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Abstract: This study examines an epidemiological model known as the susceptible-exposed-
infected-hospitalized-recovered (SEIHR) model, with and without impulsive vaccination strategies.
First, the model was analyzed without impulsive vaccination in the presence of a reinfection effect.
Subsequently, it was studied as part of a periodic impulsive vaccination strategy targeting the
susceptible population. These vaccination impulses were administered in very brief intervals at specific
time instants, with a fixed time gap between each impulse. The two approaches can be modified
to respond to different amounts of susceptibility, with control efforts intensifying as susceptibility
levels rise. The model’s analysis includes crucial aspects such as the non-negativity of solutions,
the existence of steady states, and the stability corresponding to the basic reproduction number. We
demonstrate that when vaccination measures are taken into account, the basic reproduction number
remains as less than one. Therefore, the disease-free equilibrium in the case of vaccination could still be
asymptotically stable at the higher disease transmission rate, as compared to the case of no vaccination
in which the disease-free equilibrium may no longer be asymptotically stable. Furthermore, we show
that when the disease-free equilibrium is stable, the endemic equilibrium cannot be attained, and that
when the reproduction number rises above unity, the disease-free equilibrium becomes unstable while
the endemic equilibrium becomes stable. We have also derived conditions for the global stability of
both equilibriums. To support our theoretical results, we have constructed a time series of numerical
simulations and compared them with real-world data from the ongoing SARS-CoV-2 (COVID-19)
pandemic.
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1. Introduction

COVID-19, first identified in Wuhan, China in December 2019, has become a global health crisis
with severe implications [31]. Stemming from a genetic mix between bat and cobra coronaviruses,
this novel virus swiftly transcended species boundaries, leading to a surge in cases and fatalities
worldwide. The World Health Organization (WHO) officially declared it a pandemic, necessitating
urgent research efforts. As of the time of the report of the latest data from the WHO [1], there have
been 5,304,772 confirmed cases and 342,029 deaths globally, accompanied by substantial economic
repercussions. The imperative to understand and manage COVID-19’s transmission dynamics has
fueled extensive research, with mathematical modeling serving as a pivotal tool [6, 8, 14, 29].

The COVID-19 pandemic has prompted the classification of populations into various categories:
susceptible, exposed, symptomatic, asymptomatic, quarantined, and recovered. Vaccines have
emerged as a pivotal resource in our battle against COVID-19. While these vaccines have been
developed relatively recently, the available data so far are varied. Notably, recent analyses suggest a
decline in protection against reinfection to 41% after 12 months, particularly for individuals with both
prior infection and vaccination [2]. It is important to acknowledge that this result may raise concerns
among those seeking long-lasting protection against COVID-19.

In the realm of epidemiology, models such as the SIR and SEIR models offer simplified
frameworks for analysis [10, 12, 17]. Numerous COVID-19 models have been proposed and modified
to provide insights into the pandemic’s progression. For example, Kuga and Tanimoto [18] explored
the efficacy of imperfect vaccination and defense against contagion, comparing partial immunity
through vaccination and contagion defense. Their findings within the analytical framework revealed a
marginally superior outcome for imperfect vaccination. Lin et al. [21] introduced an SEIR model that
accounts for susceptible, exposed, infected, and removed individuals. Anastassopoulou et al. [5]
incorporated a death compartment into an SIR model to better reflect COVID-19 dynamics.
Casella [9] considered delayed effects in the SIR model, while Wu et al. [32] assessed COVID-19
severity through transmission dynamics. Recently, Singh et al. [24] studied the emergence of
COVID-19 in India, as well as the imposition and subsequent easing of lockdown measures, and they
proposed a variable-order fractional SIR model for predicting COVID-19 cases at the state level,
including a parameter for testing and quarantine.

Optimal control strategies have proven effective in managing epidemic outbreaks [16, 26]. This
approach aims to minimize infection rates while optimizing the costs of treatment and
prevention [25, 27, 28]. Interventions may encompass treatments, vaccines, or social distancing
measures. Park and Kim [22] utilized a susceptible-infected-susceptible model to analyze the basic
reproduction number in South Korea, aiding in the determination of vaccine stockpile requirements
for achieving herd immunity. Etxeberria-Etxaniz et al. [15] investigated a model of SEIR outbreak
with demography and impulsive vaccination, focusing on the effects of periodic vaccination and
newborns for susceptible individuals. Recently, Alazman et al. [4] introduced a restricted SIR model
for analyzing COVID-19 dynamics, emphasizing its ability to depict multiple disease waves and
assess the vaccination’s impact.

Impulsive control introduces a targeted and well-timed approach to vaccinations, deviating from
continuous vaccination strategies. This deviation allows individuals to receive booster shots
periodically, aligning with the natural ebb and flow of their immunity. This approach offers distinct
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advantages, including the optimization of resource utilization, reduction in infection rates, and
adaptability to changing dynamics.

Our proposed mathematical model explicitly incorporates impulsive control as a crucial
component. Within this model, we account for susceptible, exposed, infected, hospitalized,
vaccinated, and recovered individuals, providing a comprehensive representation of the intricate
dynamics of COVID-19. The impulsive vaccination in our model mirrors the strategic administration
of vaccines at specific time points, adding a layer of precision and effectiveness to control efforts.

