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1. Introduction

Let C be a nonempty, closed, and convex subset of a real Banach space B with dual B∗. Let
J : B → 2B

∗

denote the normalized duality mapping given by

J(v) =
{
κ ∈ B∗ : 〈v, κ〉 = ‖v2‖ = ‖κ2‖

}
,

where 〈·, ·〉 denotes the generalized duality pairing (see, for example, [1]). J is single valued if B∗

is strictly convex. In what follows, we denote single valued normalized duality mapping by J. A
Banach space B is said to be uniformly convex [2, 3] if, for any sequences {vm} and {℘m}, in B with
‖vm‖ = ‖℘m‖ = 1 and lim

m→∞
‖vm + ℘m‖ = 2 imply lim

m→∞
‖vm − ℘m‖ = 0. The modulus of smoothness ρB(·)

of B is the function ρB : [0,+∞)→ [0,+∞) defined by

ρB(τ) = sup
{

1
2

(‖v + ℘‖ + ‖v − ℘‖) − 1 : v, ℘ ∈ B, ‖v‖ = 1, ‖℘‖ ≤ τ
}
.

It is well known that B is uniformly smooth if, and only if, ρB(τ)
τ
→ 0, as τ → 0. Let q > 1 be a

real number. A Banach space B is said to be q-uniformly smooth if there exists a positive constant Kq
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such that ρB(τ) ≤ Kqτ
q for any τ > 0. It is obvious that a q-uniformly smooth Banach space must be

uniformly smooth. A mapping T : C → C is said to be L − Lipschitzian if there exits L ≥ 0 such that

‖T v − T℘‖ ≤ L‖v − ℘‖, ∀v, ℘ ∈ C.

T is said to be a contraction if L ∈ [0, 1) and T is said to be nonexpansive if L = 1 (see [1–6]).
In this paper, we are interested in formulating a numerical method for solving the fixed point

problem
find v ∈ C such that v = T (v), (1.1)

where T : C → C is a nonexpansive mapping. We consider F (T ) , ∅ and designate F (T ) by the set
of all fixed points of T , which is F (T ) := {v ∈ C | v = T (v)}.

The most naive approach when looking for a fixed point of a contraction mappingT : ~→ ~ defined
on a complete metric space (~,L) has a unique fixed point, where L is the distance that describes the
mapping T as the following process, also called Banach-Picard iteration,

vm+1 = T (vm), ∀m ≥ 0, (1.2)

where v0 ∈ ~ is a starting point.
According to the Banach-Picard fixed point theorem, if T is a contraction, namely, T is Lipschitz

continuous with modulus δ ∈ [0, 1), then the sequence {vm}m≥0 generated by (1.2) converges strongly
to the unique fixed point of T with linear convergence rate.

If T is just nonexpansive, then this statement is no longer true. To illustrate this, it is enough to
choose T = −Id, where Id denotes the identity mapping, and v0 , 0, in which case the Banach-Picard
iteration fails an approach to a fixed point of T .

In order to overcome the restrictive contraction assumption on T , Krasnoselskii proposed in [7] to
apply the Banach-Picard iteration (1.2) to the operator 1

2 Id+ 1
2T instead of T . The Krasnoselskii-Mann

iteration is written as follows:

vm+1 = (1 − ηm)vm + ηmT (vm), ∀m ≥ 0, (1.3)

where {ηm} is a sequence in (0, 1). This iteration is often said to be a segmenting Mann iteration (see [8–
10]) or to be of the Krasnoselskii-type (see e.g., [11–17]). It was found that the sequence {vm}

created by (1.3) weakly converges to a fixed point of T under the conditions of F (T ) , ∅ and mild
assumptions imposed on {ηm} .

It turned out that a fundamental step in proving the convergence of the iterates of (1.3) is to show
that vm−T (vm)→ 0 as m→ +∞ , as it was done by Browder and Petryshyn in [18] in the constant case
ηm ≡ η ∈ (0, 1). The weak convergence of the iterates was then studied in various settings in [9,19–22].

It should be noted that, even in real Hilbert spaces, all previous modifications to the Krasnoselskii-
Mann method for nonexpansive mappings only provide weak convergence; for further information,
see [23].

Bot et al. [24] recently presented a new form for Mann’s method to address the previously mentioned
issues. Let v0 be arbitrary in a real Hilbert spaceH , ∀m ≥ 0,

vm+1 = ηmvm + ζm

(
T (ηmvm) − ηmvm

)
. (1.4)
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They proved that the iterative sequence {vm} produced by (1.4) is strongly convergent using appropriate
{ηm} and {ζm} assumptions. Sequence {ζm}, also known as the Tikhonov regularization sequence, plays
a significant role in acceleration (1.4). Dong et al. [25], Fan et al. [26], and Polyak [27] have cited
several theoretical and numerical conversations to examine strong convergence utilizing the Tikhonov
regularization algorithm.

