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1. Introduction

The paper [1] by Pawlak was the first article focused on the rough area between the interior set A˝

and the closure set A of a subset A in a universal set X. This idea led to many applications in decision
theory. The theory of rough sets is constructed using the equivalence classes as its building blocks.

The most efficacious tools to study the generalization of rough set theory are the neighborhood
systems. The main idea in this theory is the upper and lower approximations that have been
defined using different types of neighborhoods instead of equivalence classes such as left and right
neighborhoods [2–5], minimal left neighborhoods [6] and minimal right neighborhoods [7], and the
intersection of minimal left and right neighborhoods [8]. Afterwards, the approximations by minimal
right neighborhoods which are determined by reflexive relations that form the base of the topological
space defined in [9]. In 2018, Dai et al. [10] presented new kind of neighborhoods, namely the
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maximal right neighborhoods which were determined by similarity relations and have been used to
propose three new kinds of approximations. Dai et al.’s approximations [10] differed from Abo-Tabl’s
approximations [9] in that the corresponding upper and lower approximations, boundary regions,
accuracy measures, and roughness measures in two types of Dai et al.’s approximations [10] had
a monotonicity. Later on, Al-shami [11] embraced a new type of neighborhood systems namely,
the intersection of maximal right and left neighborhoods, and then used this type to present new
approximations. These approximations improved the accuracy measures more than Dai et al.’s
approximations [10]. Al-shami’s [11] accuracy measures preserved the monotonic property under
any arbitrary relation. The paper [12], by Molodtsov, was the first article that defined the notion “soft
set”, and it has many applications in uncertainty area or ambiguity decision. A theoretical research
on soft set theory was given in [13] by Maji et al. The paper [14] by Ali et al. proposed many soft
set-theoretical notions such as union, intersection, difference and complement. [15–20] objected to
developing the theory and the applications of soft sets. In [21], the authors introduced the soft ideal
notion. It is a completely new approach for modeling vagueness and uncertainty by reducing the
boundary region and increasing the accuracy of a rough set which helped scholars to solve many real-
life problems [4, 22–25]. Recently, many extensions of the classical rough set approximations have
been applied to provide new rough paradigms using certain topological structures and concepts like
subset neighborhoods, containment neighborhoods, and maximal and minimal neighborhoods to deal
with rough set notions and address some real-life problems [2, 4, 26–28]. Numerous researchers have
recently examined some topological concepts, including continuity, separation axioms, closure spaces,
and connectedness in ideal approximation spaces [29–31]. Ordinary rough sets were defined using an
equivalence relation R on X, and produced two approximations, one is lower and second is upper. The
space pX,Rq is named approximation space. In the soft case, soft roughness used soft relations [32].
Some researchers transferred the common definitions in set-topology to soft set-topology, depending
on that soft topology is an extension to the usual topology as explained in [15]. Many researchers
objected to the basics of set-topology and subsequently the well-known embedding theorems but in
point of view of soft set-topology with some real-life applications (see [33–38]). This paper used
the notion of soft binary relations to ensure that the soft interior and soft closure in approximation
spaces utilizing soft ideal to generate soft ideal approximation topological spaces based on soft minimal
neighborhoods. We illustrated that soft rough approximations [17] are special cases of the current soft
ideal approximations. Soft accumulation points, soft exterior sets, soft dense sets, and soft nowhere
dense sets with respect to these spaces were defined and studied, and we gave some examples. We
introduce and study soft ideal accumulation points in such spaces under a soft ideal defined on the
given soft ideal. Soft separation axioms with respect to these soft ideal approximation spaces are
reformulated via soft relational concepts and compared with examples to show their implications.
In addition, we reformulate and study soft connectedness in these soft ideal approximation spaces.
Finally, we defined soft boundary region and soft accuracy measure with respect to our soft ideal
approximation spaces. We added two real life examples to illustrate the importance of the results
obtained in this paper.

This paper is divided into 6 sections beyond the introduction and the preliminaries. Section 3
defined the soft approximation spaces using a soft ideal. Section 4 is the main section of the
manuscript and displays the properties of soft sets in the soft ideal approximation spaces. It has been
generated using the concepts of R ă x ą R, soft neighborhoods and soft ideals. We study the main
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properties in soft ideal approximation spaces which are generalizations of the same properties of ideal
approximation spaces given by Abbas et al. [31] and provide various illustrative examples. Section 5
introduced soft lower separation axioms via soft binary relations and soft ideal as a generalization
of lower separation axioms given in [31]. We scrutinized its essential characterizations of some
of its relationships associated with the soft ideal closure operators. Some illustrative examples are
given. Section 6 reformulated and studied soft connectedness in [31] with respect to these soft ideal
approximation spaces. Some examples are submitted to explain the definitions. Section 7 is devoted
to comparing between the current purposed methods in Definitions 3.4–3.6 and to demonstrate that
the method given in Definition 3.6 is the best in terms of developing the soft approximation operators
and the values of soft accuracy. That is, the third approach in Definition 3.6 produces soft accuracy
measures of soft subsets higher than their counterparts displayed in previous method 2.4 in [17].
Moreover, we applied these approaches to handle real-life problems. Section 8 is the conclusion.

2. Preliminaries

Through this paper, X stands for the universal set of objects, E denotes the set of parameters, LE

denotes for a soft ideal, RE as a soft binary relation, PpXq represents all subsets of X, and S S pXq refers
to the set of all soft subsets of X. All basic notions and notations of soft sets are found in [12, 13, 15,
39, 40].

If pF, Eq is a soft set of X and x P X, then x P̌ pF, Eq whenever x P Fpeq for each e P E. A
soft set pF, Eq of X with Fpeq “ txu for each e P E is called a singleton soft set or a soft point and
it is represented by xE or px, Eq. Let pF1, Eq, pF2, Eq P̌ S S pXqE. Then, pF1, Eq is a soft subset of
pF2, Eq, represented by pF1, Eq Ď pF2, Eq, if F1peq Ď F2peq, @e P E. In that case, pF1, Eq is called a
soft subset of pF2, Eq and pF2, Eq is said to be a soft supset of pF1, Eq, pF2, Eq Ě pF1, Eq. Two soft
subset pF1, Eq and pF2, Eq over X are called equal if pF1, Eq is soft subset of pF2, Eq and pF1, Eq is
soft supset of pF2, Eq. A soft set pF, Eq over X is called a NULL soft set written as Φ if for each
e P E, Fpeq “ φ. Let A be a non-empty subset of X, then ÃE or Ã represents the absolute soft set pA, Eq
of X in which Apeq “ A, for each e P E. The soft intersection (resp. soft union) of pF1, Eq and pF2, Eq
over X denoted by pF1 [ F2, Eq (resp. pF1 \ F2, Eq) and defined as pF1 [ F2qpeq “ F1peq X F2peq
(resp. pF1 \ F2qpeq “ F1peq Y F2peq) for each e P E. Complementing a soft set pF, Eq is represented
by pF, Eqc and it is defined as pF, Eqc “ pFc, Eq where Fc : E ÝÑ PpXq is a mapping defined by
Fcpeq “ X ´ Fpeq for all e P E, and Fc is then a soft complement function of F.

Definition 2.1. [32] Let pR, Eq “ RE be a soft set of X ˆ X, that is R : E ÝÑ PpX ˆ Xq. Then, RE

is said to be a soft binary relation of X. RE is a collection of parameterized binary relations of X, from
that Rpeq is a binary relation on X for all parameters e P E. The set of all soft binary relations of X is
denoted by S BrpXq.

Definition 2.2. [15] Let τ̃ be a collection of soft sets over a universe X with a fixed set of parameters
E. Then, τ̃ Ď S S pXqE is called a soft topology on X if

(1) X̃,ΦE P̌ τ̃,

(2) the intersection of any two soft sets in τ̃ belongs to τ̃,
(2) the union of any number of soft sets in in τ̃ belongs to τ̃.

The triplet pX, τ̃, Eq is called a soft topological space over X.
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Definition 2.3. [28] A mapping Cl : S S pXqE ÝÑ S S pXqE is called a soft closure operator on X if it
satisfies these properties for every pF, Eq, pG, Eq P̌ S S pXqE :

(1) ClpΦq “ Φ,

(2) pF, Eq Ď ClpF, Eq,
(3) ClrpF, Eq \ pG, Eqs “ ClpF, Eq \ClpG, Eq,
(4) ClpClpF, Eqq “ ClpF, Eq.

Definition 2.4. [17] Let R : E ÝÑ PpX1 ˆ X2q and A Ď X2. Then, the sets RApeq,R
A
peq could be

defined by

RA
peq “ tx P X1 : φ , xRpeq Ď Au,

R
A
peq “ tx P X1 : xRpeq X A , φu

where xRpeq “ ty P X2 : px, yq P Rpequ. Moreover, R : E ÝÑ PpX1q and R : E ÝÑ PpX1q and we say
pX1, X2,Rq a generalized soft approximation space.

Definition 2.5. [21] Let LE be a non-empty family of soft sets of X. Then, LE Ď S S pXqE is said to
be a soft ideal on X if the following properties are fulfilled:

(1) Φ P̌ LE,

(2) pF, Eq P̌ LE and pG, Eq Ď pF, Eq imply pG, Eq P̌ LE,

(3) pF, Eq, pG, Eq P̌ LE imply pF, Eq \ pG, Eq P̌ LE.

3. Soft approximation spaces via soft ideals

In this section, we define the soft approximation spaces using soft ideals.

Definition 3.1. Let RE be a soft binary relation of X and px, yq P X ˆ X. Then, px, yq P̌ R whenever
px, yq P Rpeq for each e P E.

Definition 3.2. Let RE be a soft binary relation of X. Then, the soft afterset of x P̌ X̃ is xR “ ty P̌ X̃ :
px, yq P̌ Ru. Also, the soft foreset of x P̌ X̃ is Rx “ ty P̌ X̃ : py, xq P̌ Ru.

Definition 3.3. Let RE be a soft binary relation over X. Then, a soft set ă x ą R : E ÝÑ PpXq is
defined by

ă x ą R “

$

&

%

[xPyRpyRq if Dy : x P̌ yR,

Φ o.w.

Also, R ă x ą: E ÝÑ PpXq is the intersection of all foresets containing x, that is,

R ă x ą“

$

&

%

[xPyRpRyq if Dy : x P̌ Ry,

Φ o.w.

Also, R ă x ą R “ R ă x ą [ ă x ą R.
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Lemma 3.1. Let RE be a soft binary relation over X. Then,

(1) If x P̌ ă y ą R, then ă x ą R Ďă y ą R.
(2) If x P̌ R ă y ą R, then R ă x ą R Ď R ă y ą R.

Proof. (1) Let z P̌ ă x ą R “ [x P̌ wRpwRq. Then, z is contained in any wR which contain x, and since
x is contained in any uR which contains y, we have z P̌ ă y ą R. Hence, ă x ą R Ďă y ą R.

(2) Straightforward from part (1).
�

Definition 3.4. Let RE be a soft binary relation of X. For a soft set pF, Eq P̌ S S pXqE, the soft lower
approximation Apr1

S
pF, Eq and the soft upper approximation Apr

1
S pF, Eq are defined by:

Apr1
S
pF, Eq “ tx P̌ pF, Eq : ă x ą R Ď pF, Equ, (3.1)

Apr
1
S pF, Eq “ pF, Eq \ tx P̌ X̃ : ă x ą R[ pF, Eq , Φu. (3.2)

Theorem 3.1. Let pF, Eq, pG, Eq P̌ S S pXqE. The soft upper approximation defined by Eq (3.2) has the
following properties:

(1) Apr
1
S pΦq “ Φ and Apr

1
S pX̃q “ X̃,

(2) pF, Eq Ď Apr
1
S pF, Eq,

(3) pF, Eq Ď pG, Eq ñ Apr
1
S pF, Eq Ď Apr

1
S pG, Eq,

(4) Apr
1
S rpF, Eq [ pG, Eqs Ď Apr

1
S pF, Eq [ Apr

1
S pG, Eq,

(5) Apr
1
S rpF, Eq \ pG, Eqs “ Apr

1
S pF, Eq \ Apr

1
S pG, Eq,

(6) Apr
1
S pApr

1
S pF, Eqq “ Apr

1
S pF, Eq,

(7) Apr
1
S pF, Eq “ rApr1

S
pF, Eqcsc.

