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1. Introduction

Sturm-Liouville differential equations have been widely studied by many authors, because they are
useful for describing many types of physical and chemical phenomena. Among the others, we mention
the Boyd equation on the eddies in the atmosphere [9], the Laplace tidal wave equation [15] and the
equation describing the gas dynamics in a fuel cell [5]. For a detailed overview of Sturm-Liouville
differential equations we refer to the book [1].

In literature there are many existence and multiplicity results for Sturm-Liouville problems obtained
through different techniques as critical point theory [6, 8, 11–14], fixed point theory [16], upper-lower
solutions [17, 18] and so on, see also the references therein. Nevertheless, in the mentioned papers the
variable coefficients of the differential equation are required to be positive. Moreover, in order to relate
to real life phenomena, it is necessary to consider a more general and realistic assumption and to allow
the variable coefficients to change their sign. Also, our approach is based on variational methods. Note
that the variational formulation of the considered problem is not natural due to the presence of the
term with the first derivative; indeed, these types of problems are often referred to as “non-variational
problems” since there is no simple associated minimization problem. However, we consider a specific
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functional, which is different from the classical energy functional and that can be studied by variational
methods.

In this paper we study the following nonlinear parameter-depending problem with a complete
Sturm-Liouville second-order differential equation and Dirichlet boundary condition{

−u′′ + γ(x)u′ + δ(x)u = λ f (x, u) in ]a, b[,
u(a) = u(b) = 0,

(Dλ)

where λ is a positive parameter, f ∈ L1 ([a, b] × R) is a function that satisfies the Carathéodory
hypotheses and the variable coefficients γ, δ ∈ L∞([a, b]) are such that

ess inf
x∈[a,b]

δ(x) > −
(
π

b − a

)2
.

Problem (Dλ) has already been addressed (see [3,4]). Most notably as an application, in [3] the authors
obtain a nontrivial solution by providing information for the proportional voltage regulation of a DC-
DC buck converter.

In our paper we establish the existence of two nontrivial and nonnegative solutions with opposite
energy sign (see Theorem 3.1) using a two-critical point theorem due to Bonanno-D’Aguı̀ [7], here
recalled in Theorem 2.1. The main hypotheses of Theorem 3.1 are two. The first one is an algebraic
condition on the nonlinear term (see (h2)) that guarantees the existence of a first critical point, which
actually is a local minimum for the energy functional associated to our problem. The second one is the
classical Ambrosetti-Rabinowitz condition, which is needed to ensure the boundedness of the Palais-
Smale sequences for the energy functional associated with the problem (Dλ) and so the existence of
another critical point, that is a mountain pass point.

The paper is arranged as follows. In Section 2, we formulate the main definitions and tools needed
to demonstrate our main results. In particular, we recall the abstract critical point theorem proposed
by Bonanno-D’Aguı̀ (Theorem 2.1). Section 3 begins with the introduction of a lemma (Lemma
3.3) that prove the connection between the behavior of the nonlinearity, specifically the Ambrosetti-
Rabinowitz condition, and the Palais-Smale condition of the energy functional. Following, we establish
our main result, providing an answer to the existence of solutions to problem (Dλ). More precisely, we
prove the existence of two nontrivial nonnegative generalized solutions to (Dλ), see Theorem 3.1. By
requiring stronger hypotheses on the nonlinearity, Theorem 3.2 ensures that the generalized solutions
are positive. Finally, in Section 4 we study specific cases of the problem (Dλ), in particular when f has
separable variables. We give corollaries and an example to underline the applicability of our results.