Recent years have seen the development and introduction of additional algorithms, such as the
inertial algorithm initially presented by Polyak [27]. He minimized a smooth convex function by use
of inertial extrapolation. It is important to note that these simple adjustments improved the efficiency
and efficacy of these algorithms. Researchers have been able to study several vital applications after
adopting this concept. For example, see [25, 26, 28–36].

An operator Υ : D(Υ) ⊆ B → R(Υ) ⊆ B is called accretive (see [1]) if for all t > 0 and for all
v, ℘ ∈ D(Υ), where D(Υ) denotes the domain of Υ. We have

‖v − ℘‖ ≤ ‖v − ℘ + t(Υv − Υ℘)‖.

Furthermore, Υ is accretive if, and only if, for each v, ℘ ∈ D(Υ), there exists j(v − ℘) ∈ J(v − ℘)
such that

〈Υv − Υ℘, j(v − ℘)〉 ≥ 0.

An accretive operetor Υ is said to be m-accretive (see, for example, [1]) if R(I + eΥ) = B for all e > 0,
where R(I + eΥ) is the range of (I + eΥ). Υ is said to satisfy the range condition if D(Υ) ⊆ R(I + eΥ)
for all e > 0, where D(Υ) is the closure of the domain of Υ. Moreover, if Υ is accretive [37], then
JΥ : R(I + Υ) → D(Υ), which, defined by JΥ = (I + Υ)−1, is a single-valued nonexpansive and
F (JΥ) = N(Υ), where N(Υ) = {v ∈ D(Υ) : 0 ∈ Υv} and F (JΥ) = {v ∈ B : JΥv = v}.

Browder [38] and Kato [39] independently introduced the accretive operators. Due to their close
relation to the existence theory for nonlinear equations of evolving in Banach spaces, the study of such
mappings is very fascinating.

Under suitable Banach spaces, accretive operators play a crucial role in many physically relevant
situations that may be characterized as initial boundary value problems as follows:

dµ
dτ

+ Υµ = 0, µ(0) = µ0. (1.5)

Many embedded models of evolution equations exist, including the Schrodinger, heat, and wave
equations [40]. According to Browder [38], (1.5) has a solution if Υ is locally Lipschitzian and
accretive on B. He also proved that Υ is m-accretive and there is a solution to the equation below

Υµ = 0. (1.6)

Ray [40] uses the fixed point theory of Caristi [41] to elegantly and precisely improve Browder’s
conclusions. Robert and Martin [42] show that the problem (1.5) is solved in the space B if Υ is
continuous and accretive. Utilizing this result, Martin [43] proved that if Υ is continuous and accretive,
then Υ is m-accretive.

See Browder [44] and Deimling [45] for further information on the theorems for zeros of
accretive operators.
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One should note that, if µ is independent of τ in (1.5), then dµ
dτ = 0. Because of this, (1.5)

simplifies to (1.6), whose solution illustrates the problem’s stable or equilibrium state. This in turn is
tremendously fascinating in a variety of beautiful applications, including, but not limited to, economics,
physics, and ecology. Significant efforts have been undertaken to solve (1.6) when Υ is accretive.
Researchers were interested in investigating the fixed point and approximate iterative approaches for
zeros of m-accretive mappings since Υ, in general, is nonlinear and there is no known process to
discover a close solution to this equation. As a result, research in the field has flourished up to the
present. Some of the related work can be found in [46, 47] and the references therein.

Based on the previous research, the sequence was created iteratively by a novel algorithm with
an inertial technique, and a strong convergence using the proposed algorithm is also discussed in a
real uniformly convex Banach space with a Gâteaux differentiable norm. In addition, we find zeros
of accretive mappings. Moreover, a numerical example is presented to illustrate the behavior of
our algorithm.

2. Preliminaries

In this section, we summarize notations and lemmas that play a significant role in the convergence
analysis of our algorithm.

A real normed linear space B is said to have a Gâteaux differentiable norm if the limit

lim
τ→∞

‖v + τ℘‖ − ‖v‖
τ

,

exists for all v, ℘ ∈ ℵ, where ℵ denotes the unit sphere of B (i.e., ℵ = {v ∈ B : ‖v‖ = 1}). In this case,
B is called smooth. It is also said to be uniformly smooth if the limit is attained uniformly for v, ℘ ∈ ℵ,
and B is said to have a uniformly Gâteaux differentiable norm.

If B is smooth, it is clear that every duality mapping on B is a single-valued mapping. If B
has a uniformly Gâteaux differentiable norm, then the duality mapping is norm-to-weak* uniformly
continuous on bounded subsets of B.

Let ∆ be a nonempty, closed, convex, and bounded subset of a real Banach space B and the
diameter of ∆ defined by d (∆) = sup {‖v − ℘‖, v, ℘ ∈ ∆} . The Chebyshev radius of ∆ is given by
w (∆) = inf {w (v, ℘) , v ∈ ∆} , where v ∈ ∆,

w(v,∆) = sup {‖v − ℘‖, ℘ ∈ ∆} .