Proof. (1), (2) It is clear from Definition 3.4.
(3) Let x P̌ Apr

1
S rpF, Eq. Then,ă x ą R[pF, Eq , Φ. Since pF, Eq Ď pG, Eq,ă x ą R[pG, Eq , Φ.

Therefore, x P̌ Apr
1
S pG, Eq. Hence, Apr

1
S pF, Eq Ď Apr

1
S pG, Eq.

(4) Immediately by part (3).
(5) Apr

1
S rpF, Eq \ pG, Eqs “ rpF, Eq \ pG, Eqs \ tx P̌ X̃ : ă x ą R[ rpF, Eq \ pG, Eqs , Φu. Then,

Apr
1
S rpF, Eq \ pG, Eqs “ rpF, Eq \ tx P̌ X̃ : ă x ą R[ pF, Eq , Φus \ rpG, Eq \ tx P̌ X̃ : ă x ą

R[ pG, Eq , Φus. Hence, Apr
1
S rpF, Eq \ pG, Eqs “ Apr

1
S ppF, Eqq \ Apr

1
S ppG, Eqq.

(6) From part (2), we have Apr
1
S pF, Eq Ď Apr

1
S pApr

1
S pF, Eqq.

Conversely, let x P̌ Apr
1
S pApr

1
S pF, Eqq. Then, ă x ą R [ Apr

1
S pF, Eq , Φ. Thus, there exists

y P̌ ă x ą R [ Apr
1
S pF, Eq. That means ă y ą R Ďă x ą R (by Lemma 3.1 part (1)) and

ă x ą R[ pF, Eq , Φ. Hence, x P̌ Apr
1
S pF, Eq. This completes the proof.
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(7)

rApr1
S
pF, Eqcsc “ rpF, Eqc [ tx P̌ X̃ :ă x ą R Ď pF, Eqcusc

“ pF, Eq \ tx P̌ X̃ :ă x ą R[ pF, Eq , Φu

“ Apr
1
S pF, Eq.

�

Example 3.1. Let X “ ta, b, c, du, E “ te1, e2u and
RE “ tpe1, tpa, aq, pa, bq, pb, dq, pc, dq, pd, cq, pd, dqq,
pe2, tpa, aq, pa, bq, pa, cq, pb, dq, pb, cq, pc, dq, pd, cq, pd, dq, pd, bqquu. Then, we have
ă a ą R “ă b ą R “ tpe1, ta, buq, pe2, ta, buqu,ă c ą R “ tpe1, tc, duq, pe2, tc, duqu,
ă d ą R “ tpe1, tduq, pe2, tduqu. Suppose pF1, Eq “ tpe1, ta, cuq, pe2, ta, cuqu and
pF2, Eq “ tpe1, ta, duq, pe2, ta, duqu. Therefore,
Apr

1
S pF1, Eq “ pF, Eq \ tx P̌ X̃ :ă x ą R [ pF, Eq , Φu “ tpe1, ta, b, cuq, pe2, ta, b, cuqu,

Apr
1
S pF2, Eq “ X̃ and Apr

1
S rpF1, Eq [ pF2, Eqs “ tpe1, ta, buq, pe2, ta, buqu. Hence, Apr

1
S rpF1, Eq [

pF2, Eqs , Apr
1
S pF1, Eq [ Apr

1
S pF2, Eq.

Corollary 3.1. Let RE be a soft binary relation of X. Then, the soft operator Apr
1
S : S S pXqE ÝÑ

S S pXqE is said to be a soft closure operator and pX, Apr
1
S q is standing for a soft closure space.

Moreover, it induces a soft topology on X written as τ̃1
S and defined by τ̃1

S “ tpF, Eq P̌ S S pXqE :

Apr
1
S pF, Eq

c “ pF, Eqcu.

Theorem 3.2. Let pF, Eq, pG, Eq P̌ S S pXqE. The soft lower approximation defined by Eq (3.1) has the
following properties:

(1) Apr1
S
pΦq “ Φ and Apr1

S
pX̃q “ X̃,

(2) Apr1
S
pF, Eq Ď pF, Eq,

(3) pF, Eq Ď pG, Eq ñ Apr1
S
pF, Eq Ď Apr1

S
pG, Eq,

(4) Apr1
S
rpF, Eq [ pG, Eqs “ Apr1

S
pF, Eq [ Apr1

S
pG, Eq,

(5) Apr1
S
rpF, Eq \ pG, Eqs Ě Apr1

S
pF, Eq \ Apr1

S
pG, Eq,

(6) Apr1
S
pApr1

S
pF, Eqq “ Apr1

S
pF, Eq,

(7) Apr1
S
pF, Eq “ rApr

1
S pF, Eq

csc.

Proof. It is the same as given in Theorem 3.1. �

Note that the equality in Theorem 3.2 part (5) did not hold in general (see Example 3.1).
Take pF1, Eq “ tpe1, tb, cuq, pe2, tb, cuqu and pF2, Eq “ tpe1, tb, duq, pe2, tb, duqu. Then,
Apr1

S
pF1, Eq “ tx P̌ pF1, Eq :ă x ą R Ď pF1, Equ “ Φ, Apr1

S
pF2, Eq “ tpe1, tduq, pe2, tduqu and

Apr1
S
rpF1, Eq \ pF2, Eqs “ tpe1, tc, duq, pe2, tc, duqu, which means that

Apr1
S
rpF, Eq \ pG, Eqs , Apr1

S
pF, Eq \ Apr1

S
pG, Eq.
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Definition 3.5. Let RE be a soft binary relation over X and LE a soft ideal on X. For any soft set
pF, Eq P̌ S S pXqE, the soft lower approximation and the soft upper approximation of pF, Eq by LE,
denoted by Apr2

S
pF, Eq and Apr

2
S pF, Eq are defined by:

Apr2
S
pF, Eq “ tx P̌ pF, Eq :ă x ą R[ pF, Eqc P̌ LEu, (3.3)

Apr
2
S pF, Eq “ pF, Eq \ tx P̌ X̃ :ă x ą R[ pF, Eq <̌ LEu. (3.4)

Theorem 3.3. Let pF, Eq, pG, Eq P̌ S S pXqE. The soft upper approximation defined by Eq (3.4) has the
following properties:

(1) Apr
2
S pΦq “ Φ and Apr

2
S pX̃q “ X̃,

(2) pF, Eq Ď Apr
2
S pF, Eq,

(3) pF, Eq Ď pG, Eq ñ Apr
2
S pF, Eq Ď Apr

2
S pG, Eq,

(4) Apr
2
S rpF, Eq [ pG, Eqs Ď Apr

2
S pF, Eq [ Apr

2
S pG, Eq,

(5) Apr
2
S rpF, Eq \ pG, Eqs “ Apr

2
S pF, Eq \ Apr

2
S pG, Eq,

(6) Apr
2
S pApr

2
S pF, Eqq “ Apr

2
S pF, Eq,

(7) Apr
2
S pF, Eq “ rApr2

S
pF, Eqcsc.

Proof. (1), (2) Direct from Definition 3.5.
(3) Let x P̌ Apr

2
S rpF, Eq. Thus, ă x ą R[ pF, Eq <̌ LE. Since pF, Eq Ď pG, Eq and LE is a soft ideal,

ă x ą R[ pG, Eq <̌ LE. Therefore, x P̌ Apr
2
S pG, Eq. Hence, Apr

2
S pF, Eq Ď Apr

2
S pG, Eq.

(4) Straightforward by part (3).
(5) Apr

2
S rpF, Eq \ pG, Eqs “ rpF, Eq \ pG, Eqs \ tx P̌ X̃ :ă x ą R[ rpF, Eq \ pG, Eqs <̌ LEu. Then,

Apr
2
S rpF, Eq \ pG, Eqs “ rpF, Eq \ tx P̌ X̃ :ă x ą R[ pF, Eq <̌ LEus \ rpG, Eq \ tx P̌ X̃ :ă x ą

R[ pG, Eq <̌ LEus. Hence, Apr
2
S rpF, Eq \ pG, Eqs “ Apr

2
S ppF, Eqq \ Apr

2
S ppG, Eqq.

(6) From part (2), we have Apr
2
S pF, Eq Ď Apr

2
S pApr

2
S pF, Eqq.

Conversely, let x P̌ Apr
2
S pApr

2
S pF, Eqq. Then, ă x ą R[Apr

2
S pF, Eq <̌ LE. Therefore, ă x ą R[

Apr
1
S pF, Eq , Φ. Thus, there exists y P̌ ă x ą R[ Apr

2
S pF, Eq. That means ă y ą R Ďă x ą R

(by Lemma 3.1 part (1)) and ă y ą R [ pF, Eq <̌ LE. Then, ă x ą R [ pF, Eq <̌ LE. Hence,
x P̌ Apr

2
S pF, Eq. This completes the proof.

(7)

rApr2
S
pF, Eqcsc “ rpF, Eqc [ tx P̌ X̃ :ă x ą R[ pF, Eq P̌ LEus

c

“ pF, Eq \ tx P̌ X̃ :ă x ą R[ pF, Eq <̌ LEu

“ Apr
2
S pF, Eq.

�

Corollary 3.2. Let RE be a soft binary relation over X and LE be a soft ideal on X. Then, the soft
operator Apr

2
S : S S pXqE ÝÑ S S pXqE is said to be a soft closure operator and pX, Apr

2
S q is standing

for a soft closure space. Moreover, it induces a soft topology on X written as τ̃2
S and defined by

τ̃2
S “ tpF, Eq P̌ S S pXqE : Apr

2
S pF, Eq

c “ pF, Eqcu.
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Theorem 3.4. Let pF, Eq, pG, Eq P̌ S S pXqE. The soft lower approximation defined by Eq (3.3) has the
following properties:

(1) Apr2
S
pΦq “ Φ and Apr2

S
pX̃q “ X̃,

(2) Apr2
S
pF, Eq Ď pF, Eq,

(3) pF, Eq Ď pG, Eq ñ Apr2
S
pF, Eq Ď Apr2

S
pG, Eq,

(4) Apr2
S
rpF, Eq [ pG, Eqs “ Apr2

S
pF, Eq [ Apr2

S
pG, Eq,

(5) Apr2
S
rpF, Eq \ pG, Eqs Ě Apr2

S
pF, Eq \ Apr2

S
pG, Eq,

(6) Apr2
S
pApr2

S
pF, Eqq “ Apr2

S
pF, Eq,

(7) Apr2
S
pF, Eq “ rApr

2
S pF, Eq

csc.

Proof. It is similar to that was given in Theorem 3.3. �

Definition 3.6. Let RE be a soft binary relation over X and LE be a soft ideal on X. For any soft set
pF, Eq P̌ S S pXqE, the soft lower approximation and soft upper approximation of pF, Eq by LE, denoted
by Apr3

S
pF, Eq and Apr

3
S pF, Eq are defined by:

Apr3
S
pF, Eq “ tx P̌ pF, Eq : R ă x ą R[ pF, Eqc P̌ LEu, (3.5)

Apr
3
S pF, Eq “ pF, Eq \ tx P̌ X̃ : R ă x ą R[ pF, Eq <̌ LEu. (3.6)

Theorem 3.5. Let pF, Eq, pG, Eq P̌ S S pXqE. The soft upper approximation defined by Eq (3.6) has the
following properties:

(1) Apr
3
S pΦq “ Φ and Apr

3
S pX̃q “ X̃,

(2) pF, Eq Ď Apr
3
S pF, Eq,

(3) pF, Eq Ď pG, Eq ñ Apr
3
S pF, Eq Ď Apr

3
S pG, Eq,

(4) Apr
3
S rpF, Eq [ pG, Eqs Ď Apr

3
S pF, Eq [ Apr

3
S pG, Eq,

(5) Apr
3
S rpF, Eq \ pG, Eqs “ Apr

3
S pF, Eq \ Apr

3
S pG, Eq,

(6) Apr
3
S pApr

3
S pF, Eqq “ Apr

3
S pF, Eq,

(7) Apr
3
S pF, Eq “ rApr3

S
pF, Eqcsc.

Proof. It is clear from Theorem 3.3. �

Corollary 3.3. Let RE be a soft binary relation over X and LE be a soft ideal on X. Then, the soft
operator Apr

3
S : S S pXqE ÝÑ S S pXqE is said to be a soft closure operator and pX, Apr

3
S q is standing

for a soft closure space. In addition, pX,RE,LEq is said to be a soft ideal approximation space.
Moreover, it induces a soft topology on X written as τ̃3

S and defined by τ̃3
S “ tpF, Eq P̌ S S pXqE :

Apr
3
S pF, Eq

c “ pF, Eqcu. It is clear that τ̃1
S Ď τ̃2

S Ď τ̃3
S .

Theorem 3.6. Let pF, Eq, pG, Eq P̌ S S pXqE. The soft lower approximation defined by Eq (3.5) has the
following properties:
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(1) Apr3
S
pΦq “ Φ and Apr3

S
pX̃q “ X̃,

(2) Apr3
S
pF, Eq Ď pF, Eq,

(3) pF, Eq Ď pG, Eq ñ Apr3
S
pF, Eq Ď Apr3

S
pG, Eq,

(4) Apr3
S
rpF, Eq [ pG, Eqs “ Apr3

S
pF, Eq [ Apr3

S
pG, Eq,

(5) Apr3
S
rpF, Eq \ pG, Eqs Ě Apr3

S
pF, Eq \ Apr3

S
pG, Eq,

(6) Apr3
S
pApr3

S
pF, Eqq “ Apr3

S
pF, Eq,

(7) Apr3
S
pF, Eq “ rApr

3
S pF, Eq

csc.

