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Abstract: Let pod,(n) and ped,(n) denote the number of {-regular partitions of a positive integer
n into distinct odd parts and the number of {-regular partitions of a positive integer n into distinct
even parts, respectively. Our first goal in this note was to prove two congruence relations for pod,(n).
Furthermore, we found a formula for the action of the Hecke operator on a class of eta-quotients. As
two applications of this result, we obtained two infinite families of congruence relations for pods(n).
We also proved a congruence relation for ped,(n). In particular, we established a congruence relation
modulo 2 connecting pod,(n) and ped,(n).
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1. Introduction

For convenience, throughout this paper, we use the notation

fi=]la-a% k=1
n=1

A partition of a nonnegative integer n is a nonincreasing sequence of positive integers whose sum
is n. We denote by pod(n) the number of partitions of n with odd parts distinct (and even parts are
unrestricted). The generating function of pod(n) is given by

S L b
d L — L
2 podng' = S =2

where ¥(q) := X", g2,
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The congruence properties of pod(n) were first studied by Hirschhorn and Sellers [1] in 2010. They
proved that foralla > 0 and n > 0,

23 x 322 41

d 32a+3
PO ( + 3

) =0 (mod 3).
Using modular forms, Radu and Sellers [2] established several congruence relations modulo 5 and 7
for pod(n), such as

pod(135n + 8) = pod(135n + 107) = pod(135n+ 116) =0 (mod 5),
pod(567n + 260) = pod(567n +449) =0 (mod 7).

For more details on pod(n), one can refer to [3-5].

Our goal in this paper is to find congruence properties of the function pod,(n), which enumerates the
partitions of #n into non-multiples of ¢ in which the odd parts are distinct (and even parts unrestricted).
For example pod,;(7) = 4, where the relevant partitions are 7, 5+2, 4+2+1, 2+2+2+1. The generating
function of pod,(n) is given by

- Y= q") _ afefac
. 1.1
Zp"df(”) W) fifohar (1.

n=

Recently, for each @ > 0, Gireesh, Hirschhorn, and Naika [6] have obtained the generating function for

[ee)

Z pod, 3“n +6,) ¢"

n=0

where 46, = —1 (mod 3%) if « is even, and 45, = —1 (mod 3%*") if @ is odd. Saika [7] also obtained
the congruence properties for pod,;(n) and found infnite families of congruences modulo 2 and 3. In
addition, Veena and Fathima studied [8] the divisibility properties of pod;(n) by using the theory of
modular forms, for example, for k > 1,

#{n < X :pods(n) =0 (mod 3")}
%im X =1

Similarly, by imposing restrictions on the even parts while the odd parts are unrestricted, we also
obtain the {-regular partitions with distinct odd parts. Let ped,(n) denote the number of £-regular
partitions of n with even parts distinct. The generating function of ped,(n) is given by

f4f€
1.2
Zpecu(n)q e (1.2)

Drema and Saikia [9] found some infinite families of congruences modulo 2 and 4 for ped,(n) when ¢

=3,5,7 and 11. For example, for any prime p > 5, (‘Tf) =—-land 1 <r < p—1, then for any @ > 0,
they proved the congruence relation

11-p> + 1

ped, (6 - N pn + 1) + 2

) =0 (mod 4).
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In [10], Hemanthkumar, Bharadwaj, and Naika established several congruences modulo 16 and 24 for
pody(n). The authors also proved an identity connecting pody(n) and pedy(n)

3pody(2n + 1) = pedy(2n + 3).

In this work, we will continue to study the congruence properties of pod,(n) and ped,(n). The main
purpose of this paper is to prove the following results.

Theorem 1. For any n > 0, € is even, and we have

2n—1

> pod,(2n—iori(i) =0 (mod 2)

i=0
where o (n) = 3, d* is the standard divisor function.

Theorem 2. Let p; be distinct odd primes. For any m,n > 0, t > 0, we have

As—(2"-1)

podam (An - 2

) =0 (mod 2"

where A = H;flm_l) pi and s € Z satisfies 8 |As — (2" — 1).