2. Preliminaries

In this section we remind some preliminaries in order to study problem (Dλ) and we also recall
the main tool of our investigation (Theorem 2.1). To this end, L2([a, b]) indicates the usual Lebesgue
space equipped with the norm ∥u∥2 and we denote by W1,2([a, b]) and W1,2

0 ([a, b]) the Sobolev spaces
endowed with the usual norms

∥u∥1,2 =
(∫ b

a
|u(x)|2 dx +

∫ b

a
|u′(x)|2 dx

) 1
2

,
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∥u∥1,2,0 = ∥u′∥2 =
(∫ b

a
|u′(x)|2 dx

) 1
2

,

respectively.
Consider the following boundary value problem{

−u′′ + γ(x)u′ + δ(x)u = λ f (x, u) in ]a, b[,
u(a) = u(b) = 0,

(Dλ)

where λ is a positive parameter, γ, δ ∈ L∞([a, b]) such that

ess inf
x∈[a,b]

δ(x) > −
(
π

b − a

)2
, (2.1)

and f : [a, b] × R→ R is an L1-Carathéodory function, namely

(i) x→ f (x, t) is measurable for all t ∈ R;

(ii) t → f (x, t) is continuous for a.a. x ∈ [a, b];

(iii) for all s > 0 the function sup
|t|≤s
| f (·, t)| belongs to L1([a, b]).

Set

Γ(x) =
∫ x

a
γ(ξ) dξ ∀ x ∈ [a, b],

and equip the space X = W1,2
0 ([a, b]) with the following norm

∥u∥X =
(∫ b

a
e−Γ(x)|u′(x)|2 dx +

∫ b

a
e−Γ(x)δ(x)|u(x)|2 dx

) 1
2

.

This norm is equivalent to the norm ∥u∥1,2,0 = ∥u′∥2 on X. In particular, thanks to assumption (2.1),
in [3, Proposition 2.2] the authors prove that there exist two constants m and M, with M ≥ m > 0, such
that

m∥u′∥2 ≤ ∥u∥X ≤ M∥u′∥2 , (2.2)

for all u ∈ X, where

m =



(
min

x∈[a,b]
e−Γ(x)

) 1
2

if ess inf
x∈[a,b]

δ(x) ≥ 0, min
x∈[a,b]

e−Γ(x)

1 + ess inf
x∈[a,b]

δ(x)
(

b − a
π

)2
1
2

if ess inf
x∈[a,b]

δ(x) < 0,

M =



 max
x∈[a,b]

e−Γ(x)

1 + ess sup
x∈[a,b]

δ(x)
(

b − a
π

)2
1
2

if ess sup
x∈[a,b]

δ(x) ≥ 0,(
max
x∈[a,b]

e−Γ(x)
) 1

2

if ess sup
x∈[a,b]

δ(x) < 0.

(2.3)
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Moreover, the following inequality holds

max
x∈[a,b]

|u(x)| ≤
(b − a)

1
2

2m
∥u∥X ∀ u ∈ X, (2.4)

where m is given in (2.3), see [3, Remark 2.3] .
Now, we present the functionals useful to study problem (Dλ). To this aim, we set

F(x, t) =
∫ t

0
f (x, ξ) dξ ∀ x ∈ [a, b],∀ t ∈ R,

and we define Φ,Ψ : X → R as follows

Φ(u) =
1
2
∥u∥2X,

Ψ(u) =
∫ b

a
e−Γ(x)F(x, u(x)) dx,

(2.5)

for all u ∈ X. Standard computations show that Φ and Ψ are C1-functionals and one has

Φ′(u)(v) =
∫ b

a
e−Γ(x)u′(x)v′(x) dx +

∫ b

a
e−Γ(x)δ(x)u(x)v(x) dx,

Ψ′(u)(v) =
∫ b

a
e−Γ(x) f (x, u(x))v(x) dx,

for all u, v ∈ X. Furthermore, for every λ > 0 we consider the so-called energy functional Iλ : X → R
associated to problem (Dλ), namely

Iλ(u) = Φ(u) − λΨ(u) ∀ u ∈ X. (2.6)

Our purpose is to study the existence of generalized solutions for problem (Dλ), which are functions
u : [a, b]→ R such that

• u ∈ C1([a, b]);

• u′ ∈ AC([a, b]), that is the set of the absolute functions;

• u(a) = u(b) = 0;

• −u′′(x) + γ(x)u′(x) + δ(x)u(x) = λ f (x, u(x)) for a.a. x ∈]a, b[.