Bynum [48] proposed the normal structural coefficient N(B) of B as follows:

N (B) = inf
{

d (∆)
w (∆)

: d (∆) > 0
}
.

If N(B) > 1, then B has a uniform normal structure.
Every space with a uniform normal structure is reflexive, which means that all uniformly convex

and uniformly smooth Banach spaces have a uniform normal structure. See [1, 49] for more details.
In the sequel, the following lemmas are needed to prove our main results.
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Lemma 1. [50] Suppose that B is a real uniformly convex Banach space. For arbitrary u > 0,
ℵu (0) = {v ∈ B : ‖v‖ ≤ u} and α ∈ [0, 1], then there is a continuous strictly increasing convex function
r : [0, 2u]→ R, r (0) = 0 such that

||αv + (1 − α)℘||2 ≤ α||v||2 + (1 − α)||℘||2 − α(1 − α)r(||v − ℘||).

Lemma 2. [45] Suppose thatB is a real normed linear space, then for any v, ℘ ∈ B, j(v+℘) ∈ J(v+℘),
we have that the following inequality holds

||v + ℘||2 ≤ ||v||2 + 2〈℘, j(v + ℘)〉.

Lemma 3. [5] Let B be a uniformly convex Banach space and ∆ a nonempty, closed, and convex
subset of B. Suppose that T : ∆→ ∆ is a nonexpansive mapping with fixed points. Let {vm} be a
sequence in ∆ such that vm ⇀ v and vm − T vm −→ ℘, then v − T v = ℘.

Lemma 4. [49] Let B be a Banach space with uniform normal structure and ∆ a nonempty, bounded
subset of B. Suppose that T : ∆ −→ ∆ is a uniformly L-Lipschitzian mapping with L < N (B)

1
2 . If

there is a nonempty, bounded, closed, convex subset R of ∆ with the property (D), that is,

v ∈ R⇒ $w (v) ∈ R,

then T has a fixed point in ∆.
Note that $w(v) = {℘ ∈ B : y = weak $ − limT n jv,∃ n j → ∞}; here is the $-limit set of T at v.

Lemma 5. [51] Suppose that (v0, v1, v2, ...) ∈ l∞, is so that δmvm ≤ 0 for all Banach limits δ. If
lim sup

m→∞
(vm+1 − vm) ≤ 0, then lim sup

m→∞
vm ≤ 0.

Lemma 6. [52] Let {em} be a sequence of nonnegative real numbers such that

em+1 ≤ (1 − cm) em + cmσm + πm, m ≥ 1.

If
(i) {cm} ⊂ [0, 1],

∑
cm = ∞, lim sup

m→∞
σm ≤ 0,

(ii) for each m ≥ 0, πm ≥ 0,
∑
πm < ∞,

then lim
m→∞

em = 0.

3. Main results

We now prove the following strong convergence results.

Theorem 1. Let C be a nonempty, closed, convex subset of a real uniformly convex Banach space B,
which has a uniformly Gâteaux differentiable norm, and T : C → C is a nonexpansive mapping such
that F (T ) , ∅. Consider that the following assumptions hold:

(i) lim
m→∞

ξm = 0, lim
m→∞

σm = 0,
∞∑

m=1

σm = ∞, ξm, σm ∈ (0, 1), ρm ∈ [l1, l2] ⊂ (0, 1),

(ii) πm ≥ 0, ∀m ∈ N and
∞∑

m=1

πm < ∞.
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For arbitrary ν0, ν1 ∈ C, let {vm} be the sequence generated by
~m = vm + πm (vm − vm−1),
ψm = (1 − ξm) (1 − σm) ~m,

vm+1 = (1 − ρm )ψm + ρmTψm, m ≥ 1,
(3.1)

then {vm} converges strongly to a point in F (T ).

Proof. Let d ∈ F (T ). Set ℘m = (1 − σm) ~m. Using (3.1), we have

‖vm+1 − d‖ = ‖(1 − ρm)(ψm − d) + ρm(Tψm − d)‖
≤ (1 − ρm )‖ψm − d‖ + ρm‖Tψm − d‖

= (1 − ρm )‖ψm − d‖ + ρm‖Tψm − d‖

≤ (1 − ρm )‖ψm − d‖ + ρm‖ψm − d‖

= ‖ψm − d‖

= ‖(1 − ξm )℘m − d‖

= ‖(1 − ξm )(℘m − d) − ξmd‖

≤ (1 − ξm)‖℘m − d‖ + ξm‖d‖

= (1 − ξm)‖(1 − σm)~m − d‖ + ξm‖d‖

≤ (1 − ξm )
(
(1 − σm)‖~m − d‖ + σm‖d‖

)
+ ξm‖d‖

= (1 − ξm )(1 − σm)‖~m − d‖ + (1 − ξm )σm‖d‖ + ξm‖d‖

≤ (1 − ξm )(1 − σm)‖~m − d‖ + (1 − ξm )‖d‖ + ξm‖d‖

≤ (1 − σm)‖~m − d‖ + ‖d‖

≤ (1 − σm)‖(vm − d) + πm(vm − vm−1)‖ + ‖d‖

≤ (1 − σm)‖vm − d‖ + (1 − σm)πm‖vm − vm−1‖ + ‖d‖

≤ max{‖vm − d‖, ‖vm − vm−1‖, ‖d‖}.

