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1. Introduction

Solving nonlinear equations in Banach space is an important task in the field of applied science. All
sorts of questions can be turned into

G(s) = 0. (1.1)

Here, G : Φ ⊆ B1 → B2 is a nonlinear sufficiently differentiable operator on an upper convex subset
of B1, where B1 and B2 are Banach spaces. For this kind of nonlinear Eq (1.1), it is difficult to solve
it analytically. Moreover, in most practical problems, it is not necessary to require the exact solution
of the equation, but only the approximate value, and the error of the approximate value and the exact
solution should be limited to the acceptable range of the practical problem. This approximation can be
obtained by numerical iteration.

The fixed-point iteration method is still the main numerical method to solve the nonlinear equation.
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One of the most famous iteration methods is Newton’s method [1], whose iteration scheme is

s(k+1) = s(k) − ∆(k)G(s(k)), (1.2)

where ∆(k) = G′(s(k))−1 for k = 0, 1, 2, 3 · · · . Because of its simple structure, small amount of
computation, and fast convergence speed, Newton’s method is still the most important iterative method
for solving nonlinear equations in concrete calculation and application. However, its disadvantages are
also obvious, such as the convergence speed is only second order. Therefore, in order to meet the need
of high precision, scholars have proposed many high order convergence iterative methods [2–4] on the
basis of Newton’s method. Cordero et al. proposed an iterative method [5] of sixth-order convergence.
The iteration format of this sixth-order method is

t(k) = s(k) − 1
2∆

(k)G(s(k)),
r(k) = s(k) + [G′(s(k)) + 2G′(t(k))]−1[3G(s(k)) − 4G(t(k))],

s(k+1) = r(k) + [G′(s(k)) − 2G′(t(k))]−1G(r(k)).
(1.3)

In the iterative method (1.3), three function values G(s(k)),G(r(k)),G(t(k)) and two Jacobian matrices
G′(s(k)), G′(t(k)) need to be calculated and three LU factorizations (LU factorization is a type of matrix
factorization that can decompose a matrix into the product of a lower trigonometric matrix and an
upper trigonometric matrix) need to be performed.

Zhanlav et al. also proposed an iterative method [6] with sixth-order convergence , which is in the
form of 

t(k) = s(k) − ∆(k)G(s(k)),
r(k) = s(k) − Πk∆

(k)G(s(k)),
s(k+1) = r(k) − Ψk∆

(k)G(r(k)),
(1.4)

where Πk = (I − 4Mk)−1(I − 7
2 Mk), Ψk = (I + Mk)−1(I + 2Mk −

1
2 M2

k ),Mk = I − ∆(k)G′(t(k)). In the
iterative method (1.4), it is also necessary to compute three function values G(s(k)),G(t(k)),G(r(k)) and
two Jacobian matrices G′(s(k)), G′(t(k)) and to perform three LU factorizations.

Cordero et al. also proposed an iterative method [7] of sixth-order convergence, whose iteration
format is 

t(k) = s(k) − ∆(k)G(s(k)),
r(k) = t(k) − [2I − G′(t(k))G′(s(k))−1]∆(k)G(t(k)),

s(k+1) = r(k) − G′(t(k))−1G(r(k))
(1.5)

where ∆(k) = G′(s(k))−1. Compared with the iterative method (1.3) and (1.4), which are also sixth-order
converging, the iterative method (1.5) needs to compute three function values G(s(k)),G(t(k)),G(r(k))
and two Jacobian matrices G′(s(k)),G′(t(k)), and only needs to perform two LU factorizations. The
computational cost of iterative methods (1.5) is lower than that of iterative methods (1.3) and (1.4).

At present, the most commonly used methods to prove semi-local convergence mainly include the
majorizing sequence method [8,9] and recursion method [10,11]. In fact, both methods were proposed
by Kantorovich [12], and their main idea was to prove them by induction. In the process of proving the
semi-local convergence of the iterative method of the system of equations, we usually study the iterative
method in one-dimensional space because the iterative method of solving the nonlinear equation in
one-dimensional real number space can be generalized to Banach space [13].

