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Abstract: In the present paper, we introduce and discuss a new set of separation properties in fuzzy
soft topological spaces called FS δ-separation and FS δ-regularity axioms by using fuzzy soft δ-open
sets and the quasi-coincident relation. We provide a comprehensive study of their properties with
some supporting examples. Our analysis includes more characterizations, results, and theorems related
to these notions, which contributes to a deeper understanding of fuzzy soft separability properties.
We show that the FS δ-separation and FS δ-regularity axioms are harmonic and heredity property.
Additionally, we examine the connections between FS δ∗-compactness and FS δ-separation axioms
and explore the relationships between them. Overall, this work offers a new perspective on the theory
of separation properties in fuzzy soft topological spaces, as well as provides a robust foundation for
further research in the transmission of properties from fuzzy soft topologies to fuzzy and soft topologies
and vice-versa by swapping between the membership function and characteristic function in the case
of fuzzy topology and the set of parameters and a singleton set in the case of soft topology.
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1. Introduction

Zadeh [50] was the first to come up with the unprecedented theory of fuzzy set (F-set) for dealing
with some types of uncertainties where conventional tools fail. This theory brought a grand
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paradigmatic change in mathematics and offered a convenient framework to model a huge number of
empirical problems. On the other hand, this theory has its inherent difficulties, which are possibly
attributed to the inadequacy of the parameterization tool and pre-requirement of membership
function, as pointed out by Molodtsov in his pioneering work [41]. He introduced the concept of soft
sets (S -sets) as a remarkable mathematical tool for coping with vagueness that is free from the
aforementioned difficulties. Then, the S -set theory has been applied in many fields by many
authors [16, 35, 36]. One of these fields that attracted a lot of attention is the abstract topological
structures that were displayed by Shabir-Naz [48] and Çağman et al. [20]. Some divergences between
classical and soft topologies were illuminated in [7].

Over time, complicated issues have appeared that need combining parameterization of S -sets with
the membership degree of F-sets. To tackle such dilemmas, Maji et al. [37] put forward a new paradigm
known as a fuzzy soft set (FS -set) and demonstrated how this paradigm is applied [38]. Since then,
the FS -set theory and its applications have been studied by several intellectuals [5, 19, 24, 25]. To
cover more situations and expand the range of applications, the concept of FS -set was generalized
to (a, b)-Fuzzy soft sets by [11]. Kharal and Ahmad [34] defined the concept of mappings of FS -
classes. Subsequently, the study of topological structure over the family of FS -sets was started by
Tanay-Kandemir [49]. Mukherjee et al. [42] introduced the notions of FS δ-open and FS δ-closed sets,
FS δ-closure and FS δ-interior operators, and FS δ-continuity. Kandil et al. provided the concepts of
fuzzy soft connected and fuzzy soft hyperconnected spaces in [31,32], respectively. Various concepts in
fuzzy soft settings have been considered, such as disjoint union of fuzzy soft topological structures [6]
and filters [26].

Since the importance of separation axioms in topological spaces, it was investigated topologies
over the different types of uncertainty spaces. Kandil and El-Etriby [29] structured separation axioms
in the spaces of fuzzy topologies, then Kandil and El-Shafei [30] familiarized the axioms of regularity
in fuzzy topologies and FRi-proximities. Saleh et al. [45] displayed stronger types of separation and
regularity axioms in the spaces of fuzzy topologies using fuzzy pre-open sets. In fuzzy soft topological
spaces, separation axioms have been presented and discussed by many authors; see, for example, [1,2,
39,40]. Kandil et al. [33] scrutinized the characterizations of separation axioms and regularity inspired
by quasi-coincident and neighborhood systems. Recently, Saleh et al. [46, 47] have described another
sorts of FS -separation axioms and regularity axioms. In soft setting, a wide class of separation axioms
have been offered by Al-shami and his coauthors [12,13,17,21–23]. They successfully exploited these
axioms to address some real-life situations as given in [8, 9]. Alcantud [3] conducted an interesting
work to describe the relationships between topological structures in soft and fuzzy settings.

To go along this line of research, we are writing this paper, which contributes to the understanding
of fuzzy soft separability properties and produces some categories of fuzzy soft topological spaces. It
is well known that the environment of the current work widens other known generalizations such as
fuzzy topology and soft topology; this means the results and relationships obtained in these frames
are special cases of their counterparts investigated herein. This is attributed to that the frameworks of
soft and fuzzy topologies are produced by “fuzzy soft topology” by replacing the membership function
with the characteristic function in the case of fuzzy topology and restricting the set of parameters by
a singleton set in the case of soft topology. Hence, the paper enhances the body of knowledge and
provides a comprehensive insight to study the properties and characteristics of topological structures.

After this introduction, the reader may pursue the content of this research as follows. In Section 2,
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we requisition the definitions and findings that are needful to go along with the results obtained
herein. In the next sections, Sections 3 and 4, we delve into the topic of separation properties in fuzzy
soft topological spaces and propose a new set of axioms called FS δ-separation (FS -δT i, where
i = 0, 1, 2, 3, 4) and FS δ-regularity (FS -δRi, where i = 0, 1.2, 3). These separations are structured by
utilizing the ideas of fuzzy soft δ-open sets and the quasi-coincident relation. We provide various
characterizations of these properties and present a range of results, theorems, and relationships related
to these notions. In Section 5, we look at the interplay between FS δ∗-compactness and
FS δ-separation axioms and analyze the relationships between them. In the end, we outline the master
contributions of this manuscript and suggest a road map for future direction in Section 6.

2. Some basic definitions

Here, we recall the basic definitions that will be needed in this sequel. In the present work, U refers
to the universe set, E is the set of all parameters for U, I = [0, 1], and FS - refers to fuzzy soft.

Definition 2.1. [50] An F-set A of U is a mapping A : U −→ I. IU refers to the set of all F-sets on U.
An F-point xλ, λ ∈ (0, 1] is an F-set in U given by xλ(y) = λ at x = y and xλ (y) = 0 for all y ∈ U. For
α ∈ I, α ∈ IU refers to the F-constant function where α (x) = α ∀ x ∈ U.

