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Abstract: Bézier curves are essential for data interpolation. However, traditional Bézier curves often
fail to detect special features that may exist in a data set, such as monotonicity or convexity, leading
to invalid interpolations. This study aims to improve the deficiency of Bézier curves by imposing
monotonicity or convexity-preserving conditions on the shape parameter and control points. For this
purpose, the quintic trigonometric Bézier curves with two shape parameters are used. These techniques
constrain only one of the shape parameters, leaving the other free to provide users with more freedom
and flexibility in modifying the final curve. To guarantee smooth interpolation, the curvature profiles of
the curves are analyzed, which aids in selecting the optimal shape parameter values. The effectiveness
of the developed schemes was evaluated by implementing real-life data and data obtained from the
existing schemes. Compared with the existing schemes, the developed schemes produce low-curvature
interpolation curves with unnoticeable wiggles and turns. The proposed methods also work effectively
for both nonuniformly spaced data and negative-valued convex data in real-life applications. When
the shape parameter is correctly chosen, the developed interpolants exhibit continuous curvature plots,
assuring C2 continuity.
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1. Introduction

Shape-preserving interpolation is a fundamental concept in numerical analysis and data
approximations. It is essential for maintaining the important characteristics of a dataset while
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generating a continuous function that smoothly connects all data points. Monotone data, such as the
uric acid level in gout patients [1] and the rate of radioactive decay [2], exhibits a consistent directional
trend, either increasing or decreasing, whereas convex data shows a curve that slopes upward. The
problem of convex data arises in the design of telecommunication systems, parameter estimation, and
approximation theory [3]. Preserving monotonicity and convexity ensures that the interpolated function
accurately represents the fundamental behavior of the original data. This field has been revolutionized
over the years, improving the way data is interpolated.

The study of monotonicity preservation by [4] proposed a monotonicity-preserving technique using
a C1-weighted quadratic spline. As the developed technique is non-rational, it is easy to implement and
requires less computational time. [5] presented a monotonicity-preserving technique that achieved GC1

continuity by employing a rational quartic over linear spline function. [6, 7] implemented cubic over
linear and quadratic rational functions, resulting in C2 interpolant with the unknown derivative values
determined by solving a system of tridiagonal equations. [8,9] constructed C1 monotonicity-preserving
schemes using (cubic/cubic) and (cubic/quadratic) rational cubic Ball interpolation functions. By
having more free parameters, [9] provided greater flexibility for users to modify the resulting curves.
On the other hand, [8, 10] provided curvature profile comparisons to quantitatively analyze the
smoothness of the resulting curves. This approach eliminates the potential biases that may arise from
subjective human judgment, providing a more reliable assessment of the curves’ smoothness.

Further, subdivision schemes are also common in shape-preserving interpolation due to their
ease of use and flexibility. [11] and [12] employed ternary and four-point ternary nonstationary
interpolating subdivision schemes for monotonicity-preserving schemes. Furthermore, fractal splines
are employed in monotonicity-preserving interpolation. [13, 14] created monotonicity-preserving
interpolation algorithms based on a rational cubic fractal spline. These schemes involve the scaling
and shape parameters. The latter scheme is more flexible because it sets limits only on the shape
parameters, thereby leaving the scaling factor free for curve adjustment.

A C1 convexity-preserving piecewise variable-degree rational interpolation spline with two local
shape parameters was developed by [15]. Due to the positive second derivatives of the interpolant, the
convex data can be directly preserved. Rational cubic and quartic interpolants were used by [16–18].
A C1 continuous convexity preserving scheme was developed by [16], whereas [17, 18] developed
C2 continuous schemes. [17] used LU decomposition to solve for the derivative values, while [18]
offered a simpler approach that yields a local scheme by directly computing the derivative values. [19]
implemented a trigonometric function with a shape parameter. This approach is rigid because the
shape parameter is constrained to preserve convexity. [20] suggested convexity-preserving methods for
generalized cubic spline, including rational, exponential, variable power, hyperbolic, and spline with
additional knots. The non-convex curve segments are adjusted with near-optimal tension parameters.
The developed scheme is universal and can be applied to any type of generalized spline with tension
parameters.

First introduced in 1958, Bézier curves have gotten considerable attention due to their simple
development and ease of control due to their convex hull properties. In addition, no advanced
knowledge of computer aided geometric design (CAGD) is needed to use the curves because they are
made up of control points and Bernstein polynomials, which can be easily developed. In addition
to the conventional Bézier curve, trigonometric Bézier curves with shape parameters have been
proposed [21–23], resulting in greater adjustability and control of the curve shape. Because of the
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nice properties they hold, Bézier curves have been applied to many real-life applications, including
highway design [24], path planning [25], image compression [26], and surface construction [27].
However, when applied to data interpolations, Bézier curves neglect important features of the data,
resulting in misleading interpolation. This study aims to incorporate the shape-preserving approach
into the trigonometric Bézier curves by developing data-dependent constraints on the shape parameter
and introducing a scaling factor on the control points to ensure the control points’ monotonicity or
convexity. Curvature analysis is also conducted to assess the smoothness of the resulting interpolation.

