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Abstract: Our attention concenters on deriving diverse forms of the soliton arising from the 

Myrzakulov-Lakshmanan XXXII (M-XXXII) that describes the generalized Heisenberg ferromagnetic 

equation. This model has been solved numerically only using the N-fold Darboux Transformation 

method, not solved analytically before. We will derive new types of the analytical soliton solutions 

that will be constructed for the first time in the framework of three impressive schemas that are 

prepared for this target. These three techniques are the Generalized Kudryashov scheme (GKS), the 

(G'/G)-expansion scheme and the extended direct algebraic scheme (EDAS). Moreover, we will 

establish the 2D, 3D graphical simulations that clear the new dynamic properties of our achieved 
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1. Introduction 

The NLPDEs play important roles in different fields of science such as [1], who introduced a 

book for the Nonlinear Partial Differential Equations for Scientists and Engineers. The dispersion-less 

equations include the integrable hydrodynamic equations that are a constitute branch of the integrable 
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partial differential equations which are crucial to applications for its extensive application in various 

branches as condensed matter theory, string theory, quantum arena theories, and conformal field theory; 

particularly, [2] proposed CTE solvability, nonlocal symmetry, and interaction solutions of coupled 

integrable dispersion-less system; complexity, [3] who investigated the Dispersion-less Toda hierarchy 

and two-dimensional string theory; and [4], who introduced the Topological conformal field theory 

with a rational W potential and the dispersion less KP hierarchy. Here, we will focus on one of the 

famous models that plays significant role in the magnetism theory. The suggested model is a general 

form of the well-known Heisenberg ferromagnetic equation, which is considered one of the 

fundamental integrable systems in soliton theory and has been studied by some authors. The study of 

the (1+1)-dimensions: Integrable generalized Heisenberg ferromagnetic equations: Reductions and 

gauge equivalence [5]. Furthermore, Ratbay Myrzakulov [6] introduced this model as a sigma model 

with potentials, which is one of the coupled integrable dispersion-less equations that covers generalized 

Heisenberg ferromagnetic equations and [7] who studied the Coupled dispersion less and generalized 

Heisenberg ferromagnetic equations with self-consistent sources: Geometry and equivalence. 

Moreover, there are many authors that have extracted studies of high quality and are qualitative 

studying the soliton solutions for the (2+1)-dimensional HFSC equation, which has a significant role 

in the phenomena and processes in various fields that relate to the ferromagnetic materials, nonlinear 

optics and optical fibers [8–12]. In the same way, various magnetic interactions of the (2+1) 

dimensional HFSC equation that have integral behaviors and split into classical and semi-classical 

limit have been studied in [13–17]. Furthermore, the soliton solutions for various nonlinear problems 

in different fields have been published [18–24]. 

The suggested model has been introduced in reference [12] to be 
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where ( , , ), ( , , )P x y t Q x y t  are complex functions in the normalized spatial variables x  and y  and 

temporal variable t  that are appropriate continuum approximation of the coherent magnetism 

amplitude to the bosonic operators at spin-lattice sites, while ,m n  are real functions,   is real 

parameter and 1. =   The main target is transforming this system to one equation that we will name 

the modified equation of the Myrzakulov-Lakshmanan XXXII, by differentiation the first and the last 

part of Eq (1) with respect to x  we get 

2 4 4 0.

2 2 2 .

xxt xx x x

xx x x x

Q P m Q mQ

P i P n Q nQ

+ − − =

= − − −
                                (2) 

By inserting the second part of Eq (2) into the first part of Eq (2) we get 

4 4 4 4 4 0.xxt x x x x xQ i P n Q nQ m Q mQ− − − − − =                        (3) 
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By inserting the second, third parts of Eq (1) into Eq (3) we get 

( )
2* * * *1

4 4 4 4 ( ) 4 0.
2

xxt x x x xQ i P Q PQ QP nQ Q Q PQ QP mQ  
 

− + + − − + + − = 
 

        (4) 

The above equation can be reduced to 

21
4 4 ( ) 4( ) 0.

2
xxt x x xQ i P Q Q m n Q 

 
− − − + = 

 
                        (5) 

Now, let us suppose these complex transformations ( , )

1 1( ) ( ) i x tQ R e = , 1 1x w t = + , 

( , )

2 2( ) ( ) i x tP R e = , 2 2x w t = + ， where 1 2,R R denote to the wave amplitudes, while 1 2,w w  are the 

soliton speeds and 0x t  = + +  denotes to the phase portion,   is the wave number, 0  is the 

phase constant. 
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2

1 1( ) 2 .xQ R R =                                       (10) 

By inserting the relations (6)–(10) into Eq (5) we get 
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That can be divided into the following real and imaginary parts: 

( ) 2

1 1 1 1 1 1 22 4( ) 4 4 0.w R w m n R R R R    − + + + − + =                          (12) 

( )1 1 2 1( 2 ) 4 4( ) 0.w R R m n R   + − − + + =                           (13) 

By integrating Eq (13) with respect to   we get 

2

1 1 2 1( 2 ) 4 2( ) 0.
2

w R R m n R


 
 + − − + + = 
 

                         (14) 

By emerging Eqs (12) and (14) we obtain 
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w R w m n R R R m n R


 
   + − − + − − + + = 
 

                   (15) 

Now, our aim is to extract the exact solutions of the Eq (15) in the framework of three various 

schemas namely the GKS [25–29], the (G'/G)-expansion scheme [30,31] and the EDAS [32–34]. 

