Applying the Karush-Kuhn-Tucker condition to the lower level problem and using the CHKS
smoothing function, Test Problem 15 is converted to the following SNLP problem,

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6549

min
y1,y2,z1,z2,z3,λ1,λ2,λ3

fu = −8y1 − 4y2 + 4z1 − 40z2 − 4z3

s.t. 1 − λ1 − λ2 + 2λ3 = 0,
1 + λ1 + 2λ2 − λ3 = 0,
2 + λ1 − 0.5λ2 − 0.5λ3 = 0,
λ1 − (z2 + z3 − z1 − 1) −

√
(λ1 + z2 + z3 − z1 − 1)2 + 4ϵ̃2 = 0,

λ2 − (2y1 − z1 + 2z2 − 0.5z3 − 1) −
√

(λ2 + 2y1 − z1 + 2z2 − 0.5z3 − 1)2 + 4ϵ̃2 = 0,
λ3 − (2y2 + 2z1 − z2 − 0.5z3 − 1) −

√
(λ3 + 2y2 + 2z1 − z2 − 0.5z3 − 1)2 + 4ϵ̃2 = 0,

y1 ≥ 0, y2 ≥ 0, zi ≥ 0, i = 1, 2, 3.

Applying Algorithm (3.7) to the above nonlinear programming problem we have that (y∗1, y
∗
2, z
∗
1, z
∗
2, z
∗
3) =

(0, 0.9, 0, 0.6, 0.4) , fu = −29.2, and fl = 3.2.

4.2. Practical example

In this section, the efficacy of the proposed Algorithm (3.8) was tested by using a watershed water
trading decision-making model based on bilevel programming [42]. The upper decision-maker is the
watershed management agency which acts as the planning, controlling and coordinating center of a
watershed, and each user is the lower decision-maker. The mathematical formulation for the watershed
water trading decision-making model is formulated as follows:

max
w,t,r1,g1,r2,g2

F = 0.4W + t(q1 + q2) + f1 + f2,

s.t. r1 + r2 + w = 90,
q1 + q2 + w ≤ 90,
g1 + g2 = 20,
r1 ≥ 38, r2 ≥ 42, g1 ≥ 7, g2 ≥ 8, w ≥ 6, 0.3 ≤ t ≤ 2.0,

max
q1,l1

f1 = 0.7q1 − q1t − 0.3(45 − q1)2 + (r1 − q1)[0.9 − 0.01(r1 + r2 − q1 − q2)],

−0.2(0.2q1 − l1)2 + (g1 − l1)[0.8 − 0.01(g1 + g2 − l1 − l2)],
max
q2,l2

f2 = 0.8q2 − q2t − 0.2(47 − q2)2 + (r2 − q2)[0.9 − 0.01(r1 + r2 − q1 − q2)],

−0.1(0.3q2 − l2)2 + (g2 − l2)[0.8 − 0.01(g1 + g2 − l1 − l2)],
s.t. l1 + l2 ≤ 20,

q1, l1 ≥ 0,
q2, l2 ≥ 0

where q1 and q2 are the actual water intake volumes of water consumer A and water consumer B
respectively. l1 and l2 are the wastewater discharge volumes of two users respectively. r1 and r2 are the
water rights of the two users respectively. g1 and g2 are the emission rights of two users respectively. w
is the ecological water requirement of the watershed. t represents the water resource fees. Applying the
Karush-Kuhn-Tucker condition to the lower-level problem and using the CHKS smoothing function,
the watershed water trading decision-making model is converted to the following SNLP problem,

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6550

max
w,t,r1,g1,r2,g2

F = 0.4W + t(q1 + q2) + f1 + f2,

s.t. r1 + r2 + w = 90,
g1 + g2 = 20,
0.8 − t + 0.4(47 − q2) + 0.01(r2 − q2) − (0.9 − 0.01(r1 + r2 − q1 − q2))
−0.06(0.3q2 − l2) = 0,
0.2(0.3q2 − l2) + 0.01(g2 − l2) − (0.8 − 0.01(g1 + g2 − l1 − l2)) − λ1 = 0,
λ1 − (l1 + l2 − 20) −

