AIMS Mathematics, 9(3): 6145-6160.
AIMS Mathematics DOI: 10.3934/math.2024300

Received: 13 December 2023

Revised: 19 January 2024

Accepted: 23 January 2024

Published: 02 February 2024
http://www.aimspress.com/journal/Math

Research article

The new soliton solution types to the Myrzakulov-Lakshmanan-XXXII-

equation

Emad H. M. Zahran', Ahmet Bekir?>*, Reda A. Ibrahim?® and Ratbay Myrzakulov*

I Department of Basic Science, Benha University, Faculty of Engineering, Shubra, Egypt

2 Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030, Eskisehir, Turkey

3 Departments of Basic Science, Benha University, Faculty of Engineering, Shubra, Egypt
Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics, Astana, Kazakhstan

a~

* Correspondence: Email: bekirahmet@gmail.com.

Abstract: Our attention concenters on deriving diverse forms of the soliton arising from the
Myrzakulov-Lakshmanan XXXII (M-XXXII) that describes the generalized Heisenberg ferromagnetic
equation. This model has been solved numerically only using the N-fold Darboux Transformation
method, not solved analytically before. We will derive new types of the analytical soliton solutions
that will be constructed for the first time in the framework of three impressive schemas that are
prepared for this target. These three techniques are the Generalized Kudryashov scheme (GKS), the
(G'/G)-expansion scheme and the extended direct algebraic scheme (EDAS). Moreover, we will
establish the 2D, 3D graphical simulations that clear the new dynamic properties of our achieved
solutions.
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1. Introduction

The NLPDEs play important roles in different fields of science such as [1], who introduced a
book for the Nonlinear Partial Differential Equations for Scientists and Engineers. The dispersion-less
equations include the integrable hydrodynamic equations that are a constitute branch of the integrable
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partial differential equations which are crucial to applications for its extensive application in various
branches as condensed matter theory, string theory, quantum arena theories, and conformal field theory;
particularly, [2] proposed CTE solvability, nonlocal symmetry, and interaction solutions of coupled
integrable dispersion-less system; complexity, [3] who investigated the Dispersion-less Toda hierarchy
and two-dimensional string theory; and [4], who introduced the Topological conformal field theory
with a rational W potential and the dispersion less KP hierarchy. Here, we will focus on one of the
famous models that plays significant role in the magnetism theory. The suggested model is a general
form of the well-known Heisenberg ferromagnetic equation, which is considered one of the
fundamental integrable systems in soliton theory and has been studied by some authors. The study of
the (1+1)-dimensions: Integrable generalized Heisenberg ferromagnetic equations: Reductions and
gauge equivalence [5]. Furthermore, Ratbay Myrzakulov [6] introduced this model as a sigma model
with potentials, which is one of the coupled integrable dispersion-less equations that covers generalized
Heisenberg ferromagnetic equations and [7] who studied the Coupled dispersion less and generalized
Heisenberg ferromagnetic equations with self-consistent sources: Geometry and equivalence.
Moreover, there are many authors that have extracted studies of high quality and are qualitative
studying the soliton solutions for the (2+1)-dimensional HFSC equation, which has a significant role
in the phenomena and processes in various fields that relate to the ferromagnetic materials, nonlinear
optics and optical fibers [8—12]. In the same way, various magnetic interactions of the (2+1)
dimensional HFSC equation that have integral behaviors and split into classical and semi-classical
limit have been studied in [13—17]. Furthermore, the soliton solutions for various nonlinear problems
in different fields have been published [18-24].
The suggested model has been introduced in reference [12] to be

Q, +2P,—-4mQ =0,

m, o[ 3(a), +PQ 40P
(1)

n =-o(PQ +QP"),

P =-2irP-2nQ,

whereP(x,y,t),Q(x,y,t) arecomplex functions in the normalized spatial variables x and y and

temporal variable t that are appropriate continuum approximation of the coherent magnetism
amplitude to the bosonic operators at spin-lattice sites, while m,n are real functions, 7 is real

parameter and o =+1. The main target is transforming this system to one equation that we will name
the modified equation of the Myrzakulov-Lakshmanan XXXII, by differentiation the first and the last
part of Eq (1) with respectto x we get