This paper is structured as follows: In Section 2, the C2 quintic trigonometric Bézier interpolating
curve is constructed, and the method for computing the derivative values is explained. Next, the
derivation of the monotonicity or convexity-preserving conditions for the shape parameter is presented
in Section 3. The formula for computing the curvature profile is described in Section 4. Section 5
presents graphical examples of shape-preserving interpolations by implementing new and previous
data sets from the existing scheme. Finally, Section 6 provides the conclusion and a few possible
directions for further research.

2. C2 quintic trigonometric Bézier curve with two shape parameters

For the purpose of this study, the quintic trigonometric Bézier curve with two shape parameters
proposed by [23] will be used. Let {(xi, yi) : i = 0, 1, 2, . . . , n} be a set of data defined over the interval
[x0, xn] with xi+1 > xi. The quintic trigonometric Bézier curve in each subinterval Ii = [xi, xi+1] is given
by

s(x) ≡ si(x) =

5∑
j=0

B j f j(x), (2.1)

where B j and f j(x) denote the control points and the basis functions of the quintic trigonometric Bézier
curves that are given as follows:

f0(x) = (1 − sin θ)4 (1 − α sin θ) ,
f1(x) = sin θ (1 − sin θ)3 (4 + α − α sin θ) ,
f2(x) = (1 − sin θ)2 (1 − cos θ) (8 sin θ + 3 cos θ + 9) ,
f3(x) = (1 − cos θ)2 (1 − sin θ) (8 cos θ + 3 sin θ + 9) ,
f4(x) = cos θ (1 − cos θ)3 (4 + β − β cos θ) ,
f5(x) = (1 − cos θ)4 (1 − β cos θ) ,

(2.2)

where θ =
π(x − xi)

2hi
with θ ∈ [0,

π

2
]. The shape parameters α, β ∈ [−4, 1] are responsible for controlling

the shape of the curve. The quintic trigonometric Bézier basis functions, f j(x) for j = 0, 1, 2, 3, 4, 5 in
Eq (2.2), have the following geometric properties:

(1) Non-negativity:
f j(x) ≥ 0 for all x ∈ [xi, xi+1].

(2) Symmetry:
f j(x) = f5− j(xi+1 − x) if α = β.
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(3) Partition of unity:
5∑

j=0

f j(x) = 1 for all x ∈ [xi, xi+1].

In addition, the quintic trigonometric Bézier curve in Eq (2.1) also satisfies other properties such as
the endpoint terminal, convex hull, symmetry, and geometric invariance, which were further discussed
in [23]. The plot of the quintic trigonometric Bézier basis functions for various values of the shape
parameters, α and β, is shown in Figure 1 below.
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α β 1

α β 0

α β=-1

α=β=-2

α=β=-3
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Figure 1. Quintic trigonometric Bézier basis functions.

Next, the C2 interpolating conditions (2.3) will be applied to Eq (2.1) to determine the equations of
the unknown control points B j. Let s′ and s′′ be the first-order and second-order derivatives of s, and
the interpolating conditions are

s(xi) = yi, s(xi+1) = yi+1,

s′(xi) = di, s′(xi+1) = di+1,

s′′(xi) = Di, s′′(xi+1) = Di+1,

(2.3)

where di and Di are the first-order and second-order derivative values at knots.
Taking into account the local variable relative to Ii, from Eqs (2.1)–(2.3) it is straightforward to

establish that

B0 = yi,

B1 = yi +
2hidi

(4 + αi)π
,

B2 = yi +
hi ((4 + αi)Dihi + 4(3 + αi)diπ)

3(4 + αi)π2 ,

B3 = yi+1 −
hi ((βi − 4)Di+1hi + 4(3 + βi)di+1π)

3(4 + βi)π2 ,

B4 = yi+1 −
2hidi+1

(4 + βi)π
,

B5 = yi+1,

(2.4)

with hi = xi+1 − xi.
As a result, the C2 quintic trigonometric Bézier curve with two shape parameters in Eq (2.1) defined
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over each subinterval Ii can be written as

s(x) =

5∑
j=0

B j f j(x) = yi (1 − sin θ)4 (1 − αi sin θ) +

(
yi +

2hidi

(4 + αi)π

)
sin θ (1 − sin θ)3

(4 + αi − αi sin θ) +

(
yi +

hi ((4 + αi)Dihi + 4(3 + αi)diπ)
3(4 + αi)π2

)
(1 − sin θ)2 (1 − cos θ)

(8 sin θ + 3 cos θ + 9) +

(
yi+1 +

hi ((4 + βi)Di+1hi − 4(3 + βi)di+1π)
3(4 + βi)π2

)
(1 − cos θ)2

(1 − sin θ) (8 cos θ + 3 sin θ + 9) +

(
yi+1 −

2hidi+1

(4 + βi)π

)
cos θ (1 − cos θ)3

(4 + βi − βi cos θ) + yi+1 (1 − cos θ)4 (1 − βi cos θ) .

(2.5)

2.1. Determination of derivative values

In this research, the values of di and Di are both calculated from the given data using the arithmetic
mean method (AMM).

From [28], the first-order derivative values at the first knot are as follows:

d0 = ∆0 + (∆0 − ∆1)
h0

h0 + h1
, (2.6)

di =
∆i + ∆i+1

2
for i = 1, 2, . . . , n − 1, (2.7)

dn = ∆n−1 + (∆n−1 − ∆n−2)
hn−1

hn−1 + hn−2
, (2.8)

where ∆i =
yi+1 − yi

hi
.

