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Abstract: In this paper, we attempt to obtain exact and novel solutions for Date-Jimbo-Kashiwara-
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Kudryashov method (GKM). This equation has applications in plasma physics, fluid mechanics, and
other fields. The Lie symmetry method is applied to reduce the governing equation to five different
ordinary differential equations (ODEs). GKM is used to obtain general and various periodic solutions.
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1. Introduction

1.1. Overview

Many physical phenomena, in the fields of sound and electrical waves, heat transfer, mechanics,
and optics can be described through partial differential equations. Therefore, we can say that the
study of mathematical physics depends primarily on the study of partial differential equations. During
previous decades, many methods were developed to reduce and solve partial differential equations,
including Symmetry method [1–4], scattering transformation [5], Tanh method [6], the homogeneous
balance method [7], Aboodh transform decomposition method [8], (G′/G,1/G)-expansion method [9],
Exp-function method [10], Generalized He’s Exp-function method [11], Kudryashov method [12],
and Generalized Kudryashov method [13]. Consider the nonlinear (2+1)-dimensional Date-Jimbo-
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Kashiwara-Miwa (DJKM) equation [14, 15] in the following form:

Φxxxxy + 4ΦxxyΦx + 2ΦxxxΦy + 6ΦxyΦxx + Φyyy − 2Φxxt = 0, (1)

where Φ = Φ(x, y, t). DJKM describes the wave diffusion of physical-quantity, and it has certain
applications in plasma physics [16, 17]. This equation was presented by Jimbo and Miwa as second
formulas for Kadomtsev-Petviashvili hierarchy.

1.2. Related literatures

There is a wealth of literature related to this governing equation such as: Bibi and Ahmad [14]
who employed the symmetry method to reduce the governing equation to another equation of lower
order and obtained its exact solutions. The exp(−φ(ξ))-Expansion Method was utilized by Sajid and
Akram [14] for obtaining traveling wave solutions for Eq (1). Halder et al. [18] used the Lie symmetry
analysis and singularity method to study one type of the governing equation. Wazwaz [19] studied
the integrability of this equation and obtained multiple soliton solutions by using Painlevé analysis
and Hirota’s method. Akram et al. [16] applied the extended direct algebraic method to obtain exact
solutions for the governing equation.

1.3. Main idea

The previous literature led us to determine the study of the governing equation to apply the Lie
symmetry method and the Generalized Kudryashov method. Our main objective of this paper is to
convert the governing equation to several distinct ordinary differential equations (ODE). We then solve
the resulting ODEs to obtain exact and novel wave solutions for the governing equation. As a result,
we can show the dynamic behavior of wave solutions in 2-D and 3-D plots.

2. Lie symmetry method

In this part, the Lie symmetry method [20–22] is used to deduce the similarity reductions for the
governing equation, so the one-parameter Lie symmetry of infinitesimal variables is shown as follows:

t∗ = t + εA(t, x, y,Φ) + o(ε2), x∗ = x + εB(t, x, y,Φ) + o(ε2),
y∗ = y + εC(t, x, y,Φ) + o(ε2), Φ∗ = Φ + εE(t, x, y,Φ) + o(ε2), (2)

where ε is the one parameter Lie group, A, B, C and E are infinitesimal variables and t, x and y are
independent variables of the function Φ.

The vector generator χ is related to the above-mentioned group transformations which can be
written as the following expression:

χ = A
∂

∂t
+ B

∂

∂x
+ C

∂

∂y
+ E

∂

∂Φ
, (3)

when the following invariance condition is satisfied:

Γ(3)(∆) = 0, (4)
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where ∆ represents Eq (1) and Γ(3) is the third order prolongation [23, 24] of the operator V

Γ(3) = χ + E[x]
∂

∂Φx
+ E[y]

∂

∂Φy
+ E[xy]

∂

∂Φxy
+ E[xxx]

∂

∂Φxxx
+ E[xxy]

∂

∂Φxxy

+ E[xxt]
∂Φ

∂Φxxt
+ E[xxy]

∂

∂Φxxy
+ E[xxxy]

∂

∂Φxxxy
+ E[yyy]