√
(λ1 + l1 + l2 − 20)2 + 4ϵ̃2 = 0,

0.7 − t + 0.6(45 − q1) + 0.01(r1 − q1) − (0.9 − 0.01(r1 + r2 − q1 − q2))
−0.8(0.2q1 − l1) − 0.01λ2 = 0,
0.4(0.2q1 − l1) + 0.01(g1 − l1) − (0.8 − 0.01(g1 + g2 − l1 − l2)) − 0.01λ3

+λ4(−1 − λ1+l1+l2−20√
(λ1+l1+l2−20)2+4ϵ̃2

) = 0,

q1 + q2 + w ≤ 90,
g1 ≥ 7, g2 ≥ 8, r1 ≥ 38, r2 ≥ 42,w ≥ 6, 0.3 ≤ t ≤ 2.0,
q1, l1 ≥ 0,
q2, l2 ≥ 0.

Applying Algorithm (3.7) to the above nonlinear programming problem we have the following data
at ϵ̃ = 0.001. g1 = 9, g2 = 10.450, l1 = 6.8755, l2 = 9.0751, q1 = 41.497, q2 = 43, r1 = 39.332,
r2 = 44.269, t = 0.3, w = 6.2338, f1 = 12.17, f2 = 19.043, and F = 59.055.

Table 3 compares the obtained results with method [25] and those of various existing methods(Ref).
From Table 3, we can see that the solutions obtained via Algorithm (3.8) are better than those given
in [25] and those of various existing methods(Ref). Therefore, Algorithm (3.8) can also be applied to
the practical problem.

Table 3. Comparison of the results of Algorithm (3.8) with method [25] and with those of
various existing methods(ref) for a watershed water application.

Parameter Method in [25] Algorithm (3.8) Results in Ref.

q1 42 41.497 41.2016
q2 41.9680 43 42.5388
l1 6.9984 6.8755 6.4772
l2 9.1751 9.0751 9.1611
r1 39.9679 39.332 39.4861
r2 44 44.269 44.2542
g1 9 9 9.0015
g2 11 10.45 10.9985
w 6.0321 6.2338 6.2596
t 0.3000 0.3 0.3226
F 58.97837 59.055 58.4482
f1 13.40286 12.17 10.964
f2 17.97226 19.043 17.964

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

6551

5. Conclusions

In this paper, Algorithm (3.8) has been presented to solve the NBLP problem (2.1). A
Karush-Kuhn-Tucker condition is used with the CHKS smoothing function to convert the NBLP
problem (2.1) into a standard SNLP problem. The SNLP problem is solved by using the proposed
nonmonton active interior-point trust-region technique to obtain an approximately optimal solution to
the NBLP problem. In the proposed nonmonton active interior-point trust-region technique, the
smoothed nonlinear programming problem is transformed into an equality-constrained optimization
problem with bounded variables by using an active-set approach and the penalty method. To solve the
equality-constrained optimization problem with bounded variables, Newton’s interior-point method is
used. But it is a local method so it might not converge if the starting point is far from a stationary
point. To overcome this problem, the nonmonotone trust-region strategy is used. It is generally
promising and efficient, and it can overcome the aforementioned shortcomings.

Applications to mathematical programs with equilibrium constraints are given to clarify the
effectiveness of the proposed approach. Numerical results reflect the good behavior of the proposed
technique and the computed results converge to the optimal solutions. It is clear from the comparison
between the solutions obtained by using Algorithm (3.8) and the algorithm of [18], that
Algorithm (3.8) is able to find the optimal solution of some problems with fewer iterations, fewer
function evaluations, and less time.

Furthermore, the usefulness of the CHKS smoothing function with the nonmonton active
interior-point trust-region algorithm in efforts to solve NBLP problems was examined by using a
real-world case about a watershed trading decision-making problem. Numerical experiments show
that the suggested method surpasses rival algorithms in terms of efficacy.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

Conflict of interest

The authors declare that they have no competing interests.