2. Mathematical model

To comprehensively investigate the effects of controlling the epidemic through impulsive
vaccination, we propose a novel mathematical model for the transmission of COVID-19. This model
incorporates six distinct population classes: the susceptible class (S ), the vaccinated class (V), the
exposed class (E), the infected class (I), the hospitalized class (H), and the recovered class (R).

The susceptible class (S ) represents individuals who are at risk of contracting the virus. These
individuals are recruited into this category at a rate denoted by Λ. The model accounts for the
COVID-19 mortality rate (δ1) and the mortality rate during hospitalization (δ2). Furthermore, the
natural death rate (µ) is applicable to all six classes, reflecting the expected mortality in the absence of
the virus. The transmission of the virus within the population is governed by the transmission rate (β),
which quantifies how easily the virus spreads. The progression rate from the exposed class (E) to the
infected class (I) is represented by ρ. Additionally, the model considers the rate (α) at which infected
individuals transition from the infectious class to the hospitalized class (H). Individuals in the
infected and hospitalized classes have the potential for recovery, occurring at rates denoted by q and κ,
respectively. Moreover, the model accounts for individuals moving from the vaccinated and recovered
classes back to the susceptible class upon losing their immunity. These transitions are determined by
the rates ω and ϕ. Crucially, the model incorporates the impact of impulsive vaccination on
susceptible individuals. They receive vaccinations and may receive booster shots when their
immunity wanes, occurring at a rate represented by γ, in a periodic manner with a period of T . In
summary, our model is described by a system of impulsive ordinary differential equations as follows:
For t , nT,

dS
dt
= Λ − βS I − µS + ϕR + ωV,

dV
dt
= −(ω + µ)V,

dE
dt
= βS I − (ρ + µ)E,

dI
dt
= ρE − (q + δ1 + α + µ)I,

dH
dt
= αI − (κ + δ2 + µ)H,

dR
dt
= qI + κH − (ϕ + µ)R.

(2.1)
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For t = nT,

S (nT+) = (1 − γ)S (nT ),
V(nT+) = V(nT ) + γS (nT ),
E(nT+) = E(nT ),
I(nT+) = I(nT ),

H(nT+) = H(nT ),
R(nT+) = R(nT ),

(2.2)

where T denotes the period between two subsequent vaccinations, n ∈ Z+,Z+ = 1, 2, 3, ..., and γ

represents flow from the susceptible class to the vaccinated class, 0 < γ < 1. The notation S (nT+)
represents the right limit of S (t) as t approaches nT (i.e., the value after accounting for the impulse).
At impulsive time instants, susceptible individuals who are removed become vaccinated, denoted as
V(nT+) = V(nT ) + γS (nT ).

A diagram of the impulsive vaccination model of COVID-19 for the systems (2.1) and (2.2) are as
illustrated in Figure 1.

Figure 1. Diagram of the impulsive vaccination model of COVID-19.

3. Dynamics of the model without vaccination

Now, we examine the simplified system in the absence of vaccination.

dS
dt
= Λ − βS I − µS + ϕR,

dE
dt
= βS I − (ρ + µ)E,

dI
dt
= ρE − (q + δ1 + α + µ)I,

dH
dt
= αI − (κ + δ2 + µ)H,

dR
dt
= qI + κH − (ϕ + µ)R.

(3.1)
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3.1. Existence of the solution

Lemma 3.1. (Derrick and Grossman theorem [13]) Let Ω denote the following region:

|t − t0| ≤ a , ||u − u0|| ≤ 1, u = (u1, u2, . . . , un), u0 = (u10, u20, . . . , un0) ,

and suppose that f (t, u) satisfies the Lipchitz condition given by

|| f (t, u1) − f (t, u2)|| ≤ k||u1 − u2||,

whenever the pairs (t, u1) and (t, u2) belong to Ω, where k is a positive constant. Then, there is
a constant a ≥ 0 such that there exists a unique continuous vector solution of u(t) of the system in the
interval t − t0 ≤ a.

It is important to note that the condition is satisfied by the requirement that ∂ fi/∂u j for i,
j = 1, 2, 3, . . . , n is continuous and bounded in Ω.

Theorem 3.1. The solution of the model (3.1) with the initial conditions S (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,
H(0) ≥ 0, and R(0) ≥ 0 exists and is unique in R5

+ for all t ≥ 0.

Proof. The following can be used to express the right-hand sides of system (3.1)

f1 = Λ − βS I − µS + ϕR,

f2 = βS I − (ρ + µ)E,
f3 = ρE − (q + δ1 + α + µ)I,
f4 = αI − (κ + δ2 + µ)H,
f5 = qI + κH − (ϕ + µ)R.

It is reasonable to show that ∂ fi/∂ui is continuous and |∂ fi/∂ui| < ∞ for i, j = 1, 2, . . . , 5, where
u1 = S , u2 = E, u3 = I, u4 = H, and u5 = R. According to Lemma 3.1, the system (3.1) has a unique
solution.

3.2. Invariant region

Let N(t) be the total number of human populations at time t. It follows that

dN
dt
=

dS
dt
+

dE
dt
+

dI
dt
+

dH
dt
+

dR
dt

= Λ − µN − δ1I − δ2H.