This paper mainly uses the recursion method to analyze the semi-local convergence of Cordero’s
sixth-order convergence iterative method (1.5). In Cordero’s proof of sixth-order convergence, the
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operator G is usually required to be a sufficiently differentiable function in the neighborhood of the
solution to guarantee the continuity of the sixth-order derivative used to prove the convergence of the
iterative method. Let’s think about this function

G(s) =

s4 ln s2 + 5s5 − 5s4, s , 0,
0, s = 0,

where G : Φ ⊂ R → R and Φ = [−1, 2]. The root of this function is denoted by α, so we can observe
that α = 1 is the root ofG(s) andG′′′(s) = 24s ln s2+300s2−68s. It is obvious thatG′′′(s) is unbounded
on Φ, so the previous analysis does not guarantee the convergence of method (1.5). Therefore, in
order to avoid the use of higher derivatives, we apply Lipschitz conditions only to first-order Fréchet
derivatives to prove the semi-local convergence of the iterative method (1.5).

This paper is divided into six parts. In Section 2 , we give three scalar functions and three auxiliary
sequences to prove semi-local convergence, and we analyze the properties of the auxiliary sequences
and scalar functions. In Section 3, the recursion relation used to prove the semi-local convergence
of iterative method (1.5) is given. In Section 4, the semi-local convergence of method (1.5) and the
uniqueness of the solution are both proven. The numerical example and results are shown in Sections
5 and 6, respectively.

2. Preparatory knowledge

Let G : Φ ⊆ B1 → B2 be a differentiable nonlinear Fréchet operator in the open set Φ and let B1 and
B2 be Banach spaces. Suppose the inverse ∆0 ∈ L(B2,B1) of the Jacobian matrix of the first iteration
in the iterative system (1.5) and s0 satisfies s0 ∈ Φ, where L(B2,B1) is the set of linear operators from
B2 to B1.

In addition, we use the Kantorovich condition [12] to obtain the semi-local convergence result of
this iterative method (1.5).
(C1) ∥ ∆0 ∥≤ β,
(C2) ∥ ∆0G(s0) ∥≤ η,
(C3) ∥ G′(s) − G′(t) ∥≤ K ∥ s − t ∥,
where K, β, η are nonnegative real numbers. For simplicity of form, we denote η0 = η, λ0 = Kβη, µ0 =

q(λ0)p(λ0), let λ0 < σ and σ ≈ 0.603 < 1 be the smallest positive root of the scalar function sh(s) − 1,
and define the sequences

ηn+1 = µnηn, (2.1)

λn+1 = λn p(λn)2q(λn), (2.2)

µn+1 = q(λn+1)p(λn+1), (2.3)

where n ≥ 0. The scalar functions are

h(s) = 1 +
s
2
+

s2

2
+

s3(1 + s)2

8(1 − s)
, (2.4)

p(s) =
1

1 − sh(s)
, (2.5)
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q(s) =
s
2

(h(s))2 + h(s) − 1. (2.6)

This is the key to study the semi-local convergence of iterative methods. The following is the
interrelation between scalar functions defined by (2.4)–(2.6) and sequences defined by (2.1)–(2.3) by
some lemmas, which we will use later in the derivation of recursive relations.

Lemma 2.1. The functions h(s), p(s), and q(s) are defined by (2.4)–(2.6), and some of their properties
are as follows:

(a) h(s), p(s), and q(s) are increasing ,where p(s) > 1 and h(s) > 1 for 0 < s < σ,
(b) p(λ0)q(λ0) < 1 for λ0 < 0.359,
(c) p(λ0)2q(λ0) < 1 for λ0 < 0.297.
Proof: Using the definition of increasing function, it is easy to prove (a). A numerical calculation
is then performed to prove (b), (c). As p(λ0)2q(λ0) < 1, then by constructing λn, it is a decreasing
sequence. So, λn < λ0 ≤ 0.297 for all n ≥ 1.

