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Abstract: Here, I was the first to investigate the sound reduction of a chaotically vibrating curved panel 
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equation and nonlinear structural governing equation. The chaotic and nonlinear sound radiations were 

computed from the multi-mode coupled formulations using a numerical integration method. The results 

obtained from the proposed method and classical harmonic balance method were generally in reasonable 
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of chaotic vibration on the sound reduction of a curved panel with/without a cavity were studied in detail. 
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1. Introduction  

Over the past twenty years, not more than 40 research papers about nonlinear structural-acoustics have 

been presented (e.g., [1−3]). Most of these studies employed classic methods (such as harmonic balance 

method and multiple scales method) to solve various problems about a nonlinearly vibrating panel backed 

by a cavity. Only periodic vibration and acoustic responses were generated from these methods. On the 

other hand, there have been some research works about chaotic panel vibration. For example, Pourtakdoust 

and Fazelzadeh [4] investigated the effect of structural damping on the chaotic behavior of a panel subject 

to supersonic flow. The nonlinear governing equations were developed using the concept of Von Karman's 

large deflection and the first order piston theory. Chandiramani et al. [5] presented a study about the 
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nonlinear vibrations of a composite panel subjected to uniform edge compression and a high-supersonic 

coplanar flow. The third-order piston theory aerodynamics, the effects of in-plane edge restraints, small 

initial geometric imperfections, transverse shear deformation, and transverse normal stress were considered 

in their model. Liu et al. [6] considered circular sandwich panels designed with aluminum as core material, 

steel and Al-Al-based high entropy alloy (Al-based HEA) as the surface board materials, respectively. They 

developed a finite element model to study the nonlinear and chaotic responses and the influence of small 

changes in thickness and inherent properties. The aforementioned works focused on the structural 

responses in various panel models only. Among those works, Ng [7] was the only one to propose using 

acoustic excitations to generate chaotic vibration responses. However, his work did not focus on any results 

about sound radiation. Particularly, research works about the effects of chaotic vibration on the acoustic 

properties of a panel are extremely limited. Three of them are mentioned here. The work in [8] addressed 

the chaotic phenomena in a vibro-acoustic system. The conditions about triggering the non-chaotic 

responses to chaotic responses were presented. It focused on the structural vibration responses only and did 

not mention any acoustic properties. The other work in [9] addressed a study about the sound radiation of 

a curved panel. It did not consider a cavity backing the curved panel and the effects of chaotic vibration on 

the sound reduction. Lee [10] adopted an approach of panel impedance and perforation impedance to derive 

the sound absorption of a chaotically vibrating curved perforated panel. Its focus and formulation were 

totally different from that in this paper. In practice, the chaotic vibrations of curved panels would be induced 

by large excitations. That can affect their sound reduction performances. Here, I was the first to investigate 

the sound reduction of a chaotically vibrating curved panel with/without a cavity. 

2. Theoretical formulation 

Figure 1 shows two curved panel cases (one is with cavity; the other one is without cavity). In the 

case with cavity, one of the boundaries is a chaotically or nonlinearly vibrating panel. The 

homogeneous wave equation, the acoustic modal decomposition equation [8−10] and boundary 

conditions are given by  

∇2𝑃𝑚 −
1

𝐶𝑎
2

∂2𝑃𝑚

𝜕𝑡2 = 0;          (1) 

𝑃𝑚 = ∑ 𝑃𝑚𝐽(𝑡)
𝐽
(𝑥, 𝑦, 𝑧) 𝐽̅

𝐽=1         (2) 

𝜕𝑃𝑚

𝜕𝑧
= −

𝑜

∂2𝑤𝑚

𝜕𝑡2  at z = 0;         (3) 

𝜕𝑃𝑄

𝜕𝑧
= −

𝑜

∂2𝑤𝑜

𝜕𝑡2  at z = 𝑐         (4) 

where Pm is the acoustic pressure induced by the mth mode vibrations of the curved panel and source 

panel; m is the structural mode (i.e., sin(mx/a));  J is the Jth acoustic mode shape (i.e., cos(lxx/a) 

cos(lyy/b) cos(lzz/c), lx, ly, and lz are the acoustic mode numbers, a and b are the panel width and 

length, and c is the cavity depth; 𝐽 ̅ is the number of acoustic mode used; Ca is the speed of sound; wo 

and wm are the excitation source displacement and curved panel displacement, which are expressed in 

the forms of wo = Ao(t) 1 (x,y), wm = Am(t)  m (x,y), 2Ao / t 2 =  g sin( t) and Am is the modal 

displacement;  is the excitation frequency; and  is the dimensionless excitation parameter and g is the 

gravity of 9.81ms-2. 
By applying the boundary conditions (i.e., Eqs (3) and (4)) to Eq (1), the acoustic pressure induced 

by the vibrations of the curved panel and source panel is given by  
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𝑃𝑚(𝑡, 𝑥, 𝑦, 𝑧) = ∑ [
𝑜𝑚𝐽