Meanwhile, the second-order derivative values at the first knot are given by the following [28]:

D0 = M0 + (M0 − M1)
h0

h0 + h1
, (2.9)

Di =
Mi + Mi+1

2
for i = 1, 2, . . . , n − 1, (2.10)

Dn = Mn−1 + (Mn−1 − Mn−2)
hn−1

hn−1 + hn−2
, (2.11)

with Mi =
di+1 − di

hi
.

3. Shape preserving interpolation using C2 quintic trigonometric Bézier curves

The C2 quintic trigonometric Bézier curve constructed in Section 2 does not guarantee data-shape
preservation. Therefore, this section will develop shape-preserving constraints, specifically on the
shape parameter αi, which controls the left end of the interpolation curves. The shape parameter
βi, which controls the right-end part of the curves, will remain flexible to allow modification of the
resulting curve according to the user’s preference. Moreover, the control points will also be restricted
and automatically calculated for shape preservation.
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3.1. Monotonicity-preserving C2 quintic trigonometric Bézier curves

Suppose (xi, yi) is a monotonically increasing data set such that

yi+1 ≥ yi with xi+1 ≥ xi. (3.1)

Thus, it is straightforward to establish that ∆i ≥ 0 and di ≥ 0.

Theorem 3.1. The C2 quintic trigonometric Bézier curves defined in Eq (2.5) will preserve the
monotonicity of monotone data if the parameters αi, βi, h̄i, and h̄∗i in each subinterval satisfy the
following conditions:
βi ∈ (−4, 1], which produces a monotone curve, and αi ∈ [li, ui] for

li = min
{

0,
−2hidi

πyi
− 4,

4πhidi

3π2yi + 4πdihi + Dih2
i

− 4
}
, (3.2)

ui = max
{

1,
−2hidi

πyi
,

4πhidi

3π2yi + 4πdihi + Dih2
i

}
. (3.3)

Let b j for j = 1, 2, 3, 4 be the second terms in B j
h̄i =

hi

ki
, if b1 >

dyi

2
or b2 >

dyi

2
,

h̄∗i =
hi

k∗i
, if b3 >

dyi

2
or b4 >

dyi

2
,

h̄i = h̄∗i = hi, elsewhere,

(3.4)

where ki, k∗i satisfy Eqs (3.9) and (3.10).

Proof. The C2 quintic trigonometric Bézier curves (2.5) will preserve the monotonicity of data if

s(1)(x) ≥ 0.

Differentiating s(x) with respect to x results in 16 terms that are associated with both shape parameters
αi and βi. As this study aims to constrain only the shape parameter αi, only eight terms that are
associated with the shape parameter, αi, are considered, as given by the following equation:

s(1)
α (x) =

7∑
j=0

A jk j(x) ≥ 0, (3.5)

where k j(x) for j = 0, 1, 2, . . . , 7 are non-negative functions defined in Eq (3.6). The plot of the
functions is demonstrated in Figure 2.

k0(x) = cos θ(1 − sin θ)4,

k1(x) = cos θ sin θ(1 − sin θ)3,

k2(x) = (1 − cos θ) cos θ(1 − sin θ)(9 + 3 cos θ + 8 sin θ),
k3(x) = (1 − sin θ)2 sin θ(9 + 3 cos θ + 8 sin θ),
k4(x) = (1 − cos θ)(1 − sin θ)2(8 cos θ − 3 sin θ),
k5(x) = cos θ(1 − sin θ)3(1 − α sin θ),
k6(x) = cos θ(1 − sin θ)3(4 + α − α sin θ),
k7(x) = cos θ(1 − sin θ)2 sin θ(4 + α − α sin θ).

(3.6)
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Figure 2. Plot of k j functions.

Since k j(x) is already greater than zero, mathematical derivations are needed to ensure A j ≥ 0 for
j = 0, 1, 2, . . . , 7, hence, guaranteeing Eq (3.5). This will be done by letting A j ≥ 0 and solving for αi.

(1) Let A0 = −
αiπyi

2hi
≥ 0. Solving in terms of αi results in αi ≤ 0.

(2) A1 = −

αiπ

(
yi +

2dihi

(4 + αi)π

)
2hi

≥ 0. Simplified and rearranged, this yields αi ≤
−2hid
πyi

− 4.

(3) For A2 = −

π

(
yi +

hi (4π(3 + αi)di + (4 + αi)hiDi)
3π2(4 + αi)

)
hi

≥ 0, solving for αi gives αi ≤

4πhidi

h2
i Di + 4πhidi + 3π2yi

− 4.

(4) Then, A3 = A4. Letting these terms be greater than zero produces A3 = A4 =

π

(
yi +

hi (4π(3 + αi)di + (4 + αi)hiDi)
3π2(4 + αi)

)
2hi

≥ 0. Rearrangement and simplifications result in αi ≥

4πhidi

h2
i Di + 4πhidi + 3π2yi

− 4, which acts as a lower bound for monotonicity preservation and can be

simplified as αi ≥
4πhidi

h2
i Di + 4πhidi + 3π2yi

.

(5) A5 =
2πyi

hi
is already greater than zero.