2. The concept of the GKS 

According to the GKS, any NLPDE which is 

( , , , , ,...) 0.x t xx ttR R R R R =                                  (16) 

With the transformation ( , ) ( ), , ( & )R x t R kx wt where k w = =   are the wave number and 

traveling wave speed can be transformed to the ODE 

E( , , , ,...) 0.R R R R   =                                   (17) 

The Kudryashov scheme assumed the solution of Eq (17) in the form 
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where ( 0,1,..., N) &B ( 0,1,..., )i jA i j M= =  are constants which will be determined later such that 

0& 0N MA B   and the function ( )S   is the solution of the nonlinear equation 

2( )
( ) S( ).

dS
S

d


 


= −                                    (19) 

Integrating Eq (19) then solution takes the form 

1
( )

1
S

Ce
 =

+
,                                       (20) 

here C  is the integration constsnt. 

The next step in the Kudryashov scheme is determining the positive numbers N and M in solution 

Eq (18) by implementing the balance rule for the suggested model Eq (15) it implies 1M = , hence 

according to the GKS 1 2N M= + =  thus the solution is 

2

0 1 2
1

0 1

( ) ( )
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+ +
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+
                             (21) 

By evaluation 1 1 1 1, , ,R R R R    and substituting into Eq (15), collecting and equating the 

coefficients of like powers of ( )iS   to zero; one can obtain a system of equations from which the 

following two results will be appeared. 
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Now, let us deduce the corresponding solutions to the first result (22) that can be simplified to be 

1 0 1 10 20.4, 0.634, 0.928, 0.3, 1.25.1,A A A B wB n m  = − = − = − = = −= = = = =       (24) 

Substituting from (24) into (21) the solution will be 

2
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Using Eq (20) with 1C =  the solution after simplifying becomes 

( )( )

2

1

0.034 0.2e 0.4e
.

0.072 . e
(

e 1
)R

 

 


− + −

+ +
=                              (26) 

Since ( , )

1 1 1 1 0(x, t) ( ) . ,, 0 3i x tQ R e x y wt x y t x y t   = = + + = + + = + + + , then 

( )( )

( 0.3 )

( 0.3 )

2
( 0

( 0.3 )

( 0.3 )

.1)0.034 0.2e 0.4e
(x, t) e .

0.072 e 1 e

x t

x t

x t

x

i x t

t
Q

+

+

+ +
+

+

− + −
=

+ +
 

( )( )

( 0.3 )

( 0.3 )

( 0.3 )

( 0.3 )

20.034 0.2e 0.4e
(x, t) (cos(x t 0.1) i sin(x t 0.1)).

0.072 e 1 e

x t

x t

x t

x t
Q

+

+

+

+

− + −
= + + + + +

+ +
         (27) 

( )( )

( 0.3 )

( 0.3 )

2( 0.3 )

( 0.3 )

0.034 0.2e 0.4e
Re (x, t) cos(x t 0.1).

0.072 e 1 e

x t

x t

x t

x t
Q

+

+

+

+

− + −
= + +

+ +
                 (28) 

( )( )

( 0.3 )

( 0.3 )

2( 0.3 )

( 0.3 )

0.034 0.2e 0.4e
Im (x, t) sin(x t 0.1).

0.072 e 1 e

x t

x t

x t

x t
Q

+

+

+

+

− + −
= + +

+ +
                 (29) 

By the same way for the second solution (23) 
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1 0 1 10 20.1, 2.366, 12.93, 0.021, , 1.25.B nA A A B w m = = = − = − = = = −= = =
       (30) 

Substituting from (30) into (21) the solution will be 
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Using Eq (20) with 𝐶 = 1 the solution after simplifying becomes 

( )( )

2

1

1.466 0.8e 0.1e
.

1 e
(

1 e
)

3.93
R

 

 


+ −

+
=
−

+
                              (32) 

Then 

( )( )

2( 0.02 )( 0.02t)
( 0.

( 0.02 ) ( 0.02 )

1)1.466 0.8e 0.1e
(x, t) e .

1 e 13.93 e

x t
i x t

x

x t x t
Q

+
+ +

+

+ +
=
− + −

+ +
 

( )( )

( 0.02t)

( 0.

2( 0.02 )

02 ) ( 0.02 )

1.466 0.8e 0.1e
(x, t) (cos(x t 0.1) i sin(x t 0.1).

1 e 13.93 e

x tx

x t x t
Q

+

+ +

+− + −
+ + += + +

+ +
         (33) 

( )( )

( 0.02t)

( 0.02

2( 0

) ( 0.0

02 )

)

.

2

1.466 0.8e 0.1e
Re (x, t) cos(x t 0.1).

