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Abstract: In this paper, we study the infinite-dimensional endpoint state-constrained optimal control
problem for fractional evolution equations. The state equation is modeled by the X-valued left Caputo
fractional evolution equation with the analytic semigroup, where X is a Banach space. The objective
functional is formulated by the Bolza form, expressed in terms of the left Riemann-Liouville (RL)
fractional integral running and initial/terminal costs. The endpoint state constraint is described by
initial and terminal state values within convex subsets of X. Under this setting, we prove the Pontryagin
maximum principle. Unlike the existing literature, we do not assume the strict convexity of X∗,
the dual space of X. This assumption is particularly important, as it guarantees the differentiability
of the distance function of the endpoint state constraint. In the proof, we relax this assumption
via a separation argument and constructing a family of spike variations for the Ekeland variational
principle. Subsequently, we prove the maximum principle, including nontriviality, adjoint equation,
transversality, and Hamiltonian maximization conditions, by establishing variational and duality
analysis under the finite codimensionality of initial- and end-point variational sets. Our variational
and duality analysis requires new representation results on left Caputo and right RL linear fractional
evolution equations in terms of (left and right RL) fractional state transition operators. Indeed, due
to the inherent complex nature of the problem of this paper, our maximum principle and its proof
technique are new in the optimal control context. As an illustrative example, we consider the state-
constrained fractional diffusion PDE control problem, for which the optimality condition is derived by
the maximum principle of this paper.
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1. Introduction

Let X be a Banach space. Consider the following X-valued left Caputo fractional evolution equation: DC α
0+[X](t) + AX(t) = f (t, X(t), u(t)), t ∈ (0,T ],

X(0) = X0 ∈ X,
(1.1)

where DC α
0+ with α ∈ (0, 1) denotes the left Caputo derivative, X : [0,T ]→ X is the state with −A being

the generator of the analytic semigroup, and u : [0,T ]→ U is the control. The problem of this paper is
to minimize the following Bolza-type Riemann-Liouville (RL) fractional integral objective functional
over u(·) ∈ U (note thatU denotes the set of admissible controls)

(P) J(X0; u(·)) =

∫ T

0

(T − s)β−1

Γ(β)
l(s, X(s), u(s))ds + m(X0, X(T )), (1.2)

subject to (1.1) and the endpoint state constraint

(X0, X(T )) ∈ F0 × FT ⊂ X × X (endpoint state constraint). (1.3)

Under (1.1)–(1.3), the precise statement of (P) is as follows:

(P) inf
u(·)∈U

J(X0; u(·)), subject to (1.1) and (1.3).

(P) can be referred to as the infinite-dimensional optimal control problem for fractional evolution
equations with the endpoint state constraint. The precise problem statement is given in Section 2. The
main goal of this paper is to derive the Pontryagin maximum principle for (P), which constitutes the
necessary condition for optimality.

Fractional differential and evolution equations can be viewed as generalizations of classical
differential and evolution equations using the fractional calculus framework. They can be applied to
study and model various situations in economics, mathematical finance, viscoelasticity, aerodynamics,
engineering, and biology, where the fractional phenomena can be observed; see [11,24,31,32,47] and
the references therein. It is worth noting that (1.1) can be viewed as a class of fractional evolution
equations, which covers Caputo fractional differential equations when X = Rn. Indeed, fractional
evolution equations can be applied to study fractional partial differential equations (PDEs) and/or delay
situations using the generator A and the operator f [8, 31, 47]. Some numerical approaches for solving
fractional PDEs can be found in [20, 37] and the references therein.

There are various different formulations and results on optimal control of fractional differential
equations, which corresponds to X = Rn in (P). In particular, their notable results can be found in [1,2,
4, 23, 28, 34, 44], where they obtained the Pontryagin maximum principles via variational and duality
approaches. On the other hand, we mention that the general infinite-dimensional fractional optimal
control problem has not yet been sufficiently studied. Indeed, it is quite surprising that there are
no concrete results on the infinite-dimensional maximum principle for optimal control of fractional
evolution equations except [12, 33]. Below, we provide a detailed literature review on optimal control
for fractional differential and evolution equations.

As mentioned above, to the best of our knowledge, the study on optimal control for fractional
evolution equations has not been fully investigated, which we address in this paper through (P) (see
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Theorem 3.1). There are some results on the controllability and the existence of optimal controls for
the fractional control problem similar to (P) under additional assumptions [41, 47] (see Remark 3.1).
However, the earlier works did not study explicit optimality conditions in terms of the Pontryagin
maximum principle. Both [33, Theorem 3] and [12, Theorem 5.3] considered the fractional optimal
control problem for fractional evolution equations. However, they did not consider the state constraints
in the corresponding optimal control problems and their maximum principles, i.e., F0 = FT = X in (1.3)
(see Remark 3.1). In addition, although [12] considered the Volterra integral-type singular evolution
equation with the analytic semigroup, the overall state equation as well as the adjoint equation in the
corresponding maximum principle are R-valued finite dimensional ones, which belong to Lp([0,T ];R)
(see [12, Theorems 3.1 and 5.3]). Furthermore, the equivalence between the integral-type singular
evolution equation in [12] and the Caputo- and RL-type fractional differential equations holds only in
the finite-dimensional case (see [12, Section 4]). The preceding discussion implies that (P) is different
from the earlier works [12, 33]. Indeed, (P) can be viewed as a generalization of [33] to the state-
constrained control case.

In the finite-dimensional case (i.e., when X = Rn in (P)), the various versions of maximum principles
for fractional optimal control problems were studied in [1,2,4,23,28,34,44]. However, their approaches
cannot be applied to solve the infinite-dimensional problem (P), since the infinite-dimensional control
problem includes several technical intricacies as discussed in [26, Chapter 4] and [15, Chapter 10].
Moreover, the classical infinite-dimensional maximum principles for nonfractional optimal control
problems (e.g., [14, 15, 17, 25, 26, 30, 35]) cannot be used to solve (P) directly, since the fractional
control problem requires different techniques using fractional calculus and analysis (see Remark 3.1).
Therefore, we have to develop new techniques to obtain the maximum principle of (P).

The summary of the preceding discussion is stated as follows. It is not possible to use the earlier
works [12, 33], since they considered the infinite-dimensional fractional optimal control problem
without the state constraints.* Indeed, they did not need to use the key concepts and techniques
established in this paper due to the absence of the state constraints (see the statements (a)–(c) and (i)–
(iii) below). Morevoer, we are not able to use the approaches for the earlier works on the finite-
dimensional case (X = Rn) with the state constraints (e.g., [1, 2, 4, 23, 28, 34, 44]), as the infinite-
dimensional problem requires different technical methods (see [26, Chapter 4] and [15, Chapter 10]).
Finally, since the fractional control problem requires fractional calculus and analysis, the approaches
for the classical nonfractional infinite-dimensional control problems (e.g., [14, 15, 17, 25, 26, 30, 35])
cannot be used directly to obtain the maximum principle of (P).

In the following, we state the main contributions of this paper:

(a) We prove the maximum principle for (P) (see Theorem 3.1 and Section 5). Note that the key
concept of proving Theorem 3.1 is to apply the Ekeland variational principle under the family
of spike variations, where the intrinsic properties of fractional integral and derivative, analysis
of variational equations in Lemmas 5.1 and 5.2, and the representation results of linear fractional
evolutions in Lemmas B.3–B.5 are essentially required. Indeed, the proof of Theorem 3.1 is divided
into nine steps, which is provided in Section 5.

(b) To prove Theorem 3.1, we obtain the explicit representation formulas of linear left Caputo
*As mentioned above, [12] cannot be viewed as the infinite-dimensional problem, since the overall state equation as well as the

adjoint equation in the corresponding maximum principle are R-valued finite dimensional ones, which belong to Lp([0,T ];R) (see [12,
Theorems 3.1 and 5.3]).
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fractional evolution equations with initial conditions and right RL fractional evolution equations
with terminal conditions using RL fractional state-transition evolution operators (see Lemmas B.3–
B.5 in Appendix 6).

(c) We apply the maximum principle in Theorem 3.1 to the optimal control problem of fractional
diffusion PDEs. In fact, the necessary condition for optimality is derived using the maximum
principle in Theorem 3.1 (see Section 4).

The detailed statements of the main results of this paper, including the comparisons with the existing
literature, are as follows:

(i) As mentioned in (a), we state and prove the maximum principle for (P) (see Theorem 3.1).
As noted above, our paper extends [33] to the state-constrained case. Indeed, unlike the
unconstrained case in [33, Theorem 3] and [12, Theorem 5.3], the maximum principle in
Theorem 3.1 requires additional nontriviality and transversality conditions to cope with the
state constraint in (1.3). Hence, our proof has to be different from that in [12, 33] (see
Remarks 3.1 and 3.2).† Also, different from the existing literature for standard nonfractional
infinite-dimensional and PDE optimal control problems (e.g., [15, 26, 30, 35, 46]), we do not
assume the strict convexity of X∗, the dual space of X. This assumption is particularly important,
as it guarantees the differentiability of the distance function of the endpoint state constraint. In
the proof (see Section 5), we relax this assumption via a separation argument and constructing
a family of spike variations for the Ekeland variational principle, which can be viewed as an
extension of [25] to the fractional control problem (see Remarks 3.1 and 3.2). Subsequently,
we prove the maximum principle (see Section 5), including nontriviality, adjoint equation,
transversality, and Hamiltonian maximization conditions, by establishing variational and duality
analysis under the finite codimensionality of initial- and end-point variational sets. Indeed, in
our variational analysis, we need to apply fractional calculus to obtain the precise estimates of the
variational equations under the family of spike variations (see Lemmas 5.1 and 5.2). Furthermore,
in our duality analysis, it is essential to obtain explicit representations of the solutions to linear
fractional variational and adjoint equations in terms of the associated RL fractional state-transition
evolution operators. These results have not been reported in the existing literature (see also (ii)
below and Appendix 6). Hence, the proof in Section 5 has to be different from that for the
maximum principles studied in the existing literature.

(ii) As for (b), we obtain the explicit representation results of linear left Caputo fractional evolution
equations with initial conditions and right RL fractional evolution equations with terminal
conditions (see Lemmas B.3–B.5 in Appendix 6). In both cases, to obtain the desired
representation formulas, a detailed analysis of the fundamental solution of the left and right RL
fractional state transition operators has to be carried out (see Lemma B.3 and Remark B.1). Also,
the careful use of Fubini’s formula as well as properties of fractional derivatives and integrals is
needed. Notice that the finite-dimensional version of the representation result for forward linear
Caputo evolution equations was presented in [19, Theorem 5.1], and Lemma B.4 can be viewed
as a generalization [19, Theorem 5.1] to the infinite-dimensional case. On the other hand, the

†As mentioned in Section 1, although [12] considered the infinite-dimensional Volterra integral-type singular evolution equation, the
overall state equation as well as the adjoint equation in the corresponding maximum principle are R-valued finite dimensional ones.
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representation result of linear right RL fractional evolution equations with terminal conditions in
Lemma B.5 has not been reported in the existing literature. Note that the results in Appendix 6
are independent from the main result of this paper, and we provide their complete proofs, which
are omitted in [33].

(iii) Finally, we apply Theorem 3.1 to the optimal control problem of fractional diffusion PDEs, which
can be applied to analyze general diffusion problems appeared in engineering and applied sciences
(see Section 4). In particular, we first convert the fractional diffusion PDE into the abstract X-
valued left Caputo fractional evolution equation in (1.1). Then the fixed end-points constraint
optimal control problem is formulated using (1.2) and (1.3). Under this setting, the corresponding
optimality condition is derived by the maximum principle of this paper, where the bang-bang type
optimal control is obtained via the Hamiltonian maximization condition (see Proposition 4.1).
Notice that the result in Section 4 can be viewed as an extension of that for nonfractional versions
(e.g., [13, 15, 21, 26, 30]) to the state-constrained fractional PDE control problem.

Based on the above discussion, we mention that the technique for proving the maximum principle
(see Theorem 3.1 and Section 5) is significantly different from the unconstrained case (e.g., [12, 33]),
the finite-dimensional fractional control problems (e.g., [1, 4, 23]), and the classical nonfractional
infinite-dimensional control problems (e.g., [15,25,26]). Indeed, due to the inherent complex nature of
(P), the maximum principle in this paper is new in the optimal control problem context and its detailed
proof must be different from that of the existing literature.

The organization of the paper is as follows. We provide the precise problem statement of (P) in
Section 2, where the key notation, definitions, and mathematical framework of fractional integrals and
derivatives are also given. The statement of the Pontryagin maximum principle is given in Section 3.
The application to the fractional diffusion PDE is studied in Section 4. The proof of the maximum
principle is given in Section 5. Appendix 6 provides the proof for the well-posedness of (1.1) (see
Theorem 2.1). In Appendix 6, we prove the representation results on linear fractional evolution
equations. Appendix 6 provides some technical lemmas used in Section 5.