∂

∂Φyyy
, (5)

where the components E[x], E[xx], E[xyy], E[y], E[xy].... can be determined from the following expressions:

E[x] = DxE − ΦtDxA − ΦxDxB − ΦyDxC,

E[y] = DyE − ΦtDyA − ΦxDyB − ΦyDyC,

E[xx] = DxE[x] − ΦxtDxA − ΦxxDxB − ΦxyDxC,

E[xy] = DyE[x] − ΦxtDyA − ΦxxDyB − ΦxyDyC,

E[yy] = DyE[y] − ΦxtDyA − ΦxxDyB − ΦxyDyC,

E[xxxy] = DyE[xxx] − ΦxxxtDyA − ΦxxxxDyB − ΦxxxyDyC. (6)

Substituting (1) into Eq (4), yields an identity components Ax, Axx, Bt, Bx, .... and adding the
coefficients of Φx,x,t, Φy,y,y, ... and equating them to zero, then the infinitesimals A, B,C and E are
obtained from the following equations:

Ax = Ay = AΦ = 0,

By = BΦ = 0, Bx =
1
4

At,

Cx = BΦ = 0, Cz =
1
2

At,

Ex =
−1
2

Ct, EΦ =
−1
4

At, Ey =
−1
2

Bt. (7)

solving the system of Eq (7), we get

A = g1(t), B =
1
4

g′1x + g3(t), C =
1
2

g′1y + g2(t),

E =
−1
4

g′1Φ −
1
4

xyg′′1 − yg′2 −
1
2

xg′3 + g4(t). (8)

The vector field operator V of Eq (8) can be presented as

V = V1(c1) + V2(c2) + V3(c3) + V4(c4), (9)

where

V1 = g1(t)
(
∂

∂t
+

1
4

x
∂

∂x
+

1
2

y
∂

∂y
−

1
4

Φ
∂

∂Φ

)
−

1
4

xyg′′1
∂

∂Φ
,

V2 = g2(t)
∂

∂y
− yα′2

∂

∂Φ
, V3 = g3(t)

∂

∂x
−

1
2

g′3
∂

∂Φ
, V4 = g4(t)

∂

∂Φ
. (10)
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The Lie-bracket [Vi,V j] = ViV j − V jVi is used for obtaining the commutator relations which are
shown in Table 1, where

l1 = g1g′2 −
1
2

g2g′1, l2 =
−1
4

(g′2g′1 + 2g1g′′2 − g2g′′1 )x,

l3 = g1g′3 −
1
4

g3g′1, l4 =
−1
4

(g′3g′1 + 4g1g′′3 − g3g′′1 )y,

l5 =
1
4

(4g1g′4 + g4g′1), l6 =
−1
2

(2g2g′3 − g3g′2). (11)

Table 1. The commutator table.

V1 V2 V3 V4

V1 0 l1
∂
∂y + l2

∂
∂Φ

l3
∂
∂x + a4

∂
∂Φ

l5
∂
∂Φ

V2 -(l1
∂
∂y + l2

∂
∂Φ

) 0 l6
∂
∂Φ

0
V3 -(l3

∂
∂x + l4

∂
∂Φ

) -l6
∂
∂Φ

0 0
V4 −l5

∂
∂Φ

-l6
∂
∂Φ

0 0

3. Reductions and closed form solutions

To obtain new independent variables, we utilize the characteristic equation as follows:

dt
A(t, x, y,Φ)

=
dx

B(t, x, y,Φ)
=

dy
C(t, x, y,Φ)

=
dΦ

E(t, x, y,Φ)
. (12)

Case I. Using V1 where g1(t) = t2, Eq (12) takes the following form:

dt
t2 =

dx
1
2 tx

=
dy
ty

=
dΦ
−1
2 tΦ

. (13)

The similarity solution of Eq (1) takes the form

Φ(t, x, y) =
1
√

t
F(ζ, η) −

xy
2t
, (14)

where ζ = x
√

t
, η =

y
t . Substituting Φ in Eq (1) we get

Fηηη + 6FζζFζη + 2FζζζFη + 4FζζηFζ + Fζζζζη= 0. (15)