References

1. M. A. Amouzegar, A global optimization method for nonlinear bilevel programming problems,
IEEE Trans. Syst. Men Cybernet., 29 (1999), 771–777. https://doi.org/10.1109/3477.809031

2. R. Byrd, Omojokun, Robust trust-region methods for nonlinearly constrained optimization, In:
Second SIAM Conference on Optimization, Houston, 1987.

3. J. F. Bard, Coordination of a multidivisional organization through two levels of management,
Omega, 11 (1983), 457–468. https://doi.org/10.1016/0305-0483(83)90038-5

4. J. F. Bard, Convex two-level optimization, Math. Program., 40 (1988), 15–27.
https://doi.org/10.1007/BF01580720

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

http://dx.doi.org/https://doi.org/10.1109/3477.809031
http://dx.doi.org/https://doi.org/10.1016/0305-0483(83)90038-5
http://dx.doi.org/https://doi.org/10.1007/BF01580720

6552

5. B. Chen, P. T. Harker, A non-interior-point continuation method for linear complementarity
problem, SIAM J. Matrix Anal. Appl., 14 (1993), 1168–1190. https://doi.org/10.1137/0614081

6. I. Das, An interior point algorithm for the general nonlinear programming problem with trust region
globlization, In: Technical Report, 1996.

7. J. Dennis, M. Heinkenschloss, L. Vicente, Trust-region interior-point SQP algorithms for a
class of nonlinear programming problems, SIAM J. Control Optim., 36 (1998), 1750–1794.
https://doi.org/10.1137/S036012995279031

8. J. Dennis, M. El-Alem, K. Williamson, A trust-region approach to nonlinear systems of equalities
and inequalities, SIAM J. Optim., 9 (1999), 291–315. https://doi.org/10.1137/S1052623494276208

9. N. Y. Deng, Y. Xiao, F. J. Zhou, Nonmonotonic trust region algorithm, J. Optim. Theory Appl., 76
(1993), 259–285. https://doi.org/10.1007/BF00939608

10. B. El-Sobky, A multiplier active trust-region algorithm for solving general nonlinear programming
problem, Appl. Math. Comput., 219 (2012), 928–946.

11. B. El-Sobky, An interior-point penalty active-set trust-region algorithm, J. Egypt. Math. Soc., 24
(2016), 672–680. https://doi.org/10.1016/j.joems.2016.04.003

12. B. El-Sobky, An active-set interior-point trust-region algorithm, Pacific J. Optim., 14 (2018), 125–
159.

13. B. El-Sobky, A. Abotahoun, An active-set algorithm and a trust-region approach in constrained
minimax problem, Comp. Appl. Math., 37 (2018), 2605–2631. https://doi.org/10.1007/s40314-017-
0468-3

14. B. El-Sobky, A. Abotahoun, A trust-region algorithm for solving mini-max problem, J. Comput.
Math., 36 (2018), 881–902.

15. B. El-Sobky, Y. Abouel-Naga, A penalty method with trust-region mechanism for
nonlinear bilevel optimization problem, J. Comput. Appl. Math., 340 (2018), 360–374.
https://doi.org/10.1016/j.cam.2018.03.004

16. B. El-Sobky, Y.Abo-Elnaga, A. Mousa, A. El-Shorbagy, Trust-region based penalty barrier
algorithm for constrained nonlinear programming problems: an application of design of minimum
cost canal sections, Mathematics, 9 (2021), 1551. https://doi.org/10.3390/math9131551

17. B. El-Sobky, G. Ashry, An interior-point trust-region algorithm to solve a
nonlinear bilevel programming problem, AIMS Math., 7 (2022), 5534–5562.
http://dx.doi.org/10.3934/math.2022307

18. B. El-Sobky, G. Ashry, An Active-set Fischer-Burmeister trust-region algorithm
to solve a nonlinear bilevel optimization problem, Fractal Fract., 6 (2022), 412.
https://doi.org/10.3390/fractalfract6080412

19. B. El-Sobky, G. Ashry, Y. Abo-Elnaga, An active-set with barrier method and trust-region
mechanism to solve a nonlinear bilevel programming problem, AIMS Math., 7 (2022), 16112–
16146. http://dx.doi.org/10.3934/math.2022882