Lemma 2.2. Let p(s) ,h(s), and q(s) be the auxiliary functions defined by (2.4)–(2.6), and σ is the
smallest positive root of the scalar function sh(s) − 1. If

λ0 < σ, p(λn)µn < 1, (2.7)

then,
(a) p(λ0) > 1, µn < 1 (n ≥ 0),
(b) the sequence {λn} ,{µn}, and {ηn} are decreasing ,where λn < 0.297 for n ≥ 0,
(c) h(λn)λn < 1,p(λn)µn < 1(n ≥ 0).
Proof: (a) From Lemma 2.1 and (2.7), we can see that p(λ0) > 1 is true and µ0 < 1, so it is true when
n = 0. When n = 1, the same reason µ1 < 1 is true, it can be obtained by mathematical induction that
µn < 1 is true.
(b) From the definition of the sequence (2.1)–(2.3) and (a), we can obtain µn < 1, so ηn+1 < ηn,
and {ηn} is a decreasing sequence. By Lemma 2.1, when n = 0, p(λ0)2q(λ0) < 1, so λ1 < λ0. By
mathematical induction, {λn} is a decreasing sequence.In the same way, µ1 < µ0 and {µn} is also a
decreasing sequence.
(c) From Lemma 2.1 and the above results, we can see that h(λ1)λ1 < h(λ0)λ0 < 1 and p(λ1)µ1 <

h(λ0)µ0 < 1 are true and (c) is established by induction.

3. Recursive relation

The required recursion relations and auxiliary functions are defined, and we begin to analyze the
iterative method (1.5), which serves as the basis for later semi-local convergence analysis. We define
B(s, r) = {t ∈ B1 :∥ t − s ∥< r} , B(s, r) = {t ∈ B1 :∥ t − s ∥≤ r}. Under the assumption (C1)–(C3) in the
previous section, the recursion relation that defines the iterative method in (1.5) is given below.

We expand the Taylor series of t0 at G estimated near s0 to

G(t0) = G(s0) + G′(s0)(t0 − s0) +
∫ t0

s0

(G′(s) − G′(t))ds.
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From the first-step of the iterative method (1.5), the term G(s0)+G′(s0)(t0 − s0) is equal to zero. Using
variable substitution s = s0 + v(t0 − s0), we get

G(t0) =
∫ 1

0
(G′(s0 + v(t0 − s0) − G′(s0))(t0 − s0)dv,

when n = 0. It is known that ∆0 exists from the hypothesis (C1)–(C3), and it shows that t0 also exists,
thus, there is

∥ t0 − s0 ∥=∥ ∆0G(s0) ∥≤ η0. (3.1)

This shows that t0 ∈ B(s0,Rη)

r0 − s0 =t0 − s0 − G
′(s0)−1[2I − G′(t0)G′(s0)−1]G(t0)

=t0 − s0 − ∆0[I + (G′(s0) − G′(t0))∆0]G(t0)

=t0 − s0 − ∆0

∫ 1

0
(G′(s0 + v(t0 − s0) − G′(s0)))(t0 − s0)dv

+ ∆0(G′(t0) − G′(s0))∆0

∫ 1

0
(G′(s0 + v(t0 − s0) − G′(s0)))(t0 − s0)dv.

(3.2)

Take the norm (3.2) and apply the Lipschitz condition [14]. We obtain

∥ r0 − s0 ∥≤ ∥ t0 − s0 ∥ + ∥ ∆0 ∥
K
2
∥ t0 − s0 ∥

2 + ∥ ∆0 ∥
2 K ∥ t0 − s0 ∥

K
2
∥ t0 − s0 ∥

2

≤ ∥ t0 − s0 ∥ +
K
2
∥ ∆0 ∥∥ t0 − s0 ∥

2 +
K2

2
∥ ∆0 ∥

2∥ t0 − s0 ∥
3

≤η +
K
2
βη2 +

K2

2
β2η3

=η(1 +
1
2

Kβη +
1
2

K2β2η2)

=η(1 +
λ0

2
+
λ2

0

2
),

(3.3)

so that

∥ r0 − s0 ∥≤ η(1 +
λ0

2
+
λ2

0

2
). (3.4)

Similarly, we can get r0 − t0.

