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Abstract: There are numerous applications for finding zero of derivatives in function optimization.
In this paper, a two-step fourth-order method was presented for finding a zero of the derivative. In the
research process of iterative methods, determining the ball of convergence was one of the important
issues. This paper discussed the radii of the convergence ball, uniqueness of the solution, and the
measurable error distances. In particular, in contrast to Wang’s method under hypotheses up to the
fourth derivative, the local convergence of the new method was only analyzed under hypotheses
up to the second derivative, and the convergence order of the new method was increased to four.
Furthermore, different radii of the convergence ball was determined according to different weaker
hypotheses. Finally, the convergence criteria was verified by three numerical examples and the new
method was compared with Wang’s method and the same order method by numerical experiments. The
experimental results showed that the convergence order of the new method is four and the new method
has higher accuracy at the same cost, so the new method is finer.
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1. Introduction

The main aim of this study is to provide an approximate solution x, for the following equation

(=0 (1.1)

where f denotes differentiable operator according to Fréchet, which is defined in a convex subset N in
real space R (or complex space C).

The above issue is crucial for many applications, particularly in function optimization (see [2,7,17,
18]). The K-T condition for the optimal problem of no restriction

min £(x) (1.2)
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claims that if function f is a differentiable operator, the optimal solution of Eq (1.2) must be a solution
of Eq (1.1). Since solutions of Eq (1.1) can only be discovered in closed form in certain cases, the
majority of methods for solving Eq (1.1) are iterative methods.

Semi-local and local convergence analysis are the basis of the study of the convergence problem of
iterative methods. The local convergence issue is to find estimates of the radii of the convergence ball
based on the information surrounding a solution (see [1,8,10,13]), whereas the semi-local convergence
issue is to provide criteria assuring the convergence of the iterative process based on the information
around an initial point.

There are many iterative methods for finding a solution of (1.1). Iterative methods have many
different properties [20,21]. Newton’s method (see [4,5,9, 15]) is defined by

f /(xn+1)

Xn+l = Xp — f”(x )
n

(n > 0) (xo € N). (1.3)

Newton’s method converges quadratically under certain hypotheses. However, it needs to compute the
derivative of second order, and this is frequently difficult in some cases. To avoid this, we can use the
secant method (see [14,22]) instead, as follows

Xn — Xn-1
f,(-xn) - f,(-xn—l)
The order of convergence of the secant method is 1.618.... Wang [16] proposed an iterative method,

that avoids computing the second derivative and keeps the convergence of the second order at the same
time. Wang’s method is defined by

f(xy) (n>=0) (x0,x_;1 €N). (1.4)

Xn+l = Xp —

Sret = X — % (n> 0) (x0,x1 € N) (15)
where ) f(y)
5(f:x.y) = —(4f 0 - 620D o, (1.6)

The convergence of the above method was studied under dlfferent conditions [9, 12]. In particular,
a matter of concern is to estimate the radius of the convergence ball of Wang’s method [23]. The
convergence ball radius of Wang’s method was given as

12
= R oer + ow (47
where
lf” ) f (x) < W  (x€N) (1.8)
and
O (x)N<Y (xeN). (1.9)

An open ball B(x, r) stands for a convergence ball with center x and radius r.
Though the above method (1.5) may converge, f/¥(x) in the condition (1.9) limits the applicability
of this method. For example, function f in N = [0, 1] is defined by

! ln ! + s #0

x——x"+ —x°, «x ;

f(x) = 12 20 (1.10)
0, x=0
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F"(x) is unbounded on N and constant Y doesn’t exist. Therefore, the results in [5,6,23] by applying
Y cannot be used.