Corollary 3.4. Let RE be a soft binary relation over X, pF, Eq P̌ S S pXqE and LE be a soft ideal on X.
Then,

Apr1
S
pF, Eq Ď Apr2

S
pF, Eq Ď Apr3

S
pF, Eq Ď pF, Eq Ď Apr

3
S pF, Eq Ď Apr

2
S pF, Eq Ď Apr

1
S pF, Eq.

Proof. Direct from Definitions 3.4–3.6, using Lemma 3.1. �

4. Properties of soft sets in the soft ideal approximation spaces

We dedicate this is the main section of the manuscript to display the properties of soft sets in
the soft ideal approximation spaces. It has been generated using the concepts of R ă x ą R, soft
neighborhoods and soft ideals. We study the main properties in soft ideal approximation spaces which
are generalizations of the same properties of ideal approximation spaces given by Abbas et al. in [31]
and provide various illustrative examples.

Lemma 4.1. Let pX,RE,LEq is be a soft ideal approximation space. Then,

(1) Apr1
S
pă x ą Rq “ă x ą R,

(2) Apr2
S
pă x ą Rq “ă x ą R,

(3) Apr3
S
pR ă x ą Rq “ R ă x ą R.

Proof. We will ensure that item (1) and the other items will be similar. From Theorem 3.3 part (3), it
is clear that Apr2

S
pă x ą Rq Ďă x ą R.

Conversely, we will ensure that ă x ą R Ď Apr2
S
pă x ą Rq. Let y P̌ ă x ą R. Then, by Lemma 3.1

part(1), ă y ą R Ďă x ą R. Thus, ă y ą R [ pă x ą Rqc “ Φ. So, ă y ą R [ pă x ą Rqc P̌ LE.

Hence, y P̌ Apr2
S
pă x ą Rq. Thus, ă x ą R Ď Apr2

S
pă x ą Rq.

�

Proposition 4.1. Let pX,RE,LEq be a soft ideal approximation space. For x , y P̌ X̃,

(1) x P̌ Apr
1
S pyEq iff ă x ą R[ yE , Φ and x <̌ Apr

1
S pyEq iff ă x ą R[ yE “ Φ,

(2) x P̌ Apr
2
S pyEq iff ă x ą R[ yE <̌ LE and x <̌ Apr

2
S pyEq iff ă x ą R[ yE P̌ LE,

(3) x P̌ Apr
3
S pyEq iff R ă x ą R[ yE <̌ LE and x <̌ Apr

3
S pyEq iff R ă x ą R[ yE P̌ LE.

Proof. We will prove the second statement and the others will be similar. Let x P̌ Apr
2
S pyEq. Then,

x P̌ ryE\tz P̌ X̃ : ă z ą R[ yE <̌ LEus. Thus, ă x ą R[ yE <̌ LE. Conversely, let ă x ą R[ yE <̌ LE.
Then, by Definition 3.6, x P̌ Apr

2
S pyEq. �
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Proposition 4.2. Let pX,RE,LEq be a soft ideal approximation space and ă x ą R P̌ LE. Then,

(1) Apr1
S
pxEq “ xE “ Apr

1
S pxEq,

(2) Apr2
S
pxEq “ xE “ Apr

2
S pxEq,

(3) Apr3
S
pxEq “ xE “ Apr

3
S pxEq.

Proof. We will prove that the second statement and the others will be similar. Let ă x ą R P̌ LE.

Then, ă x ą R [ rxEs
c P̌ LE. Thus, x P̌ Apr2

S
pxEq. So, Apr2

S
pxEq “ xE. Also, ă x ą R P̌ LE induces

that ă x ą R[ yE P̌ LE for all y P̌ X. Hence, Apr
2
S pxEq “ xE. �

Theorem 4.1. Let pX,RE,LEq be a soft ideal approximation space and x P̌ X̃, pF, Eq P̌ S S pXqE.
If ă x ą R[ pF, Eq P̌ LE, then

(1) ă x ą R[ Apr
1
S pF, Eq “ Φ,

(2) ă x ą R[ Apr
2
S pF, Eq P̌ LE,

(3) R ă x ą R[ Apr
3
S pF, Eq P̌ LE.

Proof. We will prove the second part and the others will be similar. Suppose ă x ą R [ pF, Eq P̌ LE.
It is clear that ră x ą R´ xEs[ pF, Eq P̌ LE. Then, x <̌ D˚S pF, Eq. Thus, ă x ą R[D˚S pF, Eq “ Φ. So,
ă x ą R[ D˚S pF, Eq P̌ LE. Hence, ră x ą R[ pF, Eq \ D˚S pF, Eqs P̌ LE. Therefore,

ă x ą R[ Apr
2
S pF, Eq P̌ LE. �

Definition 4.1. Let pX,RE,LEq be a soft ideal approximation space and pF, Eq P̌ S S pXqE. The soft
exterior of pF, Eq is Exti

S pF, Eq “ Apri
S
pF, Eqc, i P t1, 2, 3u.

Lemma 4.2. Let pX,RE,LEq be a soft ideal approximation space and pF, Eq, pG, Eq P̌ S S pXqE. For
i P t1, 2, 3u, we have

(1) Exti
S pΦq “ X̃ and Exti

S pX̃q “ Φ,

(2) Exti
S pF, Eq Ď pF, Eqc,

(3) pF, Eq Ď pG, Eq ñ Exti
S pF, Eq Ď Exti

S pG, Eq,
(4) Exti

S rpF, Eq \ pG, Eqs “ Exti
S pG, Eq [ Exti

S pF, Eq,
(5) Apri

S
pF, Eq “ Exti

S rExti
S pF, Eqs,

(6) Exti
S pF, Eq “ Exti

S prExti
S pF, Eqs

cq.

Proof. Straightforward from Theorems 3.2, 3.4, and 3.6. �

Definition 4.2. Let pX,RE,LEq be a soft ideal approximation space and pF, Eq P̌ S S pXqE. Then, a soft
point xE P̌ S S pXqE is called:

(i) A soft accumulation point of pF, Eq if pă x ą R´ xEq [ pF, Eq , Φ.

The set of all soft ideal accumulation points of pF, Eq is written as DS pF, Eq, that is,

DS pF, Eq “ txE P̌ S S pXqE : pă x ą R´ xEq [ pF, Eq , Φu.

(ii) A ˚-soft ideal accumulation point of pF, Eq if pă x ą R´ xEq [ pF, Eq <̌ LE.

The set of all ˚-soft ideal accumulation points of pF, Eq is written as D˚S pF, Eq, that is,

D˚S pF, Eq “ txE P̌ S S pXqE : pă x ą R´ xEq [ pF, Eq <̌ LEu.
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(iii) A ˚˚-soft ideal accumulation point of pF, Eq if pR ă x ą R´ xEq [ pF, Eq <̌ LE.

The set of all ˚˚-soft ideal accumulation points of pF, Eq is written as D˚˚S pF, Eq, that is,

D˚˚S pF, Eq “ txE P̌ S S pXqE : pR ă x ą R´ xEq [ pF, Eq <̌ LEu.

Lemma 4.3. Let pX,RE,LEq be a soft ideal approximation space and pF, Eq P̌ S S pXqE. Then,

(1) Apr
1
S pF, Eq “ pF, Eq \ DS pF, Eq,

(2) Apr
1
S pF, Eq “ pF, Eq iff DS pF, Eq Ď pF, Eq,

(3) Apr
2
S pF, Eq “ pF, Eq \ D˚S pF, Eq,

(4) Apr
2
S pF, Eq “ pF, Eq iff D˚S pF, Eq Ď pF, Eq,

(5) Apr
3
S pF, Eq “ pF, Eq \ D˚˚S pF, Eq,

(6) Apr
3
S pF, Eq “ pF, Eq iff D˚˚S pF, Eq Ď pF, Eq.

Proof. We will prove that the third and forth statements and the others will be similar.

(3) Let x P̌ Apr
2
S pF, Eq. Then, x P̌ rpF, Eq \ tyE P̌ S S pXqE : ă y ą R [ pF, Eq <̌ LEus. Then, we

have either x P̌ pF, Eq, that is,
x P̌ pF, Eq \ D˚S pF, Eq (4.1)

or x <̌ pF, Eq. So, x P̌ tyE P̌ S S pXqE :ă y ą R [ pF, Eq <̌ LEu. In the latter case, we have
pă x ą R´ xEq [ pF, Eq <̌ LE. Hence, x P̌ D˚S pF, Eq, that is,

x P̌ pF, Eq \ D˚S pF, Eq. (4.2)

From Eqs (4.1) and (4.2), Apr
2
S pF, Eq Ď pF, Eq\D˚S pF, Eq. Conversely, let x P̌ pF, Eq\D˚S pF, Eq.

Then, we have either x P̌ pF, Eq, that is,

x P̌ Apr
2
S pF, Eq (4.3)

or x <̌ pF, Eq. Thus, x P̌ D˚S pF, Eq. So pă x ą R´ xEq [ pF, Eq <̌ LE. Hence, x P̌ Apr
2
S pF, Eq, that

is,
x P̌ Apr

2
S pF, Eq. (4.4)

From Eqs (4.3) and (4.4), pF, Eq \ D˚S pF, Eq Ď Apr
2
S pF, Eq.

Therefore, Apr
2
S pF, Eq “ pF, Eq \ D˚S pF, Eq.

(4) Let x <̌ pF, Eq, that is, x <̌ Apr
2
S pF, Eq. Then, ă x ą R[ pF, Eq P̌ LE. Thus,

pă x ą R ´ xEq [ pF, Eq P̌ LE and x <̌ D˚S pF, Eq. Conversely, let D˚S pF, Eq Ď pF, Eq. Then, by

part (1), D˚S pF, Eq \ pF, Eq “ Apr
2
S pF, Eq “ pF, Eq.

�

Lemma 4.4. Let pX,RE,LEq be a soft ideal approximation space and pF, Eq, pG, Eq P̌ S S pXqE. Then,

(1) if pF, Eq Ď pG, Eq, then D˚S pF, Eq Ď D˚S pG, Eq and D˚˚S pF, Eq Ď D˚˚S pG, Eq,
(2) D˚S rpF, Eq\ pG, Eqs “ D˚S pF, Eq\D˚S pF, Eq and D˚˚S rpF, Eq\ pG, Eqs “ D˚˚S pF, Eq\D˚˚S pF, Eq,
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(3) D˚S rpF, Eq[pG, Eqs Ď D˚S pF, Eq[D˚S pF, Eq and D˚˚S rpF, Eq[pG, Eqs Ď D˚˚S pF, Eq[D˚˚S pF, Eq,
(4) D˚S rpF, Eq \D˚S pF, Eqs Ď pF, Eq \D˚S pF, Eq and D˚˚S rpF, Eq \D˚˚S pF, Eqs Ď pF, Eq \D˚˚S pF, Eq.

Proof. (1) Suppose pF, Eq Ď pG, Eq and let x P̌ D˚S pF, Eq. Then, ră x ą R´ xEs [ pF, Eq <̌ LE. Thus,
ră x ą R´ xEs [ pG, Eq <̌ LE. So, x P̌ D˚S pG, Eq. The second part is easily proved.

(2) Since pF, Eq Ď pF, Eq \ pG, Eq and pG, Eq Ď pF, Eq \ pG, Eq, by part (1), we have D˚S pF, Eq \
D˚S pG, Eq Ď D˚S pF, Eq \ pG, Eqq.
Conversely, let x <̌ pD˚S pF, Eq \ D˚S pG, Eq. Then, x <̌ D˚S pF, Eq and x <̌ D˚S pG, Eq. Thus, pă x ą
R´ xEq[pF, Eq P̌LE and pă x ą R´ xEq[pG, Eq P̌LE. So, pă x ą R´ xEq[pF, Eq\pG, Eqq P̌LE.
Hence, x P̌ D˚S rpF, Eq \ pG, Eqs. The proof of the second part is similar.

(3) Similar to part (2).
(4) Let x <̌ pF, Eq\D˚S pF, Eq. It is obvious that x <̌ pF, Eq and pă x ą R´xEq[pF, Eq P̌LE. Then,ă

x ą R[pF, Eq P̌ LE. Thus, x <̌ Apr
2
S pF, Eq. So, x <̌ Apr

2
S pApr

2
S pF, Eqq. Hence, x <̌ D˚S pApr

2
S pF, Eqq “

D˚S pF, Eq \D˚S pF, Eqq. Therefore, D˚S pF, Eq \D˚S pF, Eq Ď pF, Eq \D˚S pF, Eq. The proof of the second
part is similar. �

Corollary 4.1. Let pX,RE,LEq be any soft ideal approximation space and pF, Eq P̌ S S pXqE. Then,

D˚˚S pF, Eq Ď D˚S pF, Eq Ď DS pF, Eq.

Proof. Let x <̌ DS pF, Eq. Then, pă x ą R ´ xEq [ pF, Eq “ Φ. Thus, pă x ą R ´ xEq [ pF, Eq P̌ LE.
So, x <̌ D˚S pF, Eq and pR ă x ą R ´ xEq [ pF, Eq P̌ LE, where R ă x ą R Ďă x ą R. Hence,
x <̌ D˚˚S pF, Eq. Therefore, D˚˚S pF, Eq Ď D˚S pF, Eq Ď DS pF, Eq. �

Remark 4.1. The converse of the previous result is not true.