In particular, in [3, Proposition 2.3] the authors prove that u is a generalized solution of (Dλ) if and
only if it is a critical point of the energy functional Iλ, i.e.∫ b

a
e−Γ(x)u′(x)v′(x) dx +

∫ b

a
e−Γ(x)δ(x)u(x)v(x) dx − λ

∫ b

a
e−Γ(x) f (x, u(x))v(x) dx = 0,

for all v ∈ X.
Finally we recall the definition of (PS)-condition and the main tool of our investigation, which is a

two critical points theorem due to Bonanno-D’Aguı̀, see [7, Theorem 2.1].
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Definition 2.1. Let (X, ∥ · ∥) be a Banach space, X∗ its dual and L : X → R a Gâteaux differentiable
functional. We say that L satisfies the Palais-Smale condition (in short, (PS)-condition), if any sequence
{un} ⊆ X such that

(P1) L(un) is bounded,

(P2) lim
n→∞
∥L(un)∥X∗ = 0,

has a convergent subsequence in X.

Theorem 2.1. Let X be a real Banach space and let Φ,Ψ : X → R be two continuously Gâteaux
differentiable functionals such that

in fXΦ = Φ(0) = Ψ(0) = 0.

Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<
Ψ(ũ)
Φ(ũ)

(2.7)

and for all λ ∈ Λr =

]
Φ(ũ)
Ψ(ũ) ,

r
sup

u∈Φ−1(]−∞,r])
Ψ(u)

[
, the functional Iλ = Φ − λΨ satisfies (PS)-condition and it is

unbounded from below.
Then, for each λ ∈ Λr, the functional Φ − λΨ admits at least two non-zero critical points uλ,1, uλ,2 such
that Iλ(uλ,1) < 0 < Iλ(uλ,2).

3. Main result

In this section we establish the existence of at least two nonnegative generalized solutions of
problem (Dλ) with opposite energy sign. Since we are interested in nonnegative solutions, we truncate
the nonlinear term in zero and without any loss of generality, we may assume

f (x, t) = f (x, 0) ∀ t ≤ 0, ∀ x ∈ [a, b].

Indeed, we mention the following results which can be found in [3].

Lemma 3.1. (see [3, Lemma 2.1]) Assume that f (x, 0) ≥ 0 for a.a. x ∈ [a, b]. Then, any generalized
solution of problem (Dλ) is nonnegative.

Lemma 3.2. (see [3, Lemma 2.2]) Assume that f (x, t) ≥ 0 for a.a. x ∈ [a, b] and for all t ≥ 0. Then,
any non-zero generalized solution of problem (Dλ) is positive.

Our aim is to apply Theorem 2.1 to the functionals Φ and Ψ defined in (2.5). Therefore, we first
prove the following result on the properties of the energy functional related to problem (Dλ).

Lemma 3.3. Assume that f fulfils the Ambrosetti–Rabinowitz condition, that is

there exist s ∈ R+, η > 2 : 0 < ηF(x, t) ≤ t f (x, t) ∀ x ∈ [a, b],∀ t ≥ s. (AR)

Then, for every λ > 0 the energy functional Iλ given in (2.6) satisfies the (PS)-condition and is
unbounded from below.
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Proof. First, we prove that Iλ fulfils the (PS)-condition for each λ > 0.
Fix λ > 0 and let {un} ⊆ X be such that (P1) and (P2) hold. We observe that

ηIλ(un) − I′λ(un)(un) =
(
1
2
η − 1

)
∥un∥

2
X

− λ

[∫ b

a
e−Γ(x) (ηF(x, un(x)) − f (x, un(x))un(x)) dx

]
,

for all n ∈ N. Moreover, by (AR)-condition and L1-Carathéodory assumption, we obtain that∫ b

a
ηF(x, t) − t f (x, t) dx ≤ s(η + 1)