In order to make the convergence conditions weaker, suppose the second derivative of function f
is Lipschitz continuous. Wang [11] proposed a local convergence theorem under the central Lipschitz
condition, based on the new concept of restricted domain conditions (see [2,3, 18]) as follows

()7 () = [/ () < Colx = x| (x € N). (1.11)

At the same time, the following is the restricted Lipschitz condition

) (') = PO < Clx =yl (x,y € No) (1.12)
where,

1
N() =N ﬂ B(x*, 3_6'0)

Under Lipschitz conditions (1.11) and (1.12), the radius of the convergence ball is obtained

6

Rj=——
"7 13C + 18C,

Furthermore, Wang also proposed another restricted Lipschitz condition that could replace
condition (1.12) as follows

I )T ) = O < Lolx =yl (x,y € S)) (1.13)
where,

1
So = Nﬂ B(x. 7).
0

Under Lipschitz conditions (1.11) and (1.13), the radius of the convergence ball is obtained

6

Ry= — .
2T 7L + 6C,

In this study, based on Wang’s method, a two-step four-order method is presented for analyzing a
derivative’s zero. This new method is defined for xp,y_; € Qand alln =0, 1,2, ... as follows

S
e 5(f;xn7yn—l)’

1.14
e 19
I S X y)

The rest of the paper is laid out as follows: Section 2 discusses the local convergence analysis of the
new method (1.14), including convergence ball radii, the measurable error distance, and uniqueness of
the solution. In particular, different radius of convergence ball and the measurable error distances are
determined according to different Lipschitz conditions. In Section 3, three examples are given, and the
new method (1.14) is compared with Wang’s method (1.5) and fourth-order method (3.1) by numerical
experiments, so the new method (1.14) has a higher convergence order and higher accuracy. Section 4
is devoted to some conclusions.
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2. Local convergence

In this section, the local convergence analysis of iterative method (1.14) is studied. Let us assume
that f on the convex set N is twice differentiable. The definitions and attributes of f[.,.] and fT.,.,.]
are found in [14], which are divided differences of order one and two, and the second order divided
difference has the integral representations given as follows:

1 pl
flx, v, z] = f f A =0f"(tx+s(1 =ty + (1 —s)(1 —1)z)dsdt (for each x,y,z € N). 2.1
o Jo

Assume 6(f; x,y) is given by (1.6). By applying the first-order and second-order divided difference
definitions, we have
6(fsx,y) = 4flx x,y1 = 2f[x, y, 1. (2.2)
The following local convergence theorem of our method (1.14) is presented under conditions (1.11)
and (1.12).

Theorem 2.1. Suppose f'(x.) = 0, f"(x,) # 0, f is twice differentiable on N, and that Lipschitz

continuous conditions (1.11) and (1.12) of the second-order derivative hold. Denote
6

" 13C + 18C,

Given an initial point xq in ball B(x.,R|) C N, the sequence {x,} produced by our method (1.14)

converges to its unique solution x, € B(x,, C%)) C N. B(x,, C%)) is larger than B(x,,R;). Furthermore,
we get the following error estimates

R; (2.3)

91C + 126C 13C + 18C
st = Kol € 2y = X+ 2k — Xallyy — X, (22 0) (2.4)
78 13
where 13C + 18C 26C + 36C
+ +
= Xal € ———2x, — %P + 20, — Xallyut — Xl (22 0) (2.5)
26 39
and
o — x| < P el Z ol sy 2.6)

Ry
Proof. By applying mathematical induction on n, we will prove that x,, € B(x,,R;) is well defined, for
y_1, X0 € B(x4,Ry), and error Eqs (2.4)—(2.6) hold under Lipschitz conditions (1.11) and (1.12).
Since y_1, xo € B(x.,R}), by (1.14) and (2.2), we have

Yo = Xa = Xo— X — f'xo) o — xu— Slxo0, xo1 = flx0, X1 + flx0, Xl = flxs, X
) T8 X0, y-1) " o(f5 x0,y-1)
oy 10 X0 = X0, Xl + SX0, Xe] = [T, 2]
o 4 fTx0, x0, y-11 = 2f[x0, y-1, y-1]
_ Slxo0, X0, Xl (X0 — X)) + f X0, Xu, Xa] (X0 — Xi)
=Xp — Xe — 2.7)

4 f1x0, x0, y-11 = 2 f[x0, y-1, y-1]
_ S (x) " (@ fTx0, X0, y-11 = 2fTx0, y-1, y-11 = fl%0, X0, %] — X0, Xe, Xs])
f () (4 fx0, X0, y-11 = 2f[x0, y-1,¥-1])