Q. +2P, —4m Q —-4mQ, =0.

- )
P, =-2i7P, —2n Q —2nQ, .
By inserting the second part of Eq (2) into the first part of Eq (2) we get
Qe —4 7P, —4n,Q —4nQ, —4m,Q —4mQ, =0. 3)
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By inserting the second, third parts of Eq (1) into Eq (3) we get

Qu —4i 7P, +4Qc(PQ”+QP")-4nQ, —@0(%(@ "), +PQ*+QP*j—4mQX =0. (4)

The above equation can be reduced to
Q,, —4i7P, —4Qa(%(|Q|2)X )—4(m +n)Q, =0. (5)
Now, let us suppose these complex transformations Q(¢)=R(£)e"™ , & =x+wt ,

P($)=R,(£,)e" ™Y, &, =x+w,t, where R,,R,denote to the wave amplitudes, while w,,w, are the
soliton speeds and y =x +dt +6, denotes to the phase portion, ¢ is the wave number, 6, is the
phase constant.

Q, :(Rl'+i Rl)e“”(x”. (6)

P :(R2'+i Rz)e”’(”’. )

Q.. =(Rl"+2i Rl'—Rl)e‘ yx) ®)

Q. = (WlRl"' i S+ 20 )R, — @, +25)R, —i 5Rl)e‘ von), )
(Q["), =2R.R,. (10)

By inserting the relations (6)—(10) into Eq (5) we get

(WlRl'" Fi(S+2w) R —(w,+26)R/ —i5R1)e"”(x"’ —4ir(R2' T Rz)e"”(x"’
_ _ (11)
~4(m-+n) (R +iR, |V ~4oRIR ") =0,
That can be divided into the following real and imaginary parts:
wR/"—(W,+25+4(m+n))R, -40R/R, +47R, =0. (12)
(6+2w,)R,"—47R, —(4(m+n)+5)R, =0. (13)
By integrating Eq (13) with respectto ¢ we get
' 0 \g2
(5+2W1)R1_4TR2_(2(m+n)+Ele =0. (14)

By emerging Egs (12) and (14) we obtain
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wR,"+W,-5-4m+n))R/-40R/R/ —(Z(m +n)+§ij =0. (15)

Now, our aim is to extract the exact solutions of the Eq (15) in the framework of three various
schemas namely the GKS [25-29], the (G'/G)-expansion scheme [30,31] and the EDAS [32—-34].

2. The concept of the GKS

According to the GKS, any NLPDE which is
®(R,R,,R,R,,R;,...) =0. (16)

With the transformation R(x,t) =R (<), ¢ =kx +wt,where (k &w ) are the wave number and
traveling wave speed can be transformed to the ODE

E(R,R’,R",R",...) =0. (17)

The Kudryashov scheme assumed the solution of Eq (17) in the form

R(¢) = ‘Zﬂ:AS © _A+AS)+AS Q)+ (18)
iBij(g) B, +B,S(¢)+B,S* (&) +...

where A(i=0,1...,N) &Bj(j =0,1,...,M) are constants which will be determined later such that
A, #0&B,, #0 and the function S(¢) is the solution of the nonlinear equation

dS(8) _c2pry
ac =S57°(£)-S(%). (19)
Integrating Eq (19) then solution takes the form
1
S(¢ )—m, (20)

here C is the integration constsnt.

The next step in the Kudryashov scheme is determining the positive numbers N and M in solution
Eq (18) by implementing the balance rule for the suggested model Eq (15) it implies M =1, hence
according to the GKS N =M +1=2 thus the solution is

A +AS (§)+AS%()

B, +B:S (<) &

R(&) =

m

By evaluation R,R’,R’,R" and substituting into Eq (15), collecting and equating the

coefficients of like powers of S'(¢) to zero; one can obtain a system of equations from which the
following two results will be appeared.
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~1+3) A 1
DA, a%, A2—>§(—3+J§)Al, 5 ——-4(m+n), -
B, >2(3-2V3)B, Wle%.
(2)A, %—M,AZ —>—l(3+\/§)Al,
12+83 2 23