Then,

lim
sup t→∞

N ≤
Λ

µ
.

As a result, the possible region for the system (3.1) is given by

Ω =

{
(S , E, I,H,R) ∈ R5 : S ≥ 0, E ≥ 0, I ≥ 0,H ≥ 0,R ≥ 0,N ≤

Λ

µ

}
.
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3.3. Positivity of the solution

Theorem 3.2. The solution of the system (3.1) with the initial conditions S (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,
H(0) ≥ 0, and R(0) ≥ 0 is positive in R5 for all t ≥ 0.

Proof. Positivity of S (t): In the first equation of system (3.1), expressed as dS/dt = Λ−βS I−µS +ϕR,
we can establish an inequality without loss of generality: dS/dt ≥ −(βΛ + µ2)S/µ. Employing the
separation of variables method and integration, the solution is as follows: S (t) ≥ S (0)exp[−(βΛ +
µ2)t/µ]. Consequently, we can confidently assert that S (t) ≥ 0.

Furthermore, by applying the same rigorous procedure, we can establish the positivity of other
variables within the system. Consequently, we can confidently assert that the solutions of the model
system (3.1) maintain non-negativity for all time intervals t ≥ 0.

3.4. Equilibria

There are two equilibria, as articulated below:

(i) The disease-free equilibrium:

EE = (S 0, E0, I0,H0,R0) =
(
Λ

µ
, 0, 0, 0, 0

)
,

(ii) The endemic equilibrium:
EE∗ = (S ∗, E∗, I∗,H∗,R∗),

where

S ∗ =
AB
βρ

,

E∗ =
µA2BCD

(
Λβρ

µAB
− 1

)
βρ[µA(C + ρ)(D + µ) + µBC(D + µ) + ρϕ((δ1 + µ)(D + µ) + α(δ2 + 2µ))]

,

I∗ =
µABCD

(
Λβρ

µAB
− 1

)
β[µA(C + ρ)(D + µ) + µBC(D + µ) + ρϕ((δ1 + µ)(D + µ) + α(δ2 + 2µ))]

,

H∗ =
µαABC

(
Λβρ

µAB
− 1

)
β[µA(C + ρ)(D + µ) + µBC(D + µ) + ρϕ((δ1 + µ)(D + µ) + α(δ2 + 2µ))]

,

R∗ =
µAB(qD + ακ)

(
Λβρ

µAB
− 1

)
β[µA(C + ρ)(D + µ) + µBC(D + µ) + ρϕ((δ1 + µ)(D + µ) + α(δ2 + 2µ))]

,

with A = q + δ1 + α + µ, B = ρ + µ, C = ϕ + µ, D = δ2 + κ + µ.

3.5. The basic reproduction number (R0)

In accordance with the insights provided by van den Driessche and Watmough [30], we proceed to
ascertain the basic reproduction number, denoted as R0. This parameter signifies the number of new
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infectious cases generated by a single infectious individual when all individuals within the population
are in the susceptible class. To achieve this, we employ the established next-generation matrix method
for analysis. Within this method, we define matrices as follows:

f =
(
βS I

0

)
, v =

(
BE

AI − ρE

)
.

Then, the following F and V are respectively obtained by utilizing the Jacobian matrices of f and v:

F =
(
0 βS 0

0 0

)
,V =

(
B 0
−ρ A

)
,

Additionally, we can write

FV−1 =

βρS 0

AB
βS 0

A
0 0

 .
The eigenvalues of FV−1 are given by

λ1 = 0 and λ2 =
Λβρ

µAB
.

Therefore, the basic reproduction number is defined as

R0 =
βρS 0

(q + δ1 + α + µ)(ρ + µ)
=
Λβρ

µAB
.

We can interpret R0 as follows:
βS I represents the daily number of susceptible individuals infected by infected individuals.

Therefore, the daily number of susceptible individuals infected by one infected individual is βS , and
the average duration of infection is 1

q+δ1+α+µ
. Exposed individuals develop into infected individuals

with the proportion ρ

ρ+µ
. Thus, R0 =

βρS 0

(q+δ1+α+µ)(ρ+µ) represents the average number of susceptible
individuals infected by one infected individual.

3.6. The local stability of the disease-free equilibrium

Theorem 3.3. The disease-free equilibrium EE = (S 0, E0, I0,H0,R0) =
(
Λ
µ
, 0, 0, 0, 0

)
is locally

asymptotically stable if R0 < 1.

Proof. The Jacobian matrix of the system (3.1) at EE is calculated as follows:

J(EE) =


−µ 0 −βS 0 0 ϕ

0 −B βS 0 0 0
0 ρ −A 0 0
0 0 α −D 0
0 0 q κ −C


.

Setting det(J(EE) − ηI) = 0, we have the following eigenvalues:

η1 = −µ, η2 = −C, η3 = −D,
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and the roots of the following equation:

η2 + (A + B)η + AB(1 − R0) = 0. (3.2)

We establish a strong guarantee that all roots of Eq (3.2) have a negative real component when R0 < 1
by employing the Routh-Hurwitz criteria. As a result, we conclude that the equilibrium point indicated
as EE exhibits local asymptotic stability when R0 < 1, which corresponds to our intended conclusion.