The ordinary differential equations of Eq (15) take the following experssion:

h3F′′′(θ) + 6k3hF′′
2
(θ) + 6k3hF′′′(θ)F′(θ) + k4hF′′′′′(θ) = 0, (16)

where θ = kζ + hη.
To obtain the exact solution for Eq (16), we utilize generalized Kudryashov method (GKM) [11],

given as follows:

F(θ) = A0 +

m∑
i=1

Ai

(1 + φ(θ))i , (17)
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where φ(θ) is the solution for the following Ricati equation φ′(θ) = A + Bφ(θ) + Cφ2(θ). For simplicity,
we take i = 1 and substitute Eq (17) into Eq (16) then to obtain

h = ±
√

4AC − B2k2, A1 = 2k(C − B + A), k and A0 are arbitrary constant. (18)

Substituting Eq (18) into Eqs (14) and (17), the exact solutions of Eq (1) can be expressed as
Set 1. A , 0, B , 0,C , 0.

Φ(t, x, y) =
1
√

t

A0 +
2k(C − B + A)

[−B
2C +

√
4AC−B2

2C tan (1
2 (
√

4AC − B2θ)) + 1]

 − xy
2t
, (19)

where θ = k x
√

t
+
√

4AC − B2k2 y
t .

Set 2. A = −1
2 , B = 0,C = −1

2 .

Φ(t, x, y) =
1
√

t

(
A0 +

−2k
cot(θ) ± csc(θ) + 1

)
−

xy
2t
, (20)

where θ = k x
√

t
+ 2k2 y

t .

Case II. Substituting V1 in Eq (12) where g1(t) = t, then Eq (12) is expressed as follows:

dt
t

=
dx
1
4 x

=
dy
1
2y

=
dΦ
−1
4 Φ

. (21)

Then the invariants are presented by ζ = x

t
1
4
, η =

y

t
1
2

and Φ(t, x, y) = 1

t
1
4

F(ζ, η). Further Eq (1) is
reduced to the following form:

3
2

Fζζ +
1
2
ζFζζζ + ηFηηη + Fηηη + 6FζζFζη + 4FζFζζη + 2FζζζFη + Fζζζζη = 0. (22)

For reducing Eq (22) to ODE we have two subcases:
Subcase (a). Using the scaling transformation in Eq (22)

F = eε
−

F, ζ = eε1
−

ζ, η = eε2 η. (23)

Substituting from Eq (23) into Eq (22) we have 2ε1 = ε2 = −2ε.
The characteristic is given as

2dζ
ζ

=
dη
η

=
−2dF

F
. (24)

The invariant variables can be written as

θ =
ζ2

η
, f =

1
ζ2 F(θ). (25)

The ODE of Eq (22) is provided by

−θ2 f ′′′ − 6 f ′′ − 6θ f ′ − 48θ f ′′
2
− 48θ f f ′ − 48 f ′ f ′′′ − 16 f ′ f ′′′ − 80θ f ′′′ − 60 f ′′′ − 16θ2 f ′′′′′ = 0.

(26)
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To obtain the exact solutions of Eq (26), we suppose that the solution of Eq (26) has the form

f (θ) = A0 +

n∑
j=1

A jθ
j. (27)

For simplicity, we take j = 2, substitute Eq (27) into Eq (26), then the closed form solution of Eq (1)
takes the expression

Φ(x, y) = A0 + A1
x
y
−

1
16

x3

y2 , (28)

where A0 and A1 are arbitrary constant.
Subcase (b). Utilizing symmetry method for Eq (22), we obtained the infinitesimals of Eq (22) as
follows:

τ =
1
2

c1ζ + c2, β = c1η + c3, ψ =
−1
2

(F + xy)c1 −
1
4
ηc2 −

1
4
ζc3. (29)

The vector field of Eq (22) can take the form

χ = χ1(c1) + χ2(c2) + χ3(c3), (30)

where
χ1 =

1
2
ζ
∂

∂ζ
+
∂

∂η
−

1
2

(F + xy)
∂

∂F
, χ2 =

∂

∂ζ
−

1
4
η
∂

∂F
, χ3 =

∂

∂η
−

1
4
ζ
∂

∂F
. (31)