(-3+2V3)oA;
12382

Now, let us deduce the corresponding solutions to the first result (22) that can be simplified to be

§—>-4(m+n),B, >2(3+2V3)B,w, >

A=B,=c=56=n=1A =-04 A =-0.634 B =-0.928,w, = 0.3, m=—1.25. (24)

Substituting from (24) into (21) the solution will be

~0.4+5(£)—0.63452({)

Rile)= 25
) 1-0.9285 (£) (25)
Using Eq (20) with C =1 the solution after simplifying becomes
—0.034+0.2e° —0.4e**
- 26
v (0.072+¢%)(L+€%) (26)
Since Q(x,t) =R, (£)e" ™", &, =X+ y+Wt =x+y+0.3t,y =X+ y+5t+6,, then
— (x+0.3t) 20030
Q1) = 0.034 + O.ii _ 0.4e gitesti0)
(0.072+"" ) (1460
. (X+0.3t) _ 2(x+0.31)
Q.0 = 0.034+O'iist) oAe (cos(x+t+0.1) +isin(x+t+0.1)). (27)
(o.o72+ e )(1+ g0
L (X+0.3I) _ 2(x+0,3t)
ReQ(x,t) = 0'034+0'ii_m 0.4e cos(x+t+0.1). (28)
(0.072¢6"" ) 1+ €0
— (x+0.3t) 2(x+0.3t)
ImQ(x, 1) = 0.031+0.2 0-4¢ sin(x+t+0.1). (29)

(0.07246" ) (1+6%%)

By the same way for the second solution (23)

AIMS Mathematics Volume 9, Issue 3, 6145-6160.



6150

A=B,=c=5=n=1A =-01,A, =-2.366,B, =12.93,w, = 0.02,m = —1.25.

(30)
Substituting from (30) into (21) the solution will be
~0.1+S () —2.366S ?
R,(() =21 C) €), (31)
1+12.935 (&)
Using Eq (20) with € = 1 the solution after simplifying becomes
~1.466+0.8e° —0.1e*
R = 32
() (1+€°)(13.93+¢) (32
Then
Q(x.1) = ~1.466+0.8e% %) —0.1e** %) | oy
! (1+ e(x +0.02t) )(13.93_’_ e(x +0.02t)) ’
—1.466 +0.8e*%%2) _,1g20*+002) .
Q(x,t)= (1+e(HO.OZt))(13.93%(”0_020) (cos(x+t+0.1) +isin(x+t+0.1). (33)
~1.466 +0.8e™"%%) 0, 1g(+0020
ReQ(x,t) = (1+e(HO.OZt))(13.93%(“0_020) cos(x+t+0.1). (34)
—1.466+0.8e*0%20 _0,1g20002)
ImQ(x,t) = (1+e(“°'°2”)(13.93+e(“°'°2”) sin(x+t+0.1). (35)
3. The (G'/G)-expansion scheme
The (G'/G)-expansion scheme introduces the solution of Eq (17) to be in the form
M G’ k
R =A+D A|=| A #0, (36)
a LG

where the function G(¢) achieves the 2"%-order differential equation G”+ 4G’+AG =0, that admits
the following forms of solutions according to the discriminate of this equation which is either any one

of these inequalities x> —41>=0, u*—44<0, and x*—44=0,
(1) When u*—44 >0, the solution is

P-4 \/,uz—‘uu
(G_,):\/m Ilslnh(#)nglzcosh(T)C 3 o
G 2 |1cosh(\”‘2_“)§+|2sinh(”‘2_“)§ ?

(1) When z*—44 <0, the solution is
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. \/,uz—4/1 \/,uz—4/1
(G_’): /,uz—4/1 —Ilsm(#)gﬂzcos(T)g u o
© 2 I, cos(V& —*4 Z_M)gﬂzsin(\'“ 2‘“); ?