Example 4.1. Let X “ ta, b, cu associated with a set of parameters E “ te1, e2u. Let RE be a soft
relation of X and LE be a soft ideal on X, defined respectively by:

R “ tpe1, tpa, aq, pa, bq, pa, cq, pb, bq, pb, cq, pc, cquq, pe2, tpa, aq, pa, bq, pa, cq, pb, aq, pb, bq, pb, cq, pc, bq,

pc, cququ

LE “ tΦ, pF1, Eq, pF2, Eq, pF3, Equ where,

pF1, Eq “ tpe1, tcuq, pe2, φqu, pF2, Eq “ tpe1, φq, pe2, tcuqu, pF3, Eq “ tpe1, tcuq, pe2, tcuqu.

Then, ă a ą R “ tpe1, ta, b, cuq, pe2, ta, b, cuqu, ă b ą R “ tpe1, tb, cuq, pe2, tb, cuqu,
ă c ą R “ cE. Also, R ă a ą“ aE, R ă b ą“ tpe1, ta, buq, pe2, ta, buqu, R ă c ą“ă a ą R. Thus,

R ă a ą R “ aE, R ă b ą R “ bE, R ă c ą R “ cE. Suppose pF, Eq “ tpe1, tb, cuq, pe2, tb, cuqu.
Then, we have:

pă a ą R´ aEq [ pF, Eq “ pF, Eq , Φ,

pă b ą R´ bEq [ pF, Eq “ cE , Φ,

pă c ą R´ cEq [ pF, Eq “ Φ.

Thus, a P̌ DS pF, Eq, b P̌ DS pF, Eq, c <̌ DS pF, Eq. So, DS pF, Eq “ tpe1, ta, buq, pe2, ta, buqu. On the
other hand, we get:
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pă a ą R´ aEq [ pF, Eq “ pF, Eq <̌ LE,

pă b ą R´ bEq [ pF, Eq “ pF3, Eq P̌ LE,

pă c ą R´ cEq [ pF, Eq “ Φ P̌ LE.

Thus, a P̌ D˚S pF, Eq, b <̌ D˚S pF, Eq, c <̌ D˚S pF, Eq. Hence, D˚S pF, Eq “ aE. Also, we have:

pR ă a ą R´ aEq [ pF, Eq “ Φ P̌ LE,

pR ă b ą R´ bEq [ pF, Eq “ Φ P̌ LE,

pR ă c ą R´ cEq [ pF, Eq “ Φ P̌ LE.

Then, a <̌ D˚˚S pF, Eq, b <̌ D˚˚S pF, Eq, c <̌ D˚˚S pF, Eq. Thus, D˚˚S pF, Eq “ Φ. So, DS pF, Eq @
D˚S pF, Eq @ D˚˚S pF, Eq.

Definition 4.3. Let pX,RE,LEq be any soft ideal approximation space and pF, Eq P̌ S S pXqE. Then,
pF, Eq is said to be:

(i) soft dense if Apr
1
S pF, Eq “ X̃,

(ii) ˚-soft ideal dense if Apr
2
S pF, Eq “ X̃,

(iii) ˚˚-soft ideal dense if Apr
3
S pF, Eq “ X̃,

(iv) soft nowhere dense if Apr1
S
pApr

1
S pF, Eqq “ Φ,

(v) ˚-soft ideal nowhere dense if Apr1
S
pApr

2
S pF, Eqq “ Φ,

(vi) ˚˚-soft ideal nowhere dense if Apr1
S
pApr

3
S pF, Eqq “ Φ.

Corollary 4.2. Let pX,RE,LEq be any soft ideal approximation space and pF, Eq P̌ S S pXqE. Then,

(1) ˚˚-soft ideal dense ùñ ˚-soft ideal dense ùñ soft dense,
(2) soft nowhere dense ùñ ˚-soft ideal nowhere dense ùñ ˚˚-soft ideal nowhere dense.

Proof. Immediately from Definition 4.3 and part (3) of Theorem 3.5. �

Example 4.2. Let X “ ta, b, cu, E “ te1, e2u,

RE “ tpe1, tpa, aq, pa, bq, pb, bq, pb, cq, pc, cq, pd, dq, pd, bqq, pe2, tpa, aq, pa, bq, pa, cq, pb, bq, pb, cq, pc, cq,
pd, dq, pd, bqquu and LE “ tΦ, pF1, Eq, pF2, Eq, pF3, Equ, where
pF1, Eq “ tpe1, tauq, pe2, φqu, pF2, Eq “ tpe1, φq, pe2, tauqu, pF3, Eq “ tpe1, tauq, pe2, tauqu.
Therefore, we have ă a ą R “ tpe1, ta, buq, pe2, ta, buqu, ă b ą R “ tpe1, tbuq, pe2, tbuqu, ă

c ą R “ tpe1, tcuq, pe2, tcuqu, ă d ą R “ tpe1, tb, duq, pe2, tb, duqu. Also, R ă a ą“

tpe1, tauq, pe2, tauqu, R ă b ą“ tpe1, tbuq, pe2, tbuqu, R ă c ą“ tpe1, tb, cuq, pe2, tb, cuqu R ă

d ą“ tpe1, tduq, pe2, tduqu. Thus, R ă a ą R “ tpe1, tauq, pe2, tauqu, R ă b ą R “

tpe1, tbuq, pe2, tbuqu, R ă c ą R “ tpe1, tcuq, pe2, tcuqu R ă d ą R “ tpe1, tduq, pe2, tduqu. Suppose
pF, Eq “ tpe1, tb, cuq, pe2, tb, cuqu. Then, Apr

2
S pF, Eq “ pF, Eq\tx P̌ X̃ :ă x ą R[pF, Eq <̌LEu “ X̃.

Also, Apr
3
S pF, Eq “ pF, Eq\ tx P̌ X̃ : R ă x ą R[pF, Eq <̌ LEu “ pF, Eq , X̃. Hence, pF, Eq is ˚-soft

ideal dense but not ˚˚-soft ideal dense.
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Corollary 4.3. Let pX,RE,LEq be any soft ideal approximation space and pF, Eq P̌ S S pXqE. Then,

(1) If pF, Eq is soft dense, then rApr
1
S pF, Eqs

c is soft nowhere dense.
(2) If pF, Eq is ˚-soft ideal dense, then rApr

2
S pF, Eqs

c is ˚-soft ideal nowhere dense.
(3) If pF, Eq is ˚˚-soft ideal dense, then rApr

3
S pF, Eqs

c is ˚˚-nowhere dense .

Proof. (1) Suppose pF, Eq is soft dense. Then, Apr
1
S pF, Eq “ X̃. Thus, rApr

1
S pF, Eqs

c “ Φ and
Apr

1
S rpApr

1
S pF, Eqq

cs “ Φ. So, Apr1
S
rApr

1
S pApr

1
S pF, Eqq

cqs “ Φ. Hence,

rApr
1
S pF, Eqs

c is nowhere soft dense.
(2) Suppose pF, Eq is ˚-soft ideal dense. Then, Apr

2
S pF, Eq “ X̃. Thus, rApr

2
S pF, Eqs

c “ Φ. So,
Apr

2
S rpApr

2
S pF, Eqq

cs “ Φ and Apr1
S
rApr

2
S ppApr

2
S pF, Eqq

cqs “ Φ. Hence,

rApr
2
S pF, Eqs

c is ˚-soft ideal nowhere dense.
(3) Similar to part (2).

�

5. Lower soft separation axioms in soft ideal approximation spaces

In this section, we introduce soft lower separation axioms via soft binary relations and soft ideal as
a generalization of lower separation axioms given in [31]. We scrutinize its essential characterizations
and infer some of its relationships associated with the soft ideal closure operators. Some illustrative
examples are given. In an approximation space pX,Rq where R is an equivalence relation on X, a
general topology is generated by the lower approximations LpAq or the upper approximations UpAq of
any subset as follows. τR “ tA Ď X : A “ LpAqu or τR “ tA Ď X : Ac “ UpAcqu. In the soft case, it
is an extension of the same definitions.

Definition 5.1. (1) A soft approximation space pX,REq is said to be a soft-T0 space if @x , y P̌ X̃,
there exists pF, Eq P̌ S S pXqE such that

x P̌ Apr1
S
pF, Eq, y <̌ pF, Eq or y P̌ Apr1

S
pF, Eq, x <̌ pF, Eq.

(2) A soft ideal approximation space pX,RE,LEq is said to be a soft-T˚0 space if @x , y P̌ X̃, there
exists pF, Eq P̌ S S pXqE such that

x P̌ Apr2
S
pF, Eq, y <̌ pF, Eq or y P̌ Apr2

S
pF, Eq, x <̌ pF, Eq.

(3) A soft ideal approximation space pX,RE,LEq is said to be a soft-T˚˚0 space if @x , y P̌ X̃, there
exists pF, Eq P̌ S S pXqE such that

x P̌ Apr3
S
pF, Eq, y <̌ pF, Eq or y P̌ Apr3

S
pF, Eq, x <̌ pF, Eq.

Proposition 5.1. For a soft ideal approximation space pX,RE,LEq, these properties are equivalent:

(1) X̃ is a soft-T˚0 space.

(2) Apr
2
S pxEq , Apr

2
S pyEq for all x , y P̌ X̃.
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Proof.

(1) ñ p2q: For each x , y P̌ X̃, by part (1), there exists pF, Eq P̌ S S pXqE such that x P̌ Apr2
S
pF, Eq,

y <̌ pF, Eq. Thus, ă x ą R [ pF, Eqc P̌ LE, y P̌ pF, Eqc. So, ă x ą R [ yE P̌ LE and by
Proposition 4.1 part (1), x <̌ Apr

2
S pyEq. Similarly, we can prove that y <̌ Apr

2
S pxEq. Therefore,

Apr
2
S pxEq , Apr

2
S pyEq.

(2) ñ p1q: Suppose part (2) holds and let x , y P̌ X̃. Then, x <̌ Apr
2
S pyEq or y <̌ Apr

2
S pxEq. By

Proposition 4.1 part (2),ă x ą R[yE P̌LE oră y ą R[xE P̌LE. Thus, rx P̌ Apr2
S
pyEq

c, y <̌ pyEq
cs

or ry P̌ Apr2
S
pxEq

c, x <̌ pxEq
cs. Therefore, X̃ is soft-T˚0 space.

�

Corollary 5.1. For a soft approximation space pX,REq, these properties are equivalent:

(1) X̃ is a soft-T0 space.
(2) Apr

1
S pxEq , Apr

1
S pyEq for each x , y P̌ X̃.

Corollary 5.2. For a soft ideal approximation space pX,RE,LEq, these properties are equivalent:

(1) X̃ is a soft-T˚˚0 space.

(2) Apr
3
S pxEq , Apr

3
S pyEq for all x , y P̌ X̃.

Definition 5.2. (1) A soft approximation space pX,REq is said to be a soft-T1 space if @x , y P̌ X̃,
there exist pF, Eq, pG, Eq P̌ S S pXqE such that

x P̌ Apr1
S
pF, Eq, y <̌ pF, Eq and y P̌ Apr1

S
pG, Eq, x <̌ pG, Eq.

(2) A soft ideal approximation space pX,RE,LEq is said to be a soft-T˚1 space if @x , y P̌ X̃, there
exist pF, Eq, pG, Eq P̌ S S pXqE such that

x P̌ Apr2
S
pF, Eq, y <̌ pF, Eq and y P̌ Apr2

S
pG, Eq, x <̌ pG, Eq.

(3) A soft ideal approximation space pX,RE,LEq is said to be a soft-T˚˚1 space if @x , y P̌ X̃, there
exist pF, Eq, pG, Eq P̌ S S pXqE such that

x P̌ Apr3
S
pF, Eq, y <̌ pF, Eq and y P̌ Apr3

S
pG, Eq, x <̌ pG, Eq.

Proposition 5.2. For a soft ideal approximation space pX,RE,LEq, these properties are equivalent:

(1) X̃ is a soft-T˚1 space.

(2) Apr
2
S pxEq “ xE for all x P̌ X̃.

(3) D˚S pxEq “ Φ for each x P̌ X̃.

Proof. (1) ñ p2q: Suppose pX,RE,LEq is a soft-T˚1 space and let x P̌ X̃. Thus, for y P̌ X̃ ´

xE, x , y and DpF, Eq P̌ S S pXqE such that y P̌ Apr2
S
pF, Eq, x <̌ pF, Eq. Thus, ă y ą R [

pF, Eqc P̌ LE, x P̌ pF, Eqc. So, ă y ą R[ xE P̌ LE, that is, y <̌ Apr
2
S pxEq. Hence, Apr

2
S pxEq “ xE.
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(2) ñ p3q: Suppose part (2) holds and let x P̌ X̃. Then, Apr
2
S pxEq “ xE \ D˚S xE but x <̌ D˚S xE. Thus,

D˚S xE “ Φ.