∥ r0 − t0 ∥= − G
′(s0)−1[2I − G′(t0)G′(s0)−1]G(t0)

= − G′(s0)−1[I + I − G′(t0)G′(s0)−1]G(t0)
= − G′(s0)−1G(t0) − G′(s0)−1(G′(s0) − G′(t0))G′(s0)−1G(t0)

= − G′(s0)−1
∫ 1

0
(G′(s0 + v(t0 − s0) − G′(s0)))(t0 − s0)dv

− G′(s0)−1(G′(s0) − G′(t0))G′(s0)−1
∫ 1

0
(G′(s0 + v(t0 − s0) − G′(s0)))(t0 − s0)dv,

(3.5)
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so that
∥ r0 − t0 ∥≤ ∥ ∆0 ∥

K
2
∥ t0 − s0 ∥

2 + ∥ ∆0 ∥
2 K ∥ t0 − s0 ∥

K
2
∥ t0 − s0 ∥

2

≤
1
2

Kβη2 +
1
2

K2β2η3

=
η

2
(Kβη + K2β2η2)

=
η

2
(λ0 + λ

2
0).

(3.6)

Applying Banach’s lemma [15], it follows that

∥ I − ∆0G
′(t0) ∥≤∥ ∆0 ∥∥ G

′(s0) − G′(t0) ∥≤ βK ∥ t0 − s0 ∥≤ Kβη = λ0 < σ. (3.7)

Thus, G′(t0)−1 exists and

∥ G′(t0)−1 ∥≤
β

1 − λ0
. (3.8)

The Taylor series expansion of G around t0 evaluated in r0 is

G(r0) =
∫ 1

0
(G′(t0 + v(r0 − t0) − G′(t0))(r0 − t0)dv. (3.9)

Taking norms and applying Lipschitz condition, we obtain

∥ G(r0) ∥≤
K
2
∥ r0 − t0 ∥

2 . (3.10)

Thus,
∥ s1 − s0 ∥≤ ∥ r0 − s0 ∥ + ∥ G

′(t0)−1G(r0) ∥

≤η(1 +
λ0

2
+
λ2

0

2
) +

β

1 − λ0

K
2
η2

4
(λ0 + λ

2
0)2

=η(1 +
λ0

2
+
λ2

0

2
+

λ3
0

8(1 − λ0)
(1 + λ0)2) = ηh(λ0).

(3.11)

Therefore,
∥ s1 − s0 ∥≤ ηh(λ0), (3.12)

where λ0 = Kβη and h(s) = 1 + s
2 +

s2

2 +
s3(1+s)2

8(1−s) .
Apply the Banach lemma again, one has

∥ I − ∆0G
′(s1) ∥= ∥ ∆0G

′(s0) − ∆0G
′(s1) ∥≤∥ ∆0 ∥∥ G

′(s0) − G′(s1) ∥≤ Kβ ∥ s1 − s0 ∥

≤Kβη(1 +
λ0

2
+
λ2

0

2
+

λ3
0

8(1 − λ0)
(1 + λ0)2) = λ0h(λ0) < 1,

(3.13)

then, as far as λ0h(λ0) < 1 (by taking λ0 < σ), Banach’s lemma guarantees that (∆0G
′(s1))−1 = ∆1∆

−1
0

exists and
∥ ∆1 ∥≤

1
1 − λ0h(λ0)

∥ ∆0 ∥= p(λ0) ∥ ∆0 ∥ (3.14)

being p(s) = 1
1−sh(s) .

Repeating the extrapolation process above, we can get the recurrence relationship given by the
following lemma.
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Lemma 3.1. The following corollary is proved by induction when n ≥ 1:

(In) ∥ ∆n ∥≤ p(λn−1) ∥ ∆n−1 ∥

(IIn) ∥ tn − sn ∥=∥ ∆nG(sn) ∥≤ ηn

(IIIn)K ∥ ∆n ∥∥ tn − sn ∥≤ λn

(IVn) ∥ sn − sn−1 ∥≤ h(λn−1)ηn−1

Proof: Starting from n = 1, (I1) has been proved in (3.14).
For (II1), take the Taylor expansion of G(s1) near t0, and we get

G(s1) =G(t0) + G′(t0)(s1 − t0) +
∫ s1

t0
(G′(s) − G′(t0))ds

=G(t0) + (G′(t0) − G′(s0))(s1 − t0) + G′(s0)(s1 − t0)

+

∫ 1

0
(G′(t0 + v(s1 − t0) − G′(t0))(s1 − t0)dv.