(xo - X*)

— 2l —
- B] (-XO X*).
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Using (2.2), (1.12) and (2.1), we have

|A1| =4 f[x0, X0, y-1]1 = 2 f[x0, y-1,y-1]
=1 (x)~ 2(fTx0, X0, y-11 = fX0, y-1,y-11) + f[X0, X0, y-1]
= f1x0, Xu, X1 + flx0, X0, y-11 = fX0, X, Xl

1l
:|2f f (L= 0)f"(x) (f" (tx0 + s(1 = D)xg + (1 = )(1 = D)y_y)
o Jo
— fxo + s(1 = y_; + (1 = s)(1 = )y_;)) dsdt

1 pl

+f f (1= f" ()™ (f" (tx0 + s(1 = g + (1 = $)(1 = D)y_y)
o Jo

= f(txo + s(1 = Hxg + (1 = $)(1 = H)x,)) ds dt

1 ! 7 -1 77 (28)
+f f (I =0 f" ()™ (f"(txo + s(1 = )xo + (1 = $)(1 = )y_1)
0o Jo
— f(txg + s(1 = Hx, + (1 = 5)(1 = D)x,)) ds di]
1, 1,
sch f s(1 —0)?|xg — y_i|dsdt + cf f (1 = $)(1 = 0)*|x, — y_1|dsdt
0o Jo 0o Jo
1l
+ Cf f (s(1 = 1)%|xo = x| + (1 = 9)(1 = 1)’ — y_1 D ds dt
0o Jo
C C C
—§|X0 -yl + €|X0 — Xl + §|X* = y-1l
< 2C
_§|X0 — X + ?|X* =yl
Using (1.11) and (2.1), we get
11— Byl =I1 — £ (x) " (4 fx0. X0, y-11 = 2fTx0, y-1. -1 D
=17 ()" (A(F[%05 X0, Y-11 = FTXer Xur Xa]) = 20F[%0, Y1, Y-1]1 = FlXus X X))
1 Al
4 fo fo (1= "G (10 + 5(1 = )% + (1 = 5)(1 = Dy_)
— " (txe + s(1 = )x, + (1 = 5)(1 — t)x,)) ds dt
1l
- Zf f (L= f"(x) " (f" (tx0 + s(1 = )y_y + (1 = )(1 = 1)y_y)
0o Jo
— " (txy + (1 = O)xe + (1 = s)(1 = H)x,)) ds di| (2.9)

1l
S4Cof f (1 = D)(tlxo — xu| + s(1 = Dlxo — x| + (1 = )(A = Dly-1 — X)) dsdr
0o Jo

1l
+2C0f f(1—t)(tle—x*|+S(1—t)le—x*|+(1—S)(l—t)ly-l—x*l)dsdt
0o Jo

5C AC
:TOPCO — X + Tob’—l — X4
18C,
3CR = —0 .
<0 = T30 18C,
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By Banach lemma [6], B; # 0 and

1
IB;!| < . (2.10)
T = g - x - Lopy —x,
Using (2.7), (2.8) and (2.10), y_1, xo € B(x4,R;). We have
0 — Xl S 0= Ax| = 0~ Ax
1= 220xg — x| — 2y — 1 =3CoR, 2.11)
7
E|xo — X <Ry
Additionally, we have
_ Syo,yol S Do, yol = f 1o, Xl + fyos Xal = flxa, Xu]
X=X =Y = Xy — T = Yo~ Xy
5(f’ X0 YO) 4f[X(), X0 YO] - zf[-x09y0’ )’0]
- x S0, Yo, XJ(vo — X4) + f1y0, X, Xal (Vo — Xa)
— )0 T Ax T
4 f1x0, X0, Yol — 2fTx0, Y0, Yol (2.12)

_ 17 () (@ fTx0, X0, ol = 2fTx0, Y0, Yol = f1¥0, Yo, Xs1 = f10s Xu X4 1)
17 (x)71(4 f[x0, X0, Yol = 2f[X0, Y0, Yol)

