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We also proved a congruence relation for pedℓ(n). In particular, we established a congruence relation
modulo 2 connecting podℓ(n) and pedℓ(n).
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1. Introduction

For convenience, throughout this paper, we use the notation

fk =

∞∏
n=1

(1 − qnk), k ≥ 1.

A partition of a nonnegative integer n is a nonincreasing sequence of positive integers whose sum
is n. We denote by pod(n) the number of partitions of n with odd parts distinct (and even parts are
unrestricted). The generating function of pod(n) is given by

∞∑
n=0

pod(n)qn =
1

ψ(−q)
=

f2

f1 f4

where ψ(q) :=
∑∞

n=0 qn(n+1)/2.
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The congruence properties of pod(n) were first studied by Hirschhorn and Sellers [1] in 2010. They
proved that for all α ≥ 0 and n ≥ 0,

pod
(
32α+3 +

23 × 32α+2 + 1
8

)
≡ 0 (mod 3).

Using modular forms, Radu and Sellers [2] established several congruence relations modulo 5 and 7
for pod(n), such as

pod(135n + 8) ≡ pod(135n + 107) ≡ pod(135n + 116) ≡ 0 (mod 5),
pod(567n + 260) ≡ pod(567n + 449) ≡ 0 (mod 7).

For more details on pod(n), one can refer to [3–5].
Our goal in this paper is to find congruence properties of the function podℓ(n), which enumerates the

partitions of n into non-multiples of ℓ in which the odd parts are distinct (and even parts unrestricted).
For example pod3(7) = 4, where the relevant partitions are 7, 5+2, 4+2+1, 2+2+2+1. The generating
function of podℓ(n) is given by

∞∑
n=0

podℓ(n)qn =
ψ(−qℓ)
ψ(−q)

=
f2 fℓ f4ℓ

f1 f4 f2ℓ
. (1.1)

Recently, for each α ≥ 0, Gireesh, Hirschhorn, and Naika [6] have obtained the generating function for

∞∑
n=0

pod3 (3αn + δα) qn

where 4δα ≡ −1 (mod 3α) if α is even, and 4δα ≡ −1 (mod 3α+1) if α is odd. Saika [7] also obtained
the congruence properties for pod3(n) and found infnite families of congruences modulo 2 and 3. In
addition, Veena and Fathima studied [8] the divisibility properties of pod3(n) by using the theory of
modular forms, for example, for k ≥ 1,

lim
X→∞

#
{
n ≤ X : pod3(n) ≡ 0 (mod 3k)

}
X

= 1.

Similarly, by imposing restrictions on the even parts while the odd parts are unrestricted, we also
obtain the ℓ-regular partitions with distinct odd parts. Let pedℓ(n) denote the number of ℓ-regular
partitions of n with even parts distinct. The generating function of pedℓ(n) is given by

∞∑
n=0

pedℓ(n)qn =
f4 fℓ
f1 f4ℓ

. (1.2)

Drema and Saikia [9] found some infinite families of congruences modulo 2 and 4 for pedℓ(n) when ℓ
= 3, 5, 7 and 11. For example, for any prime p ≥ 5,

(
−6
p

)
= −1 and 1 ≤ r ≤ p − 1, then for any α ≥ 0,

they proved the congruence relation

ped3

(
6 · p2α+1(pn + r) +

11 · p2α + 1
4

)
≡ 0 (mod 4).

AIMS Mathematics Volume 9, Issue 3, 6368–6378.



6370

In [10], Hemanthkumar, Bharadwaj, and Naika established several congruences modulo 16 and 24 for
pod9(n). The authors also proved an identity connecting pod9(n) and ped9(n)

3pod9(2n + 1) = ped9(2n + 3).

In this work, we will continue to study the congruence properties of podℓ(n) and pedℓ(n). The main
purpose of this paper is to prove the following results.

Theorem 1. For any n ≥ 0, ℓ is even, and we have

2n−1∑
i=0

podℓ(2n − i)σ1(i) ≡ 0 (mod 2)

where σk(n) =
∑

d|n dk is the standard divisor function.