2. Notation and problem statement

In this section, we first state the mathematical framework of fractional integrals and derivatives,
including their key definitions and the notations employed in the analysis. Then we provide the problem
statement of this paper.

2.1. Notation

Let Rn be the n-dimensional Euclidean space and R := R1, where the norm in Rn is defined by
| · | := | · |Rn . Let Γ be the Gamma function. Let [0,T ] with T < ∞ be the (finite) time-horizon. In this
paper, M ≥ 0 is a generic constant, and its exact value varies from line to line.

Let (X, | · |X) be a Banach space, and X∗ the dual space of X, i.e., the space of all bounded (or
continuous) linear functionals on X. The norm on X∗ is defined by | f |X∗ := supx∈X, |x|X≤1 | f (x)| for
f ∈ X∗. Let 〈·, ·〉X∗,X be the usual duality paring between X and X∗. The set of linear bounded operators
from X to another Banach space Y is denoted by L(X,Y). Let L(X) := L(X,X). Let |A|L(X,Y) be the
(operator) norm of A ∈ L(X,Y). Let I ∈ L(X) be an identity operator. Let A∗ ∈ L(Y∗,X∗) be the adjoint
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operator of A ∈ L(X,Y), i.e., 〈A∗y∗, x〉X∗,X∗ = 〈y∗, Ax〉Y∗,Y for x ∈ X and y∗ ∈ X∗. Clearly, A∗ ∈ L(Y∗,X∗)
is also linear and bounded.

We say that f is a Banach space valued function on [0,T ] if f : [0,T ] → X. The integration
of Banach spaced valued functions is understood in the Bochner sense [26, page 45]. For 1 ≤ p ≤
∞, let Lp([0,T ]; X) be the usual Lp-space of X-valued functions, where L∞ is defined with essential
supremum. Let C([0,T ]; X) be the space of X-valued continuous functions on [0,T ] with norm ‖ · ‖∞.
Let AC([0,T ]; X) be the space of absolutely continuous X-valued functions on [0,T ].

We state definitions of fractional integrals and derivatives. More detailed results on fractional
calculus can be found in [11, 24].

Definition 1. (i) For f (·) ∈ L1([0,T ]; X), the left Riemann-Liouville (RL) fractional integral Iα0+[ f ]
of order α > 0 is defined by

Iα0+[ f ](t) :=
∫ t

0

(t − s)α−1

Γ(α)
f (s)ds.

(ii) For f (·) ∈ L1([0,T ]; X), the right RL fractional integral IαT−[ f ] of order α > 0 is defined by

IαT−[ f ](t) :=
∫ T

t

(s − t)α−1

Γ(α)
f (s)ds.

Definition 2. (i) For f (·) ∈ L1([0,T ]; X), the left RL fractional derivative DRL α
0+[ f ] of order α ∈ (0, 1)

is defined by

DRL α
0+[ f ](t) :=

d
dt

[
I1−α
0+ [ f ]

]
(t),

where I1−α
0+ [ f ](·) ∈ AC([0,T ]; X).

(ii) For f (·) ∈ L1([0,T ]; X), the right RL fractional derivative DRL α
T−[ f ] of order α ∈ (0, 1) is defined

by

DRL α
T−[ f ](t) := −

d
dt

[
I1−α
T− [ f ]

]
(t),

where I1−α
T− [ f ](·) ∈ AC([0,T ]; X).

Let DRL α
0+[ f (·)](·) := DRL α

0+[ f ](·) and DRL α
T−[ f (·)](·) := DRL α

T−[ f ](·), where (·) in the square bracket
is used to emphasize the integration of f with respect to the other variable.

Definition 3. (i) For f (·) ∈ C([0,T ]; X), the left Caputo fractional derivative DC α
0+[ f ] of order α ∈

(0, 1) is defined by
DC α

0+[ f ](t) := DRL α
0+[ f (·) − f (0)](t),

where f (·) − f (0) is left RL fractional differentiable in the sense of Definition 2.

(ii) For f (·) ∈ C([0,T ]; X), the right Caputo fractional derivative DC α
T−[ f ] of order α ∈ (0, 1) is

defined by
DC α

T−[ f ](t) := DRL α
T−[ f (·) − f (T )](t),

where f (·) − f (T ) is right RL fractional differentiable in the sense of Definition 2.
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2.2. Problem statement

Let (X, | · |X) be a Banach space, representing the state space. We consider the X-valued left Caputo
fractional evolution equation on [0,T ] with order α ∈ (1

2 , 1): DC α
0+[X](t) + AX(t) = f (t, X(t), u(t)), t ∈ (0,T ],

X(0) = X0 ∈ X,
(2.1)

where X0 ∈ X is the initial condition, −A is the generator of the analytic semigroup, and f : [0,T ] ×
X × U → X is the driver of (2.1) with U being the control space. Let U := U[0,T ] = {u : [0,T ] →
U | u(·) is measurable} be a set of admissible controls for (2.1). We sometimes write X(·; X0, u) := X(·)
to emphasize that (2.1) is dependent on (X0, u(·)) ∈ X ×U.

Assumption 1. (i) A : D(A) ⊂ X→ X, where D(A) is the domain of A, i.e., the subset of X such that
A exists, is a linear operator such that −A is the generator of the compact analytic semigroup
(T (t))t≥0 of uniformly bounded linear operators with T : [0,T ]→ L(X) [36].

(ii) (U, ρ) is a separable metric space.

(iii) t 7→ f are measurable for any fixed (X, u) ∈ X × U and f (·, X, u) ∈ L∞([0,T ]; X). (X, u) 7→ f
is continuous in both variables. There is a constant M ≥ 0 such that | f (t, 0, u)|X ≤ M and
| f (t, X, u) − f (t, X′, u′)|X ≤ M(|X − X′|X + ρ(u, u′)) for any X, X′ ∈ X and u, u′ ∈ U.

(iv) X 7→ f is continuously Fréchet differentiable, denoted by ∂X f (t, X, u), for any fixed (t, u) ∈ [0,T ]×
U, where t 7→ ∂X f is continuous. Note that ∂X f (t, ·, u) : [0,T ] × U → L(X). It also holds that
there is a constant M ≥ 0 such that |∂X f (t, X, u)|X ≤ M.

(v) MTα supt∈[0,T ] |T (t)|X
Γ(1+α) < 1.

We state the well-posedness result (equivalently, the existence and uniqueness of the solution)
of (2.1). The proof is given in Appendix 6.

Theorem 2.1. Let Assumption 1 hold. Then (2.1) admits a unique (mild) solution. Moreover, the
solution of (2.1) can be expressed by the left RL fractional integral form:

X(t) = X0 − Iα0+[AX(·)](t) + Iα0+[ f (·, X(·), u(·))](t), t ∈ [0,T ]. (2.2)

Finally, there is a constant M ≥ 0 such that for any X0, X′0 ∈ X (with X(t) := X(t; X0, u) and X′(t) :=
X(t; X′0, u)),

sup
t∈[0,T ]

|X(t) − X′(t)|X ≤ M|X0 − X′0|X +

∫ T

0

∞∑
k=1

(MΓ(α))k

Γ(kα)
(T − s)kα−1|X0 − X′0|Xds,

sup
t∈[0,T ]

|X(t)|X ≤ (|X0|X + M) +

∫ T

0

∞∑
k=1

(MΓ(α))k

Γ(kα)
(T − s)kα−1(|X0|X + M)ds.

The objective functional to be minimized over u(·) ∈ U is given by the following left RL fractional
integral with order β ≥ 1:

J(X0; u(·)) = Iβ0+
[l(·, X(·), u(·)](T ) + m(X0, X(T )), (2.3)
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where by Definition 1,

Iβ0+
[l(·, X(·), u(·)](T ) =

∫ T

0

(T − s)β−1

Γ(β)
l(s, X(s), u(s))ds.

In (2.3), l : [0,T ] × X × U → R is the running cost, while m : X × X → R is the terminal cost. We
introduce the associated endpoint state constraint:

(X0, X(T )) ∈ F0 × FT ⊂ X × X (endpoint state constraint). (2.4)

Based on the preceding setting, the problem of this paper is stated as follows:

(P) inf
u(·)∈U

J(X0; u(·)), subject to (2.1) and (2.4).

Indeed, (P) can be regarded as the optimal control problem for fractional evolution equations with
endpoint state constraint. The main goal is to derive the Pontryagin maximum principle for (P).

Assumption 2. (i) t 7→ l is measurable for any fixed (X, u) ∈ X × U and l(·, X, u) ∈ L∞([0,T ];R).
(X, u) 7→ l and (X, X′) 7→ m are continuous in both variables. There is a constant M ≥ 0 such
that |l(t, 0, u,w)| + |m(0, 0)| ≤ M.

(ii) X 7→ l is continuously Fréchet differentiable, denoted by ∂Xl(t, X, u), for any fixed (t, u) ∈ [0,T ] ×
U, where t 7→ ∂Xl is continuous. Note that ∂Xl(t, ·, u) : [0,T ] × U → L(X,R) = X∗. (X, X′) 7→
m is continuously Fréchet differentiable, denoted by ∂Xm(X, X′) and ∂X′m(X, X′), respectively,
where ∂Xm(·, X′), ∂X′m(X, ·) ∈ L(X,R) = X∗. There is a constant M ≥ 0 such that |∂Xl(t, X, u)| +
|∂Xm(X, X′)| + |∂X′m(X, X′)| ≤ M.

(iii) F0 and FT are closed convex subsets of X.

Remark 2.1. (i) Assumptions 1 and 2 are standard for fractional evolution equations in Theorem 3.1
and their optimal control problems. Indeed, these assumptions have been used in various types of
(finite- and infinite-dimensional) optimal control problems and their maximum principles; see [1,
4, 12, 15, 23, 25, 26, 28, 34, 41] and the references therein.

(ii) As (2.1) is an infinite-dimensional evolution equation driven by a (possibly) unbounded linear
operator −A (the generator for the analytic semigroup), (P) is different from the finite-dimensional
fractional optimal control problems in [1, 4, 23] (when X = Rn).

(iii) We note that the analyticity of −A in Assumption 1 is used for the well-posedness of (2.1) in
Theorem 2.1 (see [48, Theorem 3.3] and [41, Theorem 3.1]). In fact, (v) of Assumption 1 is due
to [48, Theorem 3.3]. Then Theorem 2.1 is used to prove the well-posedness of linear Caputo
fractional evolution equations in Lemma B.4. Note that we can replace the analyticity of −A with
−A being a generator of an (equicontinuous) C0-semigroup. In this case, we need additional
assumptions on f for the well-posedness of (2.1); [9, Section 3] and [38, Sections 3 and 4]. See
also [47, Chapter 2], [18, Chapters 2 and 3] and [31] for the well-posedness of (2.1) under
different assumptions. In this paper, since the main goal is to derive the maximum principle of
(P), we do not focus on the generality of the assumptions.
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3. Statement of main result: Pontryagin maximum principle of (P)

Assume that the pair (X(·), u(·)) ∈ C([0,T ]; X) × U is the optimal solution of (P). We observe
that X(·) ∈ C([0,T ]; X) is the corresponding optimal state trajectory generated by the optimal control
u(·) ∈ U satisfying (X0, X(T )) = (X0, X(T ; X0, u)) ∈ F0 × FT . We introduce the notation:

f (·) := f (·, X(·), u(·)), ∂X f (·) := ∂X f (·, X(·), u(·)), l(·) := l(·, X(·), u(·)), ∂Xl(·) := ∂Xl(·, X(·), u(·)),

m := m(X0, X(T )), ∂X0m := ∂X0m(X0, X(T )), ∂Xm := ∂Xm(X0, X(T )).

Let NF0(X0) be the normal cone to F0 at X0 ∈ F0 defined by

NF0(X0) := {X′ ∈ X∗ | 〈X′, y − X0〉X×X∗ ≤ 0, ∀y ∈ F0}.

The normal cone NFT (X) to FT at X ∈ FT can be defined analogously. Let Ω := ∪∞k=1Ωk, where for a
positive integer k,

Ωk :=
{(
{u j(·)}kj=1, {θ j}

k
j=1

)
| u j(·) ∈ U, θ j ≥ 0, ∀ j = 1, . . . , k,

k∑
j=1

θ j = 1
}
.

For ({u j(·)}kj=1, {θ j}
k
j=1) ∈ Ω, we define

R :=
{
ξ(T ) ∈ X | ξ(t) =

∫ t

0

(t − s)α−1

Γ(α)

(
−A + ∂X f (s)

)
ξ(s)ds +

k∑
j=1

θ j

∫ t

0

(t − s)α−1

Γ(α)
(3.1)

×
(

f (t, X(s), u j(s)) − f (t, X(s), u(s))
)
ds, t ∈ [0,T ],

(
{u j(·)}kj=1, {θ j}

k
j=1

)
∈ Ω

}
,

Q :=
{

X̂ − ζ(T ) ∈ X | ζ(t) = X̂0 +

∫ t

0

(t − s)α−1

Γ(α)

(
−A + ∂X f (s)

)
ζ(s)ds, (3.2)

t ∈ [0,T ], (X̂0, X̂) ∈ F0 × FT

}
.