3.7. The local stability of the endemic equilibrium

Theorem 3.4. The endemic equilibrium point EE∗ = (S ∗, E∗, I∗,H∗,R∗) is stable whenever it exists.

Proof. We rewrite the endemic equilibrium point EE∗ = (S ∗, E∗, I∗,H∗,R∗) as follows:

S ∗ =
Λ

µR0
,

E∗ =
µA2BCD (R0 − 1)

βρ[µA(C + ρ)(D + µ) + µBC(D + µ) + ρϕ((δ1 + µ)(D + µ) + α(δ2 + 2µ))]
,

I∗ =
µABCD (R0 − 1)

β[µA(C + ρ)(D + µ) + µBC(D + µ) + ρϕ((δ1 + µ)(D + µ) + α(δ2 + 2µ))]
,

H∗ =
µαABC (R0 − 1)

β[µA(C + ρ)(D + µ) + µBC(D + µ) + ρϕ((δ1 + µ)(D + µ) + α(δ2 + 2µ))]
,

R∗ =
µAB(qD + ακ) (R0 − 1)

β[µA(C + ρ)(D + µ) + µBC(D + µ) + ρϕ((δ1 + µ)(D + µ) + α(δ2 + 2µ))]
,

Note that EE∗ exists if all components are positive, that is, R0 > 1. Next, the Jacobian matrix of the
system (3.1) at the endemic equilibrium can be obtained as follows:

J(EE∗) =


−βI∗ − µ 0 −βS ∗ 0 ϕ

βI∗ −B βS ∗ 0 0
0 ρ −A 0 0
0 0 α −D 0
0 0 q κ −C


.

Setting det(J(EE∗) − ζI) = 0, we have the characteristic equation

ζ5 + a4ζ
4 + a3ζ

3 + a2ζ
2 + a1ζ + a0 = 0. (3.3)

where

a4 ≡βI∗ + A + B +C + D + µ,

a3 ≡β(A + B +C + D)I∗ + (A + B)(C + D) +CD + µ(A + B +C + D),
a2 ≡β((A + B)(C + D) + AB +CD)I∗ + µ((A + B)(C + D) +CD) +CD(A + B),
a1 ≡β(CD(A + B) + ABD + BC(δ1 + α + µ) + qµ(C + ρ))I∗ + µCD(A + B),
a0 ≡β(BCD(δ1 + µ) + αBC(δ2 + µ) + ακµ(C + ρ) + qµ(C + ρ))I∗.
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Note that ai > 0 for i = 0, 1, ..., 4 if I∗ > 0 i.e., R0 > 1. Using the Routh-Hurwitz criteria, we can ensure
that all roots of the given equation have a negative real component by applying the following:

a4 > 0, a3 > 0, a2 > 0, a1 > 0, a0 > 0, a3a4 > a2, a2a3a4 > a1a2
4 + a2

2,

a1a2a3a4 + 2a0a1a4 + a0a2a3 > a2
1a2

4 + a0a2
3a4 + a1a2

3 + a2
0.

As a result, R0 > 1. Therefore, EE∗ is locally asymptotically stable whenever it exists, as is the
intended conclusion.

3.8. The global stability of the disease-free equilibrium

Theorem 3.5. The disease-free equilibrium EE = (S 0, E0, I0,H0,R0) =
(
Λ
µ
, 0, 0, 0, 0

)
is globally

asymptotically stable if R0 < 1.

Proof. To prove the global asymptotic stability of the disease-free equilibrium, we employ the method
of applying the Lyapunov function. Systematically, we define a Lyapunov function L such that

L = ρE + BI.

Then,

dL
dt
= ρ

dE
dt
+ B

dI
dt

= ρ
[
βS I − BE

]
+ B

[
ρE − AI

]
= AB(R0 − 1)I.

So, dL/dt ≤ 0 if R0 < 1. Furthermore, dL/dt = 0 if I = 0 or R0 = 1. From this, we see that
EE = (S 0, E0, I0,H0,R0) =

(
Λ
µ
, 0, 0, 0, 0

)
is the only singleton in {(S 0, E0, I0,H0,R0) ∈ Ω : dL/dt = 0}.

Therefore by the principle of LaSalle [19], EE is globally asymptotically stable if R0 < 1.

3.9. The global stability of the endemic equilibrium

Theorem 3.6. The endemic equilibrium point EE∗ = (S ∗, E∗, I∗,H∗,R∗) exists and is globally
asymptotically stable if R0 > 1 and m < n.

Proof. The Lyapunov function is used to demonstrate the global asymptotic stability of the endemic
equilibrium. We define the Lyapunov function L as follows:

L(S ∗, E∗, I∗,H∗,R∗) =
(
S − S ∗ ln

S
S ∗

)
+

(
E − E∗ ln

E
E∗

)
+

(
I − I∗ ln

I
I∗

)
+

(
H − H∗ ln

H
H∗

)
+

(
R − R∗ ln

R
R∗

)
.