Theorem 2. Let pi be distinct odd primes. For any m, n ≥ 0, t > 0, we have

pod2m

(
An −

As − (2m − 1)
8

)
≡ 0 (mod 2t)

where A =
∏t(2m−1)

i=1 pi and s ∈ Z satisfies 8 |As − (2m − 1) .

Theorem 3. For any n ≥ 0, α ≥ 0, we have

∞∑
n=0

pod5

4 × 152αn +
15 ×

(
1 + 152α−1

)
2

− 8

 qn ≡

∞∑
n=0

pod5

4 × 72αn +
7 ×

(
1 + 72α−1

)
2

− 4

 qn

≡ f 3
1 (mod 2). (1.3)

Meanwhile, let ℓ ≥ 1, if 1 ≤ m < 8ℓ, m ≡ 1 (mod 8), and
(

m
ℓ

)
= −1, then we have

pod5

4 × 152αℓn +
15 ×

(
1 + 152α−1m

)
2

− 8

 ≡ pod5

4 × 72αℓn +
7 ×

(
1 + 72α−1m

)
2

− 4


≡ 0 (mod 2). (1.4)

Theorem 4. For any n ≥ 0, the following statements hold:

(i) If ℓ > 0 satisfying ℓ ≡ −1 (mod 8) and l is a prime with l |ℓ , then

∞∑
n=0

pedℓ

(
ln +

l2 − 1
8

)
qn ≡

f 3
l

f 3
ℓ/l

(mod 2). (1.5)

(ii) If l is a prime satisfying l ≡ −1 (mod 8), then

pedl

(
ln +

l2 − 1
8

)
≡ podl(n) (mod 2). (1.6)
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2. Preliminaries

We begin with some background on modular forms to prove our main results.
Let f (z) =

∑∞
n=0 a(n)qn, if f (z) ∈ Mk(Γ0(N), χN) is a modular form. Let p be a prime and the operators

Up and Vp are defined by

f (z)
∣∣∣Up :=

∞∑
n=0

a(pn)qn, f (z)
∣∣∣Vp :=

∞∑
n=0

a(n)qpn

which satisfies the following property:(
f (z) · g(z)

∣∣∣Vp

) ∣∣∣Up =
(

f (z)
∣∣∣Up

)
· g(z).

The Hecke operator Tp is defined by

Tp := Up + χN(p)pk−1Vp, k ≥ 1.

Lemma 1. [12, P. 18], If f (z) =
∏

δ|N η(δz)rδ is an eta-quotient with k =
∑
δ|N rδ/2 ∈ Z, with the

additional that ∑
δ|N

δrδ ≡ 0 (mod 24),
∑
δ|N

N
δ

rδ ≡ 0 (mod 24)

then f (z) satisfies

f
(
az + b
cz + d

)
= χN(d)(cz + d)k f (z),

[
a b
c d

]
∈ Γ0(N).

Here, the character χN is defined by χN(d) :=
(

(−1)k s
d

)
, where s :=

∏
δ|N δ

rδ . Moreover, if f (z) is
holomorphic (resp. vanishes) at all of the cusps of Γ0(N), then f (z) ∈ Mk(Γ0(N), χN) (resp.
S k(Γ0(N), χN).

Lemma 2. [12, P. 18], Let c,d, and N be positive integers with d |N and gcd(c, d) = 1. If f (z) is an
eta-quotient satisfying the conditions of Lemma 1 for N, then the order of vanishing of f (z) at the cusp
c/d is

N
24

∑
δ|N

gcd (d, δ)2rδ
gcd

(
d, N

δ

)
dδ
.