(3) ñ p1q: Suppose part (3) holds and x , y P̌ X̃. By part (3), D˚S xE “ D˚S yE “ Φ. Thus, Apr
2
S pxEq “

xE and Apr
2
S pyEq “ yE, that is, Apr2

S
pxEq

c “ pxEq
c and Apr2

S
pyEq

c “ pyEq
c. So, there exist pxEq

c

and pyEq
c P̌ S S pXqE such that y P̌ Apr2

S
pxEq

c, x <̌ pxEq
c and x P̌ Apr2

S
pyEq

c, y <̌ pyEq
c. Therefore,

X̃ is a soft-T˚1 space.
�

Corollary 5.3. For a soft approximation space pX,REq, these properties are equivalent:

(1) X̃ is a soft-T1 space.
(2) Apr

1
S pxEq “ xE for all x P̌ X̃.

(3) DS pxEq “ Φ for each x P̌ X̃.

Corollary 5.4. For a soft ideal approximation space pX,RE,LEq, these properties are equivalent:

(1) X̃ is a soft-T˚˚1 space.

(2) Apr
3
S pxEq “ xE for all x P̌ X̃.

(3) D˚˚S pxEq “ Φ for each x P̌ X̃.

Definition 5.3. (1) A soft approximation space pX,REq is said to be a soft-R0 space if,
for all x , y P̌ X̃,

Apr
1
S pxEq “ Apr

1
S pyEq or Apr

1
S pxEq [ Apr

1
S pyEq “ Φ.

(2) A soft ideal approximation space pX,RE,LEq is said to be a soft-R˚0 space if, for all x , y P̌ X̃,

Apr
2
S pxEq “ Apr

2
S pyEq or Apr

2
S pxEq [ Apr

2
S pyEq “ Φ.

(3) A soft ideal approximation space pX,RE,LEq is said to be a soft-R˚˚0 space if, for all x , y P̌ X̃,

Apr
3
S pxEq “ Apr

3
S pyEq or Apr

3
S pxEq [ Apr

3
S pyEq “ Φ.

Proposition 5.3. For a soft ideal approximation space pX,RE,LEq, these properties are equivalent:

(1) X̃ is a soft-R˚0 space,

(2) if x P̌ Apr
2
S pyEq, then y P̌ Apr

2
S pxEq for all x , y P̌ X̃.

Proof.

(1) ñ p2q: Suppose statement (1) holds, and let x , y be two soft points in pX,RE,LEq. Then,
Apr

2
S pxEq “ Apr

2
S pyEq or Apr

2
S pxEq [ Apr

2
S pyEq “ Φ.

If Apr
2
S pxEq “ Apr

2
S pyEq, then y P̌ Apr

2
S pxEq and x P̌ Apr

2
S pyEq.

If Apr
2
S pxEq[Apr

2
S pyEq “ Φ, then xE[Apr

2
S pyEq “ Φ and yE[Apr

2
S pxEq “ Φ. Thus, x <̌ Apr

2
S pyEq

and y <̌ Apr
2
S pxEqq. So, x <̌ Apr

2
S pyEq and y <̌ Apr

2
S pxEq. Hence, in either case, statement (2) holds.
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(2) ñ p1q: Suppose that statement (2) holds and let x , y P̌ X̃. Then, we have

either rx P̌ Apr
2
S pyEq and y P̌ Apr

2
S pxEqs or rx <̌ Apr

2
S pyEq and y <̌ Apr

2
S pxEqs.

If x P̌ Apr
2
S pyEq and y P̌ Apr

2
S pxEq, then

Apr
2
S pxEq “ Apr

2
S pyEq. (5.1)

If x <̌ Apr
2
S pyEq and y <̌ Apr

2
S pxEq, then

Apr
2
S pxEq [ Apr

2
S pyEq “ Φ. (5.2)

From (5.1) and (5.2), the proof is complete. �

Corollary 5.5. For a soft approximation space pX,REq, these properties are equivalent:

(1) X̃ is a soft-R0 space,
(2) if x P̌ ă y ą R, then y P̌ ă x ą R for any x , y P̌ X̃.

Corollary 5.6. For a soft ideal approximation space pX,RE,LEq, these properties are equivalent:

(1) X̃ is a soft-R˚˚0 space,

(2) if x P̌ Apr
3
S pyEq, then y P̌ Apr

3
S pxEq for all x , y P̌ X̃.

Definition 5.4. (1) A soft approximation space pX,REq is said to be a soft-T2 space if @x , y P̌ X̃,
there exist pF, Eq, pG, Eq P̌ S S pXqE such that

x P̌ Apr1
S
pF, Eq, y P̌ Apr1

S
pG, Eq and pF, Eq [ pG, Eq “ Φ.

(2) A soft ideal approximation space pX,RE,LEq is said to be a soft-T˚2 space if @x , y P̌ X̃, there
exist pF, Eq, pG, Eq P̌ S S pXqE such that

x P̌ Apr2
S
pF, Eq, y P̌ Apr2

S
pG, Eq and pF, Eq [ pG, Eq “ Φ.

(3) A soft ideal approximation space pX,RE,LEq is said to be a soft-T˚˚2 space if @x , y P̌ X̃, there
exist pF, Eq, pG, Eq P̌ S S pXqE such that

x P̌ Apr3
S
pF, Eq, y P̌ Apr3

S
pG, Eq, and pF, Eq [ pG, Eq “ Φ.

Theorem 5.1. For a soft ideal approximation space pX,RE,LEq, these properties are equivalent:

(1) X̃ is a soft-T˚2 space,

(2) DpF, Eq P̌ S S pXqE : x P̌ Apr2
S
pF, Eq, y P̌ rApr

2
S pF, Eqs

c for any x , y P̌ X̃.

Proof. (1) ñ p2q: Suppose X̃ is a soft-T˚2 space and let x , y P̌ X̃. Then, there exist
pF, Eq, pG, Eq P̌ S S pXqE such that x P̌ Apr2

S
pF, Eq, y P̌ Apr2

S
pG, Eq and pF, Eq [ pG, Eq “ Φ.

Thus, ă y ą R [ pG, Eqc P̌ LE and pF, Eq Ď pG, Eqc. So ră y ą R ´ xEs [ pF, Eq P̌ LE, that
is, y <̌ D˚S pF, Eq. Hence, Apr2

S
pG, Eq [ D˚S pF, Eq “ Φ and Apr2

S
pG, Eq [ pF, Eq “ Φ, that is,

Apr2
S
pG, Eq [ Apr

2
S pF, Eq “ Φ. Therefore, x P̌ Apr2

S
pF, Eq, y P̌ Apr2

S
pG, Eq Ď rApr

2
S pF, Eqs

c.
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(2) ñ p1q: Suppose part (2) holds and let x , y P̌ X̃. Then, there exists pF, Eq P̌ S S pXqE such that
x P̌ Apr2

S
pF, Eq, y P̌ rApr

2
S pF, Eqs

c. Let pG, Eq “ rApr
2
S pF, Eqs

c. Then, pG, Eq “ Apr2
S
pF, Eqc

(from Theorem 3.3 part (7)) and so Apr2
S
pG, Eq “ Apr2

S
rApr2

S
pF, Eqcs “ Apr2

S
pF, Eqc “ pG, Eq.

Also, pF, Eq [ pG, Eq “ pF, Eq [ Apr2
S
pF, Eqc Ď pF, Eq [ pF, Eqc “ Φ. Hence, X̃ is a soft-T˚2

space.
�

Corollary 5.7. For a soft approximation space pX,REq, these properties are equivalent:

(1) X̃ is a soft-T2 space,
(2) DpF, Eq P̌ S S pXqE : x P̌ Apr1

S
pF, Eq, y P̌ rApr

1
S pF, Eqs

c for all x , y P̌ X̃.

Corollary 5.8. For a soft ideal approximation space pX,RE,LEq, these properties are equivalent:

(1) X̃ is a soft-T˚˚2 space,

(2) DpF, Eq P̌ S S pXqE : x P̌ Apr3
S
pF, Eq, y P̌ rApr

3
S pF, Eqs

c for all x , y P̌ X̃.

Corollary 5.9. For a soft ideal approximation space pX,RE,LEq, these conditions hold:

(1) soft-T1= soft-R0 + soft-T0,
(2) soft-T˚1 = soft-R˚0 + soft-T˚0 ,
(3) soft-T˚˚1 = soft-R˚˚0 + soft-T˚˚0 .

Proof. Straightforward from Definition 5.3, Propositions 5.1 and 5.2, and Corollaries 5.1–5.4. �

Remark 5.1. From Definitions 5.1, 5.2, and 5.4 we have the following implication.

soft-T2 soft-T1 soft-T0

soft-T˚2 soft-ıT˚1 soft-T˚0

soft-T˚˚2 soft-T˚˚1 soft-T˚˚0

Example 5.1. (1) Let X “ Z with E “ te1, e2u and R : E ÝÑ PpZˆZq be a soft relation over ZˆZ
defined by Rpe1q “ ZˆZ, Rpe2q “ NˆN andLE “ tpF, Eq P̌ S S pXqE : pF, Eq is a finite soft setu.
Thus,

Apr1
S
pF, Eq “

"

pF, Eq if pF, Eqc P̌ LE,

Φ otherwise.

Thus, @x , y P̌ Z̃, we have:

x P̌ Apr1
S
pyEq

c
“ pyEq

c, y <̌ pyEq
c and y P̌ Apr1

S
pxEq

c
“ pxEq

c, x <̌ pxEq
c.

So, Z̃ is a soft-T1 space. But Z̃ is not a soft-T2 space, since if x P̌ Apr1
S
pF, Eq, y P̌ Apr1

S
pG, Eq

and pF, Eq [ pG, Eq “ Φ, then Apr1
S
pF, Eq [ Apr1

S
pG, Eq “ Φ and Apr1

S
pF, Eq Ď rApr1

S
pG, Eqsc

which is impossible because Apr1
S
pF, Eq is infinite soft set and rApr1

S
pG, Eqsc is finite soft set.
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(2) From part (1), we have

Apr2
S
pF, Eq “ Apr3

S
pF, Eq “

"

pF, Eq if pF, Eqc P̌ LE,

Φ otherwise.

Then, @x , y P̌ Z̃, we have:

x P̌ Apr2
S
pyEq

c
“ pyEq

c, y <̌ pyEq
c and y P̌ Apr2

S
pxEq

c
“ pxEq

c, x <̌ pxEq
c.

x P̌ Apr3
S
pyEq

c
“ pyEq

c, y <̌ pyEq
c and y P̌ Apr3

S
pxEq

c
“ pxEq

c, x <̌ pxEq
c.

Hence, Z̃ is soft-T˚1 and soft-T˚˚1 . However, Z̃ is neither soft-T˚2 space nor soft-T˚˚2 . By the same
way, any one can add examples to show that the above implication is not reversible.

Definition 5.5. Let pX,REq and pY, pR2qHq be two soft approximation spaces and let LE a soft ideal on
X. Then,

(1) a function fρ% : S S pXqE ÝÑ S S pYqH is said to be soft continuous if pApr1
S
qEr f´1

ρ% pG,Hqs Ě

f´1
ρ% rpApr1

S
qHpG,Hqs, that is, pApr

1
S qEr f

´1
ρ% pG,Hqs Ď f´1

ρ% rpApr
1
S qHpG,Hqs for all

pG,Hq P̌ S S pYqH.
(2) A function fρ% : S S pXqE ÝÑ S S pYqH is said to be ˚-soft continuous if pApr2

S
qEr f´1

ρ% pG,Hqs Ě

f´1
ρ% rpApr1

S
qHpG,Hqs, that is, pApr

2
S qEr f

´1
ρ% pG,Hqs Ď f´1

ρ% rpApr
1
S qHpG,Hqs for all

pG,Hq P̌ S S pYqH.
(1) A function fρ% : S S pXqE ÝÑ S S pYqH is said to be ˚˚-soft continuous if pApr3

S
qEr f´1

ρ% pG,Hqs Ě

f´1
ρ% rpApr1

S
qHpG,Hqs, that is, pApr

3
S qEr f

´1
ρ% pG,Hqs Ď f´1

ρ% rpApr
1
S qHpG,Hqs for all

pG,Hq P̌ S S pYqH.

Remark 5.2. From Corollary 3.4, we have the following implications:

Soft continuous ùñ ˚-soft continuous ùñ ˚˚-soft continuous.