Note that EE∗ exists if R0 > 1. By directly calculating the derivative of L along the system (3.1), we
obtain

dL
dt
=

(
1 −

S ∗

S

)
dS
dt
+

(
1 −

E∗

E

)
dE
dt
+

(
1 −

I∗

I

)
dI
dt
+

(
1 −

H∗

H

)
dH
dt
+

(
1 −

R∗

R

)
dR
dt
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=

(
1 −

S ∗

S

)
[Λ − βS I − µS + ϕR] +

(
1 −

E∗

E

)
[βS I − BE] +

(
1 −

I∗

I

)
[ρE − AI]

+

(
1 −

H∗

H

)
[αI − DH] +

(
1 −

R∗

R

)
[qI + κH −CR]

= −(Λ + ϕR)
(
S ∗

S
− 1

)
− βI

(
S E∗

E
− S ∗

)
− ρE

(
I∗

I
− 1

)
− αI

(
H∗

H
− 1

)
− (qI + κH)

(
R∗

R
− 1

)
− µ (S − S ∗) − B (E − E∗) − A (I − I∗) − D (H − H∗) −C (R − R∗) .

If S = S ∗, E = E∗, I = I∗,H = H∗, and R = R∗, then dL/dt = 0.
By combining positive and negative terms, we get

dL
dt
= m − n.

Here,

m ≡ Λ + βIS ∗ + µS ∗ + BE∗ + AI∗ + DH∗ +CR∗ + ϕR + ρE + αI + qI + κH,

n ≡
ΛS ∗

S
+
ϕRS ∗

S
+
βS IE∗

E
+
ρEI∗

I
+
αIH∗

H
+

qIR∗

R
+
κHR∗

R
+ µS + BE + AI + DH +CR.

Thus, if m < n, then dL/dt ≤ 0. Furthermore, dL/dt = 0 if and only if S = S ∗, E = E∗, I =
I∗,H = H∗, and R = R∗. Consequently, the greatest compact invariant set in {(S ∗, E∗, I∗,H∗,R∗) ∈ Ω :
dL/dt = 0} is the singleton EE∗, representing the endemic equilibrium of the system (3.1). According
to LaSalle’s invariant principle [19], EE∗ exists and is globally asymptotically stable in Ω if R0 > 1
and m < n.

4. SEIHR model with impulsive vaccination

4.1. Preliminaries

Let
G : R+ × R6

+ → R+,

whereR+ = [0,∞) andR6
+ = {X ∈ R

6 : X = (S ,V, E, I,H,R), S ≥ 0,V ≥ 0, E ≥ 0, I ≥ 0,H ≥ 0,R ≥ 0}.
The map defined by the right-hand side of system (2.1) is denoted by F = (F1, F2, ..., F6).

Definition 4.1. [7] The function G is said to belong to class G0 if G is continuous
in (nT, (n + 1)T ] × R6

+ → R+ and, for each X ∈ R6
+, n ∈ Z+,

lim
(t,Y)→(nT+,X)

G(t,Y) = G(nT+, X)

exists and is locally Lipschitzian in X.
Suppose that G ∈ G0. For t ∈ (nT, (n + 1)T ] × R6

+, the upper-right derivative of G(t, X) in
consideration of systems (2.1) and (2.2) is defined by

D+G(t, X) = lim sup
h→0+

1
h

[G(t + h, X + hF(t, X)) −G(t, X)].
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The solution of systems (2.1) and (2.2), X(t) = (S ,V, E, I,H,R), is assumed to be a piecewise
continuous function. It means that X(t) : R+ → R6

+, X(t) is continuous on (nT, (n + 1)T ], n ∈ Z+ and
limt→nT+ X(t) = X(nT+) exists. Therefore, the smoothness properties of F ensure the existence and
uniqueness of a solution to systems (2.1) and (2.2) [20].

Lemma 4.1. Suppose that X(t) = (S (t),V(t), E(t), I(t),H(t),R(t)) is a solution of the systems (2.1)
and (2.2) with the initial value X(0+) ≥ 0. Then the solution X(t) ≥ 0 for all t ≥ 0.

Proof. For t , nT , dS/dt > 0 whenever S (t) = 0. This implies that S (t) is associated with a non-
negative solution.

For t = nT , S (nT+) = (1 − γ)S (nT ). We can conclude that S (t) remains non-negative, given that
S (nT ) ≥ 0 (as established in the case that t , nT ) and 0 < γ < 1.

The same approach can be employed to demonstrate the non-negativity of V(t), E(t), I(t), H(t), and
R(t). Thus, the proof is complete.

4.2. The epidemic model under periodic impulsive vaccination

By setting the time derivatives of system (2.1) to zero, applying the simultaneous conditions of zero
values for both exposed and infectious compartments, and further requiring that the hospitalized and
recovered compartments remain at zero, we obtain the disease-free steady-state as follows:

S +0∗ = lim
n→∞

S (nT+) =
Λ(1 − γ)(1 − e−(ω+µ)T )
µ[1 − (1 − γ)e−(ω+µ)T ]

,

S 0∗ = lim
n→∞

S (nT ) =
S +0∗

1 − γ
=

Λ(1 − e−(ω+µ)T )
µ[1 − (1 − γ)e−(ω+µ)T ]

,

V+0∗ = N0∗ − S +0∗ =
Λγ

µ[1 − (1 − γ)e−(ω+µ)T ]
,

V0∗ = N0∗ − S 0∗ =
Λγe−(ω+µ)T )