Definition 2.2. [37] An FS -set hE = ( f , E) on U is the set of ordered pairs hE = {(e, h(e) : e ∈
E, h(e) ∈ IU}.

In this content, FS S (UE) refers to the set of all FS -sets on U. α̃E ∈ FS S (UE) defined by α̃E =

{(e, α) : e ∈ E , α ∈ IU} is called an FS -constant set.

Definition 2.3. [18, 43] An FS -point xe
α on UE is an FS -set on U defined by xe

α(e
′

) = xα if e
′

= e and
xe
α(e

′

) = 0 if e
′

∈ E − {e}, where xα is the F-point in U. FS P(UE) refers to the set of all FS -points in
U. An FS -point xe

α∈̃ fE if α ≤ f (e)(x).

Definition 2.4. [43,49] The triplet (U, τ, E) is called a fuzzy soft topological space (briefly, an FS TS ),
where U is an initial universal set, E is a fixed set of parameters, and τ is a family of FS -sets on U
such that τ is closed under arbitrary union and finite intersection and 0E, 1E belong to τ. The elements
in τ are called fuzzy soft open sets (briefly, FS O-sets) and the complements of them are called fuzzy
soft closed sets (briefly, FS C-sets).

Definition 2.5. [18] The FS -sets hE and gE are called quasi-coincident, denoted by fEqgE if there
are e ∈ E, u ∈ U such that h (e) (u) + g(e)(u) > 1. If hE is not quasi-coincident with gE, then we write
hEq̃gE.

Proposition 2.1. [18,46] Let xe
r , y

e
t ∈ FS P(UE), fE, gE, hE ∈ FS S (UE), and { fiE : i ∈ J} ⊆ FS S (UE),

then

(i) fEq̃gE ⇔ fE ⊑ gc
E and fEq̃ f c

E.

(ii) fE ⊓ gE = 0E ⇒ fEq̃gE.

(iii) fEq̃gE, hE ⊑ gE ⇒ fEq̃hE.

(iv) fEqgE ⇒ xe
rqgE, f or some xe

r ∈̃ fE.
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(v) fE ⊑ gE ⇔ (xe
rq fE ⇒ xe

rqgE),∀xe
r .

(vi) I f xe
rq(⊓i∈J fiE ), then xe

rq fiE, ∀ i ∈ J.

(vii) x , y⇒ xe
r q̃ye

t , ∀ r, t ∈ I.

(viii) xe
r q̃ye

t ⇔ x , y or (x = y and r + t ≤ 1) .

Definition 2.6. [42] An FS -set hE in (U, τ, E) is called q-neighborhood (briefly, q-nbd) of xe
α if there

is an FS O-set gE such that xe
αqgE ⊑ hE.

Definition 2.7. [34] Let FS S (UE) and FS S (VK) be two classes of all FS -sets over U and V,
respectively. Let u : U −→ V and p : E −→ K be two maps, then fup : FS S (UE) −→ FS S (VK) is
called a fuzzy soft map (or an FS -map) for which:

(i) If fE ∈ FS S (UE), then the image of fE denoted by fup( fE) is the FS -set on V given by fup ( fE) (k) =
sup{u( f (e)) : e ∈ p−1 (k)} i f p−1 (k) , ∅, and fup ( fE) (k) = 0̃V otherwise, for all k ∈ K.

(ii) If gK ∈ FS S (VK), then the preimage of gK denoted by f −1
up (gK) is the FS -set on U defined by,

f −1
up (gK)(e) = u−1(g (p (e))) for all e ∈ E.

The FS -map fup is called one-to-one (onto), if u and p are one-to-one (onto). For more details about
the properties of FS -maps; see, [34].

Definition 2.8. [46] Let (U, τ, E) be an FS TS and Y ⊆ U. Let hY
E be an FS -set on YE such that hY

E :
E −→ IY , hY

E (e) ∈ IY and hY
E(e)(x) = 1 if x ∈ Y, hE (e) (x) = 0 if x < Y. Let τY =

{
hY

E ⊓ gE : gE ∈ τ
}
,

then τY is a fuzzy soft topology (in short, FS T) on Y and (Y, τY , E) is called an FS -subspace of (U, τ, E).
If hY

E ∈ τ (resp., hY
E ∈ τ

c), then (Y, τY , E) is called an FS -open (resp., closed) subspace of (U, τ, E).

Definition 2.9. [18, 42] For an FS -set hE in (U, τ, E), we have:

(i) The FS -closure cl(hE) of hE is the intersection of all FS C-sets containing hE, and the FS -interior
int(hE) of hE is the union of all FS O-sets contained in hE.

(ii) hE is said to be a fuzzy soft regular open set (FS RO-set) if hE = int(cl(hE)). The complement of
an FS RO-set is called a fuzzy closed regular set (FS RC-set). FS RO(UE) refers to the set of all
FS RO-sets and FS RC(UE) refers to the set of all FS RC-sets.

(iii) hE is said to be a fuzzy soft δ-neighborhood (briefly, FS δ-nbd) of xe
α if and only if there is FS RO

q-nbd gE of xe
α such that gE ⊑ f E.

Definition 2.10. [42] Let hE be an FS -set in (U, τ, E), then:

(i) An FS -point xe
α is called an FS δ-cluster point of hE if and only if every FS RO q-nbd fE of xe

α ,
fEqhE. The set of all FS δ-cluster points of hE is called the FS δ-closure of hE, denoted by clδ(hE);
that is, clδ(hE) = ⊓ {gE ∈ FS RC (UE) : hE ⊑ gE}.

(ii) An FS -set hE is called a fuzzy soft δ-closed set (FS δC-set) if and only if hE = clδ(hE). The
complement of an FS δC-set is called a fuzzy soft δ-open set (FS δO-set). FS δC (UE) refers to the
set of all FS δC-sets and FS δO(UE) refers to the set of all FS δO-sets.
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(iii) The FS δ-interior intδ(hE) of hE is defined by intδ(hE) = 1̃E − clδ(hc
E); that is, intδ(hE) = ⊔{gE ∈

FS RO(UE) : gE ⊑ hE}. Consequently, hE is FS δ-open if and only if hE = intδ(hE).