3. Proofs of the results

Before proving Theorem 1, we state here the following identity:

∞∑
n=1

nkqn

1 − qn =

∞∑
n=1

σk(n)qn. (3.1)

Proof of Theorem 1. Taking logarithms of relation (1.1), we find that

log

 ∞∑
n=0

podℓ(n)qn

 = ∞∑
n=1

log(1 − q2n) +
∞∑

n=1

log(1 − qℓn) +
∞∑

n=1

log(1 − q4ℓn)
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−

∞∑
n=1

log(1 − qn) −
∞∑

n=1

log(1 − q4n) −
∞∑

n=1

log(1 − q2ℓn). (3.2)

Using the differential operator q d
dq to (3.2) yields ∞∑

n=0

npodℓ(n)qn−1

 /  ∞∑
n=0

podℓ(n)qn

 = − 2
∞∑

n=1

nq4n−1

1 − q4n − ℓ

∞∑
n=1

nqℓn−1

1 − qℓn
− 4ℓ

∞∑
n=1

nq4ℓn−1

1 − q4ℓn

+

∞∑
n=1

nqn−1

1 − qn + 4
∞∑

n=1

nq4n−1

1 − q4n + 2ℓ
∞∑

n=1

nq2ℓn−1

1 − q2ℓn (3.3)

namely,

∞∑
n=0

npodℓ(n)qn =

 ∞∑
n=0

podℓ(n)qn

 −2
∞∑

n=1

nq4n

1 − q4n − ℓ

∞∑
n=1

nqℓn

1 − qℓn
− 4ℓ

∞∑
n=1

nq4ℓn

1 − q4ℓn

+

∞∑
n=1

nqn

1 − qn + 4
∞∑

n=1

nq4n

1 − q4n + 2ℓ
∞∑

n=1

nq2ℓn

1 − q2ℓn

 .
Consequently, we can deduce the following congruence:

∞∑
n=0

npodℓ(n)qn ≡

 ∞∑
n=0

podℓ(n)qn

  ∞∑
n=1

nqn

1 − qn − ℓ

∞∑
n=1

nqℓn

1 − qℓn


=

 ∞∑
n=0

podℓ(n)qn

  ∞∑
n=1

(
σ1(n) − ℓσ1

(n
ℓ

))
qn

 (mod 2). (3.4)

By equating the even terms coefficients, we find that

2npodℓ(2n) =
2n−1∑
i=0

podℓ(2n − i)
(
σ1(i) − ℓσ1

( i
ℓ

))
≡ 0 (mod 2). (3.5)

In particular, if ℓ is even, we have

2n−1∑
i=0

podℓ(2n − i)σ1(i) ≡ 0 (mod 2). (3.6)

This completes the proof Theorem 1. □

Before we prove Theorem 2, we included here the following lemma, which was proved in a letter
from Tate to Serre [11]. He proved that the action of the Hecke operators are locally nilpoten of
modulo 2. For simplicity, we define Mk := Mk(SL2Z), S k := S k(SL2Z).

Lemma 3. If f (z) ∈ Mk ∩ Z[[q]] is a modular form, then there exists a positive integer t ≤ dim Mk ≤[
k

12

]
+ 1 such that for any collection of distinct odd primes p1, p2, · · · , pt,

f (z)
∣∣∣Tp1

∣∣∣Tp2 |· · ·
∣∣∣Tpt ≡ 0 (mod 2).
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That is, f has some degree of nilpotency that is bounded by
[

k
12

]
+1, which also bounds the degree of

nilpotency of the image of f under any Hecke operator. Based on work of Tate, Mahlburg [13] proved
some congruences modulo arbitrary powers of 2 for the coefficients of certain quotients of Eisenstein
series. In particular, Boylan [14] gave a corollary of Tate’s result, which asserts that for any t ≤ j if
f (z) ∈ S 12 j (mod 2), that is,

f (z)
∣∣∣Tp1

∣∣∣Tp2 |· · ·
∣∣∣Tp j ≡ 0 (mod 2).

By using the Boylan’s result and similar techniques that are used by Mahlburg, we prove here
Theorem 2.