µ[1 − (1 − γ)e−(ω+µ)T ]
,

where E+0∗ = E0∗ = I+0∗ = I0∗ = H+0∗ = H0∗ = R+0∗ = R0∗ = 0.
To analyze the dynamics of the impulsive vaccination, we initially examine the susceptible-vaccine

subsystem at (E = I = H = R = 0).
For t , nT,

dS
dt
= Λ − µS + ωV, (4.1)

dV
dt
= −(ω + µ)V. (4.2)

For t = nT,

S (nT+) = (1 − γ)S (nT ), (4.3)
V(nT+) = V(nT ) + γS (nT ), (4.4)

S (0+) = S 0 (4.5)
V(0+) = V0. (4.6)
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The systems given by Eqs (4.1)–(4.4) yield a periodic solution:

S̃ (t) =
Λ

µ

(
1 −

γe−(ω+µ)(t−nT )

1 − (1 − γ)e−(ω+µ)T

)
, Ṽ(t) =

Λγe−(ω+µ)(t−nT )

µ
(
1 − (1 − γ)e−(ω+µ)T ) ,

with the initial conditions S̃ (0+) =
Λ

µ

(
1 −

γ

1 − (1 − γ)e−(ω+µ)T

)
> 0, Ṽ(0+) =

Λγ

µ
(
1 − (1 − γ)e−(ω+µ)T ) >

0 for t ∈ (nT, (n + 1)T ],∀n ∈ Z+.
Therefore, the positive solution of Eqs (4.1)–(4.6) is given by

S (t) =
(
S 0 −

Λ

µ

(
1 −

γ

1 − (1 − γ)e−(ω+µ)T

))
e−(ω+µ)t + S̃ (t), t ∈ (nT, (n + 1)T ],

V(t) =
(
V0 −

Λγ

µ
(
1 − (1 − γ)e−(ω+µ)T )) e−(ω+µ)t + Ṽ(t), t ∈ (nT, (n + 1)T ].

Lemma 4.2. Equations (4.1)–(4.6) have a positive periodic solution (S̃ (t), Ṽ(t)), and (S (t),V(t)) →
(S̃ (t), Ṽ(t)) as t → ∞ for every solution (S (t),V(t)).

Therefore, the periodic solution of the systems (2.1) and (2.2) in the absence of E, I,H, and R is
given by

(S̃ (t), Ṽ(t), 0, 0, 0, 0) =
(
Λ

µ

(
1 −

γe−(ω+µ)(t−nT )

1 − (1 − γ)e−(ω+µ)T

)
,

Λγe−(ω+µ)(t−nT )

µ
(
1 − (1 − γ)e−(ω+µ)T ) , 0, 0, 0, 0)

for t ∈ (nT, (n + 1)T ], n ∈ Z+ where

S̃ (nT+) = S̃ (0+) =
Λ

µ

(
1 −

γ

1 − (1 − γ)e−(ω+µ)T

)
,

and
Ṽ(nT+) = Ṽ(0+) =

Λγ

µ
(
1 − (1 − γ)e−(ω+µ)T ) .

Theorem 4.1. The disease-free periodic solution (S̃ (t), Ṽ(t), 0, 0, 0, 0) is locally asymptotically stable
if the following condition holds:

(A + B)T >

∫ T

0

√
(A − B)2 + 4βρS̃ (t) dt. (4.7)

The transmission rate must be sufficiently low in order for the property (4.7) to hold, as stated by

β < βc =
ABµ[1 − (1 − γ)e−(ω+µ)T ]

ρΛ(1 − e−(ω+µ)T )
. (4.8)

Proof. Let us consider a small perturbation:

S (t) = S̃ (t) + u1(t),
V(t) = Ṽ(t) + u2(t),
E(t) = u3(t),
I(t) = u4(t),

H(t) = u5(t),
R(t) = u6(t),
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from the point (S̃ (t), Ṽ(t), 0, 0, 0, 0). Then,

u1(t)
u2(t)
u3(t)
u4(t)
u5(t)
u6(t)


= Φ(t)



u1(0)
u2(0)
u3(0)
u4(0)
u5(0)
u6(0)


, 0 < t < T,

where Φ(t) satisfies

dΦ(t)
dt
=



−µ ω 0 −βS̃ 0 ϕ

0 −(ω + µ) 0 0 0 0
0 0 −B βS̃ 0 0
0 0 ρ −A 0 0
0 0 0 α −D 0
0 0 0 q κ −C


Φ(t).

Since the columns of Φ(t) are particular linearly independent solutions to the initial condition Φ(0) =
I6, the fundamental matrix Φ(t) = Φ(t+T ) of the six-order differential system which is nonsingular for
all time is defined as the monodromy matrix Φ(T ) for any t = nT , having the following form:

Φ(T ) = Diag
(
e−µT , e−(ω+µ)T , e−CT , e−DT , exp

(∫ T

0
J1(t) dt

)
, exp

(∫ T

0
J2(t) dt

))
,

where

J1(t) = −
1
2

(
A + B +

√
(A − B)2 + 4βρS̃ (t)

)
; ∀t ∈ [0,T ],

J2(t) = −
1
2

(
A + B −

√
(A − B)2 + 4βρS̃ (t)

)
; ∀t ∈ [0,T ].