Notation. For xe
r in FS P(UE), Oxe

r refers to an FS δO-set containing xe
r . In general, OhE refers to an

FS δO-set containing an FS -set hE.
Result 1. [42] Every FS RO-set is an FS δO-set and every FS δO-set is an FS O-set. Moreover, if hE

is an FS -semi open set in (U, τ, E), then cl (hE) = clδ(hE).
Result 2. [42] If hE is an FS O-set in (U, τ, E), then cl(hE) is an FS RC-set; that is, {cl (gE) : gE ∈ τ} =

{hE : hE ∈ FS RC(UE)}, and for any FS -set hE in (U, τ, E), clδ (hE) = ⊓{cl(gE) : hE ⊑ gE , gE ∈ τ}.

Theorem 2.1. [42] For any FS -sets fE and gE in (U, τ, E), we have:

(i) clδ (0E) = 0E and clδ (1E) = 1E.

(ii) clδ ( fE) is an FS δC-set, that is, clδ(clδ ( fE)) = clδ ( fE).

(iii) cl( fE) ⊑ clδ( fE) and if fE ∈ τ, then cl ( fE) = clδ( fE).

Result 3. [42] The FS δ-closure operator on (U, τ, E) satisfies the Kuratowski closure axioms so that
there is one topology on U. This topology is defined as follows:

The set of all FS δO-sets of (U, τ, E) forms an FS -topology, denoted by τδ. It is called an FS δ-
topology on U, and the triplet (U, τδ, E) is called an FS δ-topological space. Moreover, τδ ⊑ τ.

Definition 2.11. [42] An FS -map fup : (U, τ, E) −→ (V, δ,K) is called:

(i) FS δ-open if fup (hE) is an FS δO-set in V for all FS δO-sets hE in U.

(ii) FS δ-closed if fup (gE) is an FS δC-set in V for all FS δC-sets gE in U.

Theorem 2.2. [42] Let fup : (U, τ, E) −→ (V, δ,K) be an FS -map, then the next items are equivalent:

(i) fup is FS δ-continuous.

(ii) f −1
up (gK) is an FS δO-set in (U, τ, E) for all FS δO-sets gK in (V, δ,K).

(iii) f −1
up (gK) is an FS δC-set in (U, τ, E) for all FS δC-sets gK in (V, δ,K).

Definition 2.12. [46] An FS TS (U, τ, E) is said to be:

(i) FS T0 if for any xe
r , y

e
t ∈ FS P(UE) with xe

r q̃ye
t , then xe

r q̃cl(ye
t ) or cl(xe

r)q̃ye
t .

(ii) FS T1 if for any xe
r , y

e
t ∈ FS P(UE) with xe

r q̃ye
t , then xe

r q̃cl(ye
t ) and cl(xe

r)q̃ye
t .

(iii) FS T2 if for any xe
r , y

e
t ∈ FS P(UE) with xe

r q̃ye
t , there are FS O-sets Oxe

r ,Oye
t
∈ τ such that Oxe

r q̃Oye
t
.

Definition 2.13. [44] For FS TS (U, τ, E) and hE ∈ FS S (UE), then:

(i) A family A = {liE : i ∈ J} of FS δO-sets is called an FS δ∗- open cover of hE if for all xe
r ∈̃hE there

is i0 ∈ J such that xe
r ∈̃ fi0E.

(ii) hE is called an FS δ∗-compact set if every FS δ∗-open cover of hE has a finite FS δ∗-open subcover.
In general, (U, τ, E) is FS δ∗-compact if 1E itself is FS δ∗-compact.
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3. Fuzzy soft δ-separation axioms

Here, we are going to give the definitions of a new class of separation axioms called FS δ-separation
axioms (or FS -δTi , i = 0, 1, 2) and study some their properties.

Definition 3.1. An FS TS (U, τ, E) is said to be:

(i) FS -δT0 if for any xe
r , y

e
t ∈ FS P(UE) with xe

r q̃ye
t , there is an FS δO-set Oxe

r such that Oxe
r q̃ye

t , or there
is an FS δO-set Oye

t
such that Oye

t
q̃xe

r .

(ii) FS -δT1 if for any xe
r , y

e
t ∈ FS P(UE) with xe

r q̃ye
t , there are FS δO-sets Oxe

r ,Oye
t

such that ye
t q̃Oxe

r and
xe

r q̃Oye
t
.

(iii) FS -δT2 if for any xe
r , y

e
t ∈ FS P(UE) with xe

r q̃ye
t , there are FS δO-sets Oxe

r ,Oye
t

such that Oxe
r q̃Oye

t
.

Lemma 3.1. For FS TS (U, τ, E), xe
r ∈ FS P(UE), and hE ∈ FS S (UE), then:

(i) xe
r ∈̃intδ(hE)⇔ there is an FS δO-set Oxe

r such that Oxe
r ⊑ hE.

(ii) xe
rqclδ (hE)⇔ Oxe

r qhE for any FS δO-set Oxe
r in (U, τ, E).

(iii) gEqhE ⇔ gEqclδ(hE) for any FS δO-set gE in (U, τ, E).

In the next results, we give some characterizations of FS -δTi space, i = 0, 1, 2.

Theorem 3.1. An FS TS (U, τ, E) is FS -δT0 if and only if for any xe
r , ye

t∈FS P(UE) with xe
r q̃ye

t implies
xe

r q̃clδ(ye
t ) or clδ(xe

r)q̃ye
t .

Proof. Let (U, τ, E) be FS -δT0 and xe
r q̃ye

t for any xe
r ,y

e
t∈FS P(UE). Then there is an FS δO-set Oxe

r

such that ye
t qOxe

r or there is an FS δO-set Oye
t

such that xe
r q̃Oye

t
. From (ii) of the above lemma, we get

xe
r q̃clδ(ye

t ) or clδ(xe
r)q̃ye

t .
Conversely, let xe

r q̃ye
t . By given xe

αq̃clδ(ye
t ) or clδ(xe

r)q̃ye
β, and again from (ii) of the above lemma,

there is an FS δO-set Oxe
r such that Oxe

r q̃ye
t or there is Oye

t
with Oye

t
q̃xe

r . Hence, (U, τ, E) is FS -δT0.

