Mathematics

Research article

Some congruences for ℓ-regular partitions with certain restrictions

JingJun Yu*

Department of Basic Teaching, Hangzhou Polytechnic, Hangzhou 311-402, China

* Correspondence: Email: jingjuny @ 126.com; Tel: +86-139-9852-0257.

Abstract

Let $\operatorname{pod}_{\ell}(n)$ and $\operatorname{ped}_{\ell}(n)$ denote the number of ℓ-regular partitions of a positive integer n into distinct odd parts and the number of ℓ-regular partitions of a positive integer n into distinct even parts, respectively. Our first goal in this note was to prove two congruence relations for $\operatorname{pod}_{\ell}(n)$. Furthermore, we found a formula for the action of the Hecke operator on a class of eta-quotients. As two applications of this result, we obtained two infinite families of congruence relations for $\operatorname{pod}_{5}(n)$. We also proved a congruence relation for $\operatorname{ped}_{\ell}(n)$. In particular, we established a congruence relation $\operatorname{modulo~}^{2}$ connecting $\operatorname{pod}_{\ell}(n)$ and $\operatorname{ped}_{\ell}(n)$.

Keywords: congruences; partitions; Hecke operator
Mathematics Subject Classification: 11P83

1. Introduction

For convenience, throughout this paper, we use the notation

$$
f_{k}=\prod_{n=1}^{\infty}\left(1-q^{n k}\right), \quad k \geq 1 .
$$

A partition of a nonnegative integer n is a nonincreasing sequence of positive integers whose sum is n. We denote by $\operatorname{pod}(n)$ the number of partitions of n with odd parts distinct (and even parts are unrestricted). The generating function of $\operatorname{pod}(n)$ is given by

$$
\sum_{n=0}^{\infty} \operatorname{pod}(n) q^{n}=\frac{1}{\psi(-q)}=\frac{f_{2}}{f_{1} f_{4}}
$$

where $\psi(q):=\sum_{n=0}^{\infty} q^{n(n+1) / 2}$.

The congruence properties of $\operatorname{pod}(n)$ were first studied by Hirschhorn and Sellers [1] in 2010. They proved that for all $\alpha \geq 0$ and $n \geq 0$,

$$
\operatorname{pod}\left(3^{2 \alpha+3}+\frac{23 \times 3^{2 \alpha+2}+1}{8}\right) \equiv 0 \quad(\bmod 3)
$$

Using modular forms, Radu and Sellers [2] established several congruence relations modulo 5 and 7 for $\operatorname{pod}(n)$, such as

$$
\begin{gathered}
\operatorname{pod}(135 n+8) \equiv \operatorname{pod}(135 n+107) \equiv \operatorname{pod}(135 n+116) \equiv 0 \quad(\bmod 5) \\
\operatorname{pod}(567 n+260) \equiv \operatorname{pod}(567 n+449) \equiv 0 \quad(\bmod 7)
\end{gathered}
$$

For more details on $\operatorname{pod}(n)$, one can refer to [3-5].
Our goal in this paper is to find congruence properties of the function $\operatorname{pod}_{\ell}(n)$, which enumerates the partitions of n into non-multiples of ℓ in which the odd parts are distinct (and even parts unrestricted). For example $\operatorname{pod}_{3}(7)=4$, where the relevant partitions are $7,5+2,4+2+1,2+2+2+1$. The generating function of $\operatorname{pod}_{\ell}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{\ell}(n) q^{n}=\frac{\psi\left(-q^{\ell}\right)}{\psi(-q)}=\frac{f_{2} f_{\ell} f_{4 \ell}}{f_{1} f_{4} f_{2 \ell}} \tag{1.1}
\end{equation*}
$$

Recently, for each $\alpha \geq 0$, Gireesh, Hirschhorn, and Naika [6] have obtained the generating function for

$$
\sum_{n=0}^{\infty} \operatorname{pod}_{3}\left(3^{\alpha} n+\delta_{\alpha}\right) q^{n}
$$

where $4 \delta_{\alpha} \equiv-1\left(\bmod 3^{\alpha}\right)$ if α is even, and $4 \delta_{\alpha} \equiv-1\left(\bmod 3^{\alpha+1}\right)$ if α is odd. Saika [7] also obtained the congruence properties for $\operatorname{pod}_{3}(n)$ and found infnite families of congruences modulo 2 and 3 . In addition, Veena and Fathima studied [8] the divisibility properties of $\operatorname{pod}_{3}(n)$ by using the theory of modular forms, for example, for $k \geq 1$,

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{n \leq X: \operatorname{pod}_{3}(n) \equiv 0 \quad\left(\bmod 3^{k}\right)\right\}}{X}=1 .
$$