(3.15)

Taking the norm of G(s1),

G(s1) = ∥ G(t0) ∥ +K ∥ t0 − s0 ∥∥ s1 − t0 ∥ + ∥ G
′(s0)(s1 − t0) ∥ +

K
2
∥ s1 − t0 ∥

2

≤
K
2
∥ t0 − s0 ∥

2 +K ∥ t0 − s0 ∥∥ s1 − t0 ∥ +
1
β
∥ s1 − t0 ∥ +

K
2
∥ s1 − t0 ∥

2 .
(3.16)

When one
∥ s1 − t0 ∥= ∥ r0 − t0 − G

′(t0)−1G(r0) ∥
≤ ∥ r0 − t0 ∥ + ∥ G

′(t0)−1G(r0) ∥

≤
η

2
(λ0 + λ

2
0)+ ∥ G′(t0)−1 K

2
∥ r0 − t0 ∥

2

≤
η

2
(λ0 + λ

2
0) +

β

1 − λ0

K
2
η2

4
(λ0 + λ

2
0)2

=η(
λ0

2
+
λ2

0

2
+

λ3
0

8(1 − λ0)
(1 + λ0)2) = η(h(λ0 − 1)),

(3.17)

then,

G(s1) ≤
K
2
η2 + Kη2(h(λ0) − 1) +

1
β
η(h(λ0) − 1) +

K
2
η2(h(λ0) − 1)2. (3.18)

By applying (I1), we can get

∥ t1 − s1 ∥= ∥ ∆1G(s1) ∥≤ p(λ0) ∥ ∆0 ∥∥ G(s1) ∥

≤p(λ0)βη(
K
2
η + Kη(h(λ0) − 1) +

1
β

(h(λ0) − 1) +
K
2
η(h(λ0) − 1)2)

≤p(λ0)η(
λ0

2
+ λ0(h(λ0) − 1) + h(λ0) − 1 +

λ0

2
(h(λ0) − 1)2)

=(
λ0

2
(h(λ0))2 + h(λ0) − 1)p(λ0)η

=µ0η = η1.

(3.19)
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Let
∥ t1 − s1 ∥≤ q(λ0)p(λ0)η = η1, (3.20)

where µ0 = q(λ0)p(λ0) and
q(s) =

s
2

(h(s))2 + h(s) − 1. (3.21)

(III1): Use (I1) and (II1) for n = 1 to prove

K ∥ ∆1 ∥∥ t1 − s1 ∥≤K p(λ0) ∥ ∆0 ∥ η1

=K p(λ0) ∥ ∆0 ∥ q(λ0)p(λ0)η
≤λ0(p(λ0))2q(λ0) = λ1.

(3.22)

(IV1): This has been proven in (3.11), when n = 1.

4. Semi-local convergence analysis

In this section, we give the semi-local convergence theorem of the iterative method of sixth-order
convergence. It is first necessary to prove that the sequence {sn} is a Cauchy sequence, because
this guarantees that the sequence {sn} is convergent in the Banach space. According to the above
analysis of recursive sequences {λn}, {µn} and auxiliary functions h(x), p(x), q(x), we give the following
preliminary results:

Theorem 4.1. Let G : Φ ⊆ B1 → B2 be a quadratic differentiable Fréchet nonlinear operator on the
open setΦ, whereB1 andB2 are Banach spaces. Let s0 ∈ Φ and∆0 = [G′(s0)]−1 exist, and the condition
(C1) − (C3) is satisfied. Let λ0 = Kβη and λ0 < σ and define ηn+1 = µnηn, µn+1 = q(λn+1)p(λn+1),
λ0 < σ, and p(λ0)µ0 < 1, where σ is the smallest positive root of the scalar function sh(s) − 1. If
Be(s0,Rη) = {s ∈ X :∥ s − s0 ∥< Rη} ⊂ Φ and R = h(λ0)

1−q(λ0)p(λ0) , then the iterated sequence s0 defined
at (1.5) converges from the initial point s0 to the solution s∗ of G(x) = 0. In this case, the iterated
sequences {sn} and {tn} are included in Be(s0,Rη) and s∗ ∈ B(s0,Rη), where s∗ is the unique solution of
the equation G(x) = 0 in Bn(s0,