20. B. El-Sobky, M. F. Zidan, A trust-region based an active-set interior-point
algorithm for fuzzy continuous Static Games, AIMS Math., 8 (2023), 13706–13724.
http://dx.doi.org/10.3934/math.2023696

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

http://dx.doi.org/https://doi.org/10.1137/0614081
http://dx.doi.org/https://doi.org/10.1137/S036012995279031
http://dx.doi.org/https://doi.org/10.1137/S1052623494276208
http://dx.doi.org/https://doi.org/10.1007/BF00939608
http://dx.doi.org/https://doi.org/10.1016/j.joems.2016.04.003
http://dx.doi.org/https://doi.org/10.1007/s40314-017-0468-3
http://dx.doi.org/https://doi.org/10.1007/s40314-017-0468-3
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.03.004
http://dx.doi.org/https://doi.org/10.3390/math9131551
http://dx.doi.org/http://dx.doi.org/10.3934/math.2022307
http://dx.doi.org/https://doi.org/10.3390/fractalfract6080412
http://dx.doi.org/http://dx.doi.org/10.3934/math.2022882
http://dx.doi.org/http://dx.doi.org/10.3934/math.2023696

6553

21. J. B. E. Etoa, Solving quadratic convex bilevel programming problems using a smoothing method,
Appl. Math. Comput., 217 (2011), 6680–6690. https://doi.org/10.1016/j.amc.2011.01.066

22. J. E. Falk, J. M. Liu, On bilevel programming, Part I: general nonlinear cases, Math. Program., 70
(1995), 47–72. https://doi.org/10.1007/BF01585928

23. H. Gumus, A. Flouda, Global optimization of nonlinear bilevel programming problems, J. Global
Optim., 20 (2001), 1–31. https://doi.org/10.1023/A:1011268113791

24. Y. Ishizuka, E. Aiyoshi, Double penalty method for bilevel optimization problems, Ann. Oper. Res.,
34 (1992), 73–88. https://doi.org/10.1007/BF02098173

25. Y. Jiang, X. Li, C. Huang, X. Wu, Application of particle swarm optimization based on CHKS
smoothing function for solving nonlinear bilevel programming problem, Appl. Math. Comput., 219
(2013), 4332–4339. https://doi.org/10.1016/j.amc.2012.10.010

26. C. Kanzow, Some noninterior continuation methods for linear complementarity problems, SIAM J.
Matrix Anal. Appl., 17 (1996), 851–868. https://doi.org/10.1137/S0895479894273134

27. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220
(1983), 671–680. https://doi.org/10.1126/science.220.4598.671

28. H. Li, Y. Jiao, L. Zhang, Orthogonal genetic algorithm for solving quadratic bilevel programming
problems, J. Syst. Eng. Elect., 21 (2010), 763–770. https://doi.org/10.3969/j.issn.1004-
4132.2010.05.008

29. Y. B. Lv, T. S. Hu, G. M. Wang, Z. P. Wan, A penalty function method based on Kuhn-Tucker
condition for solving linear bilevel programming, Appl. Math. Comput., 188 (2007) 808–813.
https://doi.org/10.1016/j.amc.2006.10.045

30. D. Muu, N. Quy, A global optimization method for solving convex quadratic bilevel programming
problems, J. Global Optim., 26 (2003), 199–219. https://doi.org/10.1023/A:1023047900333

31. J. Mo, C. Liu, S. Yan, A nonmonotone trust region method based on nonincreasing technique of
weighted average of the successive function value, J. Comput. Appl. Math., 209 (2007), 97–108.
https://doi.org/10.1016/j.cam.2006.10.070

32. E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality
constraints, PhD thesis, Department of Computer Science, University of Colorado, Boulder,
Colorado, 1989.

33. V. Oduguwa, R. Roy, Bi-level optimization using genetic algorithm, In: Proceedings 2002
IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002), 2002, 123–128.
https://doi.org/10.1109/ICAIS.2002.1048121

34. T. Steihaug, The conjugate gradient method and trust-region in large scale optimization, SIAM J.
Numer. Anal., 20 (1983), 0720042. https://doi.org/10.1137/0720042

35. S. Smale, Algorithms for solving equations, In: Proceeding of International Congress of
Mathematicians, American Mathematics Society, Rhode Island, 1987, 72–195.