Similarly, by imposing restrictions on the even parts while the odd parts are unrestricted, we also obtain the ℓ-regular partitions with distinct odd parts. Let $\operatorname{ped}_{\ell}(n)$ denote the number of ℓ-regular partitions of n with even parts distinct. The generating function of $\operatorname{ped}_{\ell}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}_{\ell}(n) q^{n}=\frac{f_{4} f_{\ell}}{f_{1} f_{4 \ell}} \tag{1.2}
\end{equation*}
$$

Drema and Saikia [9] found some infinite families of congruences modulo 2 and 4 for $\operatorname{ped}_{\ell}(n)$ when ℓ $=3,5,7$ and 11. For example, for any prime $p \geq 5,\left(\frac{-6}{p}\right)=-1$ and $1 \leq r \leq p-1$, then for any $\alpha \geq 0$, they proved the congruence relation

$$
\operatorname{ped}_{3}\left(6 \cdot p^{2 \alpha+1}(p n+r)+\frac{11 \cdot p^{2 \alpha}+1}{4}\right) \equiv 0 \quad(\bmod 4)
$$

In [10], Hemanthkumar, Bharadwaj, and Naika established several congruences modulo 16 and 24 for $\operatorname{pod}_{9}(n)$. The authors also proved an identity connecting $\operatorname{pod}_{9}(n)$ and $\operatorname{ped}_{9}(n)$

$$
3 \operatorname{pod}_{9}(2 n+1)=\operatorname{ped}_{9}(2 n+3) .
$$

In this work, we will continue to study the congruence properties of $\operatorname{pod}_{\ell}(n)$ and $\operatorname{ped}_{\ell}(n)$. The main purpose of this paper is to prove the following results.

Theorem 1. For any $n \geq 0, \ell$ is even, and we have

$$
\sum_{i=0}^{2 n-1} \operatorname{pod}_{\ell}(2 n-i) \sigma_{1}(i) \equiv 0 \quad(\bmod 2)
$$

where $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$ is the standard divisor function.
Theorem 2. Let p_{i} be distinct odd primes. For any $m, n \geq 0, t>0$, we have

$$
\operatorname{pod}_{2^{m}}\left(A n-\frac{A s-\left(2^{m}-1\right)}{8}\right) \equiv 0 \quad\left(\bmod 2^{t}\right)
$$

where $A=\prod_{i=1}^{t\left(2^{m}-1\right)} p_{i}$ and $s \in \mathbb{Z}$ satisfies $8 \mid A s-\left(2^{m}-1\right)$.
Theorem 3. For any $n \geq 0, \alpha \geq 0$, we have

$$
\begin{align*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}\left(4 \times 15^{2 \alpha} n+\frac{15 \times\left(1+15^{2 \alpha-1}\right)}{2}-8\right) q^{n} & \equiv \sum_{n=0}^{\infty} \operatorname{pod}_{5}\left(4 \times 7^{2 \alpha} n+\frac{7 \times\left(1+7^{2 \alpha-1}\right)}{2}-4\right) q^{n} \\
& \equiv f_{1}^{3}(\bmod 2) \tag{1.3}
\end{align*}
$$

Meanwhile, let $\ell \geq 1$, if $1 \leq m<8 \ell, m \equiv 1(\bmod 8)$, and $\left(\frac{m}{\ell}\right)=-1$, then we have

$$
\begin{align*}
\operatorname{pod}_{5}\left(4 \times 15^{2 \alpha} \ell n+\frac{15 \times\left(1+15^{2 \alpha-1} m\right)}{2}-8\right) & \equiv \operatorname{pod}_{5}\left(4 \times 7^{2 \alpha} \ell n+\frac{7 \times\left(1+7^{2 \alpha-1} m\right)}{2}-4\right) \\
& \equiv 0(\bmod 2) . \tag{1.4}
\end{align*}
$$

Theorem 4. For any $n \geq 0$, the following statements hold:
(i) If $\ell>0$ satisfying $\ell \equiv-1(\bmod 8)$ and l is a prime with $l \mid \ell$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}_{\ell}\left(\ln +\frac{l^{2}-1}{8}\right) q^{n} \equiv \frac{f_{l}^{3}}{f_{\ell / l}^{3}} \quad(\bmod 2) \tag{1.5}
\end{equation*}
$$

(ii) If l is a prime satisfying $l \equiv-1(\bmod 8)$, then

$$
\begin{equation*}
\operatorname{ped}_{l}\left(\ln +\frac{l^{2}-1}{8}\right) \equiv \operatorname{pod}_{l}(n) \quad(\bmod 2) \tag{1.6}
\end{equation*}
$$

2. Preliminaries

We begin with some background on modular forms to prove our main results. Let $f(z)=\sum_{n=0}^{\infty} a(n) q^{n}$, if $f(z) \in M_{k}\left(\Gamma_{0}(N), \chi_{N}\right)$ is a modular form. Let p be a prime and the operators U_{p} and V_{p} are defined by

$$
f(z)\left|U_{p}:=\sum_{n=0}^{\infty} a(p n) q^{n}, \quad f(z)\right| V_{p}:=\sum_{n=0}^{\infty} a(n) q^{p n}
$$

which satisfies the following property:

$$
\left(f(z) \cdot g(z) \mid V_{p}\right) \mid U_{p}=\left(f(z) \mid U_{p}\right) \cdot g(z)
$$