[(𝑘)2−(𝑘𝐽)
2

]𝐽𝐽

d2𝐴𝑚

d𝑡2 −
𝑜1𝐽

[(𝑘)2−(𝑘𝐽)
2

]𝐽𝐽

 𝑔𝑠𝑖𝑛(𝑡) ] 
𝐽
(𝑥, 𝑦, 𝑧) 𝐽̅

𝐽=1   (5) 

where k is the wave number of the excitation frequency; kJ is the wave number of the Jth acoustic mode; 

𝐽𝐽 = ∫ 
𝐽𝑉


𝐽
𝑑𝑣 ; 

𝑚𝐽
= ∫ 

𝑚𝑆


𝐽
𝑑𝑠; 

𝑚
 is the mth vibration mode shape function, V is the cavity 

volume and S is the corresponding panel surface. 

 

Figure 1. Curved panel cases with/without cavity. 

The governing equation of the curved panel vibration and the structural modal decomposition 

equations are given as follows [8−10]. 

𝜌𝑝
d2𝑤

d𝑡2 + 𝜉
d𝑤

d𝑡
+ 𝐸𝐼

d4𝑤

d𝑥4 =
𝐸𝑏ℎ

𝑎

𝑑2(𝑤+𝑤)

𝑑𝑥2 ∫ (
d𝑤

d𝑥

d𝑤

d𝑥
+

1

2
(

d𝑤

d𝑥
)

2

)
𝑎

0
𝑑𝑥 = 𝐹(𝑡)   (6) 

𝑤 = ∑ 𝐴𝑚
𝑚

 𝑚̅
𝑚=1           (7) 

where w is the transverse displacement; 𝑤 is the pre-set initial displacement profile (𝑤=A o sin(x/a)); 𝑚 

is the number of structural modes used; E is the Young’s modulus; I is the section property; 𝜌𝑝 is the panel 

surface density; 𝜉 is the panel damping coefficient; a, b, and h are the panel width, length and thickness, 

respectively; and 𝐹(𝑡) is the uniform external force or the acoustic pressure force acting on the panel. 

Note that according to [8−10], the “beam like” curved panel was adopted and the flexural modes along the 

y direction were ignored. Consider the substitution of Eq (7) into (6) and then preform the modal 

decomposition procedure. The governing equation of the modal nonlinear panel vibration is given by 
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     = 
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where 𝑚𝑛
00 = ∫ 

𝑚

𝑎

0
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(m,n =1,2,3). Note that the equations for three only 3 structural modes are adopted. In the next section, 

the convergence study showed that this three mode approach is accurate enough.  

The above coupled modal differential equations can be solved using the Runge-Kutta time domain 

numerical integration [8−10]. Hence, the overall root-mean square modal velocity at the steady state 

can be obtained. The sound reduction is defined as  

𝑆𝑜𝑢𝑛𝑑 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =   = −10 log [
∑ 𝑚

3
𝑚=1 〈𝐴̇𝑚〉2

(𝑔/ )2 ]     (11) 

where 𝑚 is the sound radiation efficiency of the mth mode; 𝐴̇𝑚 is the modal velocity response; <·> 

is the root square mean value. Note that ∑ 𝑚
3
𝑚=1 〈𝐴̇𝑚〉2  is the total normalized sound energy; 

(𝑔/ )2 is the total normalized energy acting on the panel; 〈𝐴̇𝑚〉2 is the normalized modal vibration 

energy; and 𝑚〈𝐴̇𝑚〉2 is the normalized modal sound energy [9].  

3. Results and discussion  

In Table 1, the physical dimensions and material properties of the metal panel are 400mm  

300mm  2mm, Young’s modulus = 7  1010 N/m2, Poisson’s ratio = 0.3, damping ratio = 0.02, and 

panel density = 2700 kg/m3. Table 1 shows the mode convergence for various excitation magnitudes. 

The pre-set center deflection is 4mm. The cavity depth is 300mm. The first 16 acoustic modes are used. 

It can be seen that the contribution of the 2nd anti-symmetric mode is very minimal, and thus the 3 

mode approximation is accurate enough. Note that the sound radiation efficiencies of the anti-

symmetric modes are much lower than those of the symmetric modes. Therefore, the contribution of 

the 1st anti-symmetric mode is significantly lower than that of the 2nd symmetric mode. Figure 2 shows 

the comparison between the phase plots obtained from the numerical integration method and classical 

harmonic balance method [3]. It is a case of no cavity, no initial center deflection (i.e., flat panel), and 

undamped free vibration (the initial displacement = 1.4  panel thickness). The physical dimensions 

of the panel are 500mm  400mm  2mm. The other panel properties are the same as those in Table 1. 