∫ b

a
sup
|t|≤s
| f (x, t)| dx = A ∀ t ≥ 0,

with A ≥ 0. Then, it follows that

ηIλ(un) − I′λ(un)(un) ≥
(
1
2
η − 1

)
∥un∥

2
X − λA ∀ n ∈ N. (3.1)

From (P1) and (P2), we have that there exist M > 0 and {εn} ⊆ R
+, with εn → 0+, such that

Iλ(un) ≥ M and |I′λ(un)(v)| ≤ εn ∀ v ∈ X, ∥v∥ ≤ 1, (3.2)

for all n ∈ N. Choosing v =
un

∥un∥X
and combining (3.1) with (3.2), we derive that

(
1
2
η − 1

)
∥un∥

2
X ≤ ηM + εn∥un∥X + λA ∀ n ∈ N.

Thus, {un} is bounded in X. Therefore, since X is reflexive, there exists a subsequence which is weakly
convergent in X. Moreover, since the embedding of X into C0([a, b]) is compact, it strongly converges
in C0([a, b]). Summing up and renaming the subsequence again with {un}, we have

un ⇀ u in X and un → u in C0([a, b]).

Clearly, since Φ′ is a linear operator and un ⇀ u in X, one has

⟨Φ′(u), un − u⟩ → 0,

and standard computations show that

⟨Φ′(un), un − u⟩ → 0.

Hence, it follows that
⟨Φ′(un) − Φ′(u), un − u⟩ → 0. (3.3)

Furthermore, we have

⟨Φ′(un) − Φ′(u), un − u⟩ = ⟨Φ′(un), un⟩ + ⟨Φ
′(u), u⟩ − ⟨Φ′(un), u⟩ − ⟨Φ′(u), un⟩

≤ ∥un∥
2
X + ∥u∥

2
X − ∥un∥X∥u∥X − ∥u∥X∥un∥X
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= (∥un∥X − ∥u∥X)2 .

Therefore, from (3.3), we obtain
lim

n→+∞
∥un∥X = ∥u∥X.

Since X is uniformly convex, Proposition III.30 in [10] ensures that

lim
n→+∞

∥un − u∥X = 0,

thus our claim is true.
Now, we prove that the energy functional is unbounded from below. To this aim, classical

computations show that if f satisfies (AR)-condition, then there exist B,C ∈ L1([a, b]), with C(x) > 0
and B(x) ≥ 0 for every x ∈ [a, b], such that

F(x, t) ≥ C(x)tη − B(x) ∀ x ∈ [a, b],∀ t ≥ 0.

Fixing u ∈ X, with u ≥ 0, ∥u∥X , 0, and h ∈ R+, we have

Iλ(hu) ≤
1
2
∥hu∥2X − λ

(
max
x∈[a,b]

e−Γ(x)
) (

hη
∫ b

a
C(x)uη dx −

∫ b

a
B(x) dx

)
≤ C1h2 − λC2hη + λC3,

for any λ > 0 and for some Ci ≥ 0, i = 1, 2, 3. Passing to the limit for h → +∞, we achieve our aim
and the proof is complete. □

Now, we present our main result. Put

K =
1
2

m2

M2

min
x∈[a,b]

e−Γ(x)

max
x∈[a,b]

e−Γ(x) , (3.4)

C̃ =
2m2

(b − a) max
x∈[a,b]

e−Γ(x) . (3.5)

Theorem 3.1. Suppose f (x, 0) ≥ 0 for a.a. x ∈ [a, b]. Assume that (AR)-condition holds and there
exist two positive constants c, d, with d < c, such that

(h1) F(x, t) ≥ 0 for a.a. x ∈
[
a, a +

b − a
4

]
∪

[
b −

b − a
4
, b

]
and for all t ∈ [0, d],

(h2)

∫ b

a
max
|t|<c

F(x, t) dx

c2 < K

∫ b− b−a
4

a+ b−a
4

F(x, d) dx

d2 .