Assumption 3. R − Q is finite codimensional in X.

We state the main result of this paper, i.e., the Pontryagin maximum principle of (P), in Theorem 3.1
below. Indeed, Theorem 3.1 constitutes the necessary condition for optimality of (P). The proof of
Theorem 3.1 is relegated to Section 5.

Theorem 3.1. Let Assumptions 1–3 hold. Assume that (X(·), u(·)) ∈ C([0,T ]; X) × U is the optimal
solution of (P). Then there exist (p0, ϕ1, ϕ2) ∈ R × X∗ × X∗ such that the following conditions hold:

(i) Nontriviality condition: (p0, ϕ1, ϕ2) , 0, where p0 ≤ 0 and (ϕ1, ϕ2) ∈ NF0(X0) × NFT (X(T )).

(ii) Adjoint equation: P(·) ∈ L1([0,T ]; X∗) is a unique solution to the following right RL fractional
evolution equation:

DRL α
T−[P](t) = −A∗P(t) + ∂X f (t)∗P(t) − p0 (T − t)β−1

Γ(β)
∂Xl(t), t ∈ [0,T ). (3.3)
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(iii) Transversality condition: For any (X′′, X′) ∈ F0 × FT ,

〈I1−α
T− [P](0) − p0∂X0m, (X

′′ − X0)〉X×X∗ − 〈I1−α
T− [P](T ) − p0∂Xm, (X′ − X(T ))〉X×X∗ ≤ 0,

and the adjoint equation holds the following boundary conditions:I1−α
T− [P](T ) = −ϕ2 + p0∂Xm,

I1−α
T− [P](0) = −(−ϕ1 + p0∂X0m).

(iv) Hamiltonian maximization condition: u (pointwisely) maximizes the Hamiltonian, i.e.,

max
u∈U

H(t, X(t), P(t), p0, u) = H(t, X(t), P(t), p0, u(t)), a.e. t ∈ [0,T ],

where H : [0,T ] × X × X∗ × R × U→ R is the Hamiltonian defined by

H(t, X, P, p0, u) := 〈P, f (t, X, u)〉X×X∗ + p0 (T − t)β−1

Γ(β)
l(t, X, u).

Some important remarks of Theorem 3.1 are given below.

Remark 3.1. (i) We have assumed the existence of the optimal solution in Theorem 3.1. Indeed, the
problem for existence of optimal controls requires different technical analysis under additional
restrictive conditions (e.g., convexity and/or linearity) of (2.1) and (2.3). Some results on these
additional conditions as well as the techniques for proving the existence (including the finite-
dimensional case) can be found in [4, 22, 41, 42, 47] and the references therein.

(ii) When there is no endpoint state constraint, i.e., F0 = FT = X, Theorem 3.1 is reduced
to the unconstrained case studied in [33, Theorem 3]. Moreover, Theorem 3.1 is different
from the classical infinite-dimensional nonfractional maximum principles in [15, 25, 26], where
Theorem 3.1 involves the RL fractional adjoint equation and the fractional Hamiltonian. If
X = Rn and U ⊂ Rp in (P), then Theorem 3.1 is reduced to the maximum principle for the
finite-dimensional fractional control problem with the state constraint studied in [1, 4, 23].

(iii) As mentioned in Section 1, the proof of Theorem 3.1 is different from that for the unconstrained
case in [33], the finite-dimensional fractional control problem in [1, 4, 23], and the infinite-
dimensional nonfractional control problem in [15, 25, 26]. Specifically, in this paper, we need
to establish new variational and duality analysis via several technical lemmas for fractional
evolution equations, which are new in the context of infinite-dimensional optimal control
problems.

Remark 3.2. (i) Assumption 3 states that the algebraic difference between initial- and end-point
variational sets R and Q is finite codimensional in X (see [26, Definition 1.5, Chapter 4]). Some
conditions and approaches to check the finite codimensionality can be found in [26, Chapter 1.6
and 4], [30, Theorems 3.1 and 3.2], and [14, 29, 39]. Note that [26, Proposition 3.2 and
Corollary 3.3, Chapter 4] provide the general conditions for the finite codimensionality, which
can be applied to the case of fractional evolution equations. Assumption 3 is very common
in various infinite-dimensional maximum principles and optimal control for partial differential

AIMS Mathematics Volume 9, Issue 3, 6109–6144.



6119

equations [5, 14, 15, 21, 26, 27, 29, 30, 35, 39, 40, 45, 46]. In fact, the finite codimensionality
guarantees that the variables (p0, ϕ1, ϕ2) ∈ R × X∗ × X∗ in Theorem 3.1 are nontrivial, i.e.,
(p0, ϕ1, ϕ2) , 0. On the other hand, in the finite-dimensional case (when X = Rn), the associated
nontriviality can be obtained without Assumption 3.

(ii) Unlike [26], we do not need the strict convexity of X∗, the dual space of X. This assumption is
satisfied when X is separable or reflexive. The strict convexity of X∗ has been used in various
earlier infinite-dimensional maximum principles, which is crucial to obtain the explicit derivative
of the distance function in variational analysis [5, 15, 21, 26, 27, 35, 40, 46]. We relax this
assumption in Theorem 3.1 by establishing the separation argument and constructing a family
of spike variations using Ω, which can be viewed as an extension of [25] to the fractional
control problem. Specifically, in Section 5.4, our proof shows that the directional derivative of the
distance function is expressed by the duality paring between X and X∗, where the element of X∗

is regarded as the generalized gradient of the distance function. This alternative duality paring
form is used in the rest of the proof to derive the optimality conditions in Theorem 3.1.

4. An example: fractional diffusion PDE

In this section, we apply (P) for optimal control of fractional diffusion PDEs, which can be applied
to analyze general diffusion aspects appeared in engineering and applied sciences [30, 41, 48]. The
purpose of this section is to show the conversion of the fractional PDE control problem into the abstract
infinite-dimensional problem (P) and to demonstrate the application of Theorem 3.1.

Let O ⊂ R3 be open with smooth boundary ∂O ⊂ R3. Let Lp(O) be the set of real-valued pth-
integrable functions on O (when p = ∞, it is the space of real-valued essential bounded functions).
We denote Hk(O) by the usual Sobolev space of real-valued functions on O, whose distributional
derivatives, up to the order k, are square-integrable, and Hk

0(O) by the closure of C∞c (O) in Hk(O), where
C∞c (O) is the set of continuously differentiable real-valued functions on O having compact support.

Consider the following fractional diffusion PDE: DC α
0+[x(·,w)](t) − ∆x(t,w) = f1(t, x(t,w)) + f2(t)v(t,w), (t,w) ∈ (0,T ) × O,

x(t,w) = 0, (t,w) ∈ [0,T ] × ∂O,
(4.1)

where x : [0,T ] × O → R is the state trajectory describing the evolution of the diffusion process with
initial and boundary conditions, ∆ is the Laplacian operator, and v : [0,T ] × O → [−1, 1] ⊂ R is the
control input (the external force acting at every point of O). The objective functional is given by

J(x0; v) =

∫ T

0

(T − s)β−1

Γ(β)

∫
O

(
l1(s, x(s,w)) + l2(s)v(s,w)

)
dwds. (4.2)

The minimization problem of (4.2) subject to (4.1) can be regarded as optimal control of fractional
diffusion equations, where its nonfractional standard version was considered in various settings in
the existing literature; see [13, 26, 30] and the references therein. Notice that (4.2) is the objective
functional with RL fractional integral, which can be regarded as the minimization of the general time
fractional and/or nonlocal diffusion situations of fractional diffusion PDEs.

Let X = L2(O) and X(t) := x(t, ·) ∈ X. Let Ax := −∆x, where x ∈ D(A) = H2(O) ∩ H1
0(O).

By [36, Theorem 2.7, Chapter 7] and the embedding theorem of Sobolev spaces, −A is the generator
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of the compact analytic semigroup of uniformly bounded linear operators, and −A is self adjoint.
Let u(t) := v(t, ·) and U = L∞([0,T ]; U), where U = L2(O; [−1, 1]), the space of square-integrable
functions on O taking values in [−1, 1]. It is easy to see that U is a nonempty closed and bounded
convex subset of L∞([0,T ]; X), which has at least one interior point.

Under the above setup, (4.1) can be written as the following X-valued Caputo fractional evolution
equation (with the Nemytskii operator f1(t, X(t))(w) := f1(t, x(t,w))):

DC α
0+[X](t) + AX(t) = f1(t, X(t)) + f2(t)u(t), t ∈ (0,T ]. (4.3)

Similar to [45, Section 2.4, page 1324], we consider the following endpoint state constraint for (4.1)
and (4.2) (note that X(0) = x(0, ·) and X(T ) = x(T, ·)):

(X(0), X(T )) ∈ F0 × FT , (4.4)

where for ai, bi ∈ R and hi(·), gi(·) ∈ X, i = 1, . . . ,m,

F0 =
{
y′′(·) ∈ X |

∫
O

y′′(w)hi(w)dw = ai, i = 1, . . . ,m
}
,

FT =
{
y′(·) ∈ X |

∫
O

y′(w)gi(w)dw = bi, i = 1, . . . ,m
}
.

We assume that F0 and FT are nonempty. It is easy to see that F0 and FT are closed convex subsets of
X. Let L1(s, X(s)) :=

∫
O

l1(s, x(s,w))dw and L2(s, u(s)) :=
∫

O
l2(s)v(s,w)dw. Then (4.2) becomes

J(X0; u(·)) =

∫ T

0

(T − s)β−1

Γ(β)

(
L1(s, X(s)) + L2(s, u(s))

)
ds.

Let us assume that f1(·, x), f2(·), l1(·, x), l2(·) ∈ C([0,T ];R) hold Assumptions 1 and 2.
Based on the above discussion, (P) can be applied to formulate the optimal control problem of (4.3)

with the end-points state constraint in (4.4):

inf
u(·)∈U

J(X0; u(·)), subject to (4.3) and (4.4). (4.5)

Suppose that (X(·), u(·)) = (x, v) ∈ C([0,T ]; X)×U is the optimal solution of (4.5). In view of (5.28)
and (5.29) with Π from (B.1), R and Q can be written as follows (see also [26, page 160, Chapter 4]):

R =

{
ξ(T ) ∈ X | ξ(t) =

k∑
j=1

θ j

∫ t

0
Π(t, s) f2(s)(u j(s) − u(s))ds, t ∈ [0,T ],

(
{u j(·)}kj=1, {θ j}

k
j=1

)
∈ Ω

}
,

Q = FT −
(
I +

∫ T

0
Π(T, s)

(
−A + ∂X f1(t, X(s)

)
ds

)
F0.

For Assumption 3, the finite codimensionality of FT in X is crucial. Indeed, by [26, Proposition 3.4
and page 160, Chapter 4]‡, the finite codimensionality of FT in X implies the finite codimensionality
of Q in X, which (by [26, Proposition 3.4, Chapter 4] again) further implies the finite codimensionality

‡Note that [26, Proposition 3.4, Chapter 4] does not need the fractional calculus in the proof.
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of R − Q in X in Assumption 3. Then it follows from [45, Section 2.4, page 1324]§ that FT is finite
codimensional in X. Hence, Assumption 3 holds.

Since X∗ = X, we have (note that X(0) = x(0, ·) and X(T ) = x(T, ·))

NF0(x(0, ·)) =
{
z1(·) ∈ X |

∫
O

z1(w)(x′′(w) − x(0,w))dw ≤ 0, ∀x′′(·) ∈ F0

}
, (4.6)

NFT (x(T, ·)) =
{
z2(·) ∈ X |

∫
O

z2(w)(x′(w) − x(T,w))dw ≤ 0, ∀x′(·) ∈ FT

}
. (4.7)

Based on the preceding analysis and Theorem 3.1, we state the following result:

Proposition 4.1. Assume that (X(·), u(·)) = (x, v) ∈ C([0,T ]; X) × U is the optimal solution of (4.5).
Then there exist (p0, ϕ1, ϕ2) ∈ R × X × X such that the following conditions hold:

(i) Nontriviality condition: (p0, ϕ1, ϕ2) , 0, where p0 ≤ 0 and (ϕ1, ϕ2) ∈ NF0(x(0, ·)) × NFT (x(T, ·)).