The Hecke operator T_{p} is defined by

$$
T_{p}:=U_{p}+\chi_{N}(p) p^{k-1} V_{p}, \quad k \geq 1
$$

Lemma 1. [12, P. 18], If $f(z)=\prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}}$ is an eta-quotient with $k=\sum_{\delta \mid N} r_{\delta} / 2 \in \mathbb{Z}$, with the additional that

$$
\sum_{\delta \mid N} \delta r_{\delta} \equiv 0 \quad(\bmod 24), \quad \sum_{\delta \mid N} \frac{N}{\delta} r_{\delta} \equiv 0 \quad(\bmod 24)
$$

then $f(z)$ satisfies

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi_{N}(d)(c z+d)^{k} f(z), \quad\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(N)
$$

Here, the character χ_{N} is defined by $\chi_{N}(d):=\left(\frac{(-1)^{k} s}{d}\right)$, where $s:=\prod_{\delta \mid N} \delta^{r_{\delta}}$. Moreover, if $f(z)$ is holomorphic (resp. vanishes) at all of the cusps of $\Gamma_{0}(N)$, then $f(z) \in M_{k}\left(\Gamma_{0}(N), \chi_{N}\right)$ (resp. $S_{k}\left(\Gamma_{0}(N), \chi_{N}\right)$.

Lemma 2. [12, P. 18], Let c, d, and N be positive integers with $d \mid N$ and $\operatorname{gcd}(c, d)=1$. If $f(z)$ is an eta-quotient satisfying the conditions of Lemma 1 for N, then the order of vanishing of $f(z)$ at the cusp c / d is

$$
\frac{N}{24} \sum_{\delta \mid N} \frac{\operatorname{gcd}(d, \delta)^{2} r_{\delta}}{\operatorname{gcd}\left(d, \frac{N}{\delta}\right) d \delta}
$$

3. Proofs of the results

Before proving Theorem 1, we state here the following identity:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{k} q^{n}}{1-q^{n}}=\sum_{n=1}^{\infty} \sigma_{k}(n) q^{n} \tag{3.1}
\end{equation*}
$$

Proof of Theorem 1. Taking logarithms of relation (1.1), we find that

$$
\log \left(\sum_{n=0}^{\infty} \operatorname{pod}_{\ell}(n) q^{n}\right)=\sum_{n=1}^{\infty} \log \left(1-q^{2 n}\right)+\sum_{n=1}^{\infty} \log \left(1-q^{\ell n}\right)+\sum_{n=1}^{\infty} \log \left(1-q^{4 \ell n}\right)
$$

$$
\begin{equation*}
-\sum_{n=1}^{\infty} \log \left(1-q^{n}\right)-\sum_{n=1}^{\infty} \log \left(1-q^{4 n}\right)-\sum_{n=1}^{\infty} \log \left(1-q^{2 \ell n}\right) \tag{3.2}
\end{equation*}
$$

Using the differential operator $q \frac{d}{d q}$ to (3.2) yields

$$
\begin{align*}
\left(\sum_{n=0}^{\infty} n \operatorname{pod}_{\ell}(n) q^{n-1}\right) /\left(\sum_{n=0}^{\infty} \operatorname{pod}_{\ell}(n) q^{n}\right)= & -2 \sum_{n=1}^{\infty} \frac{n q^{4 n-1}}{1-q^{4 n}}-\ell \sum_{n=1}^{\infty} \frac{n q^{\ell n-1}}{1-q^{\ell n}}-4 \ell \sum_{n=1}^{\infty} \frac{n q^{4 \ell n-1}}{1-q^{4 \ell n}} \\
& +\sum_{n=1}^{\infty} \frac{n q^{n-1}}{1-q^{n}}+4 \sum_{n=1}^{\infty} \frac{n q^{4 n-1}}{1-q^{4 n}}+2 \ell \sum_{n=1}^{\infty} \frac{n q^{2 \ell n-1}}{1-q^{2 \ell n}} \tag{3.3}
\end{align*}
$$

namely,

$$
\begin{aligned}
\sum_{n=0}^{\infty} n \operatorname{pod}_{\ell}(n) q^{n}=\left(\sum_{n=0}^{\infty} \operatorname{pod}_{\ell}(n) q^{n}\right) & \left(-2 \sum_{n=1}^{\infty} \frac{n q^{4 n}}{1-q^{4 n}}-\ell \sum_{n=1}^{\infty} \frac{n q^{\ell n}}{1-q^{\ell n}}-4 \ell \sum_{n=1}^{\infty} \frac{n q^{4 \ell n}}{1-q^{4 \ell n}}\right. \\
& \left.+\sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}+4 \sum_{n=1}^{\infty} \frac{n q^{4 n}}{1-q^{4 n}}+2 \ell \sum_{n=1}^{\infty} \frac{n q^{2 \ell n}}{1-q^{2 \ell n}}\right) .
\end{aligned}
$$