Then, for each λ ∈ Λc,d, where

Λc,d :=

 C̃
K

d2∫ b− b−a
4

a+ b−a
4

F(x, d) dx
, C̃

c2∫ b

a
max
|t|≤c

F(x, t) dx

 , (3.6)

problem (Dλ) admits at least two nontrivial and nonnegative generalized solutions u1, u2 ∈ W1,2
0 ([a, b])

with opposite energy sign.
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Proof. Take (X, ∥ · ∥X) ,Φ and Ψ as in Section 2. Our goal is to apply Theorem 2.1 to the functional
Iλ = Φ − λΨ. Clearly, Φ and Ψ satisfy the required regularity assumptions and from Lemma 3.3 we
know that Iλ satisfies the (PS)-condition and is unbounded from below for any λ > 0. So, it remains to
verify condition (2.7). To this aim, set

r =
2m2

(b − a)
c2.

For each u ∈ X such that Φ(u) = 1
2∥u∥

2
X < r, taking (2.4) into account, one has

|u(x)| ≤
(b − a)

1
2

2m
)∥u∥X ≤

(b − a)
1
2

2m
(2r)

1
2 =

(
b − a
2m2 r

) 1
2

= c,

for all x ∈ [a, b]. Hence

sup
Φ(u)<r

Ψ(u) ≤ max
x∈[a,b]

e−Γ(x)
∫ b

a
max
|t|≤c

F(x, t) dx.

Thus, it follows that
sup
Φ(u)<r

Ψ(u)

r
≤

b − a
2m2 max

x∈[a,b]
e−Γ(x)

∫ b

a
max
|t|≤c

F(x, t) dx

c2 . (3.7)

Now, we define

ũ(x) =


4d

b−a (x − a) if x ∈
[
a, a + b−a

4

[
,

d if x ∈
[
a + b−a

4 , b −
b−a

4

]
,

4d
b−a (b − x) if x ∈

]
b − b−a

4 , b
]
.

Clearly, ũ ∈ X and ∥ũ∥21,2,0 = ∥ũ
′∥22 =

8d2

b − a
. Then, by (2.2) we get

Φ(ũ) =
1
2
∥ũ∥2X ≤

1
2

M2∥ũ′∥22 =
4M2d2

b − a
.

Moreover, taking (h1) into account, one has

Ψ(ũ) =
∫ b

a
e−Γ(x)F(x, ũ(x)) dx ≥ min

x∈[a,b]
e−Γ(x)

∫ b− b−a
4

a+ b−a
4

F(x, d) dx.

Hence, we obtain

Ψ(ũ)
Φ(ũ)

≥
b − a
4M2 min

x∈[a,b]
e−Γ(x)

∫ b− b−a
4

a+ b−a
4

F(x, d) dx

d2 ,

that is

Ψ(ũ)
Φ(ũ)

≥
b − a
2m2 max

x∈[a,b]
e−Γ(x)K

∫ b− b−a
4

a+ b−a
4

F(x, d) dx

d2 . (3.8)
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Now, we verify that ũ ∈ Φ−1(]0, r[). From (h2) and 0 < d < c, we obtain

√
2M
m

d < c. Indeed, arguing

by contradiction, if we assume that c ≤

√
2Md
m

, then

∫ b

a
max
|t|≤c

F(x, t) dx

c2 ≥

∫ b− b−a
4

a+ b−a
4

F(x, d) dx

c2 ≥
1
2

m2

M2

∫ b− b−a
4

a+ b−a
4

F(x, d) dx

d2

≥
1
2

m2

M2

min
x∈[a,b]

e−Γ(x)

max
x∈[a,b]

e−Γ(x)

∫ b− b−a
4

a+ b−a
4

F(x, d) dx

d2 ,

which contradicts hypothesis (h2). Hence, we have

0 < Φ(ũ) ≤
4M2d2

b − a
<

2m2c2

b − a
= r.