Using χ2 + wχ3, the characteristic equation is yielded

dζ
1

=
dη
w

=
dF

−1
4η −

w
4 ζ
. (32)

The similarity solution for Eq (22) takes the form

F(ζ, η) = f (θ) −
1
4
ηζ, where θ = η − wζ. (33)

The reduced ODE can take the expression

f ′′′(θ) − 6w3 f ′′2(θ) − 6w3 f ′(θ) f ′′′(θ) + w4 f ′′′′′(θ) = 0. (34)

Utilizing GKM in the previous case, the closed-form solution of Eq (34) is shown as

f (θ) = A0 +
A1

1 + φ(θ)
+

A2

(1 + φ(θ))2 . (35)

Substituting Eq (35) into Eq (34), collecting the coefficients of derivative φ(θ) and solving the
algebraic equations, we obtain the values of A0 and A1

A1 =
−2(A + C − B)

(4AC − B2)
1
4

, w =
1

(4AC − B2)
1
4

, A0, A2 are arbitrary. (36)

Set 1. A , 0, B , 0,C , 0.

Φ(t, x, y) =
1

t
1
4

A0 +
A1

[−B
2C +

√
4AC−B2

2C tan (1
2 (
√

4AC − B2θ)) + 1]
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+
A2

[−B
2C +

√
4AC−B2

2C tan (1
2 (
√

4AC − B2θ)) + 1]2

 − y

4
√

t

x

t
1
4

, (37)

where A1 =
−2(A+C−B)

(4AC−B2)
1
4
, θ =

y
√

t
+ 1

(4AC−B2)
1
4

x

t
1
4
.

Set 2. A = 1
2 , B = 0,C = 1

2 .

Φ(t, x, y) =
1

t
1
4

(
A0 +

A1

csc(θ) − cot(θ) + 1
+

A2

(csc(θ) − cot(θ) + 1)2

)
−

y

4
√

t

x

t
1
4

, (38)

where A1 = −1
2 , θ =

y
√

t
+ x

t
1
4
.

Cases III. Using wV2,V3,V4 where g2(t), g3(t), g4(t) are constants, we get

dt
0

=
dx
w

=
dy
1

=
dΨ

1
. (39)

Using Eq (39), we obtain the invariant solutions

Φ(t, x, y) = F(ζ, η) + y, where ζ = t, η = x − wy. (40)

Substituting Eq (40) into Eq (1) we get

2Fζηη + w3Fηηη + 6wF2
ηη + 6wFηηηFη − 2Fηηη + wFηηηηη= 0. (41)

Utilizing transformation θ = kζ + hη, Eq (41) is reduced to the next equation

h2(2k + hw3 − 2h)F′′′(θ) + 6wh4F′′
2
(θ) + 6wh4F′′′(θ)F′(θ) + wh5F′′′′′(θ) = 0. (42)

The exact solutions of Eq (42) can be deduced by applying GKM in the previous method.
Substituting Eq (17) into Eq (42) at i = 1 and collecting the coefficient of derivative φ(θ), then equating
this equations to zero, this equations is solved and the values of A0, A1,w, h and k are obtained as

k =
1
2

(4h2wAC + 4 − w3 − h2wB2), A1 = 2(C + A − B)h, A0, h,w are arbitrary. (43)

The closed-form solutions of Eq (1) can be expressed as
Set 1. A , 0, B , 0,C = 0.

Φ(t, x, y) = A0 +
2(A − B)h

−A
B + 1

B exp (B θ) + 1
+ y, (44)

where k = 1
2 (4 − w3 − h2wB2), θ = kt + h(x − wy).

Set 2. A = 0, B , 0,C , 0.