Proof of Theorem 2. Setting ℓ = 2m in (1.1), we have

∞∑
n=0

pod2m(n)qn =
f2 f2m f2m+2

f1 f4 f2m+1
≡

f 3
2m

f 3
1

≡ f 3(2m−1)
1 (mod 2). (3.7)

Replacing q by q8 in (3.7) and multiplying both sides by q(2m−1), we obtain

∞∑
n=0

pod2m(n)q8n+(2m−1) ≡ q(2m−1)
∞∏

n=1

(1 − qn)24(2m−1) = ∆(z)(2m−1) (mod 2) (3.8)

where ∆(z) is the Delta-function, which is the unique cusp form of weight 12 on SL2(Z).
∆(z)(2m−1) ∈ S 12(2m−1) (SL2(Z)) is a cusp form of weight 12(2m − 1). Hence, by using the Boylan’s
result, for any 2m − 1 distinct odd primes p1, p2, · · · , p2m−1, we have

∆(z)(2m−1)
∣∣∣Tp1

∣∣∣Tp2 |· · ·
∣∣∣Tp2m−1 ≡ 0 (mod 2).

Furthermore, it is well known that 1
2∆(z)(2m−1)

∣∣∣Tp1

∣∣∣Tp2 |· · ·
∣∣∣Tp2m−1 ∈ S 12(2m−1)(SL2(Z)) is also a cusp

form of weight 12(2m − 1). Applying Boylan’s corollary once more, we choose any 2m − 1 distinct odd
primes p2m , p2m+1, · · · , p2(2m−1) coprime to p1, p2, · · · , p2m−1, and we can deduce that

∆(z)(2m−1)
∣∣∣Tp1

∣∣∣Tp2 |· · ·
∣∣∣Tp2(2m−1) ≡ 0 (mod 22).

By iterating the above process, for any t(2m − 1) distinct odd primes p1, p2, · · · , pt(2m−1), we can
conclude that

∆(z)(2m−1)
∣∣∣Tp1

∣∣∣Tp2 |· · ·
∣∣∣Tpt(2m−1) ≡ 0 (mod 2t). (3.9)

It follows from (3.8) that

pod2m

(
p1 p2 · · · pt(2m−1)n − (2m − 1)

8

)
≡ 0 (mod 2t). (3.10)

Since (8, pi) = 1, setting A =
∏t(2m−1)

i=1 pi, there exists a unique integer s such that 8 |As − (2m − 1) .
Replacing 8n + s by n in (3.10), we obtain

pod2m

(
An −

As − (2m − 1)
8

)
≡ 0 (mod 2t).

This completes the proof of Theorem 2. □
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In order to prove the remaining theorems, we first establish an explicit formula for the action of
the Hecke operator Tp on eta-quotient η3(z)η3(Nz) for N ≡ −1 (mod 8), where p is a prime satisfying
p |N .

Lemma 4. If N > 0 with N ≡ −1 (mod 8), suppose p is a prime dividing N, then

η3(z)η3(Nz)
∣∣∣Tp = (−1)(p−1)/2 p · η3(pz)η3(Nz/p) . (3.11)

Proof. We write

η3(8z) =
∞∑

k=1

k
(
−4
k

)
qk2
.

Adding the Up operator to η3(8z), we obtain

η3(8z)
∣∣∣Up =

∞∑
n=1

k
(
−4
k

)
qk2/p. (3.12)

Replacing k by pk in (3.12), we have

η3(8z)
∣∣∣Up =

∞∑
k=1

pk
(
−4
pk

)
qpk2
=

∞∑
k=1

pk
(
−1
p

) (
−4
k

)
qpk2
= (−1)(p−1)/2 p · η3(8pz). (3.13)

Since N ≡ −1 (mod 8), by Lemmas 1 and 2, we have that η3(8z)η3(8Nz) ∈ S 3(Γ0(8N), χ2N) is a cusp
form of weight 3. Adding the Up operator to η3(8z)η3(8Nz) and employing (3.13), we obtain

η3(8z)η3(8Nz)
∣∣∣Up =

 ∞∑
k=1

k
(
−4
k

)
qk2

  ∞∑
k=1

k
(
−4
k

)
qNk2

 ∣∣∣Up

=

 ∞∑
k=1

pk
(
−4
pk

)
qpk2

  ∞∑
k=1

k
(
−4
k

)
qNk2/p


= (−1)(p−1)/2 p · η3(8pz)η3

(
8Nz

p

)
.