(6) Let A6 ≥ 0, giving A6 =

π

(
yi +

2hidi

(4 + αi)π

)
2hi

≥ 0. Next, solving in terms of αi produces αi ≤

−2hid
πyi

− 4.

(7) Lastly, for A7 = −

3π
(
yi +

2hidi

(4 + αi)π

)
2hi

≥ 0, solving for αi yields αi ≥
−2hid
πyi

− 4, which acts as the
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lower bound. This, can be simplified to αi ≥
−2hid
πyi

.

To summarize, the constraints for αi above can be written as:

αi ≤
−2hid
πyi

− 4, αi ≤
4πhidi

h2
i Di + 4πhidi + 3π2yi

− 4, αi ≤ 0,

αi ≥
−2hid
πyi

, αi ≥
4πhidi

h2
i Di + 4πhidi + 3π2yi

,

(3.7)

which can be rearranged as below:

li = min
{
−2hidi

πyi
− 4,

4πhidi

h2
i Di + 4πhidi + 3π2yi

− 4, 0
}
,

ui = max
{
−2hidi

πyi
,

4πhidi

h2
i Di + 4πhidi + 3π2yi

}
,

ui ≤ αi ≤ li.

(3.8)

Moreover, to ensure a monotonically increasing interpolation, the control points B j for
j=0, 1, 2, 3, 4, 5 also need to be monotonically increasing. For this purpose, new conditions for the
control points will be developed. Let the second term in the control points B j for j = 1, 2, 3, 4 be b j

and dyi = yi+1 − yi be the vertical difference between two neighboring data points.

If b1 or b2 >
dyi

2
, the control points B1 and B2 from Eq (2.4) will be greater than B5. Since

B5 = yi+1, this will cause the interpolating curve to rise and drop, resulting in oscillation. Thus, to

avoid this, a scaling factor will be introduced by replacing hi in b1 and b2 with h̄i =
hi

ki
, where

ki > max

 4πhidi

(4 + αi)πdyi
,

4(3 + αi)hidi +

√
2h2

i (8(3 + αi)2d2
i + 3(4 + αi)2Didyi)

3(4 + αi)πdyi

 . (3.9)

These constraints are developed by letting b1 and b2 <
dyi

2
. Similarly, if b3 or b4 >

dyi

2
, new scaling

factor h̄∗i =
hi

k∗i
will be developed by assuming b3 and b4 <

dyi

2
such that

k∗i > max

 4πhidi+1

(4 + βi)πdyi
,

4(3 + βi)hidi+1 +

√
2h2

i (8(3 + βi)2d2
i+1 + 3(4 + βi)2Di+1dyi)

3(4 + βi)πdyi

 . (3.10)

�

3.2. Convexity-preserving C2 quintic trigonometric Bézier curves

A given data set {(xi, yi) : i = 0, 1, 2, . . . , n} is said to be convex if

∆i+1 ≥ ∆i and di+1 ≥ di with di+1 ≥ ∆i ≥ di, (3.11)
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for i = 0, 1, 2, . . . , n [19]. Graphically, a convex curve can be verified by connecting any two points
on the curve. If none of the lines lie below the curve, then it is convex. Theorem 3.2 presents the
convexity-preserving interpolation method.

Theorem 3.2. The C2 quintic trigonometric Bézier curves defined in Eq (2.5) will preserve the
convexity of convex data if the parameters αi, βi, h̄i, and h̄∗i in each subinterval satisfy the following
conditions:
βi ∈ (−4, 1], which produces a smooth and convex curve, and αi ∈ [li, ui], where

li =
−2hidi

πyi
− 4, (3.12)

ui = max
{

0,
4πhidi

h2
i Di + 4πhidi + 3π2yi

}
. (3.13)

Let b j for j = 1, 2, 3, 4 be the second terms of Eq (2.4). If di > 0,


h̄i =

hi

ki
, if b1 >

dyi

2
or b2 >

dyi

2
,

h̄∗i =
hi

k∗i
, if b3 >

dyi

2
or b4 >

dyi

2
,

h̄i = h̄∗i = hi, elsewhere,

(3.14)

where ki, k∗i are defined as (3.9) and (3.10). If di < 0,


h̄i =

hi

ki
, if b1 <

dyi

2
or b2 <

dyi

2
,

h̄∗i =
hi

k∗i
, if b3 <

dyi

2
or b4 <

dyi

2
,

h̄i = h̄∗i = hi, elsewhere,

(3.15)

for ki, k∗i given in Eqs (3.21) and (3.22).