(ii) Adjoint equation and boundary condition: p ∈ L1([0,T ]; X) is the unique solution to the
following RL fractional evolution equation with the boundary condition:

DRL α
T−[p(·,w)](t) − ∆p(t,w)

= ∂x f1(t, x(t,w))p(t,w) − p0 (T − t)β−1

Γ(β)
∂xl1(t, x(t,w)), (t,w) ∈ (0,T ) × O,

p(t,w) = 0, (t,w) ∈ [0,T ] × ∂O,

I1−α
T− [p(·,w)](T ) = −ϕ2(w), w ∈ O,

I1−α
T− [p(·,w)](0) = ϕ1(w), w ∈ O.

(iii) Maximum condition: The optimal control v satisfies the following maximum condition:∫
O

(
p(t,w) f2(t) + p0 (T − t)β−1

Γ(β)
l2(t)

)
v(t,w)dw

≥

∫
O

(
p(t,w) f2(t) + p0 (T − t)β−1

Γ(β)
l2(t)

)
v(t,w)dw, ∀v(t, ·) ∈ U, a.e. t ∈ [0,T ],

which is equivalent to the bang-bang control:

v(t,w) =


1, if p(t,w) f2(t) + p0 (T − t)β−1

Γ(β)
l2(t) > 0,

−1, if p(t,w) f2(t) + p0 (T − t)β−1

Γ(β)
l2(t) < 0.

Proof. The entire proof is an application of Theorem 3.1. We observe that (i) follows from the
nontriviality condition of Theorem 3.1. Then (ii) can be deduced from the adjoint equation and its
boundary conditions in Theorem 3.1, where P(·) ∈ L1([0,T ]; X) with P(t) := p(t, ·). Note that the

§Note that [45, Section 2.4, page 1324] does not need the fractional calculus in the corresponding result.
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inequality in the transversality condition of Theorem 3.1 holds immediately, since by (4.6) and (4.7),
for any (x′′(·), x′(·)) ∈ F0 × FT , it follows that∫

O
ϕ1(w)(x′′(w) − x(0,w))dw +

∫
O
ϕ2(w)(x′(w) − x(T,w))dw ≤ 0

⇔ 〈I1−α
T− [P](0), (X′′ − X0)〉X×X∗ − 〈I1−α

T− [P](T ), (X′ − X(T ))〉X×X∗ ≤ 0.

The maximum condition and its equivalent bang-bang control in (iii) are obtained from the Hamiltonian
maximization condition in Theorem 3.1. We complete the proof. �

5. Proof of Theorem 3.1

This section is devoted to proving Theorem 3.1. We use 〈·, ·〉 := 〈·, ·〉X×X∗ when there is no confusion.
The key concept of proving the maximum principle in Theorem 3.1 is to apply the Ekeland

variational principle under the family of spike variations, where the key techniques are applications of
intrinsic properties of fractional integral and derivative, analysis of variational equations in Lemmas 5.1
and 5.2, and the representation results of linear fractional evolutions in Lemmas B.3–B.5. Specifically,
the proof is divided into nine steps, where the outline of each step is given below:

Step 1. Ekeland variational principle: We formulate the unconstrained fractional optimal control
problem of (P) with the penalized objective functional. Then the Ekeland variational principle is
applied to obtain the ε-optimal solution to the corresponding unconstrained control problem as
well as the associated inequalities (see (5.2)).

Step 2. Family of spike variations: By Lemma C.6 and (5.3), the family of spike variations is
defined on {Eδ

j ⊂ [0,T ], j = 1 . . . , k}, where ∪k
j=1meas|Eδ

j | = δT (see (5.4)). Then the estimate of
l and f under the spike variations is obtained with respect to δ (see (5.6)).

Step 3. Variational analysis of δ: By Step 2, variational analysis of the state trajectories and the
objective functionals controlled by the family of spike variations and the ε-optimal solution is
obtained with respect to δ (see Lemma 5.1). Based on Lemma 5.1, by taking δ ↓ 0 of the
inequalities in Step 1, we obtain the variational inequality as well as the multiplier condition
(see (5.12) and (5.13)).

Step 4. Separation: By the separation argument and Lemma C.7, we obtain the alternative forms
of (5.12) and (5.13) as well as the transversality-like conditions for the endpoint state constraints
(see (5.19)–(5.22)).

Step 5. Variational analysis of ε: Similar to Step 3, variational analysis of the state trajectories and
the objective functionals controlled by the ε-optimal solution and the optimal solution is obtained
with respect to ε (see Lemma 5.2). Based on Lemma 5.2 and the multiplier condition (5.20) in
Step 4, by taking ε ↓ 0 of the inequality in Step 4, we obtain the variational inequality (see (5.26)).

Step 6. Proof of (i), Nontriviality condition: By the finite codimensionality in Assumption 3
and [26, Lemma 3.6, Chapter 4], together with the variational inequality in Step 5, the multiplier
condition (5.20) in Step 4, and Lemma B.4 (see Appendix 6), we prove (p0, ϕ1, ϕ2) , 0 with
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p0 ≤ 0.¶ Then we show (ϕ1, ϕ2) ∈ NF0(X0) × NFT (X(T )) by the definition of subdifferential of
convex functions. From the nontriviality condition, we obtain the limiting form of the variational
inequality and multiplier condition in Step 5 with respect to ε ↓ 0 (see (5.30)).

Step 7. Proof of (ii), Duality and adjoint equation: By Lemma B.5, we prove (ii) of Theorem 3.1.
Then using Lemmas B.3–B.5, we obtain the duality form of the variational inequality in Step 6
(see (5.33)).

Step 8. Proof of (iii), Transversality condition: By the definitions of (RL and Caputo) fractional
integrals, we prove (iii) of Theorem 3.1 when u = u of the (duality form) variational inequality in
Step 7.

Step 9. Proof of (iv), Hamiltonian maximization condition: Using the (duality form) variational
inequality in Step 7 and [6, Theorem 5.6.2], we prove (iv) of Theorem 3.1.

5.1. Ekeland variational principle

Recall that (X(·), u(·)) ∈ C([0,T ]; X) × U is the optimal solution of (P). Let dF0 : X → R+ be the
distance function of F0 defined by dF0(X) := infy∈F0 |y− X| for X ∈ X. Let dFT : X→ R+ be the distance
function of FT defined similarly. Then the endpoint state constraint (X0, X(T )) ∈ F0 × FT is equivalent
to dF0(X0) = 0 and dFT (X(T )) = 0.

We introduce the penalized objective functional

Jε(X0; u(·)) =
(([

J(X0; u(·)) − J(X0; u(·)) + ε
]+)2

+ dF0(X0)2 + dFT (X(T ))2
) 1

2
, (5.1)

where [·]+ := max{·, 0}. Define the Ekeland metric by

d̃(u(·), ũ(·)) := meas|{t ∈ [0,T ] | u(t) , ũ(t)}|,

where meas| · | is understood as the Lebesgue measure of the corresponding set. Let us define the metric

d̂((X0, X′0), (u(·), ũ(·))) := |X0 − X′0|X + d̃(u(·), ũ(·)).

We observe that (X×U, d̂) is a complete metric space [26, Proposition 3.10, Chapter 4]. Furthermore,
by our assumptions and Theorem 2.1, Jε is a continuous functional on (X ×U, d̂).

We can observe that

Jε(X0; u(·)) > 0, ∀(X0, u(·)) ∈ X ×U,

Jε(X0; u(·)) = ε ≤ inf
(X0,u(·))∈X×U

Jε(X0; u(·)) + ε.

By the Ekeland variational principle [26, Chapter 4.2], there exist a pair (Xε
0, u

ε(·)) ∈ X ×U such that
d̂((Xε

0, X0), (uε(·), u(·))) ≤
√
ε,

Jε(Xε
0; uε(·)) ≤ Jε(X0; u(·)) = ε,

Jε(Xε
0; uε(·)) ≤ Jε(X0; u(·)) +

√
εd̂((Xε

0, X0), (uε(·), u(·))), ∀u(·) ∈ U.

(5.2)

Let Xε(·) := X(·; Xε
0, u

ε) ∈ C([0,T ]; X) be the state trajectory of (2.1) controlled by uε(·) ∈ U with
Xε(0) = Xε

0. It follows from Theorem 2.1 that supt∈[0,T ] |X
ε(t)| ≤ M.

¶In this proof, we first show p ≥ 0, and then p0 := −p.
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5.2. Family of spike variations

Recall that ω := ({u j(·)}kj=1, {θ j}
k
j=1) ∈ Ω, where

∑k
j=1 θ j = 1 and θ j ≥ 0. Let us define

hεj(s) :=
[

l(s, Xε(s), u j(s)) − l(s, Xε(s), uε(s))
f (s, Xε(s), u j(s)) − f (s, Xε(s), uε(s))

]
∈ R × X.

Clearly, hεj(·) ∈ L1([0,T ];R×X), j = 1, . . . , k by Assumptions 1 and 2. Hence, by invoking Lemma C.6
in Appendix 6, for any δ ∈ (0, 1), there are {Eδ

j ⊂ [0,T ], j = 1 . . . , k} such that for ω ∈ Ω uniformly,

Eδ
j ∩ Eδ

i = ∅, j , i,

∪k
j=1meas|Eδ

j | = δT,

sup
t∈[0,T ]

∣∣∣∣δ k∑
j=1

θ j

∫ t

0

(t − s)α−1

Γ(α)
hεj(s)ds −

k∑
j=1

∫
Eδ

j∩[0,t]

(t − s)α−1

Γ(α)
hεj(s)ds

∣∣∣∣
R×X

= o(δ).

(5.3)

We define the family of spike variations by

uε,δω (t) :=

u j(t), for t ∈ Eδ
j , j = 1, . . . , k,

uε(t), for t ∈ [0,T ] \ ∪k
j=1Eδ

j .
(5.4)

Clearly uε,δω (·) ∈ U and d̃(uε,δω (·), uε(·)) ≤ meas|Eδ| = δT , where Eδ := ∪k
j=1Eδ

j . Note that

k∑
j=1

∫
Eδ

j∩[0,t]

(t − s)α−1

Γ(α)
hεj(s)ds =

∫ t

0

(t − s)α−1

Γ(α)
hε,δω (s)ds, (5.5)

where hε,δω (·) ∈ R × X is defined by

hε,δω (s) :=
[

l(s, Xε(s), uε,δω (s)) − l(s, Xε(s), uε(s))
f (s, Xε(s), uε,δω (s)) − f (s, Xε(s), uε(s))

]
.

Then from (5.3) and (5.5), it follows that

sup
(t,ω)∈[0,T ]×Ω

∣∣∣∣δ k∑
k=1

θ j

∫ t

0

(t − s)α−1

Γ(α)
hεj(s)ds −

∫ t

0

(t − s)α−1

Γ(α)
hε,δω (s)ds

∣∣∣∣
R×X

= o(δ). (5.6)

Notice that (5.6) will be used to prove the variational analysis in Lemma 5.1.
We consider the state variation Xε,δ

ω (·) := X(·; Xε
0 + δa, uε,δω ) ∈ C([0,T ]; X), where a ∈ X. Note that

Xε,δ
ω is the variational equation under (5.4) and the perturbed initial condition a ∈ X. Let us define (with

X̃ε,δ
ω (·) := Xε,δ

ω (·) − Xε(·))

f ε(s) := f (s, Xε(s), uε(s)), ∂X f ε(s) := ∂X f (s, Xε(s), uε(s)),

f̂ εj (s) := f (s, Xε(s), u j(s)) − f (s, Xε(s), uε(s)), f ε,δX (s) :=
∫ 1

0
∂X f (s, Xε(s) + rX̃ε,δ

ω (s), uε,δω (s))dr,

lε(s) := l(s, Xε(s), uε(s)), ∂Xlε(s) := ∂Xl(s, Xε(s), uε(s)),
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l̂εj(s) := l(s, Xε(s), u j(s)) − l(s, Xε(s), uε(s)), lε,δX (s) :=
∫ 1

0
∂Xl(s, Xε(s) + rX̃ε,δ

ω (s), uε,δω (s))dr,

mε := m(Xε
0, X

ε(t f )), ∂X0m
ε := ∂X0m(Xε

0, X
ε(t f )), ∂Xmε := ∂Xm(Xε

0, X
ε(t f )),

mε,δ
X0

(t f ) :=
∫ 1

0
∂X0m(Xε

0 + rδa, Xε(t f ) + rX̃ε,δ
ω (r))dr, mε,δ

X (t f ) :=
∫ 1

0
∂Xm(Xε

0 + rδa, Xε(t f ) + rX̃ε,δ
ω (r))dr,

f̂ j(s) := f (t, X(s), u j(s)) − f (t, X(s), u(s)), l̂ j(s) := l(s, X(s), u j(s)) − l(t, X(s), u(s)).

5.3. Variational analysis of δ

We state the variational analysis with respect to δ.