Remark 3.1. Clearly, every FS -δT0 is FS T 0. The converse is not necessarily true.

Example 3.1. Let U = [0, 1] and E = {e}, then the class τ = {0E, 1E} ∪ { fiE : i ∈ N} is an FS T on U,
where

fiE(e)(u) =


1, u = 0,

1 − 1
i , 0 < u ≤ 1

i ,

1, 1
i < u ≤ 1.

One can check that (U, τ, E) is FS T 0. On other hand, clearly
{cl (hE) : hE ∈ τ} = {gE : gE ∈ FS RC(UE)}, and for any lE in (U, τ, E), we have
clδ(lE) = ⊓{gE ∈ FS RC(UE) : lE ⊑ gE}. Since cl ( fiE) = 1E for all i ∈ N, cl(1E) = 1E, and cl(0E) = 0E,
then FS RC(UE) = {0E, 1E}. Therefore, FS δC(UE) = {0E, 1E} = FS δO (UE). Thus, (U, τ, E) is not
FS -δT0.

Theorem 3.2. Let fup : (U, τ, E) −→ (V, δ,K) be one-to-one and FS δ-continuous. If (V, δ,K) is FS -
δT0, then (U, τ, E) also is FS -δT0.
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Proof. Let xe
r q̃ye

t for any xe
r , ye

t ∈ FS P(UE). Since fup is one-to-one, then fup(xe
r)q̃ fup(ye

t ). Since (V, δ,K)
is FS -δT0, there is an FS δO-set O fup(xe

r ) such that fup(ye
t )q̃O fup(xe

r ), or there is an FS δO-set O fup(ye
t ) such

that fup(xe
r)q̃O fup(ye

t ). Since fup is FS δ-continuous, we have f −1
up (O fup(xe

r )) as an FS δO-set in (U, τ, E) with
ye

t q̃ f −1
up (O fup(xe

r )), or there is an FS δO-set f −1
up (O fup(ye

t )) in (U, τ, E) with xe
r q̃ f −1

up (O fup(ye
t )). Hence, (U, τ, E)

is FS -δT0.

Theorem 3.3. An FS TS (U, τ, E) is FS -δT1 if and only if for any xe
r , y

e
t ∈ FS P(UE) with xe

r q̃ye
t implies

xe
r q̃clδ(ye

t ) and clδ(xe
r)q̃ye

t .

Proof. By a similar way to that in Theorem 3.3.

Theorem 3.4. For an FS TS (U, τ, E), the next items are equivalent:

(i) (U, τ, E) is FS -δT1.

(ii) clδ
(
xe

r
)
= xe

r for all xe
r ∈ FS P (UE) .

Proof. (i) =⇒ (ii). Let (U, τ, E) be FS -δT1 and xe
r , y

e
t∈FS P(UE) with xe

r q̃ye
t , then there is an FS δO-set

Oye
t

such that xe
r q̃Oye

t
. This implies Oye

t
⊑ (xe

r)
c; thus, (xe

r)
c is an FS δO-set and is, xe

r is an FS δC-set for
all xe

α ∈ FS P(UE). Hence, clδ
(
xe

r
)
= xe

r .

(ii) =⇒ (i). Let xe
r , y

e
t∈FS P(UE) with xe

r q̃ye
t , then xe

α ⊑ (ye
β)

c and ye
β ⊑ (xe

α)
c(since FS -points xe

r , y
e
t are

FS δC-sets). Now, take Oxe
r = (ye

β)
c and Oye

t
= (xe

α)
c. Thus, there are FS δO-sets Oxe

α
and Oye

t
such that

xe
r q̃(xe

r)
c = Oye

t
and ye

t q̃(ye
t )

c= Oxe
r . The result holds.

Theorem 3.5. If (V, δ,K) is an FS -δT1 and fup : (U, τ, E) −→ (V, δ,K) are one-to-one and FS δ-
continuous, then so is (U, τ, E).

Proof. Let (V, δ,K) be FS -δT1 and xe
r q̃ye

t for any xe
r , ye

t ∈ FS S (UE). Since fup is one-to-one, we
have fup(xe

r)q̃ fup(ye
t ). Since (V, δ,K) is FS -δT1, there are FS δO-sets O fup(xe

r ), O fup(ye
t ) ∈ δ such that

fup(ye
t )q̃O fup(xe

r ) and fup(xe
r)q̃O fup(ye

t ). Since fup is FS δ-continuous, we have f −1
up (O fup(xe

r )) and f −1
up (O fup(ye

t ))
as FS δO-sets in (U, τ, E) with ye

t q̃ f −1
up (O fup(xe

r )) and xe
r q̃ f −1

up (O fup(ye
t )). Hence, (U, τ, E) is FS -δT1 .

Theorem 3.6. If FS TS (U, τ, E) is FS -δT2, then xe
r = ⊓{clδ (hE) : xe

r ∈̃hE}.

Proof. Let (U, τ, E) be FS -δT2 and xe
r ∈ FS P(UE), then for any xe

r q̃ye
t , there are FS δO-sets hE = Oxe

r

and Oye
t

such that hEq̃Oye
t
. From (ii) of Lemma 3.2, we have ye

t q̃clδ(hE) and ye
t q̃ ⊓ {clδ(hE) : xe

r ∈̃hE}.
From (v) of Proposition 2.2, we have ⊓{clδ(hE) : xe

r ∈̃hE} ⊑ xe
r , but xe

r ∈̃ ⊓ {clδ(hE) : xe
r ∈̃hE}. The result

holds.

Proposition 3.1. Every FS -δTi is FS -δTi−1 , i = 1, 2.

Proof. It is obvious.

The next example shows that the converse of the above proposition is not necessarily true.