(I11)  When u*—-44=0, the solution is

Gy _( b y_#
(E)_(lﬁlzé) > (39)

where M appearing in Eq (36) has been calculated before to be M =1, hence the solution is
G !
Ri(£)=A, +A1(E) : (40)

"

By substituting R,”,R/’R,,R, into Eq (15), collecting and equating the coefficients of various

G'\i . . . . .
powers of (E)I to zero, this leads to a system of equations from which the following two results will

be emerged
25 17Js
1 A :0, ZO,W = ,A = )
(1) 0 =UH EYTTRE /—220__30_
2 2 2
790 -545 - 810°c " 545 o " 432600 :
(—30’+2/10) (—30‘+2/10) (—30’+2/10)
28801 %0" 94520 6252/10 216° (41)
m =0.014- -+ - - .
(B0+220) (301210) (-do+2i0) (B0+240)
3
10800 N 21600h 9452
(—30 + 2/10') (—30 + 2/10') J-30+21c
26 178
A =0, u=0w = A = ,
@A =04 3+20 " Pio-30
2 2 2
79545 - 810°c " 546 o " 432000 :
(—30+2/10) (—30+2/10) (—30+2/10)
2.2 g g 2 (42)
28801°c %50 620210 276
m =0.014- + - -

2 3 3 '
(80+220) (3542i0) (Bo+2i0) (0+200)
3

1080 21650/ 945?

(-30+240) (-30+240) -30+2ic
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(B)W=-0.2(35 + 20:A2), A = 0,m = 0.3(~4n — &),

- 3.5A o \[-36 —20 A2 A- ~0.6,/-36 20 A’ (43)
- A = N .

35 +20 A

(4)w=—-0.2(35+20A2),A=0,m=0.3(-4n-5),

_ 35Ao A&:o.a,/—scs—za/sg (44)

- J85-20A Jo

Let us now derive the corresponding solutions to the first result that can be simplified to be
A,=0,A =17, u=0w =lo=n=0=L1=2,m=-214,1,=11,=2. (45)
The solution in the framework of this result can be extracted as follow:
2 _ 2 _
C |t sin A T ) cos(VEE A,
(G_) — H -4 ! 2 2 2 _ﬁ
G

: |1co:=,(\/“22‘4’1)g+|zsin(‘/“2 —4hy | 2

G’ _(—sin2i§+2c032i§) (46)

(=) =2 . —
G Cos2i ¢ +2sin2id

Rl(é/) =A0 +A1(%)-

—sin2i ¢ +2c0s 2i gj

Ru(e) =8 ( cos2i ¢ +2sin2i &

—i sinh2¢ +2cosh Zgj

R. (&) =8i ( cosh2¢ +2i sinh 2¢

8sinh 2¢ +16i cosh 24“} 47)

Rul€) :[ cosh 2¢ + 2i sinh 2¢

Hence, Q(¢) =R, (£)e" "V, & =x +W,,w =X +5t +6,.

(48)

40sinh 2¢ cosh 2¢ +16i }e”x 401)

Q) :( cosh? 2¢ +4sinh? 2¢

40sinh 24 cosh 24 +16i -
Q(x ,t):( cosh? 26 + 4sinh? 2¢ j(cos(x +t +0.1) +i sin(x +t +0.1)). (49)

(50)

ReQ (x..1) (40sinh 2¢ cosh 2§cozs(x +t +_0.12—16$in(x +t+0.1)) |
cosh®2¢ +4sinh° 24

AIMS Mathematics Volume 9, Issue 3, 6145-6160.
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MO (x 1) (40sinh 2¢ cosh ngir;(x +t +9.1)2+16cos(x +t+0.1)) . 51)
cosh” 24 +4sinh” 24
4. The EDAS
This technique proposes the solution of Eq (17) to be
M .
R($)=2.b ¢'({), ¢? =ap’+po’ +yp’. (52)
i=0
The solution according to this technique for the suggested model whose balance M =1 is
R, =b, +b,p. (53)
Consequently
R, =byp' =b,\Jag? + B’ + yp". (54)
R, =b,p" =b,(cp+1.58¢° +2yp°). (55)
R, =byp" =b,(a+3fp+ 619" ) a? + B’ + " (56)

By inserting the relations (53)—(56) into Eq (15) we get

W R, (a+3Bp+6yp°)+(W,—5-4(m+n))R, —4o(b, +b,p)°R, —(Z(m +n)+ijf =0.