2
Kβ − Rη) ∩ Φ.

Proof: According to Lemma 2.1, we can write

ηn = q(λn−1)p(λn−1)ηn−1 =

n−1∏
i=0

(q(λi)p(λi))η ≤ (q(λ0)p(λ0))nη. (4.1)

Thus,
n∑

i=0

ηi ≤

n∑
i=0

(q(λ0)p(λ0))iη =
1 − (q(λ0)p(λ0))n+1

1 − q(λ0)p(λ0)
η. (4.2)

According to Lemmas 2.1 and 2.2, the functions p(s) and q(s) are increasing. So, we express
sn+1 − s0 in terms of partial sums of geometric series,

∥ sn+1 − s0 ∥≤

n∑
i=0

∥ si+1 − si ∥≤

n∑
i=0

h(λi)ηi ≤ h(λ0)
n∑

i=0

ηi

≤h(λ0)η
1 − (q(λ0)p(λ0))n+1

1 − q(λ0)p(λ0)
< Rη.

(4.3)
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Therefore, when p(λ0)q(λ0) < 1 of Lemma 2.1 holds, we can conclude that {sn} all belong to Be(s0,Rη).
From Lemmas 2.1 and 2.2, we know that p(s), q(s) and h(s) increase and {λn} decreases, and then we
can show that {sn} is a Cauchy sequence.

∥ sn+m − sn ∥≤

n+m−1∑
i=n

∥ si+1 − si ∥

≤

n+m−1∑
i=n

h(λi)ηi ≤ h(λ0)
n+m−1∑

i=n

ηi

≤h(λ0)η
1 − (q(λ0)p(λ0))n+m

1 − q(λ0)p(λ0)
.

(4.4)

So, {sn} is a convergent Cauchy sequence. Therefore, there is s∗, such that limn→∞ sn = s∗. In (4.3), let
n = 0,m→ ∞, and we get ∥ s∗ − s0 ∥≤ Rη, which shows that Be(s∗,Rη).

Finally, it is proven that we know the uniqueness of s∗ in Bn(s0,
2

Kβ − Rη)
⋂
Φ.

2
Kβ
− Rη = (

2
λ0
− R)η >

1
λ0
η > Rη, (4.5)

so Be(s0,Rη) ⊂ Bn(s0,
2

Kβ − Rη) ∩ Φ. Below, we assume that t∗ is another solution of G(s) = 0 in
Bn(s0,

2
Kβ − Rη)

⋂
Φ and prove that s∗ = t∗. Let’s first take the Taylor expansion of G around s∗,

G(t∗) = G(s∗) +
∫ 1

0
(G(s∗ + v(t∗ − s∗))(t∗ − s∗)dv,

so that

0 = G(t∗) − G(s∗) = (t∗ − s∗)
∫ 1

0
(G′(s∗ + v(t∗ − s∗))dv.

We need to prove that the operator
∫ 1

0
(F′(x∗+ t(y∗− x∗)) is invertible, thus guaranteeing that y∗− x∗ = 0.

Then, applying hypothesis (C3),

∥ ∆0 ∥

∫ 1

0
∥ G′(s∗ + v(t∗ − s∗) − G′(s0) ∥ dt ≤Kβ

∫ 1

0
∥ s∗ + v(t∗ − s∗) − s0 ∥ dv

≤Kβ
∫ 1

0
((1 − v) ∥ s − s0 ∥ +v ∥ t∗ − s0 ∥)dv

<
Kβ
2

(Rη +
2

Kβ
− Rη) = 1.