Proof. The C2 quintic trigonometric Bézier curves will preserve data convexity if

s(2)(x) ≥ 0. (3.16)

Second-order differentiation of s(x) with respect to x produces 18 terms associated with shape
parameters αi and βi. Similarly, only the terms associated with αi will be considered, as given:

s(2)
α (x) =

9∑
j=0

C jg j(x), (3.17)
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where g j(x) for j = 0, 1, 2, . . . , 8 are defined as follows:

g0(x) = cos2 θ(1 − sin θ)3,

g1(x) =(1 − sin θ)4 sin θ,
g2(x) = cos θ(1 − sin θ)2(9 + 3 cos θ + 8 sin θ),
g3(x) =(4 + αi − αi sin θ)(6π2 cos2 θ(1 − sin θ) + 3π2(1 − sin θ)2 sin θ),

g4(x) =(1 − αi sin θ)
(
3π2 cos2 θ(1 − sin θ)2 + π2(1 − sin θ)3 sin θ

)
,

g5(x) =
1
2
π2(−1 + sin θ) sin θ (3 + 9 cos 2θ + 6 sin θ + 4 cos θ(5 + 12 sin θ)) ,

g6(x) = cos θ(1 − sin θ)2 (−αiπ cos θ sin θ + π cos θ(4 + αi − αi sin θ)) ,

g7(x) =(1 − sin θ)3
(
2αiπ

2 cos2 θ − αiπ
2 sin2 θ + π2 sin θ(4 + αi − αi sin θ)

)
,

g8(x) = − π2 sin2 θ

2
(−1 + sin θ)(44 + 6 cos θ − 72 cos 2θ + 88 sin θ + 27 sin 2θ).

(3.18)

Similarly, the functions of g j(x) in Eq (3.18) are greater than or equal to zero. Thus, to guarantee
Inequality (3.16) holds, derivations will be made so that C j for j = 0, 1, 2, . . . , 8 are greater than or
equal to zero.

(1) Let C0 =
2αiπ

2yi

h2
i

≥ 0. Solving in terms of αi results in αi ≥ 0.

(2) Similarly, C1 =
αiπ

2yi

4h2
i

≥ 0 gives αi ≥ 0.

(3) For C2 =

π2

(
yi +

hi (4π(3 + αi)di + (4 + αi)hiDi)
3π2(4 + αi)

)
4h2

i

≥ 0, solving for αi produces αi ≥

4πhidi

h2
i Di + 4πhidi + 3π2yi

.

(4) Next, assume C3 =

yi +
2hidi

π(4 + αi

4h2
i

≥ 0. Simplified and rearranged, this yields αi ≤ −
2dihi

πyi
− 4.

(5) Because the data used is convex, C4 = yi is convex.

(6) Let C5 =

π

(
yi +

hi (4π(3 + αi)di + (4 + αi)hiDi)
3π2(4 + αi)

)
2h2

i

≥ 0 and solve in terms of αi, which gives

αi ≥
4πhidi

h2
i Di + 4πhidi + 3π2yi

.

(7) Suppose C6 =

3π
(
yi +

2hidi

π(4 + αi)

)
4h2

i

≥ 0, and after some rearrangements, this gives αi ≤
−2hidi

πyi
−4.
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(8) Rearrange C7 = −

yi +
2hidi

π(4 + αi)
4h2

i

≥ 0 in terms of αi, which gives αi ≤
−2hidi

πyi
− 4.

(9) Finally, let C8 =

yi +
hi (4π(3 + αi)di + (4 + αi)hiDi)

3π2(4 + αi)
4h2

i

≥ 0, and rearranging in terms of αi results

in αi ≥
4πhidi

h2
i Di + 4πhidi + 3π2yi

.

In summary, items (1)–(9) above can be written as:

αi ≤
−2hid
πyi

− 4,

αi ≥ 0, αi ≥
4πhidi

h2
i Di + 4πhidi + 3π2yi

,
(3.19)

which can be rearranged to produce the following conditions:

li =
−2hidi

πyi
− 4,

ui = max
{

0,
4πhidi

h2
i Di + 4πhidi + 3π2yi

}
,

ui ≤ αi ≤ li.

(3.20)

Next, the control points B j for j = 0, 1, 2, 3, 4, 5 in Eq (2.4) for each subinterval must be set convex.
Convex data are allowed to be monotonically increasing or decreasing in an interval. Thus, there are
two cases to consider.

For the first case, which involves a monotonically increasing interval, the same conditions as in
Eqs (3.9) and (3.10) will be applied. However, for monotone-decreasing interval, slight modifications
will be made to the conditions. Suppose the second term in control points B j for j = 1, 2, 3, 4 is b j,
and dyi = yi+1 − yi is the vertical difference between two neighboring data points. In the monotone

decreasing interval, yi+1 ≤ yi. Thus, dyi ≤ 0 and di ≤ 0. Consequently, b j ≤ 0. If b1 or b2 <
dyi

2
, or in

other words, b1 and b2 are more negative than the half vertical difference, then yi in (2.4) will be added
with a number less than the negative vertical difference. Hence, b1 and b2 will be smaller than b5, and
the curve will drop and rise, which will produce a non-monotone interval. To prevent this, hi in b1 and

b2 will be replaced by h̄i =
hi

ki
, where ki is the scaling factor introduced to ensure b1 and b2 >

dyi

2
.

Next, ki is defined as follows:

ki > max

 4πhidi

(4 + αi)πdyi
,

4(3 + αi)hidi −

√
2h2

i (8(3 + αi)2d2
i + 3(4 + αi)2Didyi)

3(4 + αi)πdyi

 . (3.21)

Similarly, if b3 or b4 <
dyi

2
, scaling factors h̄∗i =

hi

k∗i
will be developed by assuming b3 and b4 >

dyi

2
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such that

k∗i > max

 4πhidi+1

(4 + βi)πdyi
,

4(3 + βi)hidi+1 −

√
2h2

i (8(3 + βi)2d2
i+1 + 3(4 + βi)2Di+1dyi)

3(4 + βi)πdyi

 . (3.22)

�

Figure 3 depicts the flowchart of the proposed method to improve understanding. Algorithm 1
summarizes the method for generating C2 monotonicity or convexity-preserving curves.