By mathematical induction, one can obtain

‖vm − d‖ ≤ max{‖v1 − d‖, ‖v1 − v0‖, ‖d‖}.

This shows that {vm} is bounded, so {~m}, {℘m}, and {ψm} are also bounded. By condition (ii), this

implies
∞∑

m=1

πm‖νm − νm−1‖ < ∞. Using Lemmas 1 and 2 and (3.1), we have

‖vm+1 − d‖2 = ‖(1 − ρm)(ψm − d) + ρm(Tψm − d)‖2

≤ (1 − ρm)‖ψm − d‖2 + ρm‖Tψm − d‖2 − ρm(1 − ρm)r(‖Tψm − ψm‖)
≤ (1 − ρm)‖ψm − d‖2 + ρm‖ψm − d‖2 − ρm(1 − ρm)r(‖Tψm − ψm‖)
= ‖ψm − d‖2 − ρm(1 − ρm)r(‖Tψm − ψm‖)
= ‖℘m − d‖2 + 2ξm〈℘m − d, j(ψm − d)〉 − ρm(1 − ρm)r(‖Tψm − ψm‖)
≤ ‖~m − d‖2 + 2σm〈~m − d, j(℘m − d)〉 + 2ξm〈℘m − d, j(ψm − d)〉
− ρm(1 − ρm)r(‖Tψm − ψm‖)
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≤ ‖vm − d‖2 + 2πm〈vm − d, j(~m − d)〉 + 2σm〈~m − d, j(℘m − d)〉
+ 2ξm〈℘m − d, j(ψm − d)〉 − ρm(1 − ρm)r(‖Tψm − ψm‖).

On the other hand, one can write

ρm(1 − ρm)r(‖Tψm − ψm‖) ≤ ‖vm − d‖2 − ‖vm+1 − d‖2 + 2πm〈vm − d, j(~m − d)〉
+ 2σm〈~m − d, j(℘m − d)〉 + 2ξm〈℘m − d, j(ψm − d)〉. (3.2)

The boundedness of {vm}, {~m}, {℘m}, and {ψm} leads to constants Λ1,Λ2,Λ3 > 0 so that for all m ≥ 1,

〈vm − d, j(~m − d)〉 ≤ Λ1, 〈~m − d, j(℘m − d)〉 ≤ Λ2, 〈℘m − d, j(ψm − d)〉 ≤ Λ3. (3.3)

Applying (3.3) in (3.2), we have

ρm(1 − ρm)r(‖Tψm − ψm‖) ≤ ‖vm − d‖2 − ‖vm+1 − d‖2 + 2πmΛ1 + 2σmΛ2 + 2ξmΛ3. (3.4)

This implies that {vm} converges to d. We consider the following cases in order to achieve strong
convergence:
Case (a). If the sequence {‖vm − d‖} is monotonically decreasing, then {‖vm − d‖} is convergent. We
see that

‖vm+1 − d‖2 − ‖vm − d‖2 → 0

as m→ ∞. By (3.4), we have
ρm(1 − ρm)r(‖Tψm − ψm‖)→ 0.

Using the property of r and ρm ∈
[
l1, l2

]
⊂ (0, 1), we have

‖Tψm − ψm‖ → 0. (3.5)

Combining (3.1) and (3.5), we find that

‖vm+1 − ψm‖ = ρm(Tψm − ψm)→ 0. (3.6)

Using (3.1) and condition (i), we have

‖ψm − ℘m‖ = ξm‖℘m‖ → 0. (3.7)

From (3.1) and condition (i), we get

‖℘m − ~m‖ = σm‖~m‖ → 0. (3.8)

It follows from (3.7) and (3.8) that

‖ψm − ~m‖ ≤ ‖ψm − ℘m‖ + ‖℘m − ~m‖ → 0. (3.9)

From
∞∑

m=1

πm‖νm − νm−1‖ < ∞, we get

‖~m − vm‖ = πm‖vm − vm−1‖ → 0. (3.10)
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Based on (3.9) and (3.10), we can write

‖ψm − vm‖ ≤ ‖ψm − ~m‖ + ‖~m − vm‖ → 0. (3.11)

Using (3.6) and (3.11), we have

‖vm+1 − vm‖ ≤ ‖vm+1 − ψm‖ + ‖ψm − vm‖ → 0 as m→ ∞.