(4.6)

It follows from Banach’s lemma that the operator
∫ 1

0
(F′(x∗+t(y∗−x∗)) is invertible and

∫ 1

0
(F′(x∗+t(y∗−

x∗)) ∈ L(B1,B2). The proof is completed by estimating 0 = G(t∗)−G(s∗) = (t∗− s∗)
∫ 1

0
(F′(x∗+t(y∗−x∗))

to obtain t∗ = s∗.
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5. Numerical experiments

In this section, we will use the iterative method (1.5) to solve nonlinear systems, showing that the
recursion relationship we derive is reasonable. In addition, we use the iterative method (1.5) to solve
practical chemical problems to demonstrate its applicability.
Problem 1. Nonlinear integral equations appear in many branches of mathematical physics, such as
fracture mechanics, hythermoelasticity, fluid mechanics, and so on. In this section, we introduce the
nonlinear integral equation of Hammerstein type [16], which is a special form of Urysohn type Volterra
integral equation, and then we use the obtained results to solve the Hammerstein type integral equation
to prove the applicability of the theoretical results. The format of the Hammerstein equation is as
follows:

s(x) = 1 +
1
3

∫ 1

0
H(x, y)s(y)3dy, (5.1)

where s ∈ C (0, 1) , x ∈ [0, 1] , y ∈ [0, 1] ,with the kernel H as

H(x, y) =

(1 − x)y if y ≤ x,

x(1 − y) if x < y.
(5.2)

Equation (5.1) is solved by converting (5.1) into nonlinear equations through the discretization
process. Next, GaussLegendre quadrature is used to approximate the integral in (5.1),

∫ 1

0
x(y)dy ≈

7∑
i=1

δix(yi) (5.3)

with yi and δi serving as the Gauss-Legendre polynomial’s nodes and weights, respectively. Using the
system of nonlinear equations, we estimate (5.1) after denoting the approximation of si, i = 1, 2, ...,m
as s(yi), where si approximated is

si = 1 +
1
3

7∑
j=1

θi js3
j , (5.4)

where

θi j =

δ jy j(1 − yi) if j ≤ i,

δ jyi(1 − y j) if j > i.
(5.5)

One way to rewrite the system is

G(s) = s − 1 −
1
3

Mγs, γs = (s3
1, s

3
2, ..., s

3
7)T ,

G
′

(s) = I − MN(s), N(s) = diag(s2
1, s

2
2, ..., s

2
7),

(5.6)

where G
′

is the Fréchet derivative of G, a nonlinear operator in L(RL,RL), and RL is the Banach space.
We shall apply it to solve the nonlinear systems in accordance with (1.5).
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Using the infinite norm while taking s0 = (1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6)T , L = 7, we can get

∥ ∆0 ∥≤ β, β ≈ 1.3667,
∥ ∆0G(s0) ∥≤ η, η ≈ 1.6301,

∥ G′(s) − G′(t) ∥≤ K ∥ s − t ∥, K ≈ 0.1040,
λ0 = Kβη, λ0 ≈ 0.2316,

µ0 = q(λ0)p(λ0), µ0 ≈ 0.4052.

(5.7)

The above results satisfy the condition of semi-local convergence, so we apply this method to
the system. In addition, the existence of the solution of s0 in Be(s0, 6.3578) and uniqueness in
Bn(s0, 6.6419) are guaranteed by Theorem 4.1. In Table 1, we give the existence radius Re and
uniqueness radius Rn when the initial estimator s0 with equal components takes different values. At
the same time, we note that when s0i > 1.7, i = 1, 2, ..., 7, the iterative method does not meet the
convergence condition, so its convergence cannot be guaranteed.

When we use the iterative method (1.5) to solve Eq (5.2), the exact solution we get is

s∗ = {1.005, 1.021, 1.040, 1.048, 1.040, 1.021, 1.005}T .

In Table 1 , the values of relevant parameters in the conditions are given when different initial
values are taken, and the existence radius Re and uniqueness radius Rn are obtained when different
initial values are taken. Table 2 shows the errors and function values corresponding to different initial
values, and proves that the iterative method (1.5) is convergent of sixth-order. The results obtained in
Tables 1 and 2 are similar. We can converge to a unique solution under the Kantorovich condition [12]
by choosing different initial values, and the closer the initial value is to the root, the lower the error
estimate. The proof of semi-local convergence, which guarantees the existence and uniqueness of the
solution under certain assumptions, is especially valuable in the process where the existence of the
solution cannot be proven.