Linearization of Eq (2.2) yields

u1(nT+)
u2(nT+)
u3(nT+)
u4(nT+)
u5(nT+)
u6(nT+)


=



1 − γ 0 0 0 0 0
γ 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





u1(nT )
u2(nT )
u3(nT )
u4(nT )
u5(nT )
u6(nT )


.

According to Floquet theory, the solution (S̃ (t), Ṽ(t), 0, 0, 0, 0) is locally stable if the modulus of all
eigenvalues of K is less than 1 when K is defined by

K =



1 − γ 0 0 0 0 0
γ 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Φ(T ).
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Note that the eigenvalues of K are given by

ψ1 = (1 − γ)exp(−µT ),
ψ2 = exp(−(ω + µ)T ),
ψ3 = exp(−CT ),
ψ4 = exp(−DT ),

ψ5 = exp
(∫ T

0
−

1
2

(
A + B +

√
(A − B)2 + 4βρS̃ (t)

)
dt

)
,

ψ6 = exp
(∫ T

0
−

1
2

(
A + B −

√
(A − B)2 + 4βρS̃ (t)

)
dt

)
.

Since Eq (4.7) holds, the modulus of all eigenvalues is less than 1, indicating local asymptotic stability
for sufficiently small initial conditions. Additionally, for Eq (4.8) to hold, it is necessary that

(A + B)2 > (A − B)2 + 4βρ max
t∈[0,T ]

S̃ (t)

which is satisfied if Eq (4.8) holds.

5. Numerical simulations

We proceed to assess the SEIR and SVEIHR models through numerical simulations. The model
system has been implemented by using MATLAB, utilizing packages such as ode45 to solve ordinary
differential equations, optimvar to optimize parameter values, fcn2optimexpr to translate functions into
optimization expressions, and ode15s to address impulsive differential equations.

Our numerical evaluations are conducted by using initial values sourced from the USA data, as
provided by the WHO website [3]. Additionally, we utilized the parameter values outlined in Table 1
for our simulations.

S (0) = 338, 173, 377,V(0) = 10, 000, E(0) = 10, 000, I(0) = 56, 029,H(0) = 40, 450,

and R(0) = 10, 000.

A computer simulation of the system (3.1) is presented in Figure 2, utilizing the parameter values
specified in Table 1. The transmission rate (β) has been increased by two times, resulting in R0 =

2.3307 > 1. In accordance with Theorem 3.4, the solution trajectory clearly indicates a convergence
toward the endemic equilibrium (EE∗), as demonstrated by the model’s dynamics.

If the rate of transitioning from infected individuals to hospitalization increases by 40% (i.e., α
increases by 40%), the basic reproduction number will decrease, resulting in R0 = 0.8633 < 1, as
illustrated in Figure 3. In accordance with Theorem 3.3, the solution trajectory leads to the disease-
free equilibrium (EE).
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Table 1. Parameter values.

Parameter Value Source Unit
S (0) 338,173,377 WHO [3] Individuals
V(0) 10,000 Assumed Individuals
E(0) 10,000 Assumed Individuals
I(0) 56,029 WHO [3] Individuals
H(0) 40,450 WHO [3] Individuals
R(0) 10,000 Assumed Individuals
Λ 3251 Calculated Individuals × Day−1

β 9.1508 × 10−9 Calculated* [33] Individuals−1 × Day−1

µ 0.3349 × 10−4 [33] Day−1

ϕ 0.0426 Fitting Day−1

ρ 1/4.2 [23] Day−1

q 1/30 [11] Day−1

δ1 1/16.1 [23] Day−1

δ2 1/11.2 [23] Day−1

α 1/1.5 [23] Day−1

κ 1/11.5 [23] Day−1

* The value is calculated by dividing the transmission rate by the total population when the system is in equilibrium.
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Figure 2. (a) Time series of the susceptible population (S ), exposed population (E), infected
population (I), hospitalized population (H), and the recovered population (R). The solution
trajectory tends toward the endemic equilibrium (EE∗) when the basic reproduction number
R0 > 1. (b) Zoom-in of (a), highlighting specific trends in the population dynamics.
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Figure 3. The time series of the susceptible population (S ), exposed population (E), infected
population (I), hospitalized population (H), and the recovered population (R). The solution
trajectory demonstrates a tendency toward the disease-free equilibrium (EE) when the basic
reproduction number R0 < 1.

5.1. The case study

In this section, we discuss the numerical simulations of the model system (3.1), the parameters of
which were fitted by using ode45, optimvar, and fcn2optimexpr in MATLAB. These simulations have
yielded the parameter set summarized in Table 2. Our primary objective here is to present a
comparative analysis between the simulated results and empirical data, focusing our attention on two
crucial epidemiological indicators: the count of infectious individuals and the count of hospitalized
individuals. The empirical data used for this comparative analysis were obtained from the WHO
website, drawing upon data specific to the USA [3]. These real-world observations pertain to
confirmed cases of infection, collected through COVID-19 swab tests. Commencing on
January 1, 2023, the data collection extended over a span of 138 days, as illustrated in Figures 4
through 5.

Table 2. Fitting and calulation of parameter values.