Using (3.5), (3.9), and (3.10), we have

‖T vm − vm‖ ≤ ‖T vm − Tψm‖ + ‖Tψm − ψm‖ + ‖vm − ψm‖

≤ 2‖vm − ψm‖ + ‖Tψm − ψm‖

≤ 2(‖ψm − ~m‖ + ‖~m − vm‖) + ‖Tψm − ψm‖ → 0.

Since {vm} is bounded, there exists a subsequence
{
vmb

}
⊂ {vm} such that it converges weakly to d ∈ B.

In addition, using Lemma 3, we have d ∈ F (T ).
Now, we prove that

lim sup
m→∞

〈−d, j(℘m − d)〉 ≤ 0.

Suppose that χ : B → R is given by

χ(v) = δm‖℘m − v‖2, ∀v ∈ B,

then χ(v) → ∞ as ‖v‖ → ∞ and χ is convex and continuous. Since B is reflexive, then there exists
℘∗ ∈ B such that χ(℘∗) = min

a∈B
χ(a). Hence, the set R̂ , ∅ , where

R̂ =

{
v ∈ B : χ(v) = min

a∈B
χ(a)

}
.

It follows from lim
m→∞
‖Tψm − ψm‖ = 0 and lim

m→∞
‖ψm − ℘m‖ = 0 that

‖T℘m − ℘m‖ ≤ ‖T℘m − Tψm‖ + ‖Tψm − ψm‖ + ‖ψm − ℘m‖

≤ ‖℘m − ψm‖ + ‖Tψm − ψm‖ + ‖ψm − ℘m‖

→ 0 (as m→ ∞).

Since lim
m→∞
‖T℘m − ℘m‖ = 0, it follows from induction that lim

m→∞
‖T n℘m − ℘m‖ = 0 for all n ≥ 1. Thus,

using Lemma 4, if v ∈ R and ℘ = $ − lim
j→∞
T n jv, then from weak lower semicontinuity of χ and

lim
m→∞
‖T℘m − ℘m‖ = 0, we get

χ(℘) ≤ lim inf
j→∞

χ(T n jv) ≤ lim sup
n→∞

χ(T nv)

= lim sup
n→∞

(δm‖℘m − T
nv‖2)

= lim sup
n→∞

(δm‖℘m − T℘m + T℘m − T
nv‖2)
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≤ lim sup
n→∞

(δm‖T℘m − T
nv‖2)

≤ lim sup
n→∞

(δm‖℘m − v‖2) = χ(v) = inf
a∈B

χ(a).

Hence, ℘∗ ∈ R̂. It follows from Lemma 4 that T has a fixed point in R̂, so R̂ ∩ F (T ) , ∅. Without
losing the general case, as a particular instance, suppose that ℘∗ = d ∈ R̂ ∩ F (T ). Consider τ ∈ (0, 1),
then it is easy to see that χ(d) ≤ χ(d − τd). With the help of Lemma 2, we have

‖℘m − d + τd‖2 ≤ ‖℘m − d‖2 + 2τ〈d, j(℘m − d + τd)〉.

By the properties of χ, we can write

1
δm
χ(d − τd) ≤

1
δm
χ(d) + 2τ〈d, j(℘m − d + τd)〉.

By arranging the above inequality, we have

2τδm〈−d, j(℘m − d + τd)〉 ≤ χ(d) − χ(d − τd) ≤ 0.

This leads to
δm〈−d, j(℘m − d + τd)〉 ≤ 0.

In addition,

δm〈−d, j(℘m − d)〉 ≤ δm〈−d, j(℘m − d) − j(℘m − d + τd)〉 + δm〈−d, j(℘m − d + τd)〉
≤ δm〈−d, j(℘m − d) − j(℘m − d + τd)〉. (3.12)

Since the normalized duality mapping is norm-to-weak* uniformly continuous on bounded subsets of
B, we have, as τ→ 0 and for fixed n,

〈−d, j(℘m − d) − j(℘m − d + τd)〉

≤ 〈−d, j(℘m − d)〉 − 〈−d, j(℘m − d + τd)〉 → 0.

Thus, for each ε > 0, there is ςε > 0 such that for all τ ∈ (0, ςε),

〈−d, j(℘m − d)〉 − 〈−d, j(℘m − d + τd)〉 < ε.

Thus,
δm〈−d, j(℘m − d)〉 − δm〈−d, j(℘m − d + τd)〉 ≤ ε.

Since ε is an arbitrary, using (3.8), we obtain

δm〈−d, j(℘m − d)〉 ≤ 0.