Since p |N , then χN(p) = 0, and adding the Tp operator to η3(8z)η3(8Nz), we deduce that

η3(8z)η3(8Nz)
∣∣∣Tp = η

3(8z)η3(8Nz)
∣∣∣Up = (−1)(p−1)/2 p · η3(8pz)η3(8Nz/p). (3.14)

Replacing q8 by q in (3.14), we can deduce (3.11). □

To prove Theorem 3, we here need to verify some congruence relations. First, it is easy to check
that if f (z) ∈ Mk(Γ0(N), χN), then by definitions we have f (z)

∣∣∣Up = f (z)
∣∣∣Tp , for p is a prime satisfying

p |N . Second, by using Lemma 4, we can show the following congruences:

η3(z)η3(15z) |U3 = η
3(z)η3(15z) |T3 = −3η3(3z)η3(5z) ≡ η3(3z)η3(5z) (mod 2), (3.15)

η3(3z)η3(5z) |U5 = η
3(3z)η3(5z) |T5 = −5η3(z)η3(15z) ≡ η3(z)η3(15z) (mod 2). (3.16)

Based on the above results, now we are able to prove Theorem 3.
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Proof of Theorem 3. Setting ℓ = 5 in (1.1), we have

∞∑
n=0

pod5(n)qn =
f2 f5 f20

f1 f4 f10
≡

f1 f5 f 4
5

f1 f 4
1 f 2

5

≡
f 3
5

f 3
1

(mod 2). (3.17)

From [15, P. 60], Hirschhorn and Sellers proved the following 2-dissection of f5/ f1:

f5

f1
=

f8 f 2
20

f 2
2 f40
+ q

f 3
4 f10 f40

f 3
2 f8 f20

. (3.18)

Employing (3.18) in (3.17), we obtain

∞∑
n=0

pod5(n)qn ≡

(
f8 f 2

20

f 2
2 f40
+ q

f 3
4 f10 f40

f 3
2 f8 f20

)
f10

f2
(mod 2). (3.19)

Extracting those terms involving q2n in (3.19) and replacing q2 by q, we obtain

∞∑
n=0

pod5(2n)qn ≡ f1 f5 ≡ f2
f5

f1
(mod 2).

Applying (3.18) once more, it follows that

∞∑
n=0

pod5(2n)qn ≡ f2

(
f8 f 2

20

f 2
2 f40
+ q

f 3
4 f10 f40

f 3
2 f8 f20

)
(mod 2). (3.20)

Extracting those terms involving q2n in (3.20) and replacing q2 by q, we obtain

∞∑
n=0

pod5(4n)qn ≡ f 3
1 (mod 2). (3.21)

Multiplying both sides by q2 f 3
15 in (3.21), we have ∞∑

n=0

pod5(4n)qn+2

 f 3
15 ≡ q2 f 3

1 f 3
15 = η

3(z)η3(15z) (mod 2).

Applying the U3,U5 operators in sequence and employing (3.15) and (3.16), we find that ∞∑
n=0

pod5(4n)qn+2

 f 3
15

 |U3 |U5 ≡ η
3(z)η3(15z) |U3 |U5 ≡ η

3(z)η3(15z) |T3 |T5

≡ η3(z)η3(15z) (mod 2)

which yields  ∞∑
n=0

pod5(60n − 8)qn

 f 3
1 ≡ η

3(z)η3(15z) (mod 2). (3.22)
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Dividing both sides by q2 f1
3 in (3.22) and acting the U15 operator on both sides, we deduce that ∞∑

n=0

pod5(900n + 112)qn

 ≡ f 3
1 (mod 2).