Example 5.2. Let X “ ta, b, cu associated with the parameters E “ te1, e2u. Let pR1qE be a soft
relation of X, and LE be a soft ideal on X, defined respectively by:

pR1qE “ tpe1, tpa, aq, pa, bq, pa, cq, pb, aq, pb, bq, pb, cq, pc, cquq, pe2, tpa, aq, pa, bq, pa, cq, pb, bq, pb, cququ,

LE “ tΦ, pF1, Eq, pF2, Eq, pF3, Eq, pF4, Eq, pF5, Eq, pF6, Eq, pF7, Eq, pF8, Eq, pF9, Eq, pF10, Eq,
pF11, Eq, pF12, Eq, pF13, Eq, pF14, EqpF15, Equ

where

pF1, Eq “ tpe1, tbuq, pe2, φqu, pF2, Eq “ tpe1, tcuq, pe2, φqu, pF3, Eq “ tpe1, tb, cuq, pe2, φqu,

pF4, Eq “ tpe1, φq, pe2, tbuqu, pF5, Eq “ tpe1, φq, pe2, tcuqu, pF6, Eq “ tpe1, φq, pe2, tb, cuqu,

pF7, Eq “ tpe1, tbuq, pe2, tbuqu, pF8, Eq “ tpe1, tbuq, pe2, tcuqu, pF9, Eq “ tpe1, tbuq, pe2, tb, cuqu,

pF10, Eq “ tpe1, tcuq, pe2, tbuqu, pF11, Eq “ tpe1, tcuq, pe2, tcuqu, pF12, Eq “ tpe1, tcuq, pe2, tb, cuqu,
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pF13, Eq “ tpe1, tb, cuq, pe2, tbuqu, pF14, Eq “ tpe1, tb, cuq, pe2, tcuqu,

pF15, Eq “ tpe1, tb, cuq, pe2, tb, cuqu.

Then, ă a ą R1 “ tpe1, ta, b, cuq, pe2, ta, b, cuqu, ă b ą R1 “ tpe1, tb, cuq, pe2, tb, cuqu “ă c ą R1.

Also, R1 ă a ą“ aE, R1 ă b ą“ tpe1, ta, buq, pe2, ta, buqu, R1 ă c ą“ Φ. Thus, R1 ă a ą R1 “

aE, R1 ă b ą R1 “ bE, R1 ă c ą R1 “ Φ. On the other hand, let Y “ tu, v,wu associated with the
parameters H “ th1, h2u. Let pR2qH be a soft relation over Y defined by:
pR2qH “ tph1, tpu, uq, pu, vq, pv, uq, pv, vq, pv,wq, pw, uq, pw,wquq, ph2, tpu, uq, pu, vq, pv, uq, pv, vq,
pw,wququ. Then, ă u ą R2 “ tph1, tu, vuq, ph2, tu, vuqu “ă v ą R2, ă w ą R2 “ wH. Also,
R2 ă u ą“ tph1, tu, vuq, ph2, tu, vuqu “ R2 ă v ą, R2 ă w ą“ wH. Thus,
R2 ă u ą R2 “ tph1, tu, vuq, ph2, tu, vuqu “ R2 ă v ą R2, R2 ă w ą R2 “ wH. Now, define the
function fρ% : S S pXqE ÝÑ S S pYqH, where ρ : E ÝÑ H is a function defined by ρpe1q “ h1, ρpe2q “ h2

and % : X ÝÑ Y is a function defined by %paq “ %pbq “ u, %pcq “ w.
By calculating pApr2

S
qEr f´1

ρ% pG,Hqs and f´1
ρ% rpApr1

S
qHpG,Hqs of a soft set pG,Hq P̌ S S pYqH, it is

clear that fρ% is ˚-soft continuous. However, fρ% is not soft continuous, where
pApr1

S
qEr f´1

ρ% pwHqs “ Φ A f´1
ρ% rpApr1

S
qHpwHqs “ cE.

Theorem 5.2. Let fρ% : S S pXqE ÝÑ S S pYqH be an injective soft continuous function. Then,
pX, pR1qE,LEq is a soft T˚i -space if pY, pR2qHq is a soft-Ti space for i P t0, 1, 2u.

Proof. Suppose pY, pR2qHq is a soft-Ti space for i P t0, 1, 2u and let x1 , x2 in X̃. For i “ 2,
since fρ% is injective, fρ%px1, Eq , fρ%px2, Eq P̌ S S pYqH. Then, by the hypothesis, there exist
pG1,Hq, pG2,Hq P̌ S S pYqH such that fρ%px1, Eq Ď pApr1

S
qHpG1,Hq, fρ%px2, Eq Ď pApr1

S
qHpG2,Hqq

and pG1,Hq [ pG2,Hq “ ΦH, that is, x1 P̌ f´1
ρ% rpApr1

S
qHpG1,Hqs, x2 P̌ f´1

ρ% rpApr1
S
qHpG2,Hqs and

f´1
ρ% pG1,Hq [ f´1

ρ% pG2,Hq “ ΦH.

Since fρ% is soft continuous, x1 P̌ pApr1
S
qEr f´1

ρ% pG1,Hqs, x2 P̌ pApr1
S
qEr f´1

ρ% pG2,Hqs. Thus,
x1 P̌ pApr2

S
qEr f´1

ρ% pG1,Hqs, x2 P̌ pApr2
S
qEr f´1

ρ% pG2,Hqs that is there exist
pF1, Eq “ f´1

ρ% pG1,Hq, pF2, Eq “ f´1
ρ% pG2,Hq P̌ S S pXqE such that

x1 P̌ pApr2
S
qEpF1, Eq, x2 P̌ pApr2

S
qEpF2, Eq and pF1, Eq [ pF2, Eq “ ΦE. So, pX,RE,LEq is a

soft ´T˚2 space. For i P t0, 1u the proofs are similar. �

Corollary 5.10. Let fρ% : S S pXqE ÝÑ S S pYqH be an injective soft continuous function. Thus, pX,REq

is a soft Ti-space if pY, pR2qHq is a soft-Ti space for i P t0, 1, 2u.

Corollary 5.11. Let fρ% : S S pXqE ÝÑ S S pYqH be an injective soft continuous function. Then,
pX,RE,LEq is a soft T˚˚i -space if pY, pR2qHq is a soft-Ti space for i P t0, 1, 2u.

6. Connectedness in soft ideal approximation spaces

In this section, We reformulate and study soft connectedness in [31] with respect to these soft ideal
approximation spaces. Some examples are submitted to explain the definitions.

Definition 6.1. Let pX,REq be a soft approximation space. Then,

(1) pF, Eq, pG, Eq P̌ S S pXqE are called soft separated sets if Apr
1
S pF, Eq [ pG, Eq “ pF, Eq [

Apr
1
S pG, Eq “ Φ.
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(2) Ã P̌ S S pXqE is said to be a soft disconnected set if there exist soft separated sets
pF, Eq, pG, Eq P̌ S S pXqE such that Ã Ď pF, Eq \ pG, Eq. Ã is said to be soft connected if it is not
soft disconnected.

(3) pX,REq is said to be a soft disconnected space if there exist soft separated sets
pF, Eq, pG, EqP̌S S pXqE such that pF, Eq \ pG, Eq “ X̃. pX,REq is said to be a soft connected
space if it is not soft disconnected space.

Definition 6.2. Let pX,RE,LEq be a soft ideal approximation space. Then,

(1) pF, Eq, pG, Eq P̌ S S pXqE are called ˚- soft separated (resp. ˚˚- soft separated) sets if Apr
2
S pF, Eq[

pG, Eq “ pF, Eq [ Apr
2
S pG, Eq “ Φ (resp. Apr

3
S pF, Eq [ pG, Eq “ pF, Eq [ Apr

3
S pG, Eq “ Φ).

(2) Ã P̌ S S pXqE is called a ˚-soft disconnected (resp. ˚˚-soft disconnected) set if there exist ˚-soft
separated (resp. ˚˚-soft separated) sets pF, Eq, pG, Eq P̌ S S pXqE such that Ã Ď pF, Eq\pG, Eq. Ã
is said to be ˚-soft connected (resp. ˚˚-soft connected) if it is not ˚-soft disconnected (resp. ˚˚-soft
disconnected).

(3) pX,RE,LEq is called a ˚-soft disconnected (resp. ˚˚-soft disconnected) space if there exist ˚-soft
separated (resp. ˚˚-soft separated) sets pF, Eq, pG, Eq P̌ S S pXqE such that pF, Eq \ pG, Eq “
X̃. pX,RE,LEq is called a ˚-soft connected (resp. ˚˚-soft connected) space if it is not a ˚-soft
disconnected (resp. ˚˚-soft disconnected) space.

Remark 6.1. The following implications are correct:

soft separated ùñ ˚-soft separated ùñ ˚˚-soft separated,

and so
˚˚-soft connected ùñ ˚-soft connected ùñ soft connected.

Example 6.1. Let X “ ta, b, cu associated with a set of parameters E “ te1, e2u. Let RE be a soft
relation over X defined by:

RE “ tpe1, tpa, aq, pa, bq, pa, cq, , pb, aq, pb, bq, pb, cq, pc, cquq, pe2, tpa, aq, pa, bq, pa, cq, pb, bq, pb, cququ

Then, ă a ą R “ tpe1, ta, b, cuq, pe2, ta, b, cuqu, ă b ą R “ tpe1, tb, cuq, pe2, tb, cuqu,
ă c ą R “ tpe1, tb, cuq, pe2, tb, cuqu. Also, R ă a ą“ aE, R ă b ą“ tpe1, ta, buq, pe2, ta, buqu, R ă
c ą“ Φ. Thus, R ă a ą R “ aE, R ă b ą R “ bE, R ă c ą R “ Φ.

(1) Let LE be a soft ideal on X defined by:

LE “ tΦ, pF1, Eq, pF2, Eq, pF3, Eq, pF4, Eq, pF5, Eq, pF6, Equ

where

pF1, Eq “ tpe1, tbuq, pe2, φqu, pF2, Eq “ tpe1, φq, pe2, tbuqu, pF3, Eq “ tpe1, tcuq, pe2, φqu,

pF4, Eq “ tpe1, φq, pe2, tcuqu, pF5, Eq “ tpe1, tbuq, pe2, tcuqu, pF6, Eq “ tpe1, tb, cuq, pe2, tb, cuqu.

Then, we have

Apr
1
S bE “ Apr

1
S cE “ Apr

1
S p

Ćtb, cuEq “ Apr
1
S p

Ćta, buEq “ Apr
1
S p

Ćta, cuEq “ X̃, Apr
1
S aE “ aE.
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Thus, pX,REq is a soft connected space. However, we get

X̃ “ aE \
Ćtb, cuE, Apr

2
S aE [

Ćtb, cuE “ aE [ Apr
2
S p

Ćtb, cuEq “ Φ.

So, pX,RE,LEq is not a ˚-soft connected space.
(2) Consider LE “ tΦ, pF1, Eq, pF2, Eq, pF3, Equ where

pF1, Eq “ tpe1, tauq, pe2, φqu, pF2, Eq “ tpe1, φq, pe2, tauqu, pF3, Eq “ tpe1, tauq, pe2, tauqu.

Then, we get

Apr
2
S bE “ Apr

2
S cE “ Apr

2
S p

Ćtb, cuEq “ Apr
2
S p

Ćta, buEq “ Apr
2
S p

Ćta, cuEq “ X̃, Apr
2
S aE “ aE.

Thus, pX,RE,LEq is a ˚-soft connected space. However, we have

X̃ “ aE \
Ćtb, cuE, Apr

3
S aE [

Ćtb, cuE “ aE [ Apr
3
S p

Ćtb, cuEq “ Φ.

So, pX,RE,LEq is not a ˚˚-soft connected space.

Proposition 6.1. Let pX,RE,LEq be a soft ideal approximation space. Then, these properties are
equivalent:

(1) pX,RE,LEq is ˚-soft connected,
(2) for each pF, Eq, pG, Eq P̌ S S pXqE with pF, Eq[pG, Eq “ Φ, Apr2

S
pF, Eq “ pF, Eq, Apr2

S
pG, Eq “

pG, Eq and pF, Eq \ pG, Eq “ X̃, pF, Eq “ Φ or pG, Eq “ Φ,

(3) for each pF, Eq, pG, Eq P̌ S S pXqE with pF, Eq[pG, Eq “ Φ, Apr
2
S pF, Eq “ pF, Eq, Apr

2
S pG, Eq “

pG, Eq and pF, Eq \ pG, Eq “ X̃, pF, Eq “ Φ or pG, Eq “ Φ.

Proof. (1)ñ p2q: Suppose part (1) holds and let pF, Eq, pG, Eq P̌ S S pXqE with Apr2
S
pF, Eq “ pF, Eq,

Apr2
S
pG, Eq “ pG, Eq such that pF, Eq [ pG, Eq “ Φ and pF, Eq \ pG, Eq “ X̃. Then,

Apr
2
S pF, Eq Ď Apr

2
S pG, Eq

c
“ rApr2

S
pG, Eqsc “ pG, Eqc,

Apr
2
S pG, Eq Ď Apr

2
S pF, Eq

c
“ rApr2

S
pF, Eqsc “ pF, Eqc.