The two sets of results agree reasonably well with each other.  
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Table 1. Modal sound radiation contribution. 

 

Figure 2. Comparison between the phase plot results. 

Figures 3 and 6 show the sound reductions in the cases with/without cavity for various excitation 

magnitudes. The panel properties in these two figures are the same as those in Table 1, except the pre-

set center deflection = 10mm and damping ratio = 0.01. In Figure 3, the chaotic responses, which exist 

when  = 100 (the red line), deteriorate the sound reduction performance for the entire frequency range 

except the frequency range near the primary resonant dip (f = 340 to 360 Hz). The two-phase plots (f 

=80 Hz and 360 Hz) show the chaotic properties. Figures 4 and 5 show the corresponding time histories. 

Obviously, the responses are non-periodic and non-repeatable so that they are classified as chaotic 

response. In the green line, blue line and black line cases, only nearly linear and nonlinear responses 

can be generated. It can be seen that the higher the excitation magnitude is, the smaller the primary 

resonant dips are induced. Interestingly, the higher the excitation magnitude is, the bigger the high 

order nonlinear dips are induced.  

 1st sym. mode 1st anti-sym. mode 2nd sym. Mode 2nd anti-sym. mode 

 =  98.34% 0.01% 1.65% 0.00% 

   =  99.40% 0.01% 0.59% 0.00% 

   =  97.86% 0.01% 2.12% 0.00% 

   =   97.85% 0.01% 2.14% 0.00% 
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Figure 3. Sound reduction of the case without cavity. 

 

Figure 4. Time history of the 

phase plot in Figure 3 (80Hz). 

Figure 5. Time history of the 

phase plot in Figure 3 (360Hz). 
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Figure 6. Sound reduction of the case without cavity. 

In Figure 6, the chaotic responses (the red portion), which only exist when the excitation 

magnitude is very high (  = 300) and excitation frequency is very low (f < 150 Hz), deteriorate the 

sound reduction performance. The sound performance at that frequency range is abruptly lower (the 

red portion). The comparison between the cases with/without cavity in Figures 3 and 6 shows that it 

requires much higher excitation level to induce the chaotic vibrations ( = 100 in Figure 3 and  = 300 

in Figure 6). It is because the cavity acts as a “cushion” to strength the system. The phase plot (f =80 

Hz,   = 300) shows the chaotic properties, while the other phase plot (f =360 Hz,   = 300) shows the 

nonlinear multi-frequency properties. Figures 7 and 8 show the corresponding time histories. Note that 

the responses in Figure 7 are chaotic, and the responses in Figure 8 are periodic. Similar to the green 

line, blue line and black line cases in Figure 3, the higher the excitation magnitude is, the smaller the 

primary resonant dips are induced; the higher the excitation magnitude is, the bigger the high order 

nonlinear dips are induced. Figure 9 shows the corresponding vibration amplitude curves, at which the 

well-known jump phenomenon can be observed. There is no jump phenomenon in Figure 6. This is 

because the dominant mode at the orange portion in Figure 9 is anti-symmetric. As aforementioned, 

the radiation efficiencies of anti-symmetric modes are very minimal. Thus, that nonlinear portion in 

Figure 9 does not exist on the sound reduction curve in Figure 6. When the cavity depth is bigger, the 

“cushion” effect is also bigger and thus the vibration amplitude is smaller. It can be seen that the curve 

of c = 300mm is the lowest and the vibration responses are nearly linear (no chaotic vibration is found 

in that case). In the case of c = 200mm, the vibration responses are less nonlinear than those in the case 

of c = 100mm, and the frequency range of chaotic vibration is also narrower. 
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Figure 9. Vibration amplitude of the case with cavity. 

4. Conclusions  

The effects of chaotic and nonlinear vibrations on the sound reduction of a curved panel have 

been studied for the cases with/without cavity. The present solution agrees reasonably well with that 

obtained from the classical harmonic balance method. The results show that: 1) The case with cavity 

needs much higher excitation magnitude to trigger chaotic vibrations. It is because the cavity acts as a 

“cushion” to strength the system. When the cavity depth or volume is bigger, the “cushion” effect is 

also bigger and thus the vibration amplitude is smaller; 2) the chaotic vibrations would deteriorate the 

sound reduction performance for the entire frequency range except the frequency range near the 

primary resonant dip; 3) there is no jump phenomenon at the sound reduction curve because the 

radiation efficiencies of anti-symmetric modes are very low; 4) the higher the excitation magnitude is, the 

smaller the primary resonant dips are induced, and the bigger the high order nonlinear dips are induced. 

Figure 7. Time history of the phase plot  

in Figure 6 (80Hz). 

 

Figure 8. Time history of the phase plot  

in Figure 6 (80Hz). 
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