Example 3.2. Let U = {x, y}, E = {e}, and τ =
{
0E , 1E} ∪ {xe

r : r ∈ (0, 1]
}
, then τ is an FS T on U. It is

easy to check that (U, τ, E) is FS -δT0. Indeed, all members in τ are FS RO-sets, so they are FS δO-sets.
For any xe

r , y
e
t with xe

r q̃ye
t , there is an FS δO-set Oxe

r = xe
r such that Oxe

r = xe
r q̃ye

t . On the other hand, the
unique FS δO-set containing ye

t is 1E, but 1Eqxe
r . Therefore, (U, τ, E) is not FS -δT1.
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Theorem 3.7. Let (U, τ, E) be FS -δT1 and hE be any FS δO-set. If hc
E is also FS δO-set in (U, τ, E),

then (U, τ, E) is FS -δT2.

Proof. Let xe
r q̃ye

t for any xe
r ,y

e
t∈FS P(UE). Since (U, τ, E) is FS -δT1, there is an FS δO-set Oxe

r such
that Oxe

r q̃ye
t , or there is an FS δO-set Oye

t
such that Oye

t
q̃xe

r . Let us assume that Oxe
r q̃ye

t , then ye
t ⊑ (Oxe

r )
c,

which is an FS δO-set by assumption, and Oxe
r q̃(Oxe

r )
c. This completes the proof.

Proposition 3.2. If every crisp FS -point xe
1 is FS δO-set in (U, τ, E), then (U, τ, E) is FS -δT2.

Proof. It is obvious.

Theorem 3.8. If (V, δ,K) is FS -δT2 and fup : (U, τ, E) −→ (V, δ,K) is one-to-one and FS δ-continuous,
then (U, τ, E) is FS -δT2.

Proof. It follows by using a similar way to that in Theorem 3.9.

Theorem 3.9. Every FS -subspace (Y, τY , E) of FS -δTi(U, τ, E) is FS -δTi, i = 0, 1, 2.

Proof. As a sample, we prove the case i = 1. The proof of the rest of the cases is similar. Let
xe

r , ye
t∈FS P(YE) with xe

r q̃ye
t , then also xe

r , ye
t ∈FS P(UE) with xe

αq̃ye
β. Since (U, τ, E) is FS -δT1, there is

FS δO-sets Oxe
r , Oye

t
such that ye

t q̃Oxe
r and xe

r q̃Oye
t
. Thus, Oxe

r⊓hY
E and Oye

β
⊓hY

E are FS δO-sets in (Y, τY , E).
Take O∗xe

r
= Oxe

r⊓hY
E and O∗ye

t
= Oye

t
⊓hY

E, then ye
t q̃O∗xe

r
and xe

r q̃O∗ye
t
. Hence, the result holds.

4. Fuzzy soft δ-regularity axioms

Here, we introduce the definitions of a new class of regularity axioms, namely, FS δ-regularity axioms
(or FS -δRi, i = 0, 1, 2, 3), and investigate some its properties.

Definition 4.1. An FS TS (U, τ, E) is said to be:

(i) FS -δR0 if for any xe
r , ye

t ∈ FS P(UE) with xe
r q̃clδ(ye

t ) implies clδ(xe
r)q̃ye

t .

(ii) FS -δR1 if for any xe
r , ye

t ∈ FS P(UE) with xe
r q̃clδ(ye

t ), there are FS δO-sets Oxe
r and Oye

t
such that

Oxe
r q̃Oye

t
.

In the next results, some descriptions of FS -δRi spaces for i = 0, 1 are investigated.

Theorem 4.1. In an FS TS (U, τ, E), the next items are equivalent:

(i) (U, τ, E) is FS -δR0 .

(ii) clδ(xe
r) ⊑ Oxe

r for any FS δO-set Oxe
r .

(iii) clδ(xe
r) ⊑ ⊓

{
Oxe

r : Oxe
r ∈ FS δOS (UE)

}
for all xe

r ∈ FS P (UE).

Proof. (i)=⇒(ii) Let (U, τ, E) be FS -δR0 and ye
t qclδ(xe

r), then xe
rqclδ(ye

t ). From (ii) of Lemma 3.2, we
have ye

t qOxe
r , and by (v) of Proposition 2.2, we get clδ(xe

r) ⊑ Oxe
r for any FS δO-set Oxe

r . The result
holds.
(ii)=⇒ (iii) It is clear.
(iii)=⇒(i) Let clδ

(
xe

r
)
⊑ ⊓
{
Oxe

r : Oxe
r ∈ FS δO (UE)

}
⊑ Oxe

r for any Oxe
r and let xe

r , y
e
t ∈ FS P (UE)

with xe
r q̃clδ(ye

t ), then xe
α ∈ [clδ(ye

t )]
c
= Oxe

r , which is an FS δO-set containing xe
r . So by hypothesis,

clδ(xe
r) ⊑ Oxe

r = [clδ(ye
t )]

c
= intδ

[
(ye

t
)c] ⊑ (ye

t )
c. Thus, clδ(xe

r)q̃ye
t . Hence, (U, τ, E) is FS -δR0.
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Theorem 4.2. An FS TS (U, τ, E) is FS -δR0 if and only if hE is an FS δC-set with xe
αq̃hE, and there is

an FS δO-set OhE containing hE such that xe
αq̃OhE .

Proof. Let (U, τ, E) be FS -δR0 and hE ∈ FS δC(UE) with xe
r q̃hE, then xe

r ∈ hc
E = Oxe

r . From (ii) of
Theorem 4.2, we have clδ(xe

r) ⊑ hc
E = Oxe

α
and hE⊑ [clδ(xe

r)]
c
= OhE . Since xe

r ⊑ clδ(xe
r), then [clδ(xe

r)]
c
⊑

(xe
r)

c. Therefore, xe
r q̃[clδ(xe

r)]
c
= OhE . The result holds.

The converse part is obvious.

Theorem 4.3. In an FS TS (U, τ, E), the next properties are equivalent:

(i) (U, τ, E) is FS -δR0 .