Figure 3. Flowchart of the shape-preserving interpolation schemes.

Algorithm 1 Monotonicity or convexity-preserving interpolation.
(1) Input data points {(xi, yi)}ni=0.

(2) Compute the values of hi = xi+1 − xi and ∆i =
yi+1 − yi

hi
.

(3) Calculate first and second-order derivatives as discussed in Section 2.1.
(4) For each subinterval Ii, choose any value of βi ∈ (−4, 1].
(5) Calculate the values of parameters αi and hi based on Theorems 3.1 and 3.2.
(6) Construct the C2 quintic trigonometric Bézier interpolating curve defined in (2.5) using the

accumulated values obtained in Steps 1 to 5.

4. Curvature analysis

To ensure visually pleasing curves, this study implemented two ways of choosing the optimal βi

values: visual comparison and curvature analysis. For curvature analysis, the following formulation
will be used to determine the smoothness. Let s(x) = (sx(x), sy(x)) be a 2D parametric curve of s(x).
The curvature of the curve, κ, is defined as follows:

κ(x) =
|s′ (x) × s′′ (x)|
|s′ (x)|3

, (4.1)

which can also be expressed as

κ(x) =
s′x(x)s′′y (x) − s′′x (x)s′y(x)[

s′x(x)2 + s′y(x)2
]3/2 , (4.2)
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where s′x(x) and s′′x (x) are the first and second-order partial derivatives of x. Meanwhile, s′y(x) and s′′y (x)
are the partial derivatives of y with respect to x.

5. Results and discussion

In this section, numerical experiments were conducted using MATLAB Software to assess the
efficiency of the developed methods. Newly proposed data sets as well as data sets taken from the
existing schemes were implemented for comparisons and validation.

Example 5.1. Table 1 depicts a random monotone data set taken from [5].

Table 1. Monotone data set from [5].

i 1 2 3 4 5
x 0 6 10 29.5 30
y 0.01 15 15 25 30

Example 5.2. Table 2 provides an experimental data set of an electronic circuit’s waveform distortion
taken from [7]. The data demonstrated monotone increasing behavior with the x-values representing
the voltage (V), while the y-values are the current (A).

Table 2. Monotone data from [7].

i 1 2 3 4 5 6 7 8 9 10 11
xi 0 2 3 5 6 8 9 11 12 14 15
yi 10 10 10 10 10 10 10.5 15 50 60 85

Figures 4 and 5 show the interpolation of monotone data from Tables 1 and 2, respectively.
Figures 4a and 5a show the interpolation curves using the traditional C2 quintic trigonometric Bézier
curves without satisfying the monotonicity-preserving constraints, where the shape parameters, αi and
βi, in each subinterval, are set to 0.5. The interpolation curves fail to retain the monotonicity of the data,
which can be observed in the third subinterval of Figure 4a as well as the seventh and ninth subintervals
of Figure 5a. Figures 4b and 5b demonstrate the monotonicity preserving interpolation curves with the
shape parameter αi satisfying Theorem 3.1 for several βi values within the interval (−4, 1]. The goal is
to observe the best βi values that give the smoothest interpolating curves.

From Figure 4b, it can be observed that all βi values in the first subinterval produced similar
interpolation curves. This is because the shape parameter βi is associated with the right end of the curve.
As the second subinterval is constant, the values of the first- and second-order derivatives are both
zero. Consequently, changes in the shape parameter did not affect the last three control points of the
subinterval. βi = −3.5 and βi = −2.5 in the third subinterval produce oscillating interpolations. Hence,
this value must be avoided in the subinterval. By further examining the interpolation curves with
varying values of βi, the values of βi ∈ [−1.5, 0.5] are preferable because they produce a more visually
pleasing interpolation. This can be proven using a curvature comparison, as shown in Figure 4c.
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(a) Conventional C2 quintic trigonometric Bézier
interpolating curve.

(b) Monotonicity-preserving interpolation with various
βi.

(c) Curvature plot for each curve in Figure 4b. (d) Close-up of Figure 4c.

(e) Monotonicity-preserving interpolation with adjusted
βi.

(f) Comparison with the scheme by [5].

Figure 4. Interpolations for Example 5.1.
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(a) Conventional C2 quintic trigonometric Bézier
interpolating curve.

(b) Monotonicity-preserving interpolation with various
βi.

(c) Curvature plot for each curve in Figure 5b. (d) Monotonicity-preserving interpolation with
adjusted βi.

(e) Comparison with the scheme by [7].

Figure 5. Interpolations for Example 5.2.
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The curvature plots for βi ∈ [−1.5, 0.5] have the lowest amplitude, indicating the smoothest curve.
The interpolating curve with the optimal βi values is shown in Figure 4e. Although βi = 0, 0.5 have
the lowest curvature for x ∈ [22, 30], they result in a sharper curve than βi = −1.5 because the low-
curvature curve produces a straight curve towards the next data point. Thus, βi = −1.5 in the third
subinterval is the optimal value. As for the last subinterval, a sharp turn is observed at the joint due
to the sudden increase in the data point over a small range of data. Despite this, the continuity of the
curvature plot is still maintained, as shown in Figure 4d, confirming C2 continuity.