By induction, we can deduce that for α ≥ 0,

∞∑
n=0

pod5

4 × 152αn +
15 ×

(
1 + 152α−1

)
2

− 8

 qn ≡ f 3
1 (mod 2) (3.23)

which is the first part of (1.3). Substituting q by q8 and multiplying both sides by q, we obtain

∞∑
n=0

pod5

4 × 152αn +
15 ×

(
1 + 152α−1

)
2

− 8

 q8n+1 ≡ q f 3
8 ≡ ∆(z) ≡

∞∑
n=0

q(2n+1)2
(mod 2) (3.24)

where ∆(z) =
∏∞

n=1 (1 − qn)24. If m ≡ 1 (mod 8) and
(

m
ℓ

)
= −1, then 8ℓn + m cannot be a square. This

implies that the coefficients of q8ℓn+m in the lefthand side of (3.24) must be even. Hence, we have

pod5

4 × 152αℓn +
15 ×

(
1 + 152α−1m

)
2

− 8

 ≡ 0 (mod 2)

which is the first part of (1.4). Similarly as in the preceding discussion, we observe that the eta quotient
η3(z)η3(7z) ∈ S 3 (Γ0(7), χ7) is a Hecke eigenform. Hnece, we can conclude that for α ≥ 0, the following
congruence holds:

∞∑
n=0

pod5

4 × 72αn +
7 ×

(
1 + 72α−1

)
2

− 4

 qn ≡ f 3
1 (mod 2)

which is the second part of (1.3). Furthermore, for m ≡ 1 (mod 8) and
(

m
ℓ

)
= −1, we have

pod5

4 × 72αℓn +
7 ×

(
1 + 72α−1m

)
2

− 4

 ≡ 0 (mod 2).

This completes the proof of Theorem 3. □

As another application of Lemma 4, we are now ready to prove a congruence relation modulo 2 for
pedℓ(n).

Proof of Theorem 4. By (1.2), we have
∞∑

n=0

pedℓ(n)qn =
f4 fℓ
f1 f4ℓ

≡
f 4
1 fℓ

f1 f 4
ℓ

≡
f 3
1

f 3
ℓ

(mod 2).

Multiplying both sides by q(ℓ+1)/8 f 6
ℓ , we have ∞∑

n=0

pedℓ(n)qn+(ℓ+1)/8

 f 6
ℓ ≡ η

3(z)η3(ℓz) (mod 2). (3.25)
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Since l |ℓ , acting the operator Ul to both sides of (3.25) and using Lemma 4, we have ∞∑
n=0

pedℓ(n)qn+(ℓ+1)/8

 f 6
ℓ |Ul ≡ η

3(z)η3(ℓz) |Ul = η
3(z)η3(ℓz) |Tl

= (−1)(l−1)/2l · η3(lz)η3(ℓz/l) ≡ η3(lz)η3(ℓz/l) (mod 2).

Consequently,

∞∑
n=0

pedℓ

(
ln −

ℓ + 1
8

)
qn−(l2+ℓ)/8l ≡

f 3
l

f 3
ℓ/l

(mod 2). (3.26)

Replacing n − (l2 + ℓ)/8l by n in (3.26), we obtain

∞∑
n=0

pedℓ

(
ln +

l2 − 1
8

)
qn ≡

f 3
l

f 3
ℓ/l

(mod 2).

This proves (1.5).
In particular, when ℓ = l is a prime, we obtain

∞∑
n=0

pedl

(
ln +

l2 − 1
8

)
qn ≡

f 3
l

f 3
1

≡
f2 fl f4l

f1 f4 f2l
≡

∞∑
n=0

podl(n)qn (mod 2). (3.27)

Comparing the coefficients of qn on both sides of (3.27), we obtain

pedl

(
ln +

l2 − 1
8

)
≡ podl(n) (mod 2).

We deduce (1.6). □

4. Conclusions

In this paper, with the help of modular forms, we investigated on some congruence problems for
ℓ-regular partitions with certain restrictions. In future studies, interested readers may examine whether
these methods also can be extended to congruence problems for other types of partition functions.
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