(ii) If gE is FS δC-set with xe
r q̃gE, then clδ(xe

r)q̃gE.

(iii) If xe
r q̃clδ(ye

t ), then clδ(xe
r)q̃clδ(ye

t ).

Proof. (i)=⇒(ii) Let gE be an FS δC-set with xe
r q̃gE. Since (U, τ, E) is FS -δR0, then by the above

theorem there is an FS δO-set OgE such that xe
r q̃OgE . From (ii) of Lemma 3.2, we have clδ(xe

r)q̃gE.
(ii)=⇒ (iii) It is obvious.
(iii)=⇒ (i) Let xe

r , y
e
t ∈ FS P(UE) with xe

r q̃clδ
(
ye

t
)
. By given clδ(xe

r)q̃clδ(ye
t ), since ye

t⊑clδ(ye
t ), we have

clδ(xe
r)q̃ye

t . Thus (U, τ, E) is FS -δR0.

Proposition 4.1. An FS TS (U, τ, E) is FS -δR1 if and only if for any xe
r , y

e
t ∈ FS P(UE) with xe

r q̃clδ(ye
t ),

there are FS δO-sets Oclδ(xe
r ) and Oclδ(ye

t ) such that Oclδ(xe
r )q̃Oclδ(ye

t ).

Proof. It follows from that of the above theorem and from (ii) of Theorem 4.2.

Theorem 4.4. Every FS -subspace (Y, τY , E) of FS -δRi is FS -δRi, i = 0, 1.

Proof. As a sample, we prove the case i = 1. The proof of the rest case is similar.
Let xe

r , ye
t be FS -points in (YE) with xe

r q̃clδ
(
ye

t
)
, then also xe

r , ye
t ∈ FS P(UE) and xe

r q̃clδ
(
ye

t
)
.

Since (U, τ, E) is FS -δR1, there are FS δO-sets Oxe
r ,Oye

t
such that Oxe

r q̃Oye
t
. Take O∗xe

r
= O

xe
r
⊓hY

E and

O∗ye
t
= Oye

t
⊓hY

E, then O∗xe
r
,O∗ye

t
are FS δO-sets in (Y, τY , E) and O∗xe

r
q̃O∗ye

t
. Hence, (Y, δY E) is FS -δR1.

Proposition 4.2. For FS TS (U, τ, E), every FS -δT i is FS -δRi−1, i = 1, 2.

Proof. It is obvious.

The next example shows that the converse of the above proposition is not necessarily true.

Example 4.1. Let U{u} and E = {e1, e2}. The family τ = {0E, 1E ,hE = {(e1, u0.5), (e2, u0.5)} is an FS T
on U. One can check that (U, τ,E) is FS -δR0, but is not FS -δT 0. Indeed, for xe1

0.7q̃xe1
0.2, the unique

FS δO-set containing ue1
0.7 is 1E, but 1Eque1

0.2.

Theorem 4.5. An FS TS (U, τ, E) is FS -δT i if and only if it is both FS -δT i−1 and FS -δRi−1, i = 1, 2.

Proof. As a sample, we prove the case i = 2. The proof of the rest case is similar. Necessity follows
from the Proposition 3.11 and 4.7.

Conversely, let (U, τ, E) be FS -δT 1 and FS -δR1, and let xe
r , y

e
t∈FS P (UE) withxe

r q̃ye
t . By

Theorem 3.7, we have xe
r q̃cl(ye

t ). Since (U, τ, E) is FS -δR1, there are FS δO-sets Oxe
r ,Oye

t
such that

Oxe
r q̃Oye

t
. Therefore, (U, τ, E) is FS -δT 2.

AIMS Mathematics Volume 9, Issue 3, 6305–6320.



6314

Definition 4.2. An FS TS (U, τ, E) is said to be:

(i) FS δ-regular(or FS -δR2) if for any FS δC-set hE and any FS -point xe
r with xe

r q̃hE, there are FS δO-
sets Oxe

r and OhE such that Oxe
r q̃OhE .

(ii) FS δ-normal(or FS -δR3) if for any FS δC-sets hE and gE with hEq̃gE, there are FS δO-sets OhE and
OgE such that OhE q̃OgE .

(iii) FS -δT3(resp., FS -δT4) if it is FS -δR2(resp., FS - δR3) and FS -δT1.

Theorem 4.6. For an FS TS (U, τ, E), the next items are equivalent:

(i) (U, τ, E) is FS -δR2.

(ii) For any xe
r∈FS P (UE) and any FS δO-set Oxe

r , there is an FS δO-set O∗xe
r

containing xe
r such that

clδ(O∗xe
r
)⊑Oxe

r .

Proof. (i) =⇒ (ii) Let xe
r ∈ FS P (UE) and Oxe

r be any FS δO-set containing xe
r , then Oc

xe
r
=hE is an

FS δC-set. Clearly, Oxe
r q̃Oc

xe
r

andxe
r q̃Oc

xe
r
. Since (U, τ, E) is FS -δR2, there are FS δO-sets O∗xe

r
,OOc

xe
r

such
that O∗xe

r
q̃OOc

xe
r
=OhE , then O∗xe

r
⊑Oc

hE
and clδ(O∗xe

r
)⊑Oc

hE
. Clearly, Oc

xe
r
⊑OOc

xe
r
=OhE , so Oc

hE
⊑Oxe

r . Therefore,
clδ(O∗xe

r
)⊑Oxe

r .

(ii) =⇒ (i) Let xe
r∈FS P (UE) and gE be any FS δC-set with xe

r q̃gE, then xe
r ∈̃g

c
E = Oxe

r which is an
FS δO-set containing xe

r . So there is an FS δO-set O∗xe
r

such that clδ(O∗xe
r
)⊑Oxe

r = gc
E, which implies

gE⊑[clδ(O∗xe
r
)]c = OgE . Clearly, clδ(O∗xe

r
)q̃[clδ(O∗xe

r
)]c = OgE and O∗xe

r
q̃O

gE
. Thus, the result holds.