Consequently, we can deduce the following congruence:

$$
\begin{align*}
\sum_{n=0}^{\infty} n \operatorname{pod}_{\ell}(n) q^{n} & \equiv\left(\sum_{n=0}^{\infty} \operatorname{pod}_{\ell}(n) q^{n}\right)\left(\sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}-\ell \sum_{n=1}^{\infty} \frac{n q^{\ell n}}{1-q^{\ell n}}\right) \\
& =\left(\sum_{n=0}^{\infty} \operatorname{pod}_{\ell}(n) q^{n}\right)\left(\sum_{n=1}^{\infty}\left(\sigma_{1}(n)-\ell \sigma_{1}\left(\frac{n}{\ell}\right)\right) q^{n}\right) \quad(\bmod 2) . \tag{3.4}
\end{align*}
$$

By equating the even terms coefficients, we find that

$$
\begin{equation*}
2 n \operatorname{pod}_{\ell}(2 n)=\sum_{i=0}^{2 n-1} \operatorname{pod}_{\ell}(2 n-i)\left(\sigma_{1}(i)-\ell \sigma_{1}\left(\frac{i}{\ell}\right)\right) \equiv 0 \quad(\bmod 2) . \tag{3.5}
\end{equation*}
$$

In particular, if ℓ is even, we have

$$
\begin{equation*}
\sum_{i=0}^{2 n-1} \operatorname{pod}_{\ell}(2 n-i) \sigma_{1}(i) \equiv 0 \quad(\bmod 2) \tag{3.6}
\end{equation*}
$$

This completes the proof Theorem 1.
Before we prove Theorem 2, we included here the following lemma, which was proved in a letter from Tate to Serre [11]. He proved that the action of the Hecke operators are locally nilpoten of modulo 2. For simplicity, we define $M_{k}:=M_{k}\left(\mathrm{SL}_{2} \mathbb{Z}\right), S_{k}:=S_{k}\left(\mathrm{SL}_{2} \mathbb{Z}\right)$.

Lemma 3. If $f(z) \in M_{k} \cap \mathbb{Z}[[q]]$ is a modular form, then there exists a positive integer $t \leq \operatorname{dim} M_{k} \leq$ $\left[\frac{k}{12}\right]+1$ such that for any collection of distinct odd primes $p_{1}, p_{2}, \cdots, p_{t}$,

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{t}} \equiv 0 \quad(\bmod 2) .
$$

That is, f has some degree of nilpotency that is bounded by $\left[\frac{k}{12}\right]+1$, which also bounds the degree of nilpotency of the image of f under any Hecke operator. Based on work of Tate, Mahlburg [13] proved some congruences modulo arbitrary powers of 2 for the coefficients of certain quotients of Eisenstein series. In particular, Boylan [14] gave a corollary of Tate's result, which asserts that for any $t \leq j$ if $f(z) \in S_{12 j}(\bmod 2)$, that is,

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{j}} \equiv 0 \quad(\bmod 2) .
$$

By using the Boylan's result and similar techniques that are used by Mahlburg, we prove here Theorem 2.

Proof of Theorem 2. Setting $\ell=2^{m}$ in (1.1), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{2^{m}}(n) q^{n}=\frac{f_{2} f_{2^{m}} f_{2^{m+2}}}{f_{1} f_{4} f_{2^{m+1}}} \equiv \frac{f_{2^{m}}^{3}}{f_{1}^{3}} \equiv f_{1}^{3\left(2^{m}-1\right)} \quad(\bmod 2) \tag{3.7}
\end{equation*}
$$

Replacing q by q^{8} in (3.7) and multiplying both sides by $q^{\left(2^{m}-1\right)}$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{2^{m}}(n) q^{8 n+\left(2^{m}-1\right)} \equiv q^{\left(2^{m}-1\right)} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24\left(2^{m}-1\right)}=\Delta(z)^{\left(2^{m}-1\right)} \quad(\bmod 2) \tag{3.8}
\end{equation*}
$$

where $\Delta(z)$ is the Delta-function, which is the unique cusp form of weight 12 on $\mathrm{SL}_{2}(\mathbb{Z})$. $\Delta(z)^{\left(2^{m}-1\right)} \in S_{12\left(2^{m}-1\right)}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ is a cusp form of weight $12\left(2^{m}-1\right)$. Hence, by using the Boylan's result, for any $2^{m}-1$ distinct odd primes $p_{1}, p_{2}, \cdots, p_{2^{m}-1}$, we have

$$
\Delta(z)^{\left(2^{m}-1\right)}\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{2} m_{-1}} \equiv 0 \quad(\bmod 2)
$$