Φ(t, x, y) = A0 +
2(C − B)h (C exp (B θ) − 1)
B exp (B θ) + C exp (B θ) − 1

+ y, (45)

where k = 1
2 (4 − w3 − h2wB2), θ = kt + h(x − wy).
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Cases IV. Utilizing wV2,V3, where α2(t), α3(t) are constant, we obtain

dt
0

=
dx
1

=
dy
w

=
dΨ

0
. (46)

Using Eq (46), we obtain the invariant solutions

Φ(t, x, y) = F(ζ, η), where ζ = t, η = x − wy. (47)

Substituting Eq (47) into Eq (1) we get

2Fζηη + w3Fηηη + +6wF2
ηη + 6wFηηηFη + wFηηηηη= 0. (48)

Taking the transformation θ = kζ + hη, Eq (48) is reduced to the form

h2(2k + hw3 − 2h)F′′′(θ) + 6wh4F′′
2
(θ) + 6wh4F′′′(θ)F′(θ) + wh5F′′′′′(θ) = 0. (49)

The coveted exact solution of Eq (49) is given. Hence, by using Eq (17) in Eq (49), the solution for
Eq (1) is provided as
Set 1. A , 0, B , 0,C , 0.

Φ(t, x, y) = A0 +
2(C + A − B)h

[−B
2C +

√
4AC−B2

2C tan( 1
2 (
√

4AC − B2θ)) + 1]
, (50)

where k = 1
2 (4h2wAC + 4 − w3 − h2wB2), θ = kt + h(x − wy).

Set 2. A = 1
2 , B = 0,C = −1

2 .

Φ(t, x, y) = A0 −
1
2

h
coth(θ) ± csc h(θ) + 1

, (51)

where k = 1
2 (−h2w + 4 − w3), θ = kt + h(x − wy).

4. Results & discussion

In this section, we explain the dynamic behavior of the obtained solutions in Eqs (19), (20), (28),
(37), (38), (44), (45) and compare these results with previous literatures.

The physical behavior of the solutions is illustrated in three-dimensional and two-dimensional
forms. The solutions include trigonometric functions, hyperbolic functions, and expansion functions.
The Maple software was used to review the solutions as follows:

In Figure 1, presents wave solution of Eq (19) in 3-D and 2-D shapes with perfect numerical values
of A0 = 5, k = 0.1, A = 3, C = 2, B = −1 at y=1.
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(a) (b)
Figure 1. Wave solution of Eq (19) in 3-D and 2-D shapes.

In Figure 2, the solution of Eq (28) shows the behavior of a single wave and it is presented through 3-
D and 2-D graphs. The constants are chosen as follows: A0 = 1, A2 = 1, k = 0.1, A = 3, C = 2, B = 3
when y = 1.

(a) (b)
Figure 2. Single wave of Eq (28) in 3-D and 2-D graphs.

Figure 3 shows doubly soliton of Eq (37) in 3-D and 2-D shapes with perfect choice for values of
A0 = 0, A1 = 1.
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(a) (b)
Figure 3. Doubly soliton of Eq (37) in 3-D and 2-D shapes.

Figure 4 depicts the view anti-kink wave solution of Eq (44) in 3-D and 2-D graphs with a suitable
choice of values A0 = 3,w = −1, h = −3, A = 2,C = 0, B = 1 with y = 1.

(a) (b)
Figure 4. Anti-kink wave solution of Eq (44) in 3-D and 2-D graphs.

In Figure 5, the solution of Eq (45) represents a kink wave solution in 3-D and 2-D plots with perfect
simulation of the values A0 = 1, h = 2,w = 1, z = 1, A = 0, C = −3, B = 1 at y = 1.
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(a) (b)
Figure 5. Kink wave solution of Eq (45) in 3-D and 2-D plots.

The authors in [13] used the symmetry method and obtained a subcase from our infinitesimals.
Then, they reduced the governing equation to one reduction case, but we obtained five reduction cases.

The authors in [14] used two different traveling wave methods to obtain exact solutions. However,
they reduced the governing equation through an algebraic transformation. When comparing these
solutions with our obtained solutions, it turned out that our solutions are novel solutions and show
different physical behavior from other solutions.

5. Conclusions

In this paper, we applied the Lie symmetry method to obtain infinitesimals and vector fields. This
led to reduce the governing equation to a new form of partial differential equations (PDEs). Then, by
utilizing the symmetry method again and similarity transformation: the new form of PDEs has been
converted instead of reduced to five different ODEs. The general exact wave solutions are obtained by
using GKM. These solutions are represented in 2-D and 3-D graphs to show the physical properties of
the solutions.
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