Theorem 4.7. An FS TS (U, τ, E) is FS -δR2 if and only if for any FS δC-set hE with xe
r q̃hE, there are

FS δO-sets Oxe
r ,OhE such that cl(Oxe

r
)̃qcl(OhE

).

Proof. Let xe
r ∈ FS P (UE) and hE be an FS δC-set with xe

r q̃hE. Since (U, τ, E) is FS -δR2, there are
FS δO-sets O∗xe

r
,OhE such that OhE q̃O∗xe

r
. From (iii) of Lemma 3.2, we obtain cl(OhE

)q̃O∗xe
r
, that is,

cl(OhE
)q̃xe

r . Again (U, τ, E) is FS -δR2, and there are FS δO-sets O∗∗xe
r
,Ocl(OhE ) such that O∗∗xe

r
q̃Ocl(OhE ). By

(iii) of Lemma 3.2, we have cl(O∗∗xe
r
)q̃Ocl(OhE ). Now, put Oxe

r=O∗xe
r
⊓O∗∗xe

r
. Since (U, τ, E) is FS -δR2 and

O∗xe
r

is an FS δO-set, then by the above theorem, there is an FS δO-set Oxe
r such that clδ(Oxe

r
)⊑O∗xe

r
that

is, cl(Oxe
r
)⊑O∗xe

r
. Since cl(OhE

)q̃O∗xe
r
, then cl(OhE

)q̃cl(Oxe
r
).

Conversely, it follows from hypothesis.

Theorem 4.8. For an FS TS (U, τ, E), the next items are equivalent:

(i) (U, τ, E) is FS -δR3.

(ii) For any FS δC-set hE and any FS δO-set OhE , there is an FS δO-set O∗hE
containing hE such that

clδ(O∗hE
)⊑OhE .

Proof. Let (U, τ, E) be FS -δR3, hE be an FS δC-set, and OhE be any FS δO-set containing hE, then Oc
hE

is an FS δC-set. Since OhE q̃Oc
hE

, that is, hEq̃Oc
hE

, (U, τ, E) is FS -δR3, there are FS δO-sets O∗hE
,OOc

hE

such that O∗hE
q̃OOc

hE
, then O∗hE

⊑ (OOc
hE

)c and clδ(O∗hE
) ⊑ (OOc

hE
)c. Since Oc

hE
⊑ OOc

hE
, then (OOc

hE
)c ⊑ OhE

and clδ(O∗hE
) ⊑ (OOc

hE
)c ⊑ OhE . The result holds.

Conversely, let fE, gE be two FS δC-sets with fEq̃gE, then fE ⊑ gc
E = O fE which is an FS δO-set

containing fE. By hypothesis, there is an FS δO-set O∗fE such that clδ(O∗fE ) ⊑ gc
E = O fE , then gE ⊑

[clδ(O∗fE )]c = OgE . Since clδ(O∗fE )̃q[clδ(O∗fE )]c = OgE , then OgE q̃O∗fE . The result holds.
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Theorem 4.9. An FS TS (U, τ, E) is FS -δR3 if and only if for any two FS δC-sets hE, gE with hEq̃gE,
there are FS δO-sets OhE ,OgE such that cl(OhE

)q̃cl(OgE
).

Proof. It is analogous to that in Theorem 4.12.

5. More characterizations and relations

Saleh et. al [44] introduced and studied a new type of FS -compactness, namely, FS δ∗-compactness.
In this section, we study more properties and investigate the relations between FS δ∗-compact and FS δ-
separation axioms, which are introduced in this work.

To begin we show that the axioms FS -δRi, i = 1, 2, 3 and FS -δT i, i = 1, 2, 3, 4 are harmonic.

Theorem 5.1. For FS TS (U, τ, E), we have:

FS − δR3 ∧ FS − δR0 ⇒ FS − δR2 ⇒ FS − δR1 ⇒ FS − δR0.

Proof. Let (U, τ, E) be FS -δR3, FS -δR0, xe
r ∈ FS P(UE) for any FS δC-set fE with xe

r q̃hE.

Since (U, τ, E) is FS -δR0, then clδ(xe
r)q̃ fE where clδ

(
xe

r
)
, hE are FS δC-sets. Again, (U, τ, E) is

FS -δR3, so there are FS δO-sets Oclδ(xe
r ), OhE such that Oclδ(xe

r )q̃OhE . Put Oclδ(xe
r )=Oxe

r , and we have
Oxe

r q̃OhE . Thus, (U, τ, E) is FS -δR2. The proof for the rest of the cases is obvious.

Theorem 5.2. For an FS TS (U, τ, E), we have:

FS − δT 4 ⇒ FS − δT 3 ⇒ FS − δT 2 ⇒ FS − δT 1 ⇒ FS − δT 0

Proof. Let (U, τ, E) be FS -δT 4, then it is both FS -δR3 and FS -δT 1. From Proposition 4.7, we
have (U, τ, E) is FS R0. Let us assume that xe

r ∈ FS P(UE), hE is an FS δC-set with xe
r q̃hE, then by

Theorem 4.4, clδ(xe
r)q̃hE, where clδ(xe

r), hE are FS δC-sets. Since (U, τ, E) is FS -δR3, there are
FS δO-sets Oclδ(xe

r ),OhE such that Oclδ(xe
r )q̃OhE . Take Oclδ(xe

r ) = Oxe
r , and we have Oxe

r q̃OhE . Thus, (U, τ, E)
is FS -δR2. Hence, we obtain the result.

The proof of the rest of the cases follows from the above theorem and Proposition 3.11.

From the above theorems, Definition 4.10, and Proposition 4.7, we obtain the next result.

Corollary 5.1. For an FS TS (U, τ, E), the next implications hold.

FS − δT4 =⇒ FS − δT3 =⇒ FS − δT2 =⇒ FS − δT1 =⇒ FS − δT0

⇓ ⇓ ⇓ ⇓

FS − δR3 ∧ FS − δR0 ⇒ FS − δR2 ⇒ FS − δR1 ⇒ FS − δR0.