Theorem 3. Foranyn > 0, > 0, we have

) 2a-1 o0 2a-1
Zp0d5 (4 x 15%n + X (1 ; = ) - S)q” = Zpod5 {4 X 7%n + M - 4] q"
n=0 n=0

= 7 (mod 2). (1.3)

Meanwhile, let £ > 1, if 1 <m < 8, m=1 (mod 8), and (%) = =1, then we have

7x(1+ 72"‘1m) ) 4]
2

=0 (mod 2). (1.4)

15 x (1 + 152"‘1m)
2

pods [4 X 15%¢n + - 8] = pods (4 X 7%¢n +

Theorem 4. For any n > 0, the following statements hold:

(1) If € > 0 satisfying € = —1 (mod 8) and [ is a prime with [ |, then

N P-1
Z ped, (ln +
n=0 8

(1) Iflis a prime satisfying [ = —1 (mod 8), then

3
)q” = f—é (mod 2). (1.5)
e/

2

ped, (ln + ) = pod,(n) (mod 2). (1.6)
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2. Preliminaries

We begin with some background on modular forms to prove our main results.
Let f(2) = 2,20 a(n)q", if f(z) € Mi(T'o(N), x,) is a modular form. Let p be a prime and the operators
U, and V, are defined by

f@U, = Y alpmg", RV, = ) atmg™
n=0 n=0

which satisfies the following property:
(f@-s@|v,)|U, = (f@U,) - 8.
The Hecke operator T, is defined by
T,:=U, +xy(p)p*'V,, k>1.

Lemma 1. [12, P. 18], If f(z) = [lsny 1(02)" is an eta-quotient with k = Y5y 15/2 € Z, with the
additional that N
Z 6rs =0 (mod 24), Z “rs=0 (mod 24)
0
SIN SIN
then f(z) satisfies

b b
f(?:: d):xN(d><cz+d>"f(z>, [CCI d]ero(m.

Here, the character y, is defined by x,(d) := (_L)ks), where s := [lsn 6. Moreover, if f(2) is
holomorphic (resp. vanishes) at all of the cusps of T'o(N), then f(z) € MI'o(N),x,) (resp.

S i(Lo(N), x y)-

Lemma 2. [12, P. 18], Let c,d, and N be positive integers with d|N and ged(c,d) = 1. If f(z) is an
eta-quotient satisfying the conditions of Lemma 1 for N, then the order of vanishing of f(z) at the cusp

c/dis
Z gcd (d, 6) Ts
24 SIN gcd d(S

3. Proofs of the results

Before proving Theorem 1, we state here the following identity:

nkqn b .
g = 2L (3.1

n=1 n=1

(59

Proof of Theorem 1. Taking logarithms of relation (1.1), we find that

log [Z pod[<n>q") = > log(1—g™) + > log(1 - ¢™) + > log(l - g*™)
n=0 n=1 n=1 n=1
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= > log(1 - g") = )" log(l = g*) = > log(1 - g*™). (32)
n=1 n=1 n=1

Using the differential operator qd%] to (3.2) yields

oo o o 4n-1 o tn—1 o0 4en—1
- ng nq nq
npod,(n)q" 1) /( pod (n)q”] =-2 0y ——— -4
o n—1 sl 4n—1 © 26n—1
nq nq q
+ +4 +2¢ 33
gl_qn ;1_q4n ;1 20 ( )
namely,
" upod S vodmer [0 S e o ng” o ngt”
ano [(n)q" = ZPO (mq" |1 - Zl—q“"_ Zl_qen_ Zl—q‘””
n=0 n=0 n=1 n=1 n=1
+ i nq’ +4 i g +2¢ i T
n=1 - q” n=1 - q4n n=1 - ngn

Consequently, we can deduce the following congruence:

[e9)

Z npod,(n)q" = (i pod{;(n)q”] (i ln_q’(’]n = i 1n_qun]
n=0 n=1

n=0 n=1
(o] o0 n
=1 > pod,mg || Y (0'1(n) — to (—))q" (mod 2). (3.4)
n=0 n=1 ¢
By equating the even terms coeflicients, we find that
2n—1 i
2npod,(2n) = pod,(2n — i) (Ul(i) — to (E)) =0 (mod 2). (3.5)
i=0
In particular, if € is even, we have
2n—1
Z pod,(2n —i)o1(i) =0 (mod 2). (3.6)
i=0
This completes the proof Theorem 1. O

Before we prove Theorem 2, we included here the following lemma, which was proved in a letter
from Tate to Serre [11]. He proved that the action of the Hecke operators are locally nilpoten of
modulo 2. For simplicity, we define M := M (SL,Z), S\ := Si(SL,2).

Lemma 3. If f(z) € M, N Z[[q]] is a modular form, then there exists a positive integer t < dim M, <
[1—"2] + 1 such that for any collection of distinct odd primes p1, p2, -+ , Py,

f(z)|Tp1 |sz |- |Tl7t =0 (mod 2).
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That is, f has some degree of nilpotency that is bounded by [%] +1, which also bounds the degree of
nilpotency of the image of f under any Hecke operator. Based on work of Tate, Mahlburg [13] proved
some congruences modulo arbitrary powers of 2 for the coefficients of certain quotients of Eisenstein
series. In particular, Boylan [14] gave a corollary of Tate’s result, which asserts that for any r < j if
f(z) € §12j (mod 2), that is,

f@I|T,y, [Ty |-+ [T, =0 (mod 2).