By the triangle inequality, we have

‖℘m+1 − ℘m‖ ≤ ‖℘m+1 − ~m+1‖ + ‖~m+1 − vm+1‖ + ‖vm+1 − ψm‖ + ‖ψm − ℘m‖.
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Using (3.4)–(3.6) and (3.8), we have

lim
m→∞
‖℘m+1 − ℘m‖ = 0.

Again, since the normalized duality mapping is norm-to-weak* uniformly continuous on bounded
subsets of B, we have

lim
m→∞

(〈−d, j(℘m − d)〉 − 〈−d, j(℘m+1 − d)〉) = 0.

Using Lemma 5, we have
lim sup

m→∞
〈−d, j(℘m − d)〉 ≤ 0.

From (3.1), we obtain

ψm = (1 − ξm)℘m

= (1 − ξm)(1 − σm)~m

≤ (1 − σm)~m.

Thus,

‖ψm − d‖2 ≤ ‖(1 − σm)~m − d‖2

≤ ‖(1 − σm)(~m − d) − σmd‖2. (3.13)

Since
‖℘m − d‖2 = ‖(1 − σm)(~m − d) − σmd‖2,

using (3.1), (3.13), Lemma 2, and
∞∑

m=1

πm‖νm − νm−1‖ < ∞, we have

‖vm+1 − d‖2 = ‖(1 − ρm)(ψm − d) + ρm(Tψm − d)‖2

≤ (1 − ρm)‖ψm − d‖2 + ρm‖Tψm − d‖2

≤ ‖ψm − d‖2

≤ ‖(1 − σm)(~m − d) − σmd‖2

= (1 − σm)‖~m − d‖2 + 2σm〈−d, j(℘m − d)〉
≤ (1 − σm)‖(vm − d) + πm(vm − vm−1)‖2 + 2σm〈−d, j(℘m − d)〉
≤ (1 − σm)‖vm − d‖2 + 2πm〈vm − vm−1, j(~m − d)〉 + 2σm〈−d, j(℘m − d)〉
= (1 − σm)‖vm − d‖2 + 2σm〈−d, j(℘m − d)〉. (3.14)

Applying Lemma 6, we conclude that {vm} converges to d.
Case (b). Suppose the sequence {‖vm − d‖} is not monotonically decreasing. Let Ξm = ‖vm − d‖2.
Suppose that Π : N→ N, defined by

Π(m) = max {~ ∈ N : ~ ≤ m, Ξ~ ≤ Ξ~+1} .

Obviously, Π is a nonincreasing sequence so that lim
m→∞

Π(m) = ∞ and ΞΠ(m) ≤ ΞΠ(m)+1 for m ≥ m0 (for
some m0 large enough). Using (3.4), we have

ρΠ(m)

(
1 − ρΠ(m)

)
r
(
‖TψΠ(m) − ψΠ(m)‖

)
≤ ‖vΠ(m) − d‖2 − ‖vΠ(m+1) − d‖2 + 2πΠ(m)Λ1
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+ 2σΠ(m)Λ2 + 2ξΠ(m)Λ3

= ΞΠ(m) − ΞΠ(m)+1 + 2πΠ(m)Λ1 + 2σΠ(m)Λ2

+ 2ξΠ(m)Λ3

≤ 2πΠ(m)Λ1 + 2σΠ(m)Λ2 + 2ξΠ(m)Λ3

→ 0 as m→ ∞.

In addition, we get
‖TψΠ(m) − ψΠ(m)‖ → 0 as m→ ∞.

Using the same circumstances as in Case (a), we can show that vΠ(m) ⇀ d as Π(m) → ∞ and
lim sup
Π(m)→∞

〈−d, j(℘Π(m) − d)〉 ≤ 0. For all m ≥ m0, we obtain by (3.14) that

0 ≤
∥∥∥∥vΠ(m)+1 − d

∥∥∥∥2
−

∥∥∥∥vΠ(m) − d
∥∥∥∥2
≤ σΠ(m)

[
2〈−d, j(℘Π(m) − d)〉 −

∥∥∥∥vΠ(m) − d
∥∥∥∥2

]
.

This implies that ∥∥∥∥vΠ(m) − d
∥∥∥∥2
≤ 2〈−d, j(℘Π(m) − d)〉.

Since lim sup
Π(m)→∞

〈−d, j(℘Π(m) − d)〉 ≤ 0, taking the limit as m→ ∞ in the above inequality, we have

lim
m→∞

∥∥∥∥vΠ(m) − d
∥∥∥∥2

= 0.

Thus,
lim

m→∞
ΞΠ(m) = lim

m→∞
ΞΠ(m)+1 = 0.

Moreover, for all m ≥ m0, it is easy to notice that Ξm ≤ ΞΠ(m)+1 if m , Π(m), that is, Π(m) < m, since
Ξi > Ξi+1 for Π(m) + 1 ≤ i ≤ m. As a result, for all m ≥ m0, we get

0 ≤ Ξm ≤ max{ΞΠ(m),ΞΠ(m)+1} = ΞΠ(m)+1.