Theorem 5.3. Let (U, τ, E) be FS -δT 3 and gE be an FS δ∗-compact set, then for any FS δC-set hE with
hEq̃gE, there are FS δO-sets OhE ,OgE such that OhE q̃OgE .

Proof. Let (U, τ, E) be FS -δT 3 and gE be an FS δ∗-compact set, then for any FS δC-set hE with hEq̃gE,
we have for any ye

t ∈̃gE, there are FS δO-sets Oye
t
,OhE such that Oye

t
q̃OhE . Clearly, {Oye

t
: ye

t ∈̃gE} is
FS δ∗-open cover of gE. Since gE is FS δ∗-compact, there is a finite FS δ∗-open subcover of gE, say,
{Oi

ye
t

: i = 1, 2, . . . , n}. One can verify that OgE = ⊔
n
i=1Oi

ye
t

and OhE = ⊓
n
i=1Oi

hE
have the required

property.
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Theorem 5.4. Let (U, τ, E) be FS -δT 2, xe
r ∈ FS P(UE) and gE be an FS δ∗-compact set with xe

r q̃gE,

then there are FS δO-sets Oxe
r and OgE such that Oxe

r q̃OgE .

Moreover, if hE, gE are FS δ∗-compact sets with hEq̃gE, then there are FS δO-sets OhE ,OgE such
that OhE q̃OgE .

Proof. It follows by a similar way to that in the above theorem.

Theorem 5.5. Every FS δ∗-compact set in an FS -δT 2 space is an FS δC-set.

Proof. Let (U, τ, E) be FS -δT 2 and gE be an FS δ∗-compact set. From the above theorem for any
xe

r ∈ FS P(UE) with xe
r q̃gE, there is FS δO-set Oxe

r such that Oxe
r q̃gE; that is, for any xe

r ∈̃g
c
E, there is

FS δO-set Oxe
r such that Oxe

r ∈̃g
c
E. Therefore, gc

E is an FS δO-set in (U, τ, E). Thus, gE is an FS δC-set.

Theorem 5.6. Let (U, τ, E) be FS -δR1, then (U, τ, E) is FS -δT 2 if and only if every FS δ∗-compact set
is an FS δC-set.

Proof. The necessary parts follows directly from the above theorem. Conversely, if any FS δ∗-compact
set is an FS δC-set, then (U, τ, E) is an FS -δT 1 space. Since (U, τ, E) is FS -δR1 and FS -δT 1, then by
Theorem 4.9, we obtain that (U, τ, E) is FS -δT 2.

Theorem 5.7. For FS TS (U, τ, E), every FS δ∗-compact FS -δR1 space is FS -δR2 (FS -δR3).

Proof. Let (U, τ, E) be an FS δ∗-compact, FS -δR1 space and let hE be an FS δC-set with xe
r q̃hE, then

for any FS -point ye
t ∈̃hE, we have xe

r q̃clδ(ye
t ). Since (U, τ, E) is FS -δR1, there are FS δO-sets Oxe

r , Oye
t

such that Oxe
r q̃Oye

t
so that the family {Oye

t
: ye

t ∈̃hE} is an FS δ∗-open cover of hE. Since (U, τ, E) is FS δ∗-
compact, hE is FS δ∗-compact and there is a finite FS δ∗-open subcover of hE, say, {Oi

ye
t

: ye
t ∈̃hE , i =

1, 2, . . . , n}. Take O∗xe
r
= ⊓n

i=1Oi
xe

r
and OhE = ⊔

n
i=1Oi

ye
t
, then O∗xe

r
, OhE are FS δO-sets with O∗xe

r
q̃OhE . The

result holds.
The proof of the rest case is analogous.

Corollary 5.2. For FS δ∗-compact space (U, τ, E), the next items are equivalent:

(i) (U, τ, E) is FS -δR1.

(ii) (U, τ, E) is FS -δR2.

(iii) (U, τ, E) is FS -δR0 and FS -δR3.

Proof. It is obvious.

Theorem 5.8. (U, τ, E) is FS -δTi ⇐⇒ (U, τδ, E) is FS Ti , i = 0, 1, 2.

Proof. It follows directly from Result 3 and Definition 3.1.

6. Concluding remarks and future work

It is well known that separation axioms provide some categories for topological spaces and help to
prove some interesting properties of compactness and connectedness. Therefore, we have written this
article to shed light on the properties of separability in the framework of fuzzy soft topologies.
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We have defined and studied a new set of separation properties in fuzzy soft topological spaces,
namely, FS δ-separation and regularity properties via FS δO-sets by using quasi-coincident relation
for FS -points. Several basic desirable properties, relations, and results have been obtained with some
necessary examples. The relationships between FS δ∗-compact spaces and FS δ-separation have been
investigated as well. We have shown that the implications FS -δT4 ⇒ FS -δT3 ⇒ FS -δT2 ⇒ FS -
δT1 ⇒ FS -δT0 hold true, but we cannot get examples to show that the converse in these implications
may not be true in general, except the case FS -δT0 ⇏ FS -δT1.

By and large, the results obtained in the manuscript frame “fuzzy soft topology” represent a wider
view than that inspired by the frameworks of fuzzy and soft topologies, since these frames are created
by replacing the membership function with the characteristic function in the case of fuzzy topology
and restricting the set of parameters by a singleton set in the case of soft topology. The present results
elucidate that the perspective on the theory of separation axioms adopted in this paper is very useful
and will open up the door for further contributions. We plan in upcoming studies to generate fuzzy
soft topologies by hybridizing F-set with the recent types of F-set like complemental fuzzy sets [4],
(2, 1)-fuzzy sets [10], (m, n)-fuzzy sets [15], nth power root fuzzy sets [14, 27], and kn

m-Rung picture
fuzzy sets [28]. One may examine the current concepts and the previous ones in these hybridizations.
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Lindelöf spaces using soft somewhere dense set, AIMS Math., 6 (2021), 8064–8077.
https://doi.org/10.3934/math.2021468

18. S. Atmaca, I. Zorlutuna, On fuzzy soft topological spaces, Ann. Fuzzy Math. Inform., 5 (2013),
377–386.
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