Furthermore, it is well known that $\frac{1}{2} \Delta(z)^{\left(2^{m}-1\right)}\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{2^{m}-1}} \in S_{12\left(2^{m}-1\right)}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ is also a cusp form of weight $12\left(2^{m}-1\right)$. Applying Boylan's corollary once more, we choose any $2^{m}-1$ distinct odd primes $p_{2^{m}}, p_{2^{m}+1}, \cdots, p_{2\left(2^{m}-1\right)}$ coprime to $p_{1}, p_{2}, \cdots, p_{2^{m}-1}$, and we can deduce that

$$
\Delta(z)^{\left(2^{m}-1\right)}\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{2\left(22^{m}-1\right)}} \equiv 0 \quad\left(\bmod 2^{2}\right) .
$$

By iterating the above process, for any $t\left(2^{m}-1\right)$ distinct odd primes $p_{1}, p_{2}, \cdots, p_{t\left(2^{m}-1\right)}$, we can conclude that

$$
\begin{equation*}
\Delta(z)^{\left(2^{m}-1\right)}\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{t\left(22^{m}-1\right)}} \equiv 0 \quad\left(\bmod 2^{t}\right) \tag{3.9}
\end{equation*}
$$

It follows from (3.8) that

$$
\begin{equation*}
\operatorname{pod}_{2^{m}}\left(\frac{p_{1} p_{2} \cdots p_{t\left(2^{m}-1\right)} n-\left(2^{m}-1\right)}{8}\right) \equiv 0 \quad\left(\bmod 2^{t}\right) \tag{3.10}
\end{equation*}
$$

Since $\left(8, p_{i}\right)=1$, setting $A=\prod_{i=1}^{t\left(2^{m}-1\right)} p_{i}$, there exists a unique integer s such that $8 \mid A s-\left(2^{m}-1\right)$. Replacing $8 n+s$ by n in (3.10), we obtain

$$
\operatorname{pod}_{2^{m}}\left(A n-\frac{A s-\left(2^{m}-1\right)}{8}\right) \equiv 0 \quad\left(\bmod 2^{t}\right) .
$$

This completes the proof of Theorem 2.

In order to prove the remaining theorems, we first establish an explicit formula for the action of the Hecke operator T_{p} on eta-quotient $\eta^{3}(z) \eta^{3}(N z)$ for $N \equiv-1(\bmod 8)$, where p is a prime satisfying $p \mid N$.
Lemma 4. If $N>0$ with $N \equiv-1(\bmod 8)$, suppose p is a prime dividing N, then

$$
\begin{equation*}
\eta^{3}(z) \eta^{3}(N z) \mid T_{p}=(-1)^{(p-1) / 2} p \cdot \eta^{3}(p z) \eta^{3}(N z / p) . \tag{3.11}
\end{equation*}
$$

Proof. We write

$$
\eta^{3}(8 z)=\sum_{k=1}^{\infty} k\left(\frac{-4}{k}\right) q^{k^{2}}
$$

Adding the U_{p} operator to $\eta^{3}(8 z)$, we obtain

$$
\begin{equation*}
\eta^{3}(8 z) \left\lvert\, U_{p}=\sum_{n=1}^{\infty} k\left(\frac{-4}{k}\right) q^{k^{2} / p} .\right. \tag{3.12}
\end{equation*}
$$

Replacing k by $p k$ in (3.12), we have

$$
\begin{equation*}
\eta^{3}(8 z) \left\lvert\, U_{p}=\sum_{k=1}^{\infty} p k\left(\frac{-4}{p k}\right) q^{p k^{2}}=\sum_{k=1}^{\infty} p k\left(\frac{-1}{p}\right)\left(\frac{-4}{k}\right) q^{p k^{2}}=(-1)^{(p-1) / 2} p \cdot \eta^{3}(8 p z) .\right. \tag{3.13}
\end{equation*}
$$

Since $N \equiv-1(\bmod 8)$, by Lemmas 1 and 2, we have that $\eta^{3}(8 z) \eta^{3}(8 N z) \in S_{3}\left(\Gamma_{0}(8 N), \chi_{2 N}\right)$ is a cusp form of weight 3 . Adding the U_{p} operator to $\eta^{3}(8 z) \eta^{3}(8 N z)$ and employing (3.13), we obtain

$$
\begin{aligned}
\eta^{3}(8 z) \eta^{3}(8 N z) \mid U_{p} & \left.=\left(\sum_{k=1}^{\infty} k\left(\frac{-4}{k}\right) q^{k^{2}}\right)\left(\sum_{k=1}^{\infty} k\left(\frac{-4}{k}\right) q^{N k^{2}}\right) \right\rvert\, U_{p} \\
& =\left(\sum_{k=1}^{\infty} p k\left(\frac{-4}{p k}\right) q^{p k^{2}}\right)\left(\sum_{k=1}^{\infty} k\left(\frac{-4}{k}\right) q^{N k^{2} / p}\right) \\
& =(-1)^{(p-1) / 2} p \cdot \eta^{3}(8 p z) \eta^{3}\left(\frac{8 N z}{p}\right) .
\end{aligned}
$$