Hence, lim
m→∞

Ξm = 0, which concludes that {vm} converges strongly to a point d. This finishes the
proof. �

Since every uniformly convex Banach space has a uniformly Gâteaux differentiable norm, our
theorem can be stated in a uniformly convex Banach space, which is also uniformly smooth. Therefore,
we can also obtain the following result without proof.

Corollary 1. Let C be a nonempty, closed, convex subset of a real uniformly convex Banach space B,
which is also uniformly smooth, and T : C → C is a nonexpansive mapping such that F (T ) , ∅. Let
{vm} be a sequence generated iteratively by (3.1), then {vm} converges strongly to a point in F (T ).

In the remainder of this section, we prove the following theorem for finding zeros of accretive
mappings.
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Theorem 2. Let C be a nonempty, closed, convex subset of a real uniformly convex Banach space B,
which has a uniformly Gâteaux differentiable norm, and Υ : C → C is a continuous and accretive
mapping such that N(Υ) , ∅. For arbitrary v0, v1 ∈ f, let {vm} be the sequence generated by

~m = vm + πm (vm − vm−1),
ψm = (1 − ξm) (1 − σm) ~m,

vm+1 = (1 − ρm )ψm + ρmJΥψm, m ≥ 1,

where JΥ = (I + Υ)−1. Consider that the following assumptions hold:

(i) lim
m→∞

ξm = 0, lim
m→∞

σm = 0,
∞∑

m=1

σm = ∞, ξm, σm ∈ (0, 1), ρm ∈ [l1, l2] ⊂ (0, 1),

(ii) πm ≥ 0, ∀m ∈ N and
∞∑

m=1

πm < ∞,

then {vm} converges strongly to a point in N(Υ).

Proof. According to the results of Martin [42–44] and Cioranescu [37], Υ is m-accretive. This implies
that JΥ = (I + Υ)−1 is nonexpansive and F (JΥ) = N(Υ). Setting JΥ = T in Theorem 1 and using the
same approach going forward, we obtain the desired result. �

4. Numerical examples

Using the following experiment, we examine the algorithm’s behavior (3.1) for approximating the
fixed point. We show the convergence results discussed in this study graphically and with a table of
numerical values.

Example 1. Consider that a fixed point problem taken from [53] in which B = R through the usual
real number space R with the usual norm. A mapping T : B → B is defined by

T (v) = (5v2
− 2v + 48)

1
3 ,∀v ∈ A,

where A = {v : 0 ≤ v ≤ 50}.
Experiment 1. For the control parameter ξm = σm = 1

(km+2) in this experiment, we used several values
for k = 1, 2, 3, 5, 10. Consider ρm = 0.80, v0 = v1 = 10, πm = 10

(m+1)2 , and Dm = ‖vm − vm−1‖ (see on
Table 1 and Figure 1).

Table 1. Table showing some terms of the sequence generated by Algorithm (3.1) while
ξm = σm = 1

(km+2) and elapsed time for the indicated values of n.

k number of iteration (n) elapsed time

1 449 0.013728

2 319 0.011591

3 262 0.021587

5 204 0.024854

10 145 0.036621
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Algorithm (3.1) k = 1
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Algorithm (3.1) k = 3

Algorithm (3.1) k = 5

Algorithm (3.1) k = 10

Figure 1. Graph showing the convergence of Algorithm (3.1) while ξm = σm = 1
(km+2) and

the number of iterations are 449, 319, 262, 204, 145.

Experiment 2. We used several values for k = 0.15, 0.35, 0.55, 0.75, 0.95 for the control parameter
ρm = k. Also, consider ξm = σm = 1

(2m+2) , v0 = v1 = 10, πm = 10
(m+1)2 , and Dm = ‖vm − vm−1‖ (see on

Table 2 and Figure 2).

Table 2. Table showing some terms of the sequence generated by Algorithm (3.1) while
ρm = k and elapsed time for the indicated values of n.

k number of iteration (n) elapsed time

0.15 897 0.026490

0.35 557 0.019869

0.55 419 0.024898

0.75 336 0.028761

0.95 276 0.022688

0 100 200 300 400 500 600 700 800 900

Number of iterations
10-4

10-3

10-2

10-1

100

101

D m

Algorithm (3.1) k = 0.15

Algorithm (3.1) k = 0.35

Algorithm (3.1) k = 0.55

Algorithm (3.1) k = 0.75

Algorithm (3.1) k = 0.95

Figure 2. Graph showing the convergence of Algorithm (3.1) while ρm = k and the number
of iterations are 897, 557, 419, 336, 276.
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Symmetry considerations can be related to signal processing, especially when signals satisfy
certain symmetries. Now, we focus on applying Algorithm (3.1) to signal recovery problems. In
signal processing, compressed sensing can be modeled as the following under the determined linear
equation system:

y = Av + ν,

where v ∈ Rn is the original signal with n components to be recovered, ν, y ∈ Rm are noise and
the observed signal with noise for m components, respectively, and A ∈ Rm×n is a degraded matrix.
Finding the solutions of the previous underdetermined linear equation system can be viewed as solving
the least absolute shrinkage and selection operator problem (LASSO problem):

min
v∈RN

1
2
‖y − Av‖22 + λ‖v‖1,

where λ > 0. Various techniques and iterative schemes have been developed to solve the LASSO
problem. Our method for solving the LASSO problem can be applied by setting T v = proxµg(v −
µ∇ f (v)), where f (v) = ‖y − Av‖22/2, g(v) = λ‖v‖1, and ∇ f (v) = AT (Av − y).

Next, we provide an example of applying our algorithm to signal recovery problems.

Example 2. Let A ∈ Rm×n(m < n) be a degraded matrix and y, ν ∈ Rm. We propose the following
method to find the solution of the signal recovery problem:

~m = vm + πm (vm − vm−1),
ψm = (1 − ξm)(1 − σm)~m,

vm+1 = (1 − ρm)ψm + ρmTψm, m ≥ 1,

where T v = proxµg

(
v − µAT (Av − y)

)
, µ = 1.8/‖AT A‖2. Moreover, we randomly choose vectors v0 and

v1 and apply them to the proposed method, where σm = ξm = 1
10(m+1) , ρm = m

m+1 , and πm = 1
(m+100)2 for

each m ∈ N.

A straightforward observation confirms the satisfaction of all conditions in Theorem 1. Next,
we conduct experiments to showcase the convergence and effectiveness of the proposed algorithm
in recovering the k-sparse signal vk recovery problem with k = 70, 35, 18, 9 (see Figure 3).
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Figure 3. The k-sparse signal with k = 70, 35, 18, 9, respectively.
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A signal of size n = 1024 elements, generated uniformly within the interval [−2, 2], is utilized to
produce observation signals yk = Avk + ν, where m = 512 (see on Figure 4).
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Figure 4. Degraded of k-sparse signal with k = 70, 35, 18, 9, respectively.

The white Gaussian noise ν is depicted in Figure 5.
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Figure 5. Noise Signal ν.

The process starts with randomly selected initial signal data v0 and v1, each comprising n = 1024
randomly chosen elements (see Figure 6).
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Figure 6. Initial signals v0 and v1.

In addressing the challenge of recovering k-sparse signals, we reconstructed the observed signals
depicted in Figure 4 to obtain the k-nonzero signal shown in Figure 3. Throughout this recovery
process, we carefully considered the optimal regularization parameter, denoted as λ, to maximize the
signal-to-noise ratio (SNR). The performance of the proposed method at mth iteration is measured
quantitatively by means of the SNR, which is defined by

SNR(vm) = 20 log10

(
‖vm‖2

‖vm − v‖2

)
,
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where vm is the recovered signal at the mth iteration using the proposed method. The SNR quality
influenced by the regularization parameter λ within the range [5, 75] are visualized in Figure 7.
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Figure 7. The plots of the best SNR quality of the proposed method effected with regularized
parameter λ during 1,000 iterations.

The most recent figure illustrates that the proposed algorithms can solve the sparse signal recovery
challlenge. Moreover, we present the evolution of the SNR and relative error plot using max-norm over
the number of iterations during the recovery of k-sparse signals with k = 70, 35, 18, 9 (see Figure 8).
This is done while identifying the optimal regularization parameter, denoted as λ, to achieve the highest
SNR quality, as illustrated in the figure above.
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Figure 8. The SNR and relative error norm plots of the proposed algorithm effected with the
optimal regularized parameter λ in recovering the observed sparse signal.

Notably, the plot of the signal’s relative error exhibits a continuous decrease until it reaches
convergence to a constant value. In the SNR quality plot, it is evident that the SNR value progressively
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rises until it stabilizes at a constant value. Additionally, Figure 9 demonstrates the best recovery of
k-sparse signals with k = 70, 35, 18, 9 during 400 iterations using the proposed algorithm along with
its optimal regularization parameter λ.
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Figure 9. The best recovering of k-sparse signals k = 70, 35, 18, 9, respectively, being used
for the proposed algorithm during 400th iterations.

Based on these findings, it can be inferred that the proposed algorithm successfully enhances the quality
of the recovered signal in solving the signal recovery problem.

5. Conclusions

We constructed a novel algorithm with an inertial technique to approximate a fixed point of a
nonexpansive mapping in a real uniformly convex Banach space with a Gâteaux differentiable norm.
Furthermore, we found zeros of accretive mappings. An illustrative example was also provided as
Example 1. Moreover, an application of the algorithm to a signal recovery problem was presented. We
proved a strong convergence result, which is stronger than a weak convergence result.
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