Thus, Apr
2
S pF, Eq [ pG, Eq “ pF, Eq [ Apr

2
S pG, Eq “ Φ. So, pF, Eq, pG, Eq are ˚-soft separated sets.

Since pF, Eq \ pG, Eq “ X̃, pF, Eq “ Φ or pG, Eq “ Φ by part (1).
(2)ñ p3q and p3q ñ p1q Clear. �

Corollary 6.1. Let pX,REq be a soft approximation space. Then, these properties are equivalent:

(1) pX,REq is soft connected,
(2) for each pF, Eq, pG, Eq P̌ S S pXqE with pF, Eq[pG, Eq “ Φ, Apr1

S
pF, Eq “ pF, Eq, Apr1

S
pG, Eq “

pG, Eq and pF, Eq \ pG, Eq “ X̃, pF, Eq “ Φ or pG, Eq “ Φ,

(3) for each pF, Eq, pG, Eq P̌ S S pXqE with pF, Eq[pG, Eq “ Φ, Apr
1
S pF, Eq “ pF, Eq, Apr

1
S pG, Eq “

pG, Eq and pF, Eq \ pG, Eq “ X̃, pF, Eq “ Φ or pG, Eq “ Φ.

Corollary 6.2. Let pX,RE,LEq be a soft ideal approximation space. Then, these properties are
equivalent:
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(1) pX,RE,LEq is ˚˚-soft connected.
(2) For each pF, Eq, pG, Eq P̌ S S pXqE with pF, Eq[pG, Eq “ Φ, Apr3

S
pF, Eq “ pF, Eq, Apr3

S
pG, Eq “

pG, Eq and pF, Eq \ pG, Eq “ X̃, pF, Eq “ Φ or pG, Eq “ Φ.

(3) For each pF, Eq, pG, Eq P̌ S S pXqE with pF, Eq[pG, Eq “ Φ, Apr
3
S pF, Eq “ pF, Eq, Apr

3
S pG, Eq “

pG, Eq and pF, Eq \ pG, Eq “ X̃, pF, Eq “ Φ or pG, Eq “ Φ.

Theorem 6.1. Let pX,RE,LEq be a soft ideal approximation space and pF, Eq P̌ S S pXqE be ˚-soft
connected. If pF1, Eq, pF2, Eq P̌ S S pXqE are ˚-soft separated sets with pF, Eq Ď pF1, Eq \ pF2, Eq,
then either pF, Eq Ď pF1, Eq or pF, Eq Ď pF2, Eq.

Proof. Suppose pF1, Eq, pF2, Eq are ˚-soft separated sets with pF, Eq Ď pF1, Eq \ pF2, Eq. Then, we
have

Apr
2
S pF1, Eq[pF2, Eq “ pF1, Eq[Apr

2
S pF2, Eq “ Φ, pF, Eq “ rpF, Eq[pF1, Eqs\rpF, Eq[pF2, Eqs.

On the other hand, we get
Apr

2
S rpF, Eq [ pF1, Eqs [ rpF, Eq [ pF2, Eqs Ď Apr

2
S pF, Eq [ Apr

2
S pF1, Eq [ rpF, Eq [ pF2, Eqs “

Apr
2
S pF, Eq [ pF, Eq [ Apr

2
S pF1, Eq [ pF2, Eq “ pF, Eq [ Φ “ Φ. Also,

Apr
2
S rpF, Eq [ pF2, Eqs [ rpF, Eq [ pF1, Eqs Ď Apr

2
S pF, Eq [ Apr

2
S pF2, Eq [ rpF, Eq [ pF1, Eqs “

Apr
2
S pF, Eq [ pF, Eq [ Apr

2
S pF2, Eq [ pF1, Eq “ pF, Eq [ Φ “ Φ. Thus, rpF, Eq [ pF1, Eqs and

rpF, Eq [ pF2, Eqs are ˚-soft separated sets with pF, Eq “ rpF, Eq [ pF1, Eqs \ rpF, Eq [ pF2, Eqs.
However, pF, Eq is ˚-soft connected, which implies that pF, Eq Ď pF1, Eq or pF, Eq Ď pF2, Eq. �

Corollary 6.3. Let pX,REq be a soft approximation space and pF, Eq P̌ S S pXqE be soft connected.
If pF1, Eq, pF2, Eq P̌ S S pXqE are soft separated sets with pF, Eq Ď pF1, Eq \ pF2, Eq, then either
pF, Eq Ď pF1, Eq or pF, Eq Ď pF2, Eq.

Corollary 6.4. Let pX,RE,LEq be a soft ideal approximation space and pF, Eq P̌ S S pXqE be ˚˚-soft
connected. If pF1, Eq, pF2, Eq P̌ S S pXqE are ˚˚-soft separated sets with pF, Eq Ď pF1, Eq \ pF2, Eq,
then either pF, Eq Ď pF1, Eq or pF, Eq Ď pF2, Eq.

Theorem 6.2. Let fρ% : pX,RE,LEq ÝÑ pY, pR2qHq be a ˚-soft continuous function. Then,
fρ%pF, Eq P̌ S S pYqH is a soft connected set if pF, Eq P̌ S S pXqE is ˚-soft connected.

Proof. Assume that pF, Eq is ˚-soft connected in pX,RE,LEq. Suppose that fρ%pF, Eq is soft
disconnected. Thus, there exist two soft separated sets pG1,Hq, pG2,Hq P̌ S S pYqH with fρ%pF, Eq Ď

pG1,Hq \ pG2,Hq, that is, pApr
1
S qHpG1,Hq [ pG2,Hq “ pG1,Hq [ pApr

1
S qHpG2,Hq “ Φ. Since fρ% is

˚-soft continuous, pF, Eq Ď f´1
ρ% pG1,Hq \ f´1

ρ% pG2,Hq. Thus, we have

pApr
2
S qEr f

´1
ρ% pG1,Hqs [ f´1

ρ% pG2,Hq Ď f´1
ρ% rpApr

1
S qHpG1,Hqs [ f´1

ρ% pG2,Hq

“ f´1
ρ% rpApr

1
S qHpG1,Hq [ pG2,Hqs “ f´1

ρ% pΦq “ Φ. Also, we have

pApr
2
S qEr f

´1
ρ% pG2,Hqs [ f´1

ρ% pG1,Hq Ď f´1
ρ% rpApr

1
S qHpG2,Hqs [ f´1

ρ% pG1,Hq

“ f´1
ρ% rpApr

1
S qHpG2,Hq [ pG1,Hqs “ f´1

ρ% pΦq “ Φ.

So, f´1
ρ% pG1,Hq and f´1

ρ% pG2,Hq are ˚-soft separated sets in pX,RE,LEq, that is,
pF, Eq Ď f´1

ρ% pG1,Hq\ f´1
ρ% pG2,Hq. Hence, pF, Eq is ˚-soft disconnected, which contradicts that pF, Eq

is ˚-soft connected. Therefore, fρ%pF, Eq is a soft connected set in pY, pR2qHq. �
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Corollary 6.5. Let fρ% : pX,REq Ñ pY, pR2qHq be a soft continuous function. Then, fρ%pF, Eq P̌ S S pYqH
is soft connected set, if pF, Eq P̌ S S pXqE is soft connected .

Corollary 6.6. Let fρ% : pX,RE,LEq ÝÑ pY, pR2qHq be a ˚˚-soft continuous function. Then,
fρ%pF, Eq P̌ S S pYqH is soft connected set if pF, Eq P̌ S S pXqE is ˚˚-soft connected .

7. Soft boundary region and soft accuracy measure

Herein, we first compare the current purposed methods in Definitions 3.4–3.6 and demonstrate that
the method given in Definition 3.6 is the best in terms of developing the soft approximation operators
and the values of soft accuracy. Then, we clarify that the third approach in Definition 3.6 produces soft
accuracy measures of soft subsets higher than their counterparts displayed in the previous method 2.4
in [17]. Moreover, we applied these approaches to handle real-life problems.

Definition 7.1. Let pX,RE,LEq be a soft ideal approximation space. Then, the soft boundary region
Bndi

S pF, Eq of a soft set pF, Eq P̌ S S pXqE and the soft accuracy measure Acci
S pF, Eq of an absolute soft

set pF, Eq P̌ S S pXqE, i P t1, 2, 3u with respect to the soft binary relation RE are defined respectively by:

Bndi
S pF, Eq “ Apr

i
S pF, Eq ´ Apri

S
pF, Eq, Acci

S pF, Eq “
|Apri

S
pF, Eq|

|Apr
i
S pF, Eq|

, i P t1, 2, 3u

where pF, Eq , Φ. Note that |ÃE| “ |A| denotes the cardinality of set A Ď X.

Proposition 7.1. Let pX,RE,LEq be a soft ideal approximation space and pF, Eq P̌ S S pXqE. Then,

(1) Bnd3
S pF, Eq Ď Bnd2

S pF, Eq Ď Bnd1
S pF, Eq.

(2) Acc1
S pF, Eq ď Acc2

S pF, Eq ď Acc3
S pF, Eq.

Proof. (1) Let x P̌ Bnd3
S pF, Eq “ Apr

3
S pF, Eq ´ Apr3

S
pF, Eq. Then, from Corollary 3.4, we have

x P̌ Apr
2
S pF, Eq ´ Apr2

S
pF, Eq “ Bnd2

S pF, Eq. Again, by Corollary 3.4,

if x P̌ Bnd2
S pF, Eq “ Apr

2
S pF, Eq ´ Apr2

S
pF, Eq, then x P̌ Apr

1
S pF, Eq ´ Apr1

S
pF, Eq “ Bnd1

S pF, Eq.
Hence, Bnd3

S pF, Eq Ď Bnd2
S pF, Eq Ď Bnd1

S pF, Eq.
(2) From Corollary 3.4, we have

Acc1
S pF, Eq “

|Apr1
S
pF, Eq|

|Apr
1
S pF, Eq|

ď
|Apr2

S
pF, Eq|

|Apr
2
S pF, Eq|

“ Acc2
S pF, Eq

ď
|Apr1

S
pF, Eq|

|Apr
1
S pF, Eq|

“ Acc1
S pF, Eq.

�

Proposition 7.2. Let pX,RE, pL1qEq and pX,RE, pL2qEq be soft ideal approximation spaces such that
pL1qE Ď pL2qE. Thus, for each pF, Eq P̌ S S pXqE we have
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(1) pApr2
S
qpL1qEpF, Eq Ď pApr2

S
qpL2qEpF, Eq.

(2) pApr
2
S qpL2qEpF, Eq Ď pApr

2
S qpL1qEpF, Eq.

(3) pBnd2
S qpL2qEpF, Eq Ď pBnd2

S qpL1qEpF, Eq.

(4) pAcc2
S qpL1qEpF, Eq ď pAcc2

S qpL2qEpF, Eq.

Proof.

(1) Let x P̌ pApr2
S
qpL1qEpF, Eq. Then, ă x ą R [ pF, Eqc P̌ pL1qE. Since pL1qE Ď pL2qE. Thus, ă x ą

R[ pF, Eqc P̌ pL2qE. Therefore, x P̌ pApr2
S
qpL2qEpF, Eq. Hence, pApr2

S
qpL1qEpF, Eq Ď pApr2

S
qpL2qEpF, Eq.

(2) Let x P̌ pApr
2
S qpL2qEpF, Eq. Then, ă x ą R [ pF, Eqc <̌ pL2qE. Since pL1qE Ď pL2qE. Thus, ă x ą

R[ pF, Eqc <̌ pL1qE. Therefore, x P̌ pApr
2
S qpL1qEpF, Eq. Hence, pApr

2
S qpL2qEpF, Eq Ď pApr

2
S qpL1qEpF, Eq.

(3), (4): It is immediately obtained by parts (1) and (2). �

Corollary 7.1. Let pX,RE, pL1qEq, and pX,RE, pL2qEq be soft ideal approximation spaces such that
pL1qE Ď pL2qE. Thus, for each pF, Eq P̌ S S pXqE we have

(1) pApr3
S
qpL1qEpF, Eq Ď pApr3

S
qpL2qEpF, Eq.

(2) pApr
3
S qpL2qEpF, Eq Ď pApr

3
S qpL1qEpF, Eq.

(3) pBnd3
S qpL2qEpF, Eq Ď pBnd3

S qpL1qEpF, Eq.

(4) pAcc3
S qpL1qEpF, Eq ď pAcc3

S qpL2qEpF, Eq.

Remark 7.1. Proposition 7.2 shows that the soft boundary region of a soft set pF, Eq P̌ S S pXqE
decreases as the soft ideal increases as illustrated in the next example.

Example 7.1. Let X “ ta, b, cu associated with a set of parameters E “ te1, e2u. Let RE be a soft
relation over X. Let pL1qE, pL2qE be soft ideals on X, defined respectively by:

RE “ tpe1, tpa, aq, pa, bq, pa, cq, pb, bq, pb, cquq, pe2, tpa, aq, pa, cq, pb, aq, pb, bq, pb, cququ

pL1qE “ tΦ, tpe1, tauq, pe2, φquu

pL2qE “ S S pta, cuqE “ tpF, Eq : pF, Eq is a soft set over ta, cuu.