By using the Boylan’s result and similar techniques that are used by Mahlburg, we prove here
Theorem 2.

Proof of Theorem 2. Setting £ = 2™ in (1.1), we have

(o)

f2f2m f2m+2 f23m 3(2771 _ 1)
pod,.(n)q"' = =————— === (mod 2). 3.7
Z; i fififo ~
Replacing ¢ by ¢® in (3.7) and multiplying both sides by ¢*"~", we obtain
D pody (g = gV [ (1= g0 =A@ (mod 2) (3.8)
n=0 n=1

where A(z) is the Delta-function, which is the unique cusp form of weight 12 on SL,(Z).
A(Z)*" 7Y € Siy0n_1)(SLy(Z)) is a cusp form of weight 12(2™ — 1). Hence, by using the Boylan’s

result, for any 2" — 1 distinct odd primes py, ps, - - , pan_1, We have
AR VT, Ty, -+ Ty, =0 (mod 2).

Furthermore, it is well known that $A(z)*" " |T,,l |Tp2 |- - |Tp2,,,_] € S 1207-1y(SLa(Z)) is also a cusp
form of weight 12(2™ — 1). Applying Boylan’s corollary once more, we choose any 2" — 1 distinct odd
primes pom, Pamy1, -+, Pan_1y COprime to py, pa,- -+ , pon_j, and we can deduce that

AR V|, Ty - [Tpyom, =0 (mod 2%).
By iterating the above process, for any #(2" — 1) distinct odd primes pi, p2, -, Pion_1), W€ can
conclude that

AR VT, Ty -+ [Tppw,, =0 (mod 29. (3.9)
It follows from (3.8) that

<o pom_pn — (2™ =1
pod,, (p‘m bre 2 ( )) =0 (mod 2. (3.10)

Since (8, p;) = 1, setting A = Hﬁm Y p;, there exists a unique integer s such that 8 |As — (2" — 1).

Replacing 8n + s by n in (3.10), we obtain
As—(2"-1)

2 )EO (mod 2").

podam (An -
This completes the proof of Theorem 2. O
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In order to prove the remaining theorems, we first establish an explicit formula for the action of
the Hecke operator T, on eta-quotient 7°(2)n°(Nz) for N = —1 (mod 8), where p is a prime satisfying
PIN.

Lemmad4. If N > 0 with N = —1 (mod 8), suppose p is a prime dividing N, then
PPN [T, = (=D"2p - (p2yr’(Nz/p) . (3.11)

Proof. We write

S -4\
ﬂm=z47y.

k=1
Adding the U, operator to 77°(8z), we obtain
7(82)|U, = i K22 g (3.12)
' n=1 k . .
Replacing k by pk in (3.12), we have
ﬂww=iwifﬁ=iwilfﬁ”ﬂ%%”nﬂ%) (3.13)
’ k=1 pk k=1 pJ\k ' .

Since N = —1 (mod 8), by Lemmas 1 and 2, we have that 1°(8z)>(8Nz) € §3('o(8N), x,y) is a cusp
form of weight 3. Adding the U, operator to 7°(82)7°(8 Nz) and employing (3.13), we obtain

00 _4 , o 4 2
(82 (8N7) |Up = (Z k(?) q* ](Z k(?) 7 )|Up

(Bl )

_ 8Nz
=eww%ﬁ@m%?)

Since p |N, then yn(p) = 0, and adding the T, operator to 17°(82)7°(8Nz), we deduce that
787’ (8N2) T, = 1’8’ 8N2) [U, = (=1)"""?p - 11’ 8p2)’ (8Nz/p). (3.14)

Replacing ¢® by ¢ in (3.14), we can deduce (3.11). O

To prove Theorem 3, we here need to verify some congruence relations. First, it is easy to check
that if f(z) € My (I'o(N), xn), then by definitions we have f(z) |U »=f(@) |Tp, for p is a prime satisfying
pIN. Second, by using Lemma 4, we can show the following congruences:

(@’ (152)|Us = (@’ (152) |T5 = =37’ B2’ (52) = 7’ B2)n’(5z)  (mod 2), (3.15)
7’320’ (52) |Us = 7’ B2’ (52) ITs = =57’ (@’ (152) = 7’ (2’ (15z)  (mod 2). (3.16)

Based on the above results, now we are able to prove Theorem 3.
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Proof of Theorem 3. Setting £ = 5 in (1.1), we have

N ffsho  AffE O f2
d = = == d 2). 3.1
;po s = TR (mod 2) (3.17)