Collecting and equating the coefficients of various powers of ¢' to zero we get a system whose
unique solution is:

(ot <)
wh/(0.56 + 25 +2p)

_0.3(-40b} +6w y)
wh/(0.55 + 27+ 2u)

b (0.56 +2n+2p)
~4oh? +6w y

8abb,’(0.56 + 2 +2u)
~4ob] +6w y '

{b§(0.55+217+2y)+ (3/\/ +3§+4y+477+4ab02)},
(57)

p

{b0b1(5 +4n+4u)+
This result can be simplified to be

a=20,=3y=loc=W=35=pu=n=b,=b,=1. (58)

Thus the solution is R, =b, +b,p, where ¢ can be derived from the relation

Q= \/20402 +3(p3 +yp°.

To be

AIMS Mathematics Volume 9, Issue 3, 6145-6160.
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»= P (59)
1—(9\/%4 _15j
J20
zm(e\/ﬁﬁ _15j
R, =1+ 20 (60)

This result generates two results; we will implement the identical solution for one of them which

1+\/1+ 2(e 2% —2e ¥ ~15)
(e’m‘f —J2e ¢ —1.5)

R, =1+

20

2
1_[8_@4_ 15 j

20

z@[e B¢ _15)
i (x+t+0.1)

Q(x,t)=41+ (61)

1.5
2./20| e V¢ —]
( J20

2
1—(e@4 _bs J

J20

ReQ(x,t) =41+ cos(x +t +0.1). (62)

24/20 (em? S 1S j
20 .
2 bsin(x +t +0.2). (63)
15
1—[e‘”204 R

20

The other solutions corresponding to the other results can be extracted in the same connection.

ImQ (x,t) =11+

5. Conclusions

Throughout this work, three various schemas have been introduced to obtain new perceptions of

the soliton solutions for the Myrzakulov-Lakshmanan XXXII-equation. These three schemas are the
GKS, the (G'/G)-expansion schema and the EDAS. These suggested schemas have been implemented

in the same way and are parallel. All these schemas have been used for the first time for this target.

Each schema archives many forms of results from which we choose only one result and design the
corresponding solution. The designed solutions using these three schemas have been established. The
obtained solutions appear in many forms as M-shaped soliton solutions, W-shaped soliton solutions

AIMS Mathematics Volume 9, Issue 3, 6145-6160.
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Figures 1-4, kink soliton solution Figure 5, bright soliton solution Figure 6 and hyperbolic function
Figures 7 and 8. Our achieved soliton solutions in the framework of any other methods have not been
achieved before. The realized soliton solutions are new compared with [12], who solved the suggested
model numerically using the N-fold Darboux Transformation method; hence, the novelty of our
obtained solutions is clear. The 2D, 3D soliton behaviors that describe the dynamic properties for all
achieved soliton solutions that have emerged from the suggested model have been configured.

Figure 1. The soliton behavior of the Re. Part Eq (28) in 2D and 3D with values:
A=B,=0c=0=n=1A=-04,A, =-0.634,B, =-0.928,w, =0.3,m=-1.25.

Figure 2. The soliton behavior of the Im. Part Eq (29) in 2D and 3D with values:
A=B,=c=0=n=1A=-04,A, =-0.634,B, =-0.928,w, =0.3,m=-1.25.

Figure 3. The soliton behavior of the Re. Part Eq (34) in 2D and 3D with values:
A=B,=c=0=n=1A=-01A, =-2.366,B, =12.93,w, =0.02,m=-1.25.

AIMS Mathematics Volume 9, Issue 3, 6145-6160.
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30ImgQ 20ImgQ

[ o5t

-0.05

Figure 4. The soliton behavior of the Im. Part Eq (35) in 2D and 3D with values:
A=B,=0c=6=n=1A,=-0.1A,=-2.366,B =12.93,w, =0.02,m =-1.25.

Figure 5. The soliton behavior of the Re. Part Eq (50) in 2D and 3D with values:
A,=0,A =17, u=0w =Lo=n=0=L1A=2,m=-2141,=11,=2.