(yO - X*)

Using (2.2), (1.12) and ((2.1), we have

IC1| =I£" (x.)™ (4.£ X0, X0, Yol = 2 1X0, Y05 YoI) = F1V0> Y0s Xl = V0 Xe» %)
=17 (x) ™ 2(f[x05 X0, Yol — X0, Yo» YoI) + fLX0» X0, Yol = £1¥0» Yo Xul + fLX05 X0, Yol = F1V0» Xus Xall

1 Al
=|2f f (L= 0)f"(x) ™ (f" (txo + s(1 = Dxo + (1 = 5)(1 = )yo)
0o Jo
— f(txog + s(1 = )yg + (1 — s)(1 = t)yg)) dsdt
1 Al
+ f f (L= f"(x) " (f" (tx0 + s(1 = H)xo + (1 = 5)(1 = £)yp)
0o Jo
= f(tyo + s(1 = t)yg + (1 = s)(1 — H)x,)) ds dt
1 Al
+ f f (L= f"(x) " (f" (tx0 + s(1 = H)xo + (1 = )(1 = 1)yp)
0o Jo
= " (tyo + s(1 = Hx, + (1 — )(1 — 1)x,)) ds di|

1 1
<2C f f s(1 — 1)*|xo — yol ds dt
0 0

1 1
+cf faa—mm—M+xL4ﬂm—M+a—wa—ﬁm—aMhm
0 0

1l
+ Cf f (1 = D)(tlxo — xul + (1 = Dlxo — x| + (1 = ) = Dlyo — x:) disdt
0o Jo

5LI |+L| |+L| | < C] |+7C| |
=—|xg — —|vo = x| + =|x0 — x| < Clxg — x| + —|yo — x4l-
6 0~ Yo 3)70 6 0 0 6 Yo

(2.13)
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Similar to an argument about (2.9),

5C 4C
I1 - Dy < Tolxo—x*|+70|yo—x*|. (2.14)

By Banach lemma [6], D; # 0 and
1

ID}'| < .
5C, 4C,
1- 30|X0 - x*l - 30|y0 - x*'

(2.15)

Using (2.7), (2.8) and (2.10), yg, xo € B(x4,R;). We have

Clxo — x| + Flyo — x| LR,
Vo = x| € ————
1 -3C)R;

|x1 — x| < Vo — Xal = [yo — xal < Ry. (2.16)

5C 4C,
1 = =xo — xa| = S0 yo — Xl

Assume y;, x; € B(x,,R)(1 <[ < n) are defined by (1.14). By similar process of (2.7)—(2.11), we
obtain

_ I )™ A X Xns Yuo11 = 2 TXns Va5 Yne1] = [TXns X5 Xa] = F1 X Xy Xu])

n— Xa (X, — X4)
y f”(x*)_l(4f[xm Xns yn—l] - 2f[xm yn—l»yn—l]) (2 17)
An+1 .
= (-xn - x*)
Bn+1
C 2C
|An+1| < _Ixn - x*l + _lx* —}’n71| (218)
2 3
and
SCO 4C() 18CO
1 =Bl £ —|x, — Xl + — [yt — X%l < 3C)R| = ————— < 1. 2.19
| 41l 3)Ix Xl 3|y1 x| < 3CoR; 13C+18C0< (2.19)
Applying Banach lemma [6], B,;; # 0, so
|B_1 | < ! (2.20)
= 1 - %'xn - x*l - %lyn—l — Xx ‘ .
Using (2.17), (2.18), (1.12) and (2.20), we get
|y . | <%|xn - x*|2 + %lyn—l - x*”xn - X*l
T =2, - x] — oy, — xl

S0 — X+ Zlyunt — Xl — x|
- 1 - 3CyR, (2.21)
- (12 = xallyno1 — xl
N 1 -3CoR;
<|x, = xil <Ry,

S ()™ A1, Xy Yl = 2F [, Y Yul = f 1y Vs %] = f Ly X x*])(y %)
f”(x*)_l(4f[xm Xns yn] - zf[xn’yn’ yn]) " ) (222)