Parameter Value Source Unit
Λ 3251 Calculated Individuals × Day−1

β 0.0001 Fitting Individuals−1 × Day−1

µ 0.0136 Fitting Day−1

ϕ 0.0426 Fitting Day−1

ρ 0.0001 Fitting Day−1

q 0.0848 Fitting Day−1

δ1 0.0034 Fitting Day−1

δ2 0.2996 Fitting Day−1

α 0.4272 Fitting Day−1

κ 0.3852 Fitting Day−1
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Figure 4. The number of confirmed cases of infectious individuals per day.
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Figure 5. The number of confirmed cases of hospitalized individuals per day.

The confirmed cases for the infectious class, as simulated by the model (red solid line), fit the
reported COVID-19 case data (blue circle) with R2 = 0.932, showing that the model fits well in
Figure 4. According to Figure 5, the verified cases of the hospitalized class simulated by using the
model (pink solid line) are quite similar to the true data (light blue circle), with R2 = 0.970.

5.2. The simulation of the impulsive vaccination

One starts by considering an impulsive vaccination with the parameters of vaccination proportion
and impulse period (γ = 0.9, T = 90 days) while varying a low vaccine immunity rate ω. Figure 6
illustrates the development over time. Theorem 4.1 predicts that the evolution will eventually lead to a
periodic solution, which is what has been shown to occur.

Figures 7 and 8 display the results for T = 90 days as γ varies and γ = 0.5 as T varies, respectively.
It can be seen that the exposed, infected, and hospitalized populations decrease as γ increases and as T
is reduced, as would be predicted theoretically.
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Figure 6. Evolution of susceptible and vaccinated populations under impulsive vaccination
with γ = 0.9, T = 90 days as ω varies.
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Figure 7. Comparison of the susceptible, vaccinated, exposed, infected, hospitalized, and
recovered populations for T = 90 days as γ varies.
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Figure 8. Comparison of the susceptible, vaccinated, exposed, infected, hospitalized, and
recovered populations for γ = 0.5 as T varies.

Figure 9 presents a comprehensive view of the susceptible, exposed, infected, hospitalized, and
recovered populations, contrasting scenarios with and without the presence of impulsive vaccination.
The outcomes discerned from these simulations reveal that, in the case of impulsive vaccination, the
disease within the system was effectively eradicated by the 270th day. In stark contrast, the system
lacking impulsive vaccination witnessed the disease’s containment occurring later, specifically, on
the 312th day.
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Figure 9. Comparison of the susceptible, exposed, infected, hospitalized, and recovered
populations with and without impulsive vaccination (γ = 0.9, T = 90 days, and ω = 0.01).

6. Discussion

In this work, we focus on assessing the impact of impulsive vaccination on the timeline of COVID-
19 eradication within the SEIHR epidemic model. Despite the positive findings indicating accelerated
disease eradication, it is crucial to acknowledge potential limitations that may influence the study’s
applicability and scope.

Our analysis suggests that impulsive vaccination can reduce the basic reproduction number,
expediting the transition from endemic to disease-free status. However, it is important to note
potential limitations, such as variations in vaccine effectiveness over time. These factors could
influence the real-world outcomes of impulsive vaccination strategies.

The key observation from our findings is that the implementation of periodic impulsive vaccination
efforts significantly shortens the time required to eliminate COVID-19 from a given population. While
this is promising, the study’s reliance on mathematical modeling and assumptions about population
dynamics introduces uncertainties. The applicability of our results to diverse populations and evolving
viral strains warrants careful consideration.
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Our study highlights the dynamic nature of vaccination campaigns, emphasizing that strategic
vaccination efforts can expedite disease eradication. However, we must acknowledge that the success
of impulsive vaccination strategies depends on several external factors, including public compliance,
infrastructure, and evolving epidemiological conditions.

7. Conclusions

This study explored the dynamics of COVID-19 transmission and the potential impact of impulsive
vaccination strategies. We began by investigating the stability of disease-free equilibrium and
determined the basic reproduction number (R0) to be a critical parameter influencing disease spread.
Utilizing mathematical methods and numerical simulations, we examined the SEIR and SVEIHR
models, implementing parameter estimation techniques to align our models with real-world data.

Our numerical simulations, based on data from the WHO, allowed us to compare model predictions
with actual observations. We specifically concentrated on the amount of infected and hospitalized
people, offering valuable insights into the effectiveness of impulsive vaccination in controlling the
disease. Notably, our results have demonstrated that impulsive vaccination strategies could lead to a
quicker containment of the disease compared to scenarios without such interventions.

This research contributes to the understanding of COVID-19 dynamics and emphasizes the potential
benefits of strategic vaccination approaches. These findings underscore the importance of vaccination
campaigns in disease control and public health efforts, particularly in the face of evolving viral threats.

In summation, this research contributes valuable insights into the dynamics of SEIR
epidemiological models with newborns and impulsive vaccination. The findings underscore the
significance of vaccination efforts, yet we must interpret these results cautiously due to the study’s
simplifications and assumptions. Recognizing these limitations is crucial for a comprehensive
understanding of the study’s scope and potential implications for real-world public health strategies,
especially in the context of emerging infectious diseases like COVID-19.
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