Consequently, combining (3.7), (3.8) and (h2), we get

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤

1
C̃

∫ b

a
max
|t|≤c

F(x, t) dx

c2 <
K
C̃

∫ b− b−a
4

a+ b−a
4

F(x, d) dx

d2 ≤
Ψ(ũ)
Φ(ũ)

,

and assumption (2.7) of Theorem 2.1 is satisfied. Clearly, Λc,d is non-empty because of (h2) and the
previous inequality implies that

Λc,d ⊆ Λr.

Therefore, Theorem 2.1 ensures that for each λ ∈ Λc,d the functional Iλ admits at least two non-
zero critical point u1, u2 ∈ X, which are nontrivial generalized solutions of problem (Dλ), such that
Iλ(u1) < 0 < Iλ(u2). Finally, from Lemma 3.1 it follows that u1 ≥ 0 and u2 ≥ 0. □

The following result deals with positive solutions and it is obtained by combining Theorem 3.1 with
Lemma 3.2.

Theorem 3.2. Suppose f (x, t) ≥ 0 for a.a. x ∈ [a, b] and for all t ≥ 0. Assume that (AR)-condition
holds and there exist two positive constants c, d, with d < c, such that (h1) and (h2) hold. Then,
for each λ ∈ Λc,d, defined by (3.6), problem (Dλ) admits at least two positive generalized solutions
u1, u2 ∈ W1,2

0 ([a, b]) with opposite energy sign.

Remark 3.1. We underline that if the nonlinear term and the weight functions are continuous, i.e.
f ∈ C([a, b] × R) and γ, δ ∈ C([a, b]), then any generalized solution u is a classical solution, that is

• u ∈ C2([a, b]);

• u(a) = u(b) = 0;

• −u′′(x) + γ(x)u′(x) + δ(x)u(x) = λ f (x, u(x)) for all x ∈]a, b[.
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4. Some consequences

In this section we point out some results for nonlinearities with separable variables, i.e. of type
f (x, t) = α(x)g(t), and we also provide an example.

Let α : [a, b] → R be a function such that α ∈ L1([a, b]), α . 0 and α(x) ≥ 0 for a.a. x ∈ [a, b] and
let g : R→ R be a nonnegative continuous function. Consider the following problem{

−u′′ + γ(x)u′ + δ(x)u = λα(x)g(u) in ]a, b[,
u(a) = u(b) = 0,

(Dλ)

where λ > 0 and γ, δ ∈ L∞([a, b]) such that (2.1) holds, and put

K =

∫ b− b−a
4

a+ b−a
4

α(x) dx

∥α∥1
K,

where K is given in (3.4). Also, we observe that in this case the Ambrosetti-Rabinowitz condition
becomes the following

there exist s ∈ R+, η > 2 : 0 < ηG(t) ≤ tg(t) ∀t ≥ s, (AR)

where G(t) =
∫ t

0
g(ξ) dξ for all t ∈ R. Taking Theorem 3.1 into account, we have the following result.

Theorem 4.1. Assume that the (AR)-condition holds and there exist two positive constants c, d with
d < c, such that

G(c)
c2 < K

G(d)
d2 . (h′2)

Then, for each λ ∈ Λc,d, where

Λc,d =

]
C̃

K∥α∥1

d2

G(d)
,

C̃
∥α∥1

c2

G(c)

[
,

problem (Dλ) admits at least two positive generalized solutions with opposite energy sign.

Proof. Our aim is to apply Theorem 3.2. Clearly, we need to verify only (h2), since the other
assumptions are satisfied. Hence, arguing as in the proof of Theorem 3.1 and taking into account
that g is nonnegative, we derive

sup
Φ(u)<r

Ψ(u)

r
≤
∥α∥1

C̃
G(c)

c2 , (4.1)

where C̃ is defined in (3.5). Also, we get

Ψ(ũ)
Φ(ũ)

≥
K∥α∥1

C̃
G(d)

d2 . (4.2)

Then, combining (h′2), (4.1) and (4.2), it follows that (h2) is verified and the proof is complete. □
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A special case occurs for nonlinearities with sublinear behavior near zero.