Xn+l — Xse =

Cn+l

= (yn - x*)a
Dn+1
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C
Icn+l| < C|xn - x*l + ?IX* - ynla

and

5C

4C, 18C
|v4MnsgﬂM—m+7§m—mw3@K: 0

—_— <
13C + 18C
By Banach lemma [6], D,,,; # 0 and

., 1

D! | <

n+ 5C 4C, '
1= =%, — x| = F2yn — Xl

Using (2.22), (2.23), (1.12) and (2.25), we get

ic
Clxn - X*||}’n - x*l + ?lyn - X*|2

5C 4C,
1= =x, — x| = S0 yn — X4l

|xn+1 - x*l <
ic
<C|xn - X*||)’n - x*l + ?lyn - x*|2

- 1 -3CyR,
13C
T(lxn - x*“yn - x*l

1 -3CoR;
_|xn B x*“yn B x*l

Ry

S|xn - X*I < Rly

(2.23)

(2.24)

(2.25)

(2.26)

which indicates x,,;; is well defined and x,,,; € B(x.,R;). The sequence {x,} generated by (1.14), which
starts from an initial point x, € B(x,,R;), is clearly defined by induction, and x,, y, € B(x,,R;)(n > 1).

Moreover, for n > 1, (2.26) holds, which shows that error estimates (2.4) and (2.6) are true.

To prove the uniqueness of the solution x, for method (1.7), suppose there is another solution y, €
B(x., c%)) so that f'(y.) = 0. Notice the operator H = f’[x,,y.]. If H is invertible, since H(x, — y.) =

f'(x) = f'(ve) =0, yi = x,. In fact, combining (2.2) and (1.11), y. € B(x., C%), and we obtain

11— £ () HI =17 (x) ™ (H = 7 (x,))] = |f”(x*)_l(f[x*’x;] :i[y*’y*] — 7 (x)l
:|f”(x*)‘1(f[x*’x*] = fIxe 2] + flx yud = fIyeyed 2t

Xe = Va

=17 () (F L, X Yal = FLX, X Xa] + [T Yoo Vil = f1X, X XD

iffh4meWWﬁMfmﬁﬂﬂﬂﬁM)
—Of"((l)‘x* +s5(1 —=0x. +(1 —5)(1 —Dx,))dsdt
+jifGﬁWUJWWLHU4m+OﬂM—m»
- fg(txj +5(1 =x, + (1 = 5)(1 = H)x,)) ds dt]

C
37°|y* —xl <1

(2.27)
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Therefore, Banach’s lemma proves that the operator H is invertible. We show easily that B(x,, c%)) is
larger than B(x,, R) by (2.3). The proof is over. O

We can get another approximation for |B;i1| under conditions (1.11) and (1.13) by similar method
of Theorem 2.1. Thus, another local convergence theorem for our method (1.14) is established.

Theorem 2.2. Suppose f'(x.) =0, f"(x,) # 0, and f is twice differentiable on N. Let us assume that
the Lipschitz conditions (1.11) and (1.13) hold. Denote

6

== 2.28
17Ly + 6C0 ( )

R,
Given an initial point xy in ball B(x,,R;) C N, the sequence {x,} generated by our method (1.14)
converges to its unique solution x, € B(x,, C%)) C N. B(x,, C%)) is larger than B(x,,R;). Furthermore,
we get the following error estimates

119L, + 42C 7Ly + 6C
Dot = X € — Oy P —2 T — Xy — X, (2 0) (2.29)
78 13
where 7Ly + 6C 34L, + 12C
+ +
V= Xl € ——2, = P+ ek = xlly — %l (22 0) (2.30)
26 39
and n = 2l — ]
s — ] < D T B s, 2.31)
R,

Proof. By the similar proof to that of Theorem 2.1, applying conditions (1.11) and (1.13), for n > 0,
we obtain

11 = Bl =1 = £ (x) ™ @ %0 Xns Yuo1] = 2 [Xs Ynot> Y1 D)
:lf,,(x*)_l(z(f[xm Xns yn—l] - f[xn’ yn—layn—l]) + 2(f[~xm Xns yn—l] - f[x*a X x*])l