1 “ x

0.5 1.0

Figure 6. The soliton behavior of the Im. Part Eq (51) in 2D and 3D with values:
A,=0,A =17,u=0W =lo=n=5=,A=2,m=-214,,=11,=2.

AIMS Mathematics Volume 9, Issue 3, 6145-6160.
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QResl

— N w
v T

w N

Figure 7. The soliton behavior of the Re. Part Eq (62) in 2D and 3D with values:
a=20,=3,y=lo=w =0=u=n=b,=b, =1

Figure 8. The soliton behavior of the Im. Part Eq (63) in 2D and 3D with values:
a=20,=3,y=Lo=w =06=u=n=b,=b, =1.

Use of Al tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

This work was supported by the Ministry of Science and Higher Education of the Republic of
Kazakhstan, Grant AP14870191.

Conflict of interest

The authors declare no conflict of interest.

AIMS Mathematics Volume 9, Issue 3, 6145-6160.



6158

References

1.

10.

11.

12.

13.

14.

L. Debnath, Nonlinear partial differential equations for scientists and engineers, Massachusetts:
Birkh&user Boston, 2005. https://doi.org/10.1007/b138648

J. Yu, B. Ren, P. Liu, J. Zhou, CTE solvability, nonlocal symmetry, and interaction solutions of
coupled integrable dispersion-less system, Complexity, 2022 (2022), 32211447.
https://doi.org/10.1155/2022/3221447

K. Takasaki, Dispersionless Toda hierarchy and two-dimensional string theory, Commun. Math.
Phys., 170 (1995), 101-116. https://doi.org/10.1007/BF02099441

S. Aoyama, Y. Kodama, Topological conformal field theory with a rational W potential and the
dispersionless KP hierarchy, Mod. Phys. Lett. A, 9 (1994), 2481-2492.
https://doi.org/10.1142/S0217732394002355

Z. Sagidullayeva, K. Yesmakhanova, R. Myrzakulov, Z. Myrzakulova, N. Serikbayev, G.
Nugmanova, et al., Integrable generalized Heisenberg ferromagnet equations in 1+1 dimensions:
reductions and gauge equivalence, arXiv: 2205.02073.

R. Myrzakulov, On some sigma models with potentials and the Klein-Gordon type equations,
arXiv: hep-th/9812214.

K. Yesmakhanova, G. Nugmanova, G. Shaikhova, G. Bekova, R. Myrzakulov, Coupled
dispersionless and generalized Heisenberg ferromagnet equations with self-consistent sources:
geometry and equivalence, Int. J. Geom. Methods M., 17 (2020), 2050104.
https://doi.org/10.1142/S0219887820501042

M. Latha, C. Christal Vasanthi, An integrable model of (2+1)-dimensional Heisenberg
ferromagnetic spin chain and soliton excitations, Phys. Scr., 89 (2014), 065204.
https://doi.org/10.1088/0031-8949/89/6/065204

H. Triki, A. Wazwaz, New solitons and periodic wave solutions for the (2+1) dimensional
Heisenberg ferromagnetic spin chain equation, J. Electromagnet. Wave., 30 (2016), 788-794.
https://doi.org/10.1080/09205071.2016.1153986

M. Inc, A. Aliyu, A. Yusuf, D. Baleanu, Optical solitons and modulation instability analysis of an
integrable model of (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation, Micro
Nanostructures, 112 (2017), 628-638. https://doi.org/10.1016/j.spmi.2017.10.018

S. Rayhanul Islam, M. Bashar, N. Muhammad, Immeasurable soliton solutions and enhanced
(G’/G)-expansion method, Physics Open, 9 (2021), 100086.
https://doi.org/10.1016/j.phys0.2021.100086

B. Deng, H. Hao, Breathers, rogue waves and semi-rational solutions for a generalized Heisenberg
ferromagnetic equation, Appl. Math. Lett., 140 (2023), 108550.
https://doi.org/10.1016/j.am1.2022.108550

M. Daniel, L. Kavitha, R. Amuda, Soliton spin excitations in an anisotropic Heisenberg
ferromagnet with octupole-dipole interaction, Phys. Rev. B, 59 (1999), 13774.
https://doi.org/10.1103/PhysRevB.59.13774