Lemma 5.1. The following estimates hold:

sup
ω∈Ω

sup
t∈[0,T ]

∣∣∣∣∣∣Xε,δ
ω (t) − Xε(t)

δ
− Zε

ω(t)

∣∣∣∣∣∣
X

= o(1),

sup
ω∈Ω

∣∣∣∣∣∣ J(Xε
0 + δa; uε,δ(·)) − J(Xε

0; uε(·))
δ

− Ẑε
ω

∣∣∣∣∣∣ = o(1),

where Zε
ω is the X-valued variational equation given by

DC α
0+[Zε

ω](t) + AZε
ω(t) = ∂X f ε(t)Zε

ω(t) +

k∑
j=1

θ j f̂ εj (t), t ∈ (0,T ],

Zε
ω(0) = a ∈ X,

(5.7)

and Ẑε
ω is the R-valued variational equation:

Ẑε
ω =

k∑
j=1

θ j

∫ T

0

(T − s)β−1

Γ(β)

(
∂Xlε(s)Zε

ω(s) + l̂εj(s)
)
ds + ∂X0m

εa + ∂XmεZε
ω(T ). (5.8)

Proof. Let Zε,δ
ω (·) := Xε,δ

ω (·)−Xε (·)
δ

. Then Zε,δ
ω satisfies

Zε,δ
ω (t) =

1
δ

(
X0 + δa +

∫ t

0

(t − s)α−1

Γ(α)

(
−AXε,δ

ω (s) + f (s, Xε,δ
ω (s), uε,δω (s))

)
ds

− X0 −

∫ t

0

(t − s)α−1

Γ(α)

(
−AXε(s) + f (s, Xε(s), uε(s))

)
ds

)
= −

∫ t

0

(t − s)α−1

Γ(α)
AZε,δ

ω (s)ds

+
1
δ

∫ t

0

(t − s)α−1

Γ(α)

(
f (s, Xε,δ

ω (s), uε,δω (s)) − f (s, Xε(s), uε,δω (s))

+ f (s, Xε(s), uε,δω (s)) − f (s, Xε(s), uε(s))
)
ds.

By (5.6), we get

Zε,δ
ω (t) =

∫ t

0

(t − s)α−1

Γ(α)

(
−A + f ε,δX (s)

)
Zε,δ
ω (s)ds +

k∑
j=1

θ j

∫ t

0

(t − s)α−1

Γ(α)
f̂ εj (s)ds +

o(δ)
δ
.
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We then have

Zε,δ
ω (t) − Zε

ω(t) = −

∫ t

0

(t − s)α−1

Γ(α)
A(Zε,δ

ω (s) − Zε
ω(s))ds + o(1)

+

∫ t

0

(t − s)α−1

Γ(α)
f ε,δX (s)(Zε,δ

ω (s) − Zε
ω(s))ds

+

∫ t

0

(t − s)α−1

Γ(α)

(
f ε,δX (s) − ∂X f ε(s)

)
Zε
ω(s)ds.

Since Zε;ω is a linear Caputo fractional evolution equation, by Theorem 2.1, it follows that

sup
(ω,t)∈Ω×[0,T ]

|Zε
ω(t)|X ≤ M. (5.9)

Similarly, by (5.4) and Theorem 2.1, it follows that

sup
(ω,t)∈Ω×[0,T ]

|Xε,δ
ω (s) − Xε(s)|X ≤ Md̂(uε,δω (·), uε(·)) ≤ Mδ. (5.10)

Recall Eδ := ∪k
j=1Eδ

j and {Eδ
j ⊂ [0,T ], j = 1 . . . , k} with ∪k

j=1meas|Eδ
j | = δT . We need to obtain the

estimate of the following expression:∫ t

0

(t − s)α−1

Γ(α)

(
f ε,δX (s) − ∂X f ε(s)

)
Zε
ω(s)ds

=

∫
[0,t]∩Eδ

(t − s)α−1

Γ(α)

(
f ε,δX (s) − ∂X f ε(s)

)
Zε
ω(s)ds

+

∫
[0,t]\Eδ

(t − s)α−1

Γ(α)

(
f ε,δX (s) − ∂X f ε(s)

)
Zε
ω(s)ds = o(1).

By (5.9) and the fact that meas|Eδ| = δT , we have

sup
(ω,t)∈Ω×[0,T ]

∣∣∣∣∫
[0,t]∩Eδ

(t − s)α−1

Γ(α)

(
f ε,δX (s) − ∂X f ε(s)

)
Zε
ω(s)ds

∣∣∣∣
X

= o(1).

Also, by (5.9) and (5.10), we also have

sup
(ω,t)∈Ω×[0,T ]

∣∣∣∣∫
[0,t]\Eδ

(t − s)α−1

Γ(α)

(
f ε,δX (s) − ∂X f ε(s)

)
Zε(s)ds

∣∣∣∣
X

≤ M sup
(ω,t)∈Ω×[0,T ]

∣∣∣∣∫
[0,t]\Eδ

(t − s)α−1

Γ(α)
|Xε,δ

ω (s) − Xε(s)|X|Zε
ω(s)|Xds

∣∣∣∣
X
≤ Mδ = o(1).

Based on the preceding estimates, it follows that

Zε,δ
ω (t) − Zε

ω(t) ≤
∫ t

0

(t − s)α−1

Γ(α)

(
−A + M

)
(Zε,δ

ω (s) − Zε
ω(s))ds + o(1).

By Lemma A.2,

sup
(ω,t)∈Ω×[0,T ]

|Zε,δ
ω (t) − Zε

ω(t)|X ≤ o(1)Eα(MΓ(α)Tα).
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As δ ↓ 0, the first estimate follows.
To prove the second estimate, we note that

J(Xε
0 + δa; uε,δω (·)) − J(Xε

0; uε(·))
δ

− Ẑε
ω

=

∫ T

0

(T − s)β−1

Γ(β)
lε,δX (s)(Zε,δ

ω (s) − Zε
ω(s))ds

+

∫ T

0

(T − s)β−1

Γ(β)

(
lε,δX (s) − ∂Xlε(s)

)
Zε
ω(s)ds + (mε,δ

X0
(t f ) − ∂X0m

ε)a

+ mε,δ
X (T )(Zε,δ

ω (T ) − Zε
ω(T )) + (mε,δ

X (T ) − ∂Xmε)Zε
ω(T ).

Then the rest of the proof is analogous to that for the first estimate. This completes the proof. �

Now, consider the situation of δ ↓ 0. For any ω = ({u j(·)}kj=1, {θ j}
k
j=1) ∈ Ω, in view of (5.2), it follows

that

Jε(Xε
0 + δa; uε,δω (·)) − Jε(Xε

0; uε(·))
δ

≥ −
1
δ

d̂((Xε
0 + δX0, Xε

0)(uε,δω (·), uε(·))) ≥ −
√
ε(T + |a|X).

We then have

−
√
ε(T + |a|X) ≤

1
δ

1
Jε(Xε

0 + δa; uε,δω (·)) + Jε(Xε
0; uε(·))

(5.11)

×

((([
J(Xε

0 + δa; uε,δω (·)) − J(X0; u(·)) + ε
]+)2

+ dF0(X
ε
0 + δa)2 + dFT (Xε,δ

ω (T ))2
)

−
(([

J(Xε
0; uε(·)) − J(X0; u(·)) + ε

]+)2
+ dF0(X

ε
0)2 + dFT (Xε(T ))2

))
.

Let us consider the case when δ ↓ 0 in (5.11).

(F.1) Note that limδ↓0 Jε(Xε
0 + δa; uε,δω (·)) = Jε(Xε

0; uε(·)) + o(1) by Lemma 5.1. Hence,

lim
δ↓0

1
δ

1
Jε(Xε

0 + δa; uε,δω (·)) + Jε(Xε
0; uε(·))

×

(([
J(Xε

0 + δa; uε,δω (·)) − J(X0; u(·)) + ε
]+)2
−

([
J((Xε

0; uε(·)) − J(X0; u(·)) + ε
]+)2

)
= lim

δ↓0

1
Jε(Xε

0 + δa; uε,δω (·)) + Jε(Xε
0; uε(·))

× lim
δ↓0

(([
J(Xε

0 + δa; uε,δω (·)) − J(X0; u(·)) + ε
]+)

+
([

J((Xε
0; uε(·)) − J(X0; u(·)) + ε

]+))
× lim

δ↓0

1
δ

(([
J(Xε

0 + δa; uε,δω (·)) − J(X0; u(·)) + ε
]+)
−

([
J((Xε

0; uε(·)) − J(X0; u(·)) + ε
]+))

=

[
J(Xε

0; uε(·)) − J(X0; u(·)) + ε
]+

Jε(Xε
0; uε(·))

Ẑε
ω =: λεẐε

ω,

where by definition, λε ≥ 0.

AIMS Mathematics Volume 9, Issue 3, 6109–6144.



6128

(F.2) By Lemma 5.1, it follows that

lim
δ↓0

1
δ

1
Jε(Xε

0 + δa; uε,δω (·)) + Jε(Xε
0; uε(·))

(
dFT (Xε,δ

ω (T ))2 − dFT (Xε(T ))2
)

= lim
δ↓0

1
Jε(Xε

0 + δa; uε,δω (·)) + Jε(Xε
0; uε(·))

× lim
δ↓0

(
dFT (Xε,δ

ω (T )) + dFT (Xε(T ))
)

lim
δ↓0

1
δ

(
dFT (Xε,δ

ω (T )) − dFT (Xε(T ))
)

=
1

Jε(Xε
0; uε(·))

dFT (Xε(T )) lim
δ↓0

1
δ

(
dFT (Xε(T ) + δZε

ω(T )) − dFT (Xε(T ))
)

+
1

Jε(Xε
0; uε(·))

dFT (Xε(T )) lim
δ↓0

1
δ

(
dFT (Xε(T ) + δZε

ω(T ) + o(δ)) − dFT (Xε(T ) + δZε
ω(T ))

)
=

1
Jε(Xε

0; uε(·))
dFT (Xε(T ))∇dFT (Xε(T ); Zε

ω(T )) =: νε∇dFT (Xε(T ); Zε
ω(T )),

where ∇dFT (Xε(T ); Zε
ω(T )) is the directional (or Gâteaux) derivative of dFT at Xε(T ) and νε ≥ 0.

(F.3) Similarly, we can prove that

lim
δ↓0

1
δ

1
Jε(Xε

0 + δa; uε,δω (·)) + Jε(Xε
0; uε(·))

(
dF0(X

ε
0 + δa)2 − dF0(X

ε
0)2

)
=

1
Jε(Xε

0; uε(·))
dF0(X

ε
0)∇dF0(X

ε
0; a) =: ηε∇dF0(X

ε
0; a),

where ∇dF0(X
ε
0; a) is the directional (or Gâteaux) derivative of dF0 at Xε

0 and ηε ≥ 0.

Based on Lemma 5.1 and (F.1)–(F.3) above, as δ ↓ 0, (5.11) becomes

−
√
ε(T + |a|X) ≤

[
J(Xε

0; uε(·)) − J(X0; u(·)) + ε
]+

Jε(Xε
0; uε(·))

Ẑε
ω (5.12)

+
dF0(X

ε
0)

Jε(Xε
0; uε(·))

∇dF0(X
ε
0; a) +

dFT (Xε(T ))
Jε(Xε

0; uε(·))
∇dFT (Xε(T ); Zε

ω(T ))

= λεẐε
ω + ηε∇dF0(X

ε
0; a) + νε∇dFT (Xε(T ); Zε

ω(T )) =: Ψε
ω(λε , ηε , νε),

where λε , ηε , νε ≥ 0 and by definition of Jε , the multiplier condition is given by

λ2
ε + η2

ε + ν2
ε = 1. (5.13)

5.4. Separation

This subsection is not needed when X∗, the dual space of X, is strictly convex (see Remark 3.2). Note
that the strict convexity of X∗ is crucial in various results on infinite-dimensional maximum principles
to obtain the explicit derivative of the distance function. In this subsection, we obtain an alternative
expression of (5.12) and (5.13) via the separation argument.

Let us define

Aε := {(a,Z, Ẑ, γ) ∈ X × X × R × R | λεẐ + ηε∇dF0(X
ε
0; a) + νε∇dFT (Xε(T ); Z) ≤ γ},
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Bε := {(ā, Z̄, ̂̄Z, γ̄) ∈ X × X × R × R | (ā,Z, Ẑ, γ) = (ā,Zε
ω(T ), Ẑε

ω,−
√
ε(T + |ā|X))}.

By Lemma C.7 in Appendix 6, Bε is a convex subset of X × X × R × R. In addition,Aε is convex and
nonempty, where the former follows from the fact that the Gâteaux derivative is (Lipschitz) continuous
and convex its direction, while the latter is due to the finiteness of the Gâteaux derivatives [10,
Chapter 2]. Note also that Bε contains no interior points ofAε .