1 1
=I2f f (A=) f"(x) " (F (tx, + s(1 = Dx, + (1= $)(1 = D)y,1)
0 0
— f(x, + (1 = Oy,oy + (1 = $)(1 = 1)y,_1)) dsdt

1l

+ 2f f (1 =0 f"(x) ™ (f" (1 + (1 = Dx, + (1 = ) = Dyuer)
0 Jo

— f(txe + s(1 = Hx, + (1 = 5)(1 = D)x,)) ds di]

1l (2.32)
<2L, f f s(1 = £)%|x, — yo1| ds dt
0 0

1 1
+2Cy f f (1= 0ty — 2 + s(1 = Dxy = x| + (1 = )1 = DY,y — xu dsdt
0 0

2 C
:?()l-xn _yn—l| + Tolxn - x*l + ?Ob)n—l - x*l

Lo+ 2C0 Lo+ Cy
S Xl
3 R
2Ly + 3C 4Ly + 6CO
<—R

|yn—1 - X*l

= —————— <
3 17L0+6C0
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Applying Banach lemma [6], B, # 0, so
1

Lo+2C C
1= 2200, — x| = 250y, — x|

Suppose x,,, y, € B(x.,R,) are defined by (1.14). Let us see that (2.17) holds. By the similar method to
that of Theorem 2.1, we have

-1
|B,, | <

n+

) (2.33)

L 2L
Ape] < 3°|xn — x|+ T‘)m — Vet (2.34)

Using (2.17), (2.33), (1.12) and (2.34), we have in turn

L 2
70|)Cn - X*|2 + TLolyn—l - x*llxn - X*l

|yn - x*l <

Lo+2C Lo+C
1= 2520 x, — x| = 252y — xl

2L,
%lxn - x*|2 + T()'yn—l - x*”xn - x*l
1 2L0;3COR2 (2.35)

7L
To(lxn - X*Hyn—l - x*l)
1-— 2L0-;3C()R2

IA

<

< |x,, - X*l < R,.

On the other hand, let us see that (2.22) holds. By the similar method to that of Theorem 2.1, we have

7L
ICpatl < Lolx, — x4 + ?‘)m —Vl. (2.36)
L 2C C
11 =D, =?0|xn —yal + T‘)m — x|+ ?°|yn — x|
Lo+ 2C Lo+ C
s%m — X+ = 3 S (2.37)
2Ly + 3C 414 + 6C,
< 0 ORZ = 0 0 < 1.
3 17Ly + 6C

By Banach lemma [6], D,,; # 0 and
1
-1

Dl < 1~ T T— (2.38)
Using (2.22), (2.23), (1.12) and (2.38), we get
| < Lokl =l by =l
1 — 22y, — x| + L2y, — x|
B (|x, = xallyn — xil
] - LSap, (2.39)

_|-xn B X*||)’n B X*l
R,
<|x, — x| <R,

which denotes x,,; € B(x,,R,) as defined. The proof of the rest is similar to that of Theorem 2.1. The
proof is over. o

AIMS Mathematics Volume 9, Issue 3, 6073-6087.



6083

Remark 2.1. We find that if 17Ly > 12Cy + 13C, then R; > R,; otherwise, if 12Cy + 13C > 17L,,

then R, < R, by comparing (2.3) with (2.28). We shall show by some examples that both options are
possible. Additionally, denote Ly = (Cy, S),C = (Cy, Ny) and Ny C Sy, so C < L.

3. Numerical experiments

We apply following examples to prove the convergence conditions and compute the convergence
ball radii of our method (1.14), and compare Wang’s method (1.5) and fourth-order method (3.1) by
numerical experiments.