From [15, P. 60], Hirschhorn and Sellers proved the following 2-dissection of fs/ f;:

fi_ Bsfn N 3 fiofao

- q . (3.18)
fi B £ffo

Employing (3.18) in (3.17), we obtain

Z pods(n)q" (fgfzo f4f10f40) 110 (mod 2), (3.19)

i fifsfo ) o
Extracting those terms involving ¢*" in (3.19) and replacing ¢* by g, we obtain
N n _— _ f5
D pods(2mg" = fifs = fr%  (mod 2).
n=0 fl

Applying (3.18) once more, it follows that

N n Sl fifofwo

Z pods(2n)¢" = f> ( S+ g (mod 2). (3.20)

~ fifao S5 fsfa0
Extracting those terms involving ¢*" in (3.20) and replacing ¢* by g, we obtain

Z pods(4n)g” = £ (mod 2). (3.21)
n=0
Multiplying both sides by ¢*f7; in (3.21), we have
[Z p0d5(4n)q"+2) 5= fs = @n’(15z)  (mod 2).
n=0
Applying the Us, Us operators in sequence and employing (3.15) and (3.16), we find that
[(Z p0d5(4n)q”+2]f135} Us [Us =7’ (2)n’(152) |U3 |Us = ()’ (152) |T5 |T's
n=0
= 7’ @n’(15z) (mod 2)

which yields

[Z pods(60n — S)q") £ =152 (mod 2). (3.22)

n=0
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Dividing both sides by ¢*f;* in (3.22) and acting the U5 operator on both sides, we deduce that

(Z pods(900n + 112)q”) = (mod 2).

n=0

By induction, we can deduce that for @ > 0,

) 2a—1
Z i 152 15><(1+15 )_ o
pods [4 x 15 + > 8|¢' = £ (mod 2) (3.23)

n=0

which is the first part of (1.3). Substituting g by ¢ and multiplying both sides by ¢, we obtain

oo 15 x (1 +15%7") oo )
D pods |4 x 15 + > -8|q" = qfd =A@ = ) ¢®V (mod2)  (3.24)
n=0 n=0

where A(z) = [],, (1 — g)**. Ifm=1 (mod 8) and (%) = —1, then 8¢n + m cannot be a square. This

8Cn+m

implies that the coefficients of ¢ in the lefthand side of (3.24) must be even. Hence, we have

15 x (1 + 152“_1171)
2

pods [4 X 15%¢n + - 8) =0 (mod 2)

which is the first part of (1.4). Similarly as in the preceding discussion, we observe that the eta quotient
7’ (2)n*(72) € S5 (To(7), x7) is a Hecke eigenform. Hnece, we can conclude that for @ > 0, the following
congruence holds:

] 2a—1
Z d< 14 2a 7X(1+7 ) n_ 3
pods |4 x 7 + —————=~4|¢" = f} (mod 2)

n=0
which is the second part of (1.3). Furthermore, for m = 1 (mod 8) and (%) = —1, we have

7 % (1 + 72“‘1m)
2

pods [4 X 7**tn + -~ 4] =0 (mod 2).

This completes the proof of Theorem 3. O

As another application of Lemma 4, we are now ready to prove a congruence relation modulo 2 for
ped,(n).

Proof of Theorem 4. By (1.2), we have

- . ffe _fife R
d = = = d 2).
;pe g == T =T (mod D)

Multiplying both sides by ¢*"/# £, we have
(Z pedz(n)q”“””/s]ff =7’ @' () (mod 2). (3.25)
n=0
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Since [ |¢ , acting the operator U, to both sides of (3.25) and using Lemma 4, we have

[Z pedfm)q"”"“)/g) U =@’ () Uy = 1’ @ () T,

n=0
= (DL U’ (Lz/D) = P U’ €2/ (mod 2).

Consequently,

> +1 X
> ped (ln - L)q"*’”f)/gf = f% (mod 2). (3.26)
n=0 ‘f‘f/l

Replacing n — (I + £)/81 by n in (3.26), we obtain

> P-1 i
Zped{; (ln +—3 )q" =L (mod 2).

This proves (1.5).
In particular, when € = [ is a prime, we obtain

N P-1\ , [} _ phtu _~
;ped, (ln +— )q = nz(;pod (n)g"  (mod 2). (3.27)

Comparing the coefficients of ¢" on both sides of (3.27), we obtain

2

ped, (ln + ) = pod,(n) (mod 2).
We deduce (1.6). O
4. Conclusions

In this paper, with the help of modular forms, we investigated on some congruence problems for
{-regular partitions with certain restrictions. In future studies, interested readers may examine whether
these methods also can be extended to congruence problems for other types of partition functions.
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