H. Triki, A. Wazwaz, New solitons and periodic wave solutions for the (2+1) dimensional
Heisenberg ferromagnetic spin chain equation, J. Electromagnet. Wave., 30 (2016), 788-794.
https://doi.org/10.1080/09205071.2016.1153986

AIMS Mathematics Volume 9, Issue 3, 6145-6160.


https://doi.org/10.1007/b138648
https://doi.org/10.1155/2022/3221447
https://doi.org/10.1007/BF02099441
https://doi.org/10.1142/S0217732394002355
https://doi.org/10.1142/S0219887820501042
https://doi.org/10.1088/0031-8949/89/6/065204
https://doi.org/10.1080/09205071.2016.1153986
https://doi.org/10.1016/j.spmi.2017.10.018
https://doi.org/10.1016/j.physo.2021.100086
https://doi.org/10.1016/j.aml.2022.108550
https://doi.org/10.1103/PhysRevB.59.13774
https://doi.org/10.1080/09205071.2016.1153986

6159

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

M. Bashar, S. Rayhanul Islam, D. Kumar, Construction of traveling wave solutions of the (2+1)-
dimensional Heisenberg ferromagnetic spin chain equation, Partial Differential Equations in
Applied Mathematics, 4 (2021), 100040. https://doi.org/10.1016/j.padiff.2021.100040

M. Bashar, S. Rayhanul Islam, Exact solutions to the (2+1)-Dimensional Heisenberg
ferromagnetic spin chain equation by using modified simple equation and improve F-expansion
methods, Physics Open, 5 (2020), 100027. https://doi.org/10.1016/j.phys0.2020.100027

C. Christal VVasanthi, M. Latha, Heisenberg ferromagnetic spin chain with bilinear and biquadratic
interactions in  (2+1)-dimensions, Commun. Nonlinear Sci.,, 28 (2015), 109-122.
https://doi.org/10.1016/j.cnsns.2015.04.012

E. Zahran, A. Bekir, New unexpected variety of solitons arising from spatio-temporal dispersion
(1+1) dimensional Ito-equation, Mod. Phys. Lett. B, 38 (2024), 2350258.
https://doi.org/10.1142/S0217984923502585

E. Zahran, A. Bekir, Optical soliton solutions to the perturbed Biswas-Milovic equation with
Kudryashov’s law of refractive index, Opt. Quant. Electron., 55 (2023), 1211.
https://doi.org/10.1007/s11082-023-05453-w

S. Kumar, R. Jiwari, R. Mittal, J. Awrejcewicz, Dark and bright soliton solutions and
computational modeling of nonlinear regularized long wave model, Nonlinear Dyn., 104 (2021),
661-682. https://doi.org/10.1007/s11071-021-06291-9

E. Zahran, A. Bekir, New unexpected soliton solutions to the generalized (2+1) Schr&dinger
equation with its four mixing waves, Int. J. Mod. Phys. B, 36 (2022), 2250166.
https://doi.org/10.1142/S0217979222501661

M. Younis, T. Sulaiman, M. Bilal, S. Ur Rehman, U. Younas, Modulation instability analysis
optical and other solutions to the modified nonlinear Schralinger equation, Commun. Theor.
Phys., 72 (2020), 065001. https://doi.org/10.1088/1572-9494/ab7ec8

E. Zahran, A. Bekir, R. Ibrahim, New optical soliton solutions of the popularized anti-cubic
nonlinear Schré&linger equation versus its numerical treatment, Opt. Quant. Electron., 55 (2023),
377. https://doi.org/10.1007/s11082-023-04624-z

E. Zahran, A. Bekir, M. Shehata, New diverse variety analytical optical soliton solutions for two
various models that are emerged from the perturbed nonlinear Schré&linger equation, Opt. Quant.
Electron., 55 (2023), 190. https://doi.org/10.1007/s11082-022-04423-y