Corollary 4.1. Assume that

lim
t→0+

g(t)
t
= +∞, (h′′2 )

and (AR)-condition holds. Then, for each λ ∈
]
0, λ∗[, where

λ∗ =
C̃
∥α∥1

sup
c>0

c2

G(c)
,

problem (Dλ) admits at least two positive generalized solutions with opposite energy sign.

Proof. Fix λ < λ∗. So, there is c > 0 such that λ <
C̃
∥α∥1

c2

G(c)
. From (h′′2 ), one has

lim
s→0+

C̃

K∥α∥1

s2

G(s)
= 0 < λ,

thus we can find d < c such that
C̃

K∥α∥1

d2

G(d)
< λ.

Hence, the conclusion follows from Theorem 4.1. □

Remark 4.1. We note that in the particular case α ≡ 1, problem (Dλ) coincides with problem (AD)λ
in [4], where existence of infinitely many solutions and three solutions are obtained. Hence, Theorem
4.1 and Corollary 4.1 are additional results on the existence of two positive generalized solutions
for problem (AD)λ. Moreover, we underline that the class of nonlinearities for which the problem
admits two positive solutions is different because in our case we require an algebraic condition in an
interval [d, c] and the (AR)-condition at infinity. In [4] the authors obtain three classical solutions under
different assumptions, namely the primitive of the nonlinearity has a more than quadratic growth in an
interval [c, d] and a behavior less than quadratic at infinity.

Next, we provide an example. In particular, we consider a problem with combined effects of concave
and convex nonlinearities and we show that it admits two positive classical solutions with opposite
energy sign.

Example 4.1. Consider the following problem{
−u′′ + xu′ − log(x + 2)u = λ(x2 + 1)

(√
|u| + u2) in ]0, 1[,

u(0) = u(1) = 0.
(A)

Clearly, the functions

γ(x) = x, δ(x) = − log(x + 2), α(x) = x2 + 1, g(t) =
√
|t| + t2,

are continuous and satisfy all the required assumptions for all x ∈ [0, 1], t ∈ R and

ess inf
x∈[a,b]

δ(x) = − log 3 > −π2.
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The nonlinear term g is such that (h′2) holds, indeed

lim
t→0+

g(t)
t
= lim

t→0+

√
t + t2

t
= +∞,

and fulfils (AR)-condition. Furthermore, by standard computations we have

m =

√
1 − log 3

π2

e
1
4

, M = 1, K =
61

(
1 − log 3

π2

)
256 e

and λ∗ =
3

2
√

e

(
1 −

log 3
π2

)
.

Then, Corollary 4.1 and Remark 3.1 ensure that for any λ ∈]0, λ∗[ problem (A) admits at least two
positive classical solutions with opposite energy sign.

Remark 4.2. It is worth emphasizing that Corollary 4.1 is useful to solve general problems with
concave-convex nonlinearities, first studied by Ambrosetti-Rabinowitz-Cerami in [2], as

g(t) =

tq + tr if t ≥ 0,
0 if t < 0,

with 0 < q < 1 < r < ∞.
Indeed, it can be easily seen that assumption (h′′2 ) is satisfied and (AR) holds for η ∈]2, r + 1[, since

lim
t→+∞

tg(t)
ηG(t)

=
r + 1
η
.

Then, from Corollary 4.1 we have that for any λ ∈]0, λ∗[ the following problem{
−u′′ + γ(x)u′ + δ(x)u = λα(x) (uq + ur) in ]a, b[,
u(a) = u(b) = 0

admits at least two positive generalized solutions with opposite energy sign. In addition, if γ, δ ∈
C([a, b]) then the solutions are classical.
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