By the separation theorem (also known as the geometric version of Hahn-Banach theorem) for
convex sets, there exist (ϕε1, ϕ

ε
2, p

ε , qε) ∈ X∗ × X∗ × R × R with (ϕε1, ϕ
ε
2, p

ε , qε) , 0 such that for any
(a,Z, Ẑ, γ) ∈ Aε and (ā, Z̄, ̂̄Z,−√ε(T + |ā|X)) ∈ Bε ,

〈ϕε1, a〉 + 〈ϕ
ε
2,Z〉 + pεẐ + qεγ ≤ 〈ϕε1, ā〉 + 〈ϕ

ε
2, Z̄〉 + pε̂̄Z − qε

√
ε(T + |ā|X). (5.14)

Notice that (0, 0, 0,−
√
ε(T + |ā|X)) ∈ Bε , which corresponds to the case of no variations.

Let us assume that the left-hand side of (5.14) holds for some (a,Z, Ẑ, γ) ∈ Aε ,

〈ϕε1, a〉 + 〈ϕ
ε
2,Z〉 + pεẐ + qεγ > 0.

Since (ka, kZ, kẐ, kγ) ∈ Aε for k ≥ 1, it follows that 〈ϕε1, ka〉 + 〈ϕε2, kZ〉 + kpεẐ + kqε → ∞ as k → ∞,
which contradicts (5.14). Therefore, for any (a,Z, Ẑ, γ) ∈ Aε and (ā, Z̄, ̂̄Z,−√ε(T + |ā|X)) ∈ Bε , (5.14)
can be rewritten as

〈ϕε1, a〉 + 〈ϕ
ε
2,Z〉 + pεẐ + qεγ ≤ 0 ≤ 〈ϕε1, ā〉 + 〈ϕ

ε
2, Z̄〉 + pε̂̄Z − qε

√
ε(T + |ā|X). (5.15)

By (5.15) and (5.12), for a fixed ω ∈ Ω, it follows that

〈ϕε1, a〉 + 〈ϕ
ε
2,Z

ε
ω(T )〉 + pεẐε

ω + qεΨε
ω(λε , ηε , νε) ≤ 〈ϕε1, a〉 + 〈ϕ

ε
2,Z

ε
ω(T )〉 + pεẐε

ω − qε(
√
ε(T + |a|X)),

which leads to qεΨε
ω(λε , ηε , νε) ≤ −qε(

√
ε(T + |a|X)). By (5.12), this implies qε = −1. Note that when

qε = 0, from (5.15), we have

〈ϕε1, a〉 + 〈ϕ
ε
2,Z〉 + pεẐ ≤ 0, ∀(a,Z, Ẑ) ∈ X∗ × X∗ × R.

This is possible only if ϕε1 = ϕε2 = 0 ∈ X∗ and pε = 0, which is impossible. Hence, only qε = −1 is
possible in (5.15).

From (5.15), it follows that for any ω ∈ Ω and (ā, Z̄, ̂̄Z,−√ε(T + |ā|X)) ∈ Bε ,

0 ≤ 〈ϕε1, ā〉 + 〈ϕ
ε
2,Z〉 + pεẐ +

√
ε(T + |ā|X),

which implies

0 ≤ 〈ϕε1, a〉 + 〈ϕ
ε
2,Z

ε
ω(T )〉 + pεẐε

ω +
√
ε(T + |a|X). (5.16)

Also, from (5.15) and the definition ofAε , for any (a,Z, Ẑ) ∈ X × X × R,

〈ϕε1, a〉 + 〈ϕ
ε
2,Z〉 + pεẐ ≤ λεẐ + ηε∇dF0(X

ε
0; a) + νε∇dFT (Xε(T ); Z). (5.17)

Thus, with a = Z = 0 ∈ X in (5.17), we have pεẐ ≤ λεẐ, which leads to pε = λε ≥ 0. Therefore, it
follows that for (a,Z) ∈ X × X, (5.17) becomes

〈ϕε1, a〉 + 〈ϕ
ε
2,Z〉 ≤ ηε∇dF0(X

ε
0; a) + νε∇dFT (Xε(T ); Z). (5.18)

We now consider three different cases of (5.18) to obtain alternative form of (5.13):
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• When ηε = νε = 0, (5.18) holds for any (a,Z) ∈ X × X. Hence, ϕε1 = ϕε2 = 0 ∈ X∗, by which
λ2
ε = |pε |2 = 1 with λε = pε ≥ 0.

• When ηε = 0 and νε , 0, we have ϕε1 = 0 ∈ X∗ and (5.18) becomes

〈ϕε2
νε
,Z

〉
≤ ∇dFT (Xε(T ); Z).

Then by [10, Proposition 2.1.2], ϕε2
νε
∈ ∂dFT (Xε(T )), i.e., ϕε2

νε
∈ X∗ is a generalized gradient of

dFT (Xε(T )), and |ϕ
ε
2
νε
|X∗ = 1, i.e., |ϕε2|X∗ = νε . Similarly, when ηε , 0 and νε = 0, we have

ϕε2 = 0 ∈ X∗ and ϕε1 ∈ ∂dF0(X
ε
0), implying |ϕ

ε
1
ηε
|X∗ = 1, i.e., |ϕε1|X∗ = ηε .

• When ηε , 0 and νε , 0, by (5.18), we have

ηε
〈ϕε1
ηε
, a

〉
+ νε

〈ϕε2
νε
,Z

〉
≤ ηε∇dF0(X

ε
0; a) + νε∇dFT (Xε(T ); Z).

Analogously, ϕε1
ηε
∈ ∂dF0(X

ε
0) and ϕε2

νε
∈ ∂dFT (Xε(T )), which imply |ϕε1|X∗ = ηε and |ϕε2|X∗ = νε .

Hence, by (5.16), for any ω ∈ Ω, we have

−
√
ε(T + |a|X) ≤ 〈ϕε1, a〉X×X∗ + 〈ϕε2,Z

ε
ω(T )〉X×X∗ + pεẐε

ω, (5.19)

where in view of all three cases discussed above and (5.13), it follows that the multiplier condition is
equivalent to (note that pε ≥ 0)

|pε |2 + |ϕε1|
2
X∗ + |ϕε2|

2
X∗ = 1. (5.20)

To obtain the transversality condition, by the fact that F0 and FT are convex, the definition of
subdifferential for convex functions (see [10, page 36]) implies for any (X′′, X′) ∈ X × X,

〈ϕε1
ηε
, X′′ − Xε

0

〉
≤ dF0(X

′′) − dF0(X
ε
0),〈ϕε2

νε
, X′ − Xε(T )

〉
≤ dFT (X′) − dFT (Xε(T )).

Hence, for (X′′, X′) ∈ F0 × FT , we have (see (F.2) and (F.3))

dF0(X
ε
0)2

Jε(Xε
0; uε(·))

+ 〈ϕε1, X
′′ − Xε

0〉 ≤ 0, (5.21)

dFT (Xε(T ))2

Jε(Xε
0; uε(·))

+ 〈ϕε2, X
′ − Xε(T )〉 ≤ 0. (5.22)

5.5. Variational analysis of ε

The following lemma shows the variational analysis with respect to ε. The proof is analogous to
that of Lemma 5.1.
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Lemma 5.2. The following estimates hold

sup
ω∈Ω

sup
t∈[0,T ]

|Zε
ω(t) − Zω(t)|X = o(1), sup

ω∈Ω

|Ẑε
ω − Ẑω| = o(1),

where Zω is the X-valued variational equation given by
DC α

0+[Zω](t) + AZω(t) = ∂X f (t)Zω(t) +

k∑
j=1

θ j f̂ j(t), t ∈ (0,T ],

Zω(0) = a ∈ X,

(5.23)

and Ẑω is the R-valued variational equation:

Ẑω =

k∑
j=1

θ j

∫ T

0

(T − s)β−1

Γ(β)

(
〈∂Xl(s),Zω(s)〉 + l̂ j(s)

)
ds + 〈∂X0m, a〉 + 〈∂Xm,Zω(T )〉. (5.24)

From (5.21), (5.22) and the fact that |ϕε1|X∗ ≤ 1 and |ϕε2|X∗ ≤ 1, for (X′′, X′) ∈ F0 × FT , as ε ↓ 0,〈ϕε1, X′′ − X0〉 = 〈ϕε1, X
′′ − Xε

0〉 + 〈ϕ
ε
1, X

ε
0 − X0〉 ≤ |ϕ

ε
1|X∗ |X

ε
0 − X0|X → 0,

〈ϕε2, X
′ − X(T )〉 ≤ |ϕε2|X∗ |X

ε(T ) − X(T )|X → 0.
(5.25)

By Lemma 5.2, for any ω ∈ Ω, (5.19) becomes

〈ϕε1, a〉 + 〈ϕ
ε
2,Zω(T )〉 + pεẐω

= 〈ϕε1, a〉 + 〈ϕ
ε
2,Z

ε
ω(T )〉 + pεẐε

ω − 〈ϕ
ε
2,Z

ε
ω(T ) − Zω(T )〉 − pε(Ẑε

ω − Ẑω)

≥ −
√
ε(T + |a|X) − |ϕε2|X∗ |Z

ε
ω(T ) − Zω(T )|X − |pε ||Ẑε

ω − Ẑω|

≥ −
√
ε(T + |a|X) − |Zε

ω(T ) − Zω(T )|X − |Ẑε
ω − Ẑω| =: cε .

Note that by Lemma 5.2, for any ω ∈ Ω, we have limε↓0 cε = 0. Then using (5.25), it follows that for
any ω ∈ Ω and (X′′, X′) ∈ F0 × FT

〈ϕε1, a − (X′′ − X0)〉X×X∗ + 〈ϕε2,Zω(T ) − (X′ − X(T ))〉X×X∗ + pεẐω ≥ cε → 0 as ε ↓ 0. (5.26)

5.6. Proof of (i): nontriviality condition

Recall from Lemma B.4 in Appendix 6 that the variational equation in (5.23) can be written as

Zω(t) = a +

∫ t

0
Π(t, s)

(
−A + ∂X f (s)

)
ads +

k∑
j=1

θ j

∫ t

0
Π(t, s) f̂ j(s)ds, t ∈ [0,T ]. (5.27)

In view of (5.27) and Lemma B.4, R and Q in (3.1) and (3.2) can be rewritten as

R =

{
ξ(T ) ∈ X | ξ(t) =

k∑
j=1

θ j

∫ t

0
Π(t, s) f̂ j(s)ds, t ∈ [0,T ],

(
{u j(·)}kj=1, {θ j}

k
j=1

)
∈ Ω

}
, (5.28)
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Q =

{
X̂ − X̂0 −

∫ T

0
Π(T, s)

(
−A + ∂X f (s)

)
X̂0ds ∈ X | (X̂0, X̂) ∈ F0 × FT

}
. (5.29)

Let us define

R̂ :=
{

(X̂0, X̂) ∈ X × X | X̂ = X̂0 +

∫ T

0
Π(T, s)

(
−A + ∂X f (s)

)
X̂0ds + ξ, ξ ∈ R, X̂0 ∈ X

}
.

Since R − Q is finite codimensional in X, by [26, Proposition 3.5, Chapter 4], it follows that R̂ − F
(note that F = F0 × FT ) is finite codimensional in X × X. Then by [26, Proposition 3.4, Chapter 4],

R̂ − F +

[
X0

X(T )

]
is also finite codimensional in X × X. Hence, (5.26) can be written as for any ω ∈ Ω,

〈[ϕε1
ϕε2

]
,

[
X′′

X′

]〉
+ pεẐω ≥ cε , ∀

[
X′′

X′

]
∈ R̂ − F +

[
X0

X(T )

]
.

Let (pεk , ϕεk
1 , ϕ

εk
2 ) ∈ R × X∗ × X∗ be the sequence satisfying (5.20) for k ≥ 1. Consider εk ↓ 0

as k → ∞. Then by the Banach-Alaoglu theorem and (5.20), we can extract the subsequence, still
denoted by (pεk , ϕεk

1 , ϕ
εk
2 ) ∈ R × X∗ × X∗, such that (pεk , ϕεk

1 , ϕ
εk
2 ) → (p, ϕ1, ϕ2) , 0. Notice that p ≥ 0

and the convergence of (ϕεk
1 , ϕ

εk
2 ) to (ϕ1, ϕ2) as k → ∞ is understood in the weak−∗ sense. Here, the

nontriviality R × X∗ × X∗ 3 (p, ϕ1, ϕ2) , 0 follows from [26, Lemma 3.6, Chapter 4] and by the fact
that R̂ − F is finite codimensional in X × X. In particular, when p , 0 (p > 0), we are done. Otherwise,
if pεk → 0 as k → ∞, then |ϕεk

1 |X∗ + |ϕεk
2 |X∗ > 0 for sufficiently large k, which implies the nontriviality

X∗ × X∗ 3 (ϕ1, ϕ2) , 0 [26, Lemma 3.6, Chapter 4].
Hence, as ε ↓ 0, (5.26) can be written as for any ω ∈ Ω and (X′′, X′) ∈ F0 × FT ,

〈ϕ1, a − (X′′ − X0)〉 + 〈ϕ2,Zω(T ) − (X′ − X(T ))〉 + pẐω ≥ 0, (5.30)

where (p, ϕ1, ϕ2) ∈ R × X∗ × X∗ with (p, ϕ1, ϕ2) , 0, p ≥ 0, and |p|2 + |ϕ1|
2
X∗ + |ϕ2|

2
X∗ ≤ 1 from (5.20).

Notice that by (5.25), it follows that for any (X′′, X′) ∈ F0 × FT ,

〈ϕ1, X′′ − X0〉 ≤ 0, 〈ϕ2, X′ − X(T )〉 ≤ 0.