36. G. Savard, J. Gauvin, The steepest descent direction for the nonlinear bilevel programming
problem, Oper. Res. Lett., 15 (1994), 265–272. https://doi.org/10.1016/0167-6377(94)90086-8

37. Z. J. Shi, J. H. Guo, A new trust region methods for unconstrained optimization, J. Comput. Appl.
Math., 213 (2008), 509–520. https://doi.org/10.1016/j.cam.2007.01.027

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2011.01.066
http://dx.doi.org/https://doi.org/10.1007/BF01585928
http://dx.doi.org/https://doi.org/10.1023/A:1011268113791
http://dx.doi.org/https://doi.org/10.1007/BF02098173
http://dx.doi.org/https://doi.org/10.1016/j.amc.2012.10.010
http://dx.doi.org/https://doi.org/10.1137/S0895479894273134
http://dx.doi.org/https://doi.org/10.1126/science.220.4598.671
http://dx.doi.org/https://doi.org/10.3969/j.issn.1004-4132.2010.05.008
http://dx.doi.org/https://doi.org/10.3969/j.issn.1004-4132.2010.05.008
http://dx.doi.org/https://doi.org/10.1016/j.amc.2006.10.045
http://dx.doi.org/https://doi.org/10.1023/A:1023047900333
http://dx.doi.org/https://doi.org/10.1016/j.cam.2006.10.070
http://dx.doi.org/https://doi.org/10.1109/ICAIS.2002.1048121
http://dx.doi.org/https://doi.org/10.1137/0720042
http://dx.doi.org/https://doi.org/10.1016/0167-6377(94)90086-8
http://dx.doi.org/https://doi.org/10.1016/j.cam.2007.01.027

6554

38. P. L. Toint, Non-monotone trust-region algorithm for nonlinear optimization subject to convex
constraints, Math. Program., 77 (1997), 69–94. https://doi.org/10.1007/BF02614518

39. Y. Yuan, On the convergence of a new trust region algorithm, Numer. Math., 70 (1995), 515–539.
https://doi.org/10.1007/s002110050133

40. Y. Wang, Y. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming
based on a new constraint-Handling scheme, IEEE T. Syst. Man Cy. C, 35 (2005), 221–232.
https://doi.org/10.1109/TSMCC.2004.841908

41. G. M. Wang, X. J. Wang, Z. P. Wan, Y. B. Lv, A globally convergent algorithm for a
class of bilevel nonlinear programming problem, Appl. Math. Comput., 188 (2007), 166–172.
https://doi.org/10.1016/j.amc.2006.09.130

42. C. Y. Wu, Y. Z. Zhao, Watershed water trading decision-making model based on bilevel
programming, Oper. Res. Manage. Sci., in Chinese, 20 (2011), 30–37.

43. X. S. Zhang, J. L. Zhang, L. Z. Liao, A nonmonotone adaptive trust region method and
its convergence, Comput. Math. Appl., 45 (2003), 1469–1477. https://doi.org/10.1016/S0898-
1221(03)00130-5

44. H. C. Zhang, W. W. Hager, A nonmonotone line search technique for unconstrained optimization,
SIAM J. Optim., 14 (2004), 1043–1056.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 3, 6528–6554.

http://dx.doi.org/https://doi.org/10.1007/BF02614518
http://dx.doi.org/https://doi.org/10.1007/s002110050133
http://dx.doi.org/https://doi.org/10.1109/TSMCC.2004.841908
http://dx.doi.org/https://doi.org/10.1016/j.amc.2006.09.130
http://dx.doi.org/https://doi.org/10.1016/S0898-1221(03)00130-5
http://dx.doi.org/https://doi.org/10.1016/S0898-1221(03)00130-5
http://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical model for SNLP problem
	 Nonmontone active-set interior-point trust-region algorithm
	An active-set strategy
	Newton's interior-point method
	 The nonmontone trust region algorithm
	CHKS nonmontone active-set interior-point trust-region algorithm

	Computational tests and comparisons
	Numerical examples
	Practical example

	Conclusions