Since $p \mid N$, then $\chi_{N}(p)=0$, and adding the T_{p} operator to $\eta^{3}(8 z) \eta^{3}(8 N z)$, we deduce that

$$
\begin{equation*}
\eta^{3}(8 z) \eta^{3}(8 N z)\left|T_{p}=\eta^{3}(8 z) \eta^{3}(8 N z)\right| U_{p}=(-1)^{(p-1) / 2} p \cdot \eta^{3}(8 p z) \eta^{3}(8 N z / p) . \tag{3.14}
\end{equation*}
$$

Replacing q^{8} by q in (3.14), we can deduce (3.11).
To prove Theorem 3, we here need to verify some congruence relations. First, it is easy to check that if $f(z) \in M_{k}\left(\Gamma_{0}(N), \chi_{N}\right)$, then by definitions we have $f(z)\left|U_{p}=f(z)\right| T_{p}$, for p is a prime satisfying $p \mid N$. Second, by using Lemma 4 , we can show the following congruences:

$$
\begin{align*}
& \eta^{3}(z) \eta^{3}(15 z)\left|U_{3}=\eta^{3}(z) \eta^{3}(15 z)\right| T_{3}=-3 \eta^{3}(3 z) \eta^{3}(5 z) \equiv \eta^{3}(3 z) \eta^{3}(5 z) \quad(\bmod 2), \tag{3.15}\\
& \eta^{3}(3 z) \eta^{3}(5 z)\left|U_{5}=\eta^{3}(3 z) \eta^{3}(5 z)\right| T_{5}=-5 \eta^{3}(z) \eta^{3}(15 z) \equiv \eta^{3}(z) \eta^{3}(15 z) \quad(\bmod 2) . \tag{3.16}
\end{align*}
$$

Based on the above results, now we are able to prove Theorem 3.

Proof of Theorem 3. Setting $\ell=5$ in (1.1), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{n}=\frac{f_{2} f_{5} f_{20}}{f_{1} f_{4} f_{10}} \equiv \frac{f_{1} f_{5} f_{5}^{4}}{f_{1} f_{1}^{4} f_{5}^{2}} \equiv \frac{f_{5}^{3}}{f_{1}^{3}} \quad(\bmod 2) \tag{3.17}
\end{equation*}
$$

From [15, P. 60], Hirschhorn and Sellers proved the following 2-dissection of f_{5} / f_{1} :

$$
\begin{equation*}
\frac{f_{5}}{f_{1}}=\frac{f_{8} f_{20}^{2}}{f_{2}^{2} f_{40}}+q \frac{f_{4}^{3} f_{10} f_{40}}{f_{2}^{3} f_{8} f_{20}} \tag{3.18}
\end{equation*}
$$

Employing (3.18) in (3.17), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(n) q^{n} \equiv\left(\frac{f_{8} f_{20}^{2}}{f_{2}^{2} f_{40}}+q \frac{f_{4}^{3} f_{10} f_{40}}{f_{2}^{3} f_{8} f_{20}}\right) \frac{f_{10}}{f_{2}} \quad(\bmod 2) \tag{3.19}
\end{equation*}
$$

Extracting those terms involving $q^{2 n}$ in (3.19) and replacing q^{2} by q, we obtain

$$
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(2 n) q^{n} \equiv f_{1} f_{5} \equiv f_{2} \frac{f_{5}}{f_{1}} \quad(\bmod 2)
$$

Applying (3.18) once more, it follows that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(2 n) q^{n} \equiv f_{2}\left(\frac{f_{8} f_{20}^{2}}{f_{2}^{2} f_{40}}+q \frac{f_{4}^{3} f_{10} f_{40}}{f_{2}^{3} f_{8} f_{20}}\right) \quad(\bmod 2) . \tag{3.20}
\end{equation*}
$$

Extracting those terms involving $q^{2 n}$ in (3.20) and replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}(4 n) q^{n} \equiv f_{1}^{3} \quad(\bmod 2) \tag{3.21}
\end{equation*}
$$

Multiplying both sides by $q^{2} f_{15}^{3}$ in (3.21), we have

$$
\left(\sum_{n=0}^{\infty} \operatorname{pod}_{5}(4 n) q^{n+2}\right) f_{15}^{3} \equiv q^{2} f_{1}^{3} f_{15}^{3}=\eta^{3}(z) \eta^{3}(15 z) \quad(\bmod 2) .
$$