1 e 13.93 e

x tx

x t x t
Q

+

+

+

+

− + −
+ +

+
=

+
                (34) 

( )( )

( 0.02t)

( 0.02

2( 0

) ( 0.0

02 )

)

.

2

1.466 0.8e 0.1e
Im (x, t) sin(x t 0.1).

1 e 13.93 e

x tx

x t x t
Q

+

+

+

+

− + −
+ +

+
=

+
                (35) 

3. The (G'/G)-expansion scheme 

The (G'/G)-expansion scheme introduces the solution of Eq (17) to be in the form 

0
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where the function ( )G   achieves the 2nd-order differential equation 0,G G G  + + =  that admits 

the following forms of solutions according to the discriminate of this equation which is either any one 

of these inequalities 
2 4 0 − , 

2 4 0, − and 
2 4 0 − = . 
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2 4 0 − , the solution is 
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(II) When 
2 4 0, − the solution is 
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(III) When 2 4 0, − = the solution is 
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where M  appearing in Eq (36) has been calculated before to be 1M = , hence the solution is 
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By substituting 2

1 1 1 1, ,R R R R   into Eq (15), collecting and equating the coefficients of various 

powers of ( )iG

G


 to zero, this leads to a system of equations from which the following two results will 

be emerged 
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Let us now derive the corresponding solutions to the first result that can be simplified to be 

0 1 1 20, 1.7, 0, 1, 1, 2, 2.14, 1, 2.A A w n m l l   = = = = = = = = = − = =                (45) 

The solution in the framework of this result can be extracted as follow: 
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4. The EDAS 

This technique proposes the solution of Eq (17) to be 
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The solution according to this technique for the suggested model whose balance 1M =  is 
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Collecting and equating the coefficients of various powers of 
i to zero we get a system whose 

unique solution is: 
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This result can be simplified to be 

0 120, 3, 1, 1.w b b      = = = = = = = = = =                    (58) 

Thus the solution is 1 0 1 ,R b b = +  where   can be derived from the relation 

2 3 420 3 .    = + +
 

To be
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This result generates two results; we will implement the identical solution for one of them which 

is: 
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−
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The other solutions corresponding to the other results can be extracted in the same connection. 

5. Conclusions 

Throughout this work, three various schemas have been introduced to obtain new perceptions of 

the soliton solutions for the Myrzakulov-Lakshmanan XXXII-equation. These three schemas are the 

GKS, the (G'/G)-expansion schema and the EDAS. These suggested schemas have been implemented 

in the same way and are parallel. All these schemas have been used for the first time for this target. 

Each schema archives many forms of results from which we choose only one result and design the 

corresponding solution. The designed solutions using these three schemas have been established. The 

obtained solutions appear in many forms as M-shaped soliton solutions, W-shaped soliton solutions 
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Figures 1–4, kink soliton solution Figure 5, bright soliton solution Figure 6 and hyperbolic function 

Figures 7 and 8. Our achieved soliton solutions in the framework of any other methods have not been 

achieved before. The realized soliton solutions are new compared with [12], who solved the suggested 

model numerically using the N-fold Darboux Transformation method; hence, the novelty of our 

obtained solutions is clear. The 2D, 3D soliton behaviors that describe the dynamic properties for all 

achieved soliton solutions that have emerged from the suggested model have been configured. 

 

Figure 1. The soliton behavior of the Re. Part Eq (28) in 2D and 3D with values: 

1 0 1 10 20.4, 0.634, 0.928, 0.3, 1.25.1,A A A B wB n m  = − = − = − = = −= = = = =
 

 

Figure 2. The soliton behavior of the Im. Part Eq (29) in 2D and 3D with values:

1 0 1 10 20.4, 0.634, 0.928, 0.3, 1.25.1,A A A B wB n m  = − = − = − = = −= = = = =
 

 

Figure 3. The soliton behavior of the Re. Part Eq (34) in 2D and 3D with values:

1 0 1 10 20.1, 2.366, 12.93, 0.021, , 1.25.B nA A A B w m = = = − = − = = = −= = =
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Figure 4. The soliton behavior of the Im. Part Eq (35) in 2D and 3D with values: 

1 0 1 10 20.1, 2.366, 12.93, 0.021, , 1.25.B nA A A B w m = = = − = − = = = −= = =  

 

Figure 5. The soliton behavior of the Re. Part Eq (50) in 2D and 3D with values:
 

0 1 1 20, 1.7, 0, 1, 1, 2, 2.14, 1, 2.A A w n m l l   = = = = = = = = = − = =  

 

Figure 6. The soliton behavior of the Im. Part Eq (51) in 2D and 3D with values:
 

0 1 1 20, 1.7, 0, 1, 1, 2, 2.14, 1, 2.A A w n m l l   = = = = = = = = = − = =  
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Figure 7. The soliton behavior of the Re. Part Eq (62) in 2D and 3D with values:
 

0 120, 3, 1, 1.w b b      = = = = = = = = = =  

 

Figure 8. The soliton behavior of the Im. Part Eq (63) in 2D and 3D with values:
 

0 120, 3, 1, 1.w b b      = = = = = = = = = =  
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