Then by definition of subdifferential of convex functions, it follows that

(ϕ1, ϕ2) ∈ NF0(X0) × NFT (X(T )),

see [10, Proposition 2.4.4]. This proves the nontriviality condition of Theorem 3.1.

5.7. Proof of (ii): duality and adjoint equation

Let p0 := −p ≤ 0. The proof of (ii) is given in Lemma B.5 in Appendix 6, by which we recall that
the adjoint equation in (3.3) can be written as

P(t) = Π(T, t)∗
(
−ϕ2 + p0∂Xm

)
+ p0

∫ T

t

(T − s)β−1

Γ(β)
Π(s, t)∗∂Xl(s)ds. (5.31)
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Then for any ω ∈ Ω and (X′′, X′) ∈ F0 × FT , (5.30) becomes

〈ϕ1, (X′′ − X0)〉 + 〈ϕ1,−a〉 − 〈−ϕ2, (X′ − X(T ))〉 − 〈−ϕ2,−Zω(T )〉 + p0Ẑω ≤ 0. (5.32)

By (5.27) and Ẑω in (5.24), we have

〈ϕ1,−a〉 − 〈−ϕ2,−Zω(T )〉 + p0Ẑω

= 〈−ϕ1 + p0∂X0m, a〉 + p0
∫ T

0

(T − s)β−1

Γ(β)

k∑
j=1

θ ĵl j(s)ds

+ 〈−ϕ2 + p0∂Xm, a〉 + p0
∫ T

0

(T − s)β−1

Γ(β)
〈∂Xl(s), a〉ds

+
〈
−ϕ2 + p0∂Xm,

∫ T

0
Π(T, s)

(
−A + ∂X f (s)

)
ads

〉
+ p0

∫ T

0

(T − s)β−1

Γ(β)

〈
∂Xl(s),

∫ s

0
Π(s, τ)

(
−A + ∂X f (τ)

)
adτ

〉
ds

+
〈
−ϕ2 + p0∂Xm,

k∑
j=1

θ j

∫ T

0
Π(T, s) f̂ j(s)ds

〉
+ p0

∫ T

0

(T − s)β−1

Γ(β)

〈
∂Xl(s),

∫ s

0
Π(s, τ)

k∑
j=1

θ j f̂ j(τ)dτ
〉
ds.

By Fubini’s formula ( [6, Theorem 3.4.4]),∫ T

0

(T − s)β−1

Γ(β)

〈
∂Xl(s),

∫ s

0
Π(s, τ)

k∑
j=1

θ j f̂ j(τ)dτ
〉
ds

=

∫ T

0

〈∫ T

s

(T − τ)β−1

Γ(β)
Π(τ, s)∗∂Xl(τ)dτ,

k∑
j=1

θ j f̂ j(s)
〉
ds.

Then using (5.31) and Lemma B.3 in Appendix 6, we have

〈
−ϕ2 + p0∂Xm,

k∑
j=1

θ j

∫ T

0
Π(T, s) f̂ j(s)ds

〉
+ p0

∫ T

0

(T − s)β−1

Γ(β)

〈
∂Xl(s),

∫ s

0
Π(s, τ)

k∑
j=1

θ j f̂ j(τ)dτ
〉
ds

=

∫ T

0

〈
Π(T, s)∗

(
−ϕ2 + p0∂Xm

)
+ p0

∫ T

s

(T − τ)β−1

Γ(β)
Π(τ, s)∗∂Xl(τ)dτ,

j∑
k=1

θ j f̂ j(s)
〉
ds

=

∫ T

0

〈
P(s),

k∑
j=1

θ j f̂ j(s)
〉

X×X∗
ds,
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and similarly〈
−ϕ2 + p0∂Xm,

∫ T

0
Π(T, s)

(
−A + ∂X f (s)

)
ads

〉
+ p0

∫ T

0

(T − s)β−1

Γ(β)

〈
∂Xl(s),

∫ s

0
Π(s, τ)

(
−A + ∂X f (τ)

)
adτ

〉
ds

=

∫ T

0

〈
Π(T, s)∗

(
−ϕ2 + p0∂Xm

)
+ p0

∫ T

s

(T − τ)β−1

Γ(β)
Π(τ, s)∗∂Xl(τ)dτ,

(
−A + ∂X f (s)

)
a
〉
ds

=

∫ T

0

〈
P(s),

(
−A + ∂X f (s)

)
a
〉

X×X∗
ds.

Using the preceding analysis, (5.32) can be written as the following duality form:

〈ϕ1, (X′′ − X0)〉 + 〈ϕ1,−a〉 − 〈−ϕ2, (X′ − X(T ))〉 − 〈−ϕ2,−Zω(T )〉 + p0Ẑω (5.33)

= 〈ϕ1, (X′′ − X0)〉 − 〈−ϕ2, (X′ − X(T ))〉 + 〈−ϕ1 + p0∂X0m,−ϕ2 + p0∂Xma〉

+

∫ T

0

〈
P(s),

(
−A + ∂X f (s)

)
a
〉
ds + p0

∫ T

0

(T − s)β−1

Γ(β)
〈∂Xl(s), a〉ds

+

∫ T

0

〈
P(s),

k∑
j=1

θ j f̂ j(s)
〉
ds + p0

∫ T

0

(T − s)β−1

Γ(β)

k∑
j=1

θ ĵl j(s)ds ≤ 0.

We use (5.33) to derive the transversality condition as well as the Hamiltonian maximization condition
in Theorem 3.1.

5.8. Proof of (iii): transversality condition

When u = u, (5.33) becomes

〈ϕ1, (X′′ − X0)〉 − 〈−ϕ2, (X′ − X(T ))〉 + 〈−ϕ1 + p0∂X0m − ϕ2 + p0∂Xm, a〉 (5.34)

+ p0
∫ T

0

(T − s)β−1

Γ(β)
〈∂Xl(s), a〉ds +

∫ T

0

〈
P(s),

(
−A + ∂X f (s)

)
a
〉
ds ≤ 0.

Let us take I1−α
T− [P](T ) = −ϕ2 + p0∂Xm,

I1−α
T− [P](0) = −(−ϕ1 + p0∂X0m).

(5.35)

Using the adjoint equation in (3.3),

p0
∫ T

0

(T − s)β−1

Γ(β)
〈∂Xl(s), a〉ds +

∫ T

0

〈
P(s),

(
−A + ∂X f (s)

)
a
〉
ds

=

∫ T

0

〈
DRL α

T−[P](s), a
〉
ds =

∫ T

0

〈
−

d
ds

[
I1−α
T− [P]

]
(s), a

〉
ds

=
〈
I1−α
T− [P](0) − I1−α

T− [P](T ), a
〉

=
〈(
−(−ϕ1 + p0∂X0m)

)
−

(
−ϕ2 + p0∂Xm

)
, a

〉
.

Then (5.34) becomes for (X′′, X′) ∈ F0 × FT ,

〈I1−α
T− [P](0) − p0∂X0m, (X

′′ − X0)〉 − 〈I1−α
T− [P](T ) − p0∂Xm, (X′ − X(T ))〉 ≤ 0. (5.36)

Therefore, (5.35) and (5.36) prove the transversality condition in Theorem 3.1.
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5.9. Proof of (iv): Hamiltonian maximization condition

We prove the Hamiltonian maximization condition in Theorem 3.1. Notice that when (X′′, X′) =

(X0, X(T )) and a = 0, (5.33) becomes∫ T

0

〈
P(s),

k∑
j=1

θ j f̂ j(s)
〉
ds + p0

∫ T

0

(T − s)β−1

Γ(β)

k∑
j=1

θ ĵl j(s)ds ≤ 0.

Take k = 1. The definition of the Hamiltonian in Theorem 3.1 implies∫ T

0
H(s, X(s), P(s), p0, u(s))ds ≤

∫ T

0
H(s, X(s), P(s), p0, u(s)).

Since U is separable, there exists a countable dense set U0 = {ui, i ≥ 1} ⊂ U. Moreover,
there exists a measurable set S i ⊂ [0,T ] such that |S i| = T and any t ∈ S i is the Lebesgue
point of H(t, X(t), P(t), p0, u(t)) due to the fact that H(·, X, P, p0, u) ∈ L1([0,T ];R), i.e., we have
limτ↓0

1
2τ

∫ t+τ

t−τ
H(s, X(s), P(s), p0, u(s))ds = H(t, X(t), P(t), p0, u(t)) [6, Theorem 5.6.2]. We fix ui ∈ U0.

For any t ∈ S i, define

u(s) :=

u(s), s ∈ [0,T ] \ (t − τ, t + τ),
ui, s ∈ (t − τ, t + τ).

It then follows that

lim
τ↓0

1
2τ

∫ t+τ

t−τ
H(s, X(s), P(s), p0, u(s))ds

≤ lim
τ↓0

1
2τ

∫ t+τ

t−τ
H(s, X(s), P(s), p0, u(s))ds

⇒ H(t, X(t), P(t), p0, u(t)) ≤ H(t, X(t), P(t), p0, u(t)).

Since ∩i≥1S i = [0,T ], H is continuous in u ∈ U, and U is separable, it follows that

max
u∈U

H(t, X(t), P(t), p0, u) = H(t, X(t), P(t), p0, u(t)), a.e. t ∈ [0,T ],

which shows the Hamiltonian maximization condition. This is the end of the proof of Theorem 3.1.

6. Conclusions

We state the following interesting potential future research problems of this paper:

• One important future research problem is to study the finite codimensionality in Assumption 3
for fractional evolution equations. This should require different techniques, compared with the
nonfractional case studied in the earlier works (see Remark 3.2 and [5,14,15,21,26,27,29,30,35,
39,40,45,46]). Indeed, it is important to study the equivalence between the finite codimensionality
and the finite codimensional exactly controllability for fractional evolution equations as in the
nonfractional case in [30, Theorem 3.2] and [29, Corollary 4.1].
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• We may consider the applicability of the derived maximum principle to specific fractional
evolution equations arising in different scientific and engineering applications, including various
classes of fractional PDEs and differential equations with delay.
• It would be interesting to consider more general endpoint state constraints, such as time-

dependent or nonlinear constraints, and to investigate the stability and sensitivity analysis of the
fractional optimal control problem in the presence of uncertainties or disturbances.
• Finally, we plan to study the control problem in a distributed control framework and analyze the

optimal control of fractional evolution equations on networks or graphs.
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Appendix

Appendix A. Proof of Theorem 2.1

Lemma A.1. [24, Lemma 2.3] and [3, page 10] For any f (·) ∈ L1([0,T ]; X) and α, β > 0, it holds that

Iα0+[Iβ0+
[ f ]](·) = Iα+β

0+
[ f ](·) = Iβ+α

0+
[ f ](·) = Iβ0+

[Iα0+[ f ]](·)

and
IαT−[I

β
T−[ f ]](·) = Iα+β

T− [ f ](·) = Iβ+α
T− [ f ](·) = IβT−[I

α
T−[ f ]](·).

Lemma A.2. [43, Theorem 1] Let z(·) ∈ L1([0,T ];R) and b(·) ∈ L1([0,T ];R) be nonnegative functions
on [0,T ], and h(·) ∈ C([0,T ];R) be nonnegative and nondecreasing. Assume that

z(t) ≤ b(t) + h(t)
∫ t

0
(t − s)α−1z(s)ds for t ∈ [0,T ].

Then it holds that z(t) ≤ b(t) +
∫ t

0

∑∞
k=1

(h(t)Γ(α))k

Γ(kα) (t − s)kα−1b(s)ds for t ∈ [0,T ]. In addition, when b

is nondecreasing, we have z(t) ≤ b(t)Eα[h(t)Γ(α)tα], where Eα(t) :=
∑∞

k=0
tk

Γ(αk+1) is the Mittag-Leffler
function.

Proof of Theorem 2.1. The existence and uniqueness of the (mild) solution to (2.1) under (v) of
Assumption 1 follows from [48, Theorem 3.3] (see also [41, Theorem 3.1]), in which the analyticity
of −A, the Laplace transformation, and the contraction mapping theorem are key ingredients in the
proof. The integral expression in (2.2) can be obtained from Definition 1 and the semigroup property
of fractional integral in Lemma A.1. The last two estimates can be shown using Assumption 1 and
Lemma A.2. In particular, by Assumption 1 (including the compactness of (T (t))t≥0), we can show
that

|X(t) − X′(t)|X ≤ M|X0 − X′0|X + M
∫ t

0
(t − s)α−1|X(s) − X′(s)|Xds.