Wang et al. in [19] proposed the following fourth-order method:

1
Yn = Xn — Ef(xn)a
> 1 3.1
Xn+l = Yn — (3 - Ef[-xm yn])Ef(yn)
where B = f[wna Splswy = X, + f(xn)a Sp = Xp — f(xn)

Example 3.1. Set N = [—1, 1]. The function f, in N is defined by
filkx) =¢€" —x. (3.2)

In addition, a root of f/(x) = 0is x, = 0. According to condition (1.8), (1.9) and (1.11)—(1.13),

W=Y=¢eC= eTl—”,LO = eﬁ, Co = e— 1. By (2.3) and (2.28), the following radii are obtained

R; = 0.1112,R;, = 0.1473 (3.3)

then
R; < R,. (34)

So, we can easily verify
12Cy + 13C = 43.6704 > 17Ly ~ 30.4227.

Example 3.2. Function f in N = [0, 1] is defined by (1.13), then we easily obtain Cy = C = Ly =
1.0923. By (2.3) and (2.28), the following radii are obtained

Ry = 0.1772,R, = 0.2388 (3.5
and
R, > R;y. (3.6)
Example 3.3. Set N = [-3, 5]. The function f in N is defined by
f(x) = cos(cx) 3.7
where ¢ > %ﬁ is a constant. Additionally, a root of f'(x) = 0is x, = 0. According to conditions (1.11),

(1.12) and (1.14), we can obtain Ly = sin(%), Co= "fT”, and C = sin(%).
Set ¢ = 0.88 and we have
f2(x) = cos(0.88x). (3.8)
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By (2.3) and (2.28), the following radii are obtained
R; = 0.3386,R; = 0.2912 3.9)

then
Ry < Ry. (3.10)

So, we can verify easily
12Cy + 13C = 14.0719 > 17Ly = 16.9543.

If set c = 1, we have

J3(x) = cos(x). (3.11)
By (2.3) and (2.28), the following radii are obtained
Ry =~ 0.3078,R, ~ 0.2862 (3.12)
then
Rz > RI. (313)

So, we can easily verify
12Cy + 13C ~ 14.7780 < 17Ly = 16.2529.

Using the above three functions, Wang’s method (1.5), fourth-order method (3.1), and our
method (1.14) are compared by numerical experiments. In Table 1, |x, — x,| is absolute errors, xj is
initial point, and iter is number of iterations. The methods (1.5), (1.14) and (3.1) are iterated five
times. The order of computational convergence p is shown. E = p!/ is efficiency index. It is used to
judge the computational efficiency of the iterative method. ¢ is computational cost.

Table 1. Numerical results of methods (1.5), (3.1) and (1.14).

Method  Function  xo  iter |, — X4l Jol c E
(1.5) fi 1.5 5 1.72541e-30 2.0 4 1.1892
(3.1 f 1.5 5 8.18368¢ —53 40 4 14142
(1.14) f 1.5 5 4.00995¢ —-352 4.0 4 14142
(1.5) b 5.0 5 0.000980133 20 4 1.1892
(3.1 b 5.0 5 3.79249¢ - 82 50 4 14953

(1.14) b 5.0 5 7.66302¢ — 157 4.0 4 14142
(1.5) f 1.2 5 5.57691e-23 2.0 4 1.1892
(3.1 f 1.2 5 2.49293¢-82 50 4 14953
(1.14) f 1.2 5 3.8233¢-322 40 4 14142

In Table 1, the method (3.1) has the same order and cost as our method (1.14), but our method has
higher accuracy. Our method has the same cost as Wang’s method, but our method has a higher order
of convergence and higher accuracy.
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4. Conclusions

In this paper, the convergence ball of a new fourth-order method for finding a zero of a derivative
was studied in cases that applied less restrictive assumptions that were not covered before. This study
discussed the measurable error distances, radii of convergence ball, and uniqueness of the solution.
The error estimates |x, — x,| and the convergence order were established under these different
assumptions about Lipschitz conditions. In addition, different radii of the convergence ball was
determined according to different weaker hypotheses. In the experimental part, the convergence
criteria was proved by three classical examples. The experimental results were consistent with theory.
The new method (1.14) was compared with Wang’s method (1.5) and fourth-order method (3.1) by
numerical experiments. The experimental results showed that the convergence order of the new
method (1.14) is twice as high as that of Wang’s method (1.5), and the new method had higher
accuracy, so the new method (1.14) is relatively better.
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