Therefore, ă a ą R “ tpe1, tauq, pe2, tauqu, ă b ą R “ tpe1, tb, cuq, pe2, tb, cuqu “ă c ą R.
Let pF, Eq “ tpe1, tcuq, pe2, φqu. Then,

pBnd2
S qpL1qEpF, Eq “ pApr

2
S qpL1qEpF, Eq ´ pApr2

S
qpL1qEpF, Eq “ pĆtb, cuqE ´ Φ “ pĆtb, cuqE.

Also

pBnd2
S qpL2qEpF, Eq “ pApr

2
S qpL2qEpF, Eq ´ pApr2

S
qpL2qEpF, Eq “ tpe1, tcuq, pe2, φqu ´ Φ

“ tpe1, tcuq, pe2,Φqu.

It is clear that pBnd2
S qpL2qEpF, Eq Ď pBnd2

S qpL1qEpF, Eq.
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Remark 7.2. From Proposition 7.1, one can deduce that Definition 3.6 improves the soft boundary
region which means decreasing for a soft set pF, Eq P̌ S S pXqE, and improves the soft accuracy measure
which means increasing for that soft set pF, Eq P̌ S S pXqE by increasing the soft lower approximation
and decreasing the soft upper approximation in comparison to the methods in Definitions 3.4, 3.5, and
Definition 2.4 in [17]. So, the suggested method in Definition 3.6 is more accurate in decision-making.
As a special case:

(1) If RE is soft symmetric relation, then the soft approximations in Definition 3.6 coincide with the
soft approximations in Definition 3.5.

(2) If LE “ Φ and RE is soft symmetric relation, then the soft approximations in Definition 3.5
coincide with the soft approximations in Definition 3.5.

(3) If LE “ Φ, E “ teu and RE is soft reflexive and soft transitive relation, then the soft
approximations in Definition 3.6 coincide with the previous soft approximations in [17].

Example 7.2. Selection of a house:
Considering X “ tx1, x2, x3, x4, x5, x6u is a collection of six houses where H “{expensive, beautiful,
cheap, in green surroundings, wooden modern, in good repair, in bad repair} be a set of parameters.
Suppose Mr.Z wants to purchase a house on the following parametric set E “ {beautiful, cheap, in
green surroundings, wooden, in good repair}. Consider E “ te1, e2, e3, e4, e5u.

Define a soft equivalence relation R : E ÝÑ PpX ˆ Xq. The soft equivalence classes for each e P E
are obtained as follows:

For Rpe1q : are tx1, x3u, tx2, x4, x5, x6u. For Rpe2q : are tx1, x2, x4, x5u, tx3u, tx6u.

For Rpe3q : are tx1, x2, x4, x5, x6u, tx3u. For Rpe4q : are tx1, x3, x6u, tx2, x4, x5u.

For Rpe5q : is tx1, x2, x3, x4, x5, x6u.

Therefore, R ă x1 ą R “ pĄtx1uqE, R ă x2 ą R “ R ă x4 ą R “ R ă x5 ą R “ p Čtx2, x4, x5uqE, R ă
x3 ą R “ pĄtx3uqE, R ă x6 ą R “ pĄtx6uqE. Consider LE “ S S ptx1, x3, x5uqE “ tpF, Eq : pF, Eq is a
soft set over tx1, x3, x5uu be a soft ideal over X. The soft representation of the equivalence relation RE

is explained in Table 1. In Table 2, the soft approximations, soft boundary region, and soft accuracy
measure of a soft set pF, Eq P̌ S S pXqE by using our suggested method in Definition 3.6. This method
is the best tool to help Mr.Z in his decision-making about selecting the house that is most suitable to
his choice of parameters. For example, take p Čtx2, x3, x4uqE, then from Table 2, the soft lower and soft
upper approximations, soft boundary region, and soft accuracy measure are pĄtx3uqE, p Čtx2, x3, x4, x5uqE,

p Čtx2, x4, x5uqE, and 1{4, respectively. One can see that Mr.Z will decide to buy the house x3 according
to his choice parameters in E.
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Table 1. Soft equivalence relation representation of houses under consideration.

e1 e2 e3 e4 e5

px1, x1q 1 1 1 1 1
px1, x2q 0 1 1 0 1
px1, x3q 1 0 0 1 1
px1, x4q 0 1 1 0 1
px1, x5q 0 1 1 0 1
px1, x6q 0 0 1 1 1
px2, x1q 0 1 1 0 1
px2, x2q 1 1 1 1 1
px2, x3q 0 0 0 0 1
px2, x4q 1 1 1 1 1
px2, x5q 1 1 1 1 1
px2, x6q 1 0 1 0 1
px3, x1q 1 0 0 1 1
px3, x2q 0 0 0 0 1
px3, x3q 1 1 1 1 1
px3, x4q 0 0 0 0 1
px3, x5q 0 0 0 0 1
px3, x6q 0 0 0 1 1
px4, x1q 0 1 1 0 1
px4, x2q 1 1 1 1 1
px4, x3q 0 0 0 0 1
px4, x4q 1 1 1 1 1
px4, x5q 1 1 1 1 1
px4, x6q 1 0 1 0 1
px5, x1q 0 1 1 0 1
px5, x2q 1 1 1 1 1
px5, x3q 0 0 0 0 1
px5, x4q 1 1 1 1 1
px5, x5q 1 1 1 1 1
px5, x6q 1 0 1 0 1
px6, x1q 0 0 1 1 1
px6, x2q 1 0 1 0 1
px6, x3q 0 0 0 1 1
px6, x4q 1 0 1 0 1
px6, x5q 1 0 1 0 1
px6, x6q 1 1 1 1 1
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Table 2. Soft approximations, soft boundary region and soft accuracy measure of a soft set
pF, Eq P̌ S S pXqE of Definition 3.6.

pF, Eq P̌ S S pXqE Apr3
S
pF, Eq Apr

3
S pF, Eq Bnd3

S pF, Eq Acc3
S pF, Eq

p Čtx1, x2, x3uqE p Čtx1, x3uqE p Čtx1, x2, x3, x4, x5uqE p Čtx2, x4, x5uqE 2{5
p Čtx1, x3, x4uqE p Čtx1, x3uqE p Čtx1, x2, x3, x4, x5uqE p Čtx2, x4, x5uqE 2{5
p Čtx1, x2, x5uqE pĄtx1uqE p Čtx1, x2, x4, x5uqE p Čtx2, x4, x5uqE 1{4
p Čtx1, x3, x6uqE p Čtx1, x3, x6uqE p Čtx1, x3, x6uqE Φ 1
p Čtx1, x4, x6uqE p Čtx1, x6uqE p Čtx1, x2, x4, x5, x6uqE p Čtx2, x4, x5uqE 2{5
p Čtx2, x3, x4uqE pĄtx3uqE p Čtx2, x3, x4, x5uqE p Čtx2, x4, x5uqE 1{4
p Čtx2, x3, x5uqE pĄtx3uqE p Čtx2, x3, x4, x5uqE p Čtx2, x4, x5uqE 1{4
p Čtx2, x4, x5uqE p Čtx2, x4, x5uqE p Čtx2, x4, x5uqE Φ 1
p Čtx2, x4, x6uqE p Čtx2, x4, x6uqE p Čtx2, x4, x6uqE Φ 1
p Čtx2, x5, x6uqE pĄtx6uqE p Čtx2, x4, x5, x6uqE p Čtx2, x4, x5uqE 1{4
p Čtx3, x4, x5uqE pĄtx3uqE p Čtx2, x3, x4, x5uqE p Čtx2, x4, x5uqE 1{4
p Čtx4, x5, x6uqE pĄtx6uqE p Čtx2, x4, x5, x6uqE p Čtx2, x4, x5uqE 1{4
p Čtx1, x2, x3, x4uqE p Čtx1, x2, x3, x4uqE p Čtx1, x2, x3, x4, x5uqE pĄtx5uqE 4{5
p Čtx1, x2, x5, x6uqE p Čtx1, x6uqE p Čtx1, x2, x4, x5, x6uqE p Čtx2, x4, x5uqE 2{5
p Čtx1, x3, x4, x5uqE p Čtx1, x3uqE p Čtx1, x2, x3, x4, x5uqE p Čtx2, x4, x5uqE 2{5
p Čtx1, x4, x5, x6uqE p Čtx1, x6uqE p Čtx1, x2, x4, x5, x6uqE p Čtx2, x4, x5uqE 2{5
p Čtx2, x3, x4, x5uqE p Čtx2, x3, x4, x5uqE p Čtx2, x3, x4, x5uqE Φ 1
p Čtx2, x4, x5, x6uqE p Čtx2, x4, x5, x6uqE p Čtx2, x4, x5, x6uqE Φ 1
p Čtx1, x2, x3, x4, x5uqE p Čtx1, x2, x3, x4, x5uqE p Čtx1, x2, x3, x4, x5uqE Φ 1
p Čtx1, x2, x3, x4, x6uqE p Čtx1, x2, x3, x4, x6uqE p Čtx1, x2, x3, x4, x6uqE Φ 1
p Čtx1, x3, x4, x5, x6uqE p Čtx1, x3, x6uqE rX p Čtx4, x5uqE 1{2
p Čtx2, x3, x4, x5, x6uqE p Čtx2, x3, x4, x5, x6uqE p Čtx2, x3, x4, x5, x6uqE Φ 1

Example 7.3. Selection of a car:
Suppose a person Mr.Z wants to buy a car from the alternatives x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. Let
X “ tx1, x2, x3, x4, x5, x6, x7, x8, x9, x10u be the universe of ten different cars and let E “ te1, e2, e3u be
the set of attributes, where e1 refers to price, e2 refers to color, and e3 refers to car brands.
The parameters are characterized as follows:

• The price of a car includes under 30 lacs, between 31 and 35 lacs, and between 36 and 40 lacs.
• The car brand includes Honda Accord, Audi, Mercedes Benz, and BMW.
• The color of a car includes black, white, and silver.

Define a soft equivalence relation R : E ÝÑ PpX ˆ Xq for each e P E which describes the advantages
of the car for which the person Mr.Z will buy. The soft equivalence classes for each e P E are obtained
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as follows:

For Rpe1q : are tx1, x10u, tx2, x4, x6, x7u, tx3, x5, x8, x9u,

which means that the price of cars x1 and x10 is under 30 lacs; the price of cars x2, x4, x6, and x7 is
between 31 and 35 lacs; and the price of cars x3, x5, x8, and x9 is between 36 and 40 lacs.

For Rpe2q : are tx1u, tx2u, tx3, x4, x5, x7, x8, x9, x10u, tx6u,

which represents that the brand of car x1 is Honda Accord; the brand of car x2 is Audi; the brand of
cars x3, x4, x5, x7, x8, x9, and x10 is Mercedes Benz; and the brand of car x6 is BMW. For Rpe3q: are
tx10u, tx6u, tx1, x2, x3, x4, x5, x7, x8, x9u, which represents that the color of cars x1, x2, x3, x4, x5, x7, x8,

and x9 is black; the color of car x10 is white; and the color of car x6 is silver.
Therefore, R ă x1 ą R “ pĄtx1uqE, R ă x2 ą R “ pĄtx2uqE, R ă x6 ą R “ pĄtx6uqE, R ă x10 ą R “
pĆtx10uqE, R ă x4 ą R “ R ă x7 ą R “ p Čtx4, x7uqE, R ă x3 ą R “ R ă x5 ą R “ R ă x8 ą R “ R ă
x9 ą R “ p Čtx3, x5, x8, x9uqE.

Consequently, anyone can offer a soft ideal to extend an example similar to the one in Table 2 to
help Mr.Z in his decision-making about selecting the car that is most suitable according to the given
parameters.
For example, let LE “ S S ptx2, x6, x10uqE “ tpF, Eq : pF, Eq is a soft set over tx2, x6, x10uu be a soft
ideal over X and pF, Eq “ p Čtx1, x4, x8uqE P̌ S S pXqE consisting of these cars which are most acceptable
for Mr.Z. Thus, Apr3

S
pF, Eq “ pĄtx1uqE, Apr

3
S pF, Eq “ p Čtx1, x3, x4, x5, x7, x8, x9uqE,

Bnd3
S pF, Eq “ p

Čtx3, x4, x5, x7, x8, x9uqE and Acc3
S pF, Eq “ 1{7. Mr.Z will buy the car x1 which is under

30 lacs, a Honda Accord, and is white.

8. Conclusions

This paper introduced new soft closure operators based on soft ideals, defining soft topological
spaces. To that end, soft accumulation points, soft subspaces, and soft lower separation axioms of
such spaces are defined and studied. Moreover, soft connectedness in these spaces is defined, which
enables us to make more generalizations and studies. The obtained results are newly presented and
could enrich soft topology theory. Finally, applications in multi criteria group decision making by
using our methods to present the importance of our soft ideals approximations have been presented.

As it is well-known that the soft interior and soft closure topological operators behave similarly to
the lower and upper soft approximations. So, in forthcoming works, we plan to study the counterparts
of these models via topological structures. In addition, we will benefit from the hybridization of
rough set theory with some approaches, such as fuzzy sets and soft fuzzy sets, to introduce these
approximation spaces via these hybridized frames and show their role in efficiently dealing with
uncertain knowledge.
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