Then we apply Lemma A.2 to get the first one. A similar approach can be applied to show the second
estimate. This completes the proof. �

Appendix B. Representation of linear fractional evolution equations

This appendix provides the representation results on linear fractional evolution equations. We
provide the complete proofs, which are omitted in [33].

Lemma B.3. Let Π : [0,T ]×[0,T ]→ L(X) be the left RL fractional state-transition evolution operator
defined by

Π(t, s)x =
(t − s)α−1

Γ(α)
Ix +

∫ t

s

(t − r)α−1

Γ(α)

(
−A + ∂X f (r)

)
Π(r, s)xdr. (B.1)

Then (B.1) can be written as the following right RL fractional state-transition evolution operator form:

Π(t, s)x =
(t − s)α−1

Γ(α)
Ix +

∫ t

s

(r − s)α−1

Γ(α)
Π(t, r)

(
−A + ∂X f (r)

)
xdr. (B.2)
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Proof. By the right-hand-side of (B.2), let

Π̂(t, τ) :=
(t − τ)α−1

Γ(α)
I +

∫ t

τ

(r − τ)α−1

Γ(α)
Π(t, r)

(
−A + ∂X f (r)

)
dr. (B.3)

Then we need to show the equivalence of (B.1) and (B.3). Hence, we prove the following result:∫ t

τ

(t − r)α−1

Γ(α)

(
−A + ∂X f (r)

)
Π̂(r, τ)dr =

∫ t

τ

(r − τ)α−1

Γ(α)
Π(t, r)

(
−A + ∂X f (r)

)
dr. (B.4)

Clearly, (B.4) holds when t = τ. Then (B.4) follows by Fubini’s formula (see [6, Theorem 3.4.4]),
since we can show that∫ t

τ

(t − r)α−1

Γ(α)

(
−A + ∂X f (r)

)
Π̂(r, τ)dr

=

∫ t

τ

(t − r)α−1

Γ(α)

(
−A + ∂X f (r)

) (r − τ)α−1

Γ(α)
Indr

+

∫ t

τ

(t − r)α−1

Γ(α)

(
−A + ∂X f (r)

) ∫ r

τ

(ν − τ)α−1

Γ(α)
Π(r, ν)F(ν)dνdr

=

∫ t

τ

(t − r)α−1

Γ(α)

(
−A + ∂X f (r)

) (r − τ)α−1

Γ(α)
Idr

+

∫ t

τ

∫ t

r

(t − ν)α−1

Γ(α)

(
−A + ∂X f (ν)

)
Π(ν, r)dν

(r − τ)α−1

Γ(α)

(
−A + ∂X f (r)

)
dr

=

∫ t

τ

(t − r)α−1

Γ(α)

(
−A + ∂X f (r)

) (r − τ)α−1

Γ(α)
Idr

+

∫ t

τ

(
Π(t, r) −

(t − r)α−1

Γ(α)
I
) (r − τ)α−1

Γ(α)

(
−A + ∂X f (r)

)
dr

=

∫ t

τ

(r − τ)α−1

Γ(α)
Π(t, r)

(
−A + ∂X f (r)

)
dr.

This completes the proof. �

Remark B.1. Notice that by Definition 1, I1−α
s+ [Π](s, s) = I and I1−α

t− [Π](t, t) = I for s, t ∈ [0,T ] with
s ≤ t. Hence, we can see that (B.1) is the left RL fractional state-transition evolution operator with the
initial condition, whereas (B.2) is the right RL fractional state-transition evolution operator with the
terminal condition.

The next result states the representation result for linear forward Caputo fractional evolution
equations. The finite-dimensional case was reported in [7, 19].

Lemma B.4. The (mild) solution to the variational equation in (5.23) is as follows:

Zω(t) = a +

∫ t

0
Π(t, s)

(
−A + ∂X f (s)

)
ads +

k∑
j=1

θ j

∫ t

0
Π(t, s) f̂ j(s)ds, t ∈ [0,T ], (B.5)

where Π is the X-valued left RL fractional state-transition evolution operator in (B.1).
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Proof. Since (5.23) is a linear fractional evolution equation, the existence and uniqueness of the
solution follows from Theorem 2.1 under (v) of Assumption 1.

We now prove (B.5). By Theorem 2.1, it follows that

Zω(t) = a +

∫ t

0

(t − s)α−1

Γ(α)

(
−A + ∂X f (s)

)
Zω(s)ds +

k∑
j=1

θ j

∫ t

0

(t − s)α−1

Γ(α)
f̂ j(s)ds.

Hence, to prove (B.5), we have to show the following equivalence:∫ t

0
Π(t, s)

(
−A + ∂X f (s)

)
ads +

k∑
j=1

θ j

∫ t

0
Π(t, s) f̂ j(s)ds (B.6)

=

∫ t

0

(t − s)α−1

Γ(α)

(
−A + ∂X f (s)

)
Zω(s)ds +

k∑
j=1

θ j

∫ t

0

(t − s)α−1

Γ(α)
f̂ j(s)ds.

Clearly, it holds when t = 0. Then by Fubini’s formula,∫ t

0

(t − s)α−1

Γ(α)

[(
−A + ∂X f (s)

)
Zω(s) +

k∑
j=1

θ j f̂ j(s)
]
ds

=

∫ t

0

(t − s)α−1

Γ(α)

(
−A + ∂X f (s)

)
ads +

k∑
j=1

θ j

∫ t

0

(t − s)α−1

Γ(α)
f̂ j(s)ds

+

∫ t

0

∫ t

s

(t − τ)α−1

Γ(α)

(
−A + ∂X f (τ)

)
Π(τ, s)dτ

(
−A + ∂X f (s)

)
ads

+

∫ t

0

∫ t

s

(t − τ)α−1

Γ(α)

(
−A + ∂X f (τ)

)
Π(τ, s)dτ

j∑
k=1

θ j f̂ j(s)ds.

Rearranging the right-hand side of the above expression yields∫ t

0

[
(t − s)α−1

Γ(α)
I +

∫ t

s

(t − τ)α−1

Γ(α)

(
−A + ∂X f (τ)

)
Π(τ, s)dτ

](
−A + ∂X f (s)

)
ads

+

∫ t

0

[
(t − s)α−1

Γ(α)
I +

∫ t

s

(t − τ)α−1

Γ(α)

(
−A + ∂X f (τ)

)
Π(τ, s)dτ

] k∑
j=1

θ j f̂ j(s)ds

=

∫ t

0
Π(t, s)

(
−A + ∂X f (s)

)
ads +

∫ t

0
Π(t, s)

k∑
j=1

θ j f̂ j(s)ds.

Clearly, (B.6) holds and the conclusion follows. We complete the proof. �

The following result shows the backward representation of the adjoint equation, which has not been
reported in the existing literature.

Lemma B.5. The (mild) solution to the adjoint equation in (3.3) can be written as follows:P(t) = Π(T, t)∗P(T ) + p0
∫ T

t

(T − s)β−1

Γ(β)
Π(s, t)∗∂Xl(s)ds, t ∈ [0,T ),

I1−α
T− [P](T ) = P(T ),

(B.7)

where Π is the X-valued right RL fractional state-transition evolution operator in (B.2).
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Proof. Notice that by definition of Fréchet differentiation, we have ∂Xl(·) ∈ X∗ = L(X,R) [16,
page 166]. Then by definition of Π in (B.2), together with Assumptions 1 and 2, (B.7) is a well-
defined RL fractional integral equation. We can easily observe that P is the X∗-valued function and
P(·) ∈ L1([0,T ]; X∗) [24, Theorem 3.3, Chapter 3]. Hence, if (B.7) is the integral representation
of (3.3), then we prove (ii) of Theorem 3.1.

To show (B.7), we obtain (3.3) from (B.7). Using (B.2) and with W(s) := (T−s)β−1

Γ(β) ∂Xl(s),

P(t) =
(T − t)α−1

Γ(α)
P(T ) + p0

∫ T

t

(s − t)α−1

Γ(α)
W(s)ds

+

∫ T

t

(r − t)α−1

Γ(α)

(
−A∗ + ∂X f (r)∗

)
Π(T, r)∗P(T )dr

+ p0
∫ T

t

∫ s

t

(r − t)α−1

Γ(α)

(
−A∗ + ∂X f (r)∗

)
Π(s, r)∗drW(s)ds.

By Fubini’s formula, ∫ T

t

∫ s

t

(r − t)α−1

Γ(α)

(
−A∗ + ∂X f (r)∗

)
Π(s, r)∗drW(s)ds

=

∫ T

t

(s − t)α−1

Γ(α)

(
−A∗ + ∂X f (r)∗

) ∫ T

s
Π(r, s)∗W(r)drds.

Hence, from Definitions 1 and 2, it follows that

P(t) =
(T − t)α−1

Γ(α)
P(T ) + p0

∫ T

t

(s − t)α−1

Γ(α)
W(s)ds +

∫ T

t

(s − t)α−1

Γ(α)
(−A∗ + ∂X f (r)∗)P(s)ds

= DRL 1−α
T− [P(T )](t) + IαT−[−A∗P(·) + ∂X f (·)∗P(·) + p0W(·)](t).

Definitions 1 and 2 and Lemma A.1 lead to

−I1−α
T− [P](t) = −I1−α

T−

[
−

d
dt

[IαT−[P(T )]](·)
]
(t) − I1

T−[−A∗P(·) + ∂X f (·)∗P(·) + W(·)](t)

= −P(T ) − I1
T−[−A∗P(·) + ∂X f (·)∗P(·) + p0W(·)](t).

Note that I1−α
T− [P](T ) = P(T ). This, together with Definition 2 and the fact that I1−α

T− [P](·) ∈
AC([0,T ]; X∗) by our assumptions, implies (with W(s) := (T−s)β−1

Γ(β) ∂Xl(s))

−
d
dt

[
I1−α
T− [P](·)

]
(t) = DRL 1−α

T− [P](t) = −
d
dt

[
I1
T−[−A∗P(·) + ∂X f (·)∗P(·) + p0W(·)]

]
(t)

= −A∗P(t) + ∂X f (t)∗P(t) + p0W(t).

This shows that (B.7) is the solution to the adjoint equation in (3.3). This completes the proof. �

Appendix C. Technical lemmas for Section 5

In this appendix, we provide two technical lemmas used in duality and variational analysis.
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Lemma C.6. Let h j(·) ∈ L1([0,T ]; X), j = 1, . . . , j, and
∑k

j=1 θ j = 1 with θ j ≥ 0. Then for any
δ ∈ (0, 1), there exist measurable Eδ

j ⊂ [0,T ], j = 1, . . . , k, such that

Eδ
j ∩ Eδ

i = ∅, j , i,

∪k
j=1meas|Eδ

j | = δT,

sup
t∈[0,T ]

∣∣∣∣δ k∑
k=1

θ j

∫ t

0

(t − s)α−1

Γ(α)
h j(s)ds −

k∑
j=1

∫
Eδ

j∩[0,t]

(t − s)α−1

Γ(α)
h j(s)ds

∣∣∣∣
X

= o(δ).

(C.1)

Proof. Notice that for each t ∈ [0,T ], (t−·)α−1

Γ(α) h j(·) is Bochner integrable. Then the result follows
from [27, Lemma 5.5]; completing the proof. �

Lemma C.7. For any ε > 0, {(a,Zε
ω(T ), Ẑε

ω) | ω ∈ Ω} ⊂ X × X × R is convex.

Proof. Notice that by Theorem 2.1, (Zε
ω(·), Ẑε

ω) admit unique solutions in C([0,T ]; X) × R for any
(t, a, ω) ∈ [0,T ] × X × Ω. For i = 1, . . . , l, consider ω(i)

k := ({u(i)
j (·)}kj=1, {θ

(i)
j }

k
j=1) ∈ Ω. Let (Zε,(i)

ω (·), Ẑε,(i)
ω )

be the solutions of (5.7) and (5.8) under ω(i)
k . Let a(i) ∈ X. With γ(i) ∈ [0, 1] and

∑l
i=1 γ

(i) = 1, we define

a =

l∑
i=1

γ(i)a(i), Zε
ω(T ) =

l∑
i=1

γ(i)Zε,(i)
ω (T ), Ẑε

ω =

l∑
i=1

γ(i)Ẑε,(i)
ω . (C.2)

By defining
ωk := ({γ(i)ω(i)

k }
l
i=1) = ({{u(i)

j (·)}kj=1, {γ
(i)θ(i)

j }
k
j=1}

l
i=1) ∈ Ω,

we observe that (C.2) are well-defined solutions and a ∈ X. This completes the proof. �
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