Table 1. Problem 1 takes parameter values with different initial values.

s0i β η K λ0 µ0 Re Rn

0 1 2.6458 0.0397 0.1051 0.1318 3.2250 47.1528
0.2 1.0042 2.1230 0.0479 0.1022 0.1273 2.5701 39.0089
0.4 1.0171 1.6094 0.0566 0.0927 0.1129 1.9011 32.8405
0.6 1.0392 1.0977 0.0661 0.0756 0.0886 1.2558 27.8600
0.8 1.0719 0.5889 0.0775 0.0489 0.0541 0.6386 23.4368
1.0 1.1171 0.0804 0.1148 0.0103 0.0150 0.0817 15.5137
1.2 1.1778 0.4689 0.0810 0.0448 0.0491 0.5047 20.4593
1.4 1.2586 1.0285 0.0942 0.1220 0.1592 1.3074 15.5617
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Table 2. Experimental results of Problem 1.

s0i iter ∥ sk − sk−1 ∥ ∥ G(sk) ∥ ρ

0.2 4 9.755e-216 8.611e-1295 6
0.4 4 5.671e-228 3.324e-1368 6
0.6 4 2.622e-251 3.250e-1508 6
0.8 4 3.849e-297 3.247e-1783 6
1.0 4 2.135e-452 9.463e-2715 6
1.2 4 2.922e-314 6.215e-1886 6
1.4 4 5.294e-228 2.199e-1368 6
1.6 4 2.853e-176 4.300e-4096 6

Problem 2. The gas equation of the state problem is one of the most important problems in solving
practical chemistry problems, and we apply the iterative method (1.5) to this problem. First, give the
van der Waals equation

G(V) = (p +
an2

V2 )(V − nb) − nRT, (5.8)

where a = 4.17atm ·L/mol2, b = 0.0371L/mol. Let’s consider the pressure of 945.36kPa(9.33atm), the
temperature of 300.2K, and the nitrogen of 2mol, and then find the volume of the container. Finally,
by substituting the data into Eq (5.8), we can get

G(V) = 9.33V3 − 96.9611V2 + 16.68V − 1.23766.

Taking s0 = 1.1 and the infinity norm, we get

λ0 = Kβη, λ ≈ 1.2344,

µ0 = q(λ0)p(λ0), µ0 ≈ 0.2263.

Therefore, the method satisfies the convergence condition, the solution exists in Be(x0, 3.3975), and the
uniqueness domain is Bn(x0, 7.2177). When the initial value satisfies the Kantorovich condition, the
initial value in this range is taken to solve the nonlinear system. Using iterative method (1.5) to solve
system (5.8) gives the root s∗ = 1.60917. A similar result can be obtained in Table 3; that is, under the
Kantorovich condition, convergence to a unique solution can be achieved by selecting different initial
values. The closer the initial value is to the root, the smaller the error estimate.

Table 3. Experimental results of Problem 2.

s0i iter ∥ sk − sk−1 ∥ ∥ G(sk) ∥ ρ

1.1 4 3.4721e-422 1.2863e-420 6
1.2 4 2.254e-713 8.35e-712 6
1.3 4 1.7708e-1398 6.5602e-1397 6
1.4 4 7.3119e-1394 2.7088e-1392 6
1.5 4 2.3388e-847 8.6644e-846 6
1.6 4 1.1197e-614 4.1482e-613 6
1.7 4 2.6379e-475 9.7725e-474 6
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6. Conclusions

In this paper, the semi-local convergence of Cordero’s sixth-order iterative method (1.5) was proved
by the recursive method. In order to study the semi-local convergence of Cordero’s iterative method,
first, we studied the properties of auxiliary sequences ηn, λn, µn and scalar functions h(s), p(s), q(s).
Second, the neighborhood B(s0,R) centered on the initial point was given, and then it was proved
that the iterative sequence converges to s∗ ∈ B(s0,R), where s∗ satisfies G(s∗) = 0, and the radius
of convergence R was obtained, thus proving the existence of a solution. Finally, the uniqueness
of a solution was proved by using Banach’s lemma. In the whole process of proving semi-local
convergence, the Lipschitz condition of the first-order Fréchet derivative was used to prove the semi-
local convergence of the Cordero’s iterative method. The correctness of the theory was proved by
numerical experiments.
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