For Example 5.2, flat data points are observed for subintervals i = 1, 2, 3, . . . , 6 of Figure 5b.
Hence, constant interpolation curves are obtained. The effect of applying different βi values can be
seen starting from the seventh subinterval onwards. Figure 5c illustrates the curvature plots of these
subintervals with the vertical orange lines in the figure representing the partitions of the subintervals.
βi ∈ [−1.5, 0.5] exhibits low curvature for the subintervals; hence, these values can be chosen. Figure
5d reflects the resulting monotonicity-preserving curves.

The developed method produced comparable interpolation with the existing scheme, as shown in
Figure 4f. Further, compared to [7] in Figure 5e, the proposed method produced a smoother curve that
increases gradually on the tenth subinterval.

Example 5.3. Table 3 shows the cumulative rainfall data obtained from the Malaysian Meteorological
Department, Ministry of Natural Resources, Environment and Climate Change. The data were taken at
Bayan Lepas Station for 12 consecutive days from May 26 to June 6, 2022. The days are represented
as x-values, whereas the y-values indicate the cumulative amount of rainfall measured in mm3. Due to
the non-negativity properties of the rainfall data, this data set is increasing monotonically.

Table 3. Cumulative rainfall data.

i 1 2 3 4 5 6 7 8 9 10 11 12
xi 1 2 3 4 5 6 7 8 9 10 11 12
yi 1.8 3.2 3.2 3.2 11.6 16.6 48.2 67 68.4 90.8 92.8 92.9

Figure 6a interpolates the data set in Table 3 using the C2 quintic trigonometric Bézier curves with
αi = βi = 0.5. Despite the monotonicity of the data, the interpolation curves in the fifth, eighth, and
tenth subintervals exhibit fluctuations. These fluctuations are due to the large difference and sudden
change in the y-values of the i − 1 and i subintervals.

Figure 6b illustrates the monotonicity-preserving interpolation with various values of the shape
parameter βi, while Figure 6c shows their curvature plots. Figure 6d shows the monotonicity-
preserving interpolation with the best values of βi that produce the most visually appealing curve with
low curvature.

This data set has uniformly spaced x-values and inconsistent steepness of the y-values, making
it different from the previous examples. Therefore, the proposed monotonicity-preserving method is
efficient for both uniformly and nonuniformly spaced data points. Furthermore, the monotonicity of
the data set is still preserved despite the large differences in the steepness of the data points.
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(a) Conventional C2 quintic trigonometric Bézier
interpolating curve.

(b) Monotonicity-preserving interpolation with various
βi.

(c) Curvature plot for each curve in Figure 6b. (d) Monotonicity-preserving interpolation with
adjusted βi.

Figure 6. Interpolations for Example 5.3.

Example 5.4. Table 4 shows a convex data set taken from [19].

Table 4. Convex data from [19].

i 1 2 3 4
xi 3 4 5 7
yi 7 0.4 0.4 2.5

Example 5.5. Table 5 shows a data set generated by a convex function f (x) = 10/x2 taken from [16].

Table 5. Convex data from [16].

i 1 2 3 4 5
xi 1 2 4 5 10
yi 10 2.5 0.625 0.4 0.1
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Figures 7 and 8 present the interpolation curves for the convex data in Tables 4 and 5, respectively.

(a) Conventional C2 quintic trigonometric Bézier
interpolating curve.

(b) Convexity-preserving interpolation with various βi

values.

(c) Curvature plot for each curve in Figure 7b. (d) Convexity-preserving interpolation with adjusted βi.

(e) Comparison with the scheme by [19].

Figure 7. Interpolations for Example 5.4.
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(a) Conventional C2 quintic trigonometric Bézier
interpolating curve

(b) Convexity-preserving interpolation with various βi

values.

(c) Curvature plot for each curve in Figure 8b. (d) Convexity-preserving interpolation with adjusted βi.

(e) Comparison with the scheme by [16].

Figure 8. Interpolations for Example 5.5.
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Figures 7a and 8a demonstrate the failure of the C2 quintic trigonometric Bézier curve to retain data
convexity. As shown in the figures, the dotted blue lines connecting the two arbitrarily chosen points
on the curves are below the curves. This contradicts the definition of convex curves.

Figures 7b and 8b show the convexity-preserving interpolations with several βi values.
βi=−3.5,−2.5 in the third subinterval of Figure 7b result in non-convex interpolation. Moreover,
from the curvature plot in Figure 7c, the values of βi in the second subinterval produced disconnected
curvature profiles, indicating failure in maintaining C2 continuity due to the constant data points in the
subinterval. Hence, these values of βi must be avoided in both subintervals. βi ∈ [−1.5, 0.5] yielded
the lowest curvature. Similarly, Figure 8c shows the curvature plot of the curves in Figure 8b. In
Figures 7d and 8d, the curves were altered with the best βi to obtain the smoothest C2 interpolating
curves.