Applying the U_{3}, U_{5} operators in sequence and employing (3.15) and (3.16), we find that

$$
\begin{aligned}
{\left[\left(\sum_{n=0}^{\infty} \operatorname{pod}_{5}(4 n) q^{n+2}\right) f_{15}^{3}\right]\left|U_{3}\right| U_{5} \equiv \eta^{3}(z) \eta^{3}(15 z)\left|U_{3}\right| U_{5} } & \equiv \eta^{3}(z) \eta^{3}(15 z)\left|T_{3}\right| T_{5} \\
& \equiv \eta^{3}(z) \eta^{3}(15 z) \quad(\bmod 2)
\end{aligned}
$$

which yields

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} \operatorname{pod}_{5}(60 n-8) q^{n}\right) f_{1}^{3} \equiv \eta^{3}(z) \eta^{3}(15 z) \quad(\bmod 2) \tag{3.22}
\end{equation*}
$$

Dividing both sides by $q^{2} f_{1}{ }^{3}$ in (3.22) and acting the U_{15} operator on both sides, we deduce that

$$
\left(\sum_{n=0}^{\infty} \operatorname{pod}_{5}(900 n+112) q^{n}\right) \equiv f_{1}^{3} \quad(\bmod 2)
$$

By induction, we can deduce that for $\alpha \geq 0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}\left(4 \times 15^{2 \alpha} n+\frac{15 \times\left(1+15^{2 \alpha-1}\right)}{2}-8\right) q^{n} \equiv f_{1}^{3} \quad(\bmod 2) \tag{3.23}
\end{equation*}
$$

which is the first part of (1.3). Substituting q by q^{8} and multiplying both sides by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}_{5}\left(4 \times 15^{2 \alpha} n+\frac{15 \times\left(1+15^{2 \alpha-1}\right)}{2}-8\right) q^{8 n+1} \equiv q f_{8}^{3} \equiv \Delta(z) \equiv \sum_{n=0}^{\infty} q^{(2 n+1)^{2}} \quad(\bmod 2) \tag{3.24}
\end{equation*}
$$

where $\Delta(z)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}$. If $m \equiv 1(\bmod 8)$ and $\left(\frac{m}{\ell}\right)=-1$, then $8 \ell n+m$ cannot be a square. This implies that the coefficients of $q^{8 \ell n+m}$ in the lefthand side of (3.24) must be even. Hence, we have

$$
\operatorname{pod}_{5}\left(4 \times 15^{2 \alpha} \ell n+\frac{15 \times\left(1+15^{2 \alpha-1} m\right)}{2}-8\right) \equiv 0 \quad(\bmod 2)
$$

which is the first part of (1.4). Similarly as in the preceding discussion, we observe that the eta quotient $\eta^{3}(z) \eta^{3}(7 z) \in S_{3}\left(\Gamma_{0}(7), \chi_{7}\right)$ is a Hecke eigenform. Hnece, we can conclude that for $\alpha \geq 0$, the following congruence holds:

$$
\sum_{n=0}^{\infty} \operatorname{pod}_{5}\left(4 \times 7^{2 \alpha} n+\frac{7 \times\left(1+7^{2 \alpha-1}\right)}{2}-4\right) q^{n} \equiv f_{1}^{3} \quad(\bmod 2)
$$

which is the second part of (1.3). Furthermore, for $m \equiv 1(\bmod 8)$ and $\left(\frac{m}{\ell}\right)=-1$, we have

$$
\operatorname{pod}_{5}\left(4 \times 7^{2 \alpha} \ell n+\frac{7 \times\left(1+7^{2 \alpha-1} m\right)}{2}-4\right) \equiv 0 \quad(\bmod 2)
$$

This completes the proof of Theorem 3.
As another application of Lemma 4, we are now ready to prove a congruence relation modulo 2 for $\operatorname{ped}_{\ell}(n)$.

Proof of Theorem 4. By (1.2), we have

$$
\sum_{n=0}^{\infty} \operatorname{ped}_{\ell}(n) q^{n}=\frac{f_{4} f_{\ell}}{f_{1} f_{4 \ell}} \equiv \frac{f_{1}^{4} f_{\ell}}{f_{1} f_{\ell}^{4}} \equiv \frac{f_{1}^{3}}{f_{\ell}^{3}} \quad(\bmod 2)
$$

Multiplying both sides by $q^{(\ell+1) / 8} f_{\ell}^{6}$, we have

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} \operatorname{ped}_{\ell}(n) q^{n+(\ell+1) / 8}\right) f_{\ell}^{6} \equiv \eta^{3}(z) \eta^{3}(\ell z) \quad(\bmod 2) \tag{3.25}
\end{equation*}
$$

Since $l \mid \ell$, acting the operator U_{l} to both sides of (3.25) and using Lemma 4, we have

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} \operatorname{ped}_{\ell}(n) q^{n+(\ell+1) / 8}\right) f_{\ell}^{6} \mid U_{l} & \equiv \eta^{3}(z) \eta^{3}(\ell z)\left|U_{l}=\eta^{3}(z) \eta^{3}(\ell z)\right| T_{l} \\
& =(-1)^{(l-1) / 2} l \cdot \eta^{3}(l z) \eta^{3}(\ell z / l) \equiv \eta^{3}(l z) \eta^{3}(\ell z / l) \quad(\bmod 2)
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}_{\ell}\left(\ln -\frac{\ell+1}{8}\right) q^{n-\left(l^{2}+\ell\right) / 8 l} \equiv \frac{f_{l}^{3}}{f_{\ell / l}^{3}} \quad(\bmod 2) . \tag{3.26}
\end{equation*}
$$