M. Ali Akbar, A. Wazwaz, F. Mahmud, D. Baleanu, R. Roy, H. Barman, et al., Dynamical
behavior of solitons of the perturbed nonlinear Schrédinger equation and microtubules through
the generalized Kudryashov  scheme, Results Phys., 43 (2022), 106079.
https://doi.org/10.1016/j.rinp.2022.106079

L. Ouahid, S. Owyed, M. Abdou, N. Alshehri, S. Elagan, New optical soliton solutions via
generalized Kudryashov’s scheme for Ginzburg-Landau equation in fractal order, Alex. Eng. J.,
60 (2021), 5495-5510. https://doi.org/10.1016/j.aej.2021.04.030

G. Genc, M. Ekici, A. Biswas, M. Belic, Cubic-quartic optical solitons with Kudryashov’s law of
refractive index by F-expansions schemes, Results Phys.,, 18 (2020), 103273.
https://doi.org/10.1016/j.rinp.2020.103273

D. Kumar, A. Seadawy, A. Joardar, Modified Kudryashov method via new exact solutions for
some conformable fractional differential equations arising in mathematical biology, Chinese J.
Phys., 56 (2018), 75-85. https://doi.org/10.1016/j.cjph.2017.11.020

AIMS Mathematics Volume 9, Issue 3, 6145-6160.


https://doi.org/10.1016/j.padiff.2021.100040
https://doi.org/10.1016/j.physo.2020.100027
https://doi.org/10.1016/j.cnsns.2015.04.012
https://doi.org/10.1142/S0217984923502585
https://doi.org/10.1007/s11082-023-05453-w
https://doi.org/10.1007/s11071-021-06291-9
https://doi.org/10.1142/S0217979222501661
https://doi.org/10.1088/1572-9494/ab7ec8
https://doi.org/10.1007/s11082-022-04423-y
https://doi.org/10.1016/j.rinp.2022.106079
https://doi.org/10.1016/j.aej.2021.04.030
https://doi.org/10.1016/j.rinp.2020.103273
https://doi.org/10.1016/j.cjph.2017.11.020

6160

29.

30.

31.

32.

33.

34.

C. Gomez S, H. Roshid, M. Inc, L. Akinyemi, H. Rezazadeh, On soliton solutions for perturbed
Fokas-Lenells equation, Opt. Quant. Electron., 54 (2022), 370. https://doi.org/10.1007/s11082-
022-03796-4

E. Zahran, A. Bekir, New variety diverse solitary wave solutions to the DNA Peyrard-Bishop
model, Mod. Phys. Lett. B, 37 (2023), 2350027. https://doi.org/10.1142/S0217984923500276

E. Zahran, A. Bekir, New solitary solutions to the nonlinear Schr&linger equation under the few-
cycle pulse propagation property, Opt. Quant. Electron.,, 55 (2023), 696.
https://doi.org/10.1007/s11082-023-04916-4

E. Zahran, A. Bekir, New diverse soliton solutions for the coupled Konno-Oono equations, Opt.
Quant. Electron., 55 (2023), 112. https://doi.org/10.1007/s11082-022-04376-2

E. Zahran, H. Ahmad, T. Saeed, T. Botmart, New diverse variety for the exact solutions to Keller-
Segel-Fisher system, Results Phys., 35 (2022), 105320.
https://doi.org/10.1016/j.rinp.2022.105320

A. Hyder, M. Barakat, General improved Kudryashov method for exact solutions of nonlinear
evolution equations in mathematical physics, Phys. Scr., 95 (2020), 045212.
https://doi.org/10.1088/1402-4896/ab6526

© 2024 the Author(s), licensee AIMS Press. This is an open access

AivMs A[MS Press  artticle distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 3, 6145-6160.


https://doi.org/10.1007/s11082-022-03796-4
https://doi.org/10.1007/s11082-022-03796-4
https://doi.org/10.1142/S0217984923500276
https://doi.org/10.1007/s11082-023-04916-4
https://doi.org/10.1007/s11082-022-04376-2
https://doi.org/10.1016/j.rinp.2022.105320
https://iopscience.iop.org/volume/1402-4896/95
https://iopscience.iop.org/issue/1402-4896/95/4
https://doi.org/10.1088/1402-4896/ab6526