Compared with existing schemes, the proposed method produces interpolation curves that are looser
and smoother with no wiggle, as observed in the first and last subintervals of Figure 7e. This is because
the proposed method uses degree-five interpolation curves with four intermediate control points; hence,
it is more flexible and has greater control over the curve. Meanwhile, in Figure 8e, the curve of the
proposed method is observed to be tighter, but in the second and fourth subintervals, the developed
method displays a steady convex decreasing trend, giving a smooth-looking curve with unnoticeable
turning.

Example 5.6. The data of Toyota Prius rooftop measurements taken from [29] are shown in Table 6.
The data were measured using a 3D laser scanner, and the data set exhibited a convex shape. In this
study, only a subset of the collected data points was used to demonstrate the efficiency of the proposed
method.

Table 6. Car roof data.

i 1 2 3 4 5 6 7 8
xi 1848.88 1948.09 1975.61 2516.23 2610.93 3068.07 3100.04 3279.18
yi -554.37 -575.38 -580.38 -632.013 -632.12 -593.84 -588.17 -548.09

Figure 9a shows the interpolation using the ordinary C2 quintic trigonometric Bézier curves with
shape parameters αi = βi = 0.5. Non-convex interpolation can be seen in the third and fifth subintervals
due to the large increment and decrement in the size of the data interval.

Figure 9b illustrates the convexity-preserving interpolation with varying βi values to observe the
optimal βi. The resulting curves are analyzed quantitatively using the curvature plot shown in Figure 9c.
The optimal βi values are then chosen based on the observation and curvature plot to generate smooth
convexity-preserving curves, as shown in Figure 9d. This example demonstrates that the proposed
method is effective not only for positively valued convex data but also for negatively valued convex
data.
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(a) Conventional C2 quintic trigonometric Bézier
interpolating curve.

(b) Convexity-preserving interpolation with various βi

values.

(c) Curvature plot for each curve in Figure 9b. (d) Convex C2 quintic trigonometric Bézier
interpolating curve.

Figure 9. Interpolations for Example 5.6.

6. Conclusions

This study established new methods for preserving monotone or convex data. Quintic trigonometric
Bézier curves with two shape parameters that control each end of the curve were used. Shape-
preserving constraints were developed only on the left-end curves, whereas the right-end curve could
be freely altered by users. This study also analyzed the curvature profiles to demonstrate visually
pleasing interpolating curves, which improves the previous research by [30] that relied solely on visual
comparison.

The proposed methods outperformed the existing schemes by reducing the wiggles and ensuring
smooth increasing and decreasing trends, resulting in interpolation with less noticeable turning.
Furthermore, the developed methods work well for both uniform and non-uniformly spaced data. The
proposed methods also performed well with negative-valued data. Using a higher-degree Bézier curve,
both the first- and second-order derivatives can be entirely calculated using the formula, thus reducing
the complexity of the previous study. Furthermore, the higher-degree Bézier curve has a greater number
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of control points, which increases curve control.
However, for constant data points, some values of βi may cause the curvature plot to disconnect in

the joint. Therefore, producing an interpolating curve that is not C2 continuous. The basis functions
used in this study can be extended to investigate the shape preservation of surfaces.
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Egypt. Inform. J., 15 (2014), 89–95. http://dx.doi.org/10.1016/j.eij.2014.04.001

4. B. Kvasov, Monotone and convex interpolation by weighted quadratic splines, Adv. Computat.
Math., 40 (2014), 91–116. http://dx.doi.org/10.1007/s10444-013-9300-9

5. S. Karim, K. Pang, Monotonicity preserving using gc 1 rational quartic spline, AIP Conf. Proc.,
1482 (2012), 26–31. http://dx.doi.org/10.1063/1.4757432

6. A. Edeo, G. Gofeb, T. Tefera, Shape preserving C2 rational cubic spline interpolation, ASRJETS,
12 (2015), 110–122.

7. S. Karim, Rational cubic spline interpolation for monotonic interpolating curve with C2 continuity,
MATEC Web Conf., 131 (2017), 04016. http://dx.doi.org/10.1051/matecconf/201713104016

8. A. Ahmad, M. Misro, Preserving monotonicity of ball curve and it’s curvature profile, Proceedings
of 6th IEEE International Conference on Recent Advances and Innovations in Engineering
(ICRAIE), 2021, 1–6. http://dx.doi.org/10.1109/ICRAIE52900.2021.9704025

9. A. Tahat, A. Piah, Z. Yahya, Rational cubic ball curves for monotone data, AIP Conf. Proc., 1750
(2016), 030021. http://dx.doi.org/10.1063/1.4954557

AIMS Mathematics Volume 9, Issue 3, 5971–5994.

http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2007.02.022
http://dx.doi.org/http://dx.doi.org/10.1080/00207160.2011.627434
http://dx.doi.org/http://dx.doi.org/10.1016/j.eij.2014.04.001
http://dx.doi.org/http://dx.doi.org/10.1007/s10444-013-9300-9
http://dx.doi.org/http://dx.doi.org/10.1063/1.4757432
http://dx.doi.org/http://dx.doi.org/10.1051/matecconf/201713104016
http://dx.doi.org/http://dx.doi.org/10.1109/ICRAIE52900.2021.9704025
http://dx.doi.org/http://dx.doi.org/10.1063/1.4954557


5993

10. A. Ahmad, M. Misro, Curvature comparison of bézier curve, ball curve and trigonometric curve in
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