Replacing $n-\left(l^{2}+\ell\right) / 8 l$ by n in (3.26), we obtain

$$
\sum_{n=0}^{\infty} \operatorname{ped}_{\ell}\left(\ln +\frac{l^{2}-1}{8}\right) q^{n} \equiv \frac{f_{l}^{3}}{f_{\ell / l}^{3}} \quad(\bmod 2) .
$$

This proves (1.5).
In particular, when $\ell=l$ is a prime, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{ped}_{l}\left(\ln +\frac{l^{2}-1}{8}\right) q^{n} \equiv \frac{f_{l}^{3}}{f_{1}^{3}} \equiv \frac{f_{2} f_{l} f_{4 l}}{f_{1} f_{4} f_{2 l}} \equiv \sum_{n=0}^{\infty} \operatorname{pod}_{l}(n) q^{n} \quad(\bmod 2) . \tag{3.27}
\end{equation*}
$$

Comparing the coefficients of q^{n} on both sides of (3.27), we obtain

$$
\operatorname{ped}_{l}\left(\ln +\frac{l^{2}-1}{8}\right) \equiv \operatorname{pod}_{l}(n) \quad(\bmod 2) .
$$

We deduce (1.6).

4. Conclusions

In this paper, with the help of modular forms, we investigated on some congruence problems for ℓ-regular partitions with certain restrictions. In future studies, interested readers may examine whether these methods also can be extended to congruence problems for other types of partition functions.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The author declares that he has no conflict of interest.

References

1. M. D. Hirschhorn, J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, J. Ramanujan J., 22 (2010), 273-284. http://doi.org/10.1007/s11139-010-9225-6
2. S. Radu, J. A. Sellers, Congruence properties modulo 5 and 7 for the pod function, Int. J. Number Theory, $\mathbf{0 7}$ (2011), 2249-2259. http://doi.org/10.1142/S1793042111005064
3. J. Lovejoy, R. Osburn, Quadratic forms and four partition functions modulo 3, Integers 11, 04 (2011), 47-53. https://doi.org/10.1515/integ.2011.004
4. S. P. Cui, W . X. Gu, Z. S. Ma, Congruences for partitions with odd parts distinct modulo 5, Int. J. Number Theory, 11 (2015), 2151-2159. https://doi.org/10.1142/S1793042115500943
5. H. G. Fang, F . G. Xue, X . M. Yao, New congruences modulo 5 and 9 for partitions with odd parts distinct, Quaest. Math., 43 (2020), 1573-1586. https://doi.org/10.2989/16073606.2019.1653394
6. D. S. Gireesh, M. D. Hirschhorn, M. S. Mahadeva Naika, On 3-regular partitions with odd parts distinct, Ramanujan J., 44 (2017), 227-236. https://doi.org/10.1007/s11139-016-9814-0
7. N. Saika, Infinite families of congruences for 3-regular partitions with distinct odd parts, Commun. Math. Stat., 8 (2020), 443-451. https://doi.org/10.1007/s40304-019-00182-7
8. V. S. Veena, S. N. Fathima, Arithmetic properties of 3-regular partitions with distinct odd parts, Abh. Math. Semin. Univ. Hambg., 91 (2021), 69-80. https://doi.org/10.1007/s12188-021-00230-6
9. R. Drema, N. Saikia, Arithmetic properties for l-regular partition functions with distinct even parts, Bol. Soc. Mat. Mex., 28 (2022), 10-20. https://doi.org/10.1007/s11139-018-0044-5
10. B. Hemanthkumar, H. S. Sumanth Bharadwaj, M. S. Mahadeva Naika, Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts, Acta Mathematica Vietnamica, 44 (2019), 797-811. https://doi.org/10.1007/s40306-018-0274-z
11. J. Tate, The non-existence of certain Galois extensions of \mathbb{Q} unramified outside 2, Contemp. Math., 174 (1994), 153-156. https://doi.org/10.1090/conm/174/01857
12. K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, Providence: American Mathematical Society, 2004. http://dx.doi.org/10.1090/cbms/102
13. K. Mahlburg, More congruences for the coefficients of quotients of Eisentein series, J. Number Theory, 115 (2005), 89-99. https://doi.org/10.1016/j.jnt.2004.10.008
14. M. Boylan, Congruences for 2^{t}-core partition functions, J. Number Theory, 92 (2002), 131-138. https://doi.org/10.1006/jnth.2001.2695
15. M. D. Hirschhorn, J. A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc., 81 (2010), 58-63. https://doi.org/10.1017/S0004972709000525
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
