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1. Introduction

Information theory plays a crucial role in the quantification of the uncertainty present in probability
distributions. One of the fundamental measures in information theory is entropy, which was introduced
by Shannon [33]. Entropy is a quantity with many applications in various fields, namely information
science, statistical mechanics, probability and statistical analysis, communication and also economics.
Let us consider a random variable (rv) X, which represents the length of life of a life unit. Let us
assume that X has a probability density function (pdf) f (x). Then the Shannon differential entropy,
denoted as H(X), is defined as the negative expected value of the logarithm of f (X), provided that the
expected value is meaningful. Recently Lad et al. [19] introduced a new measure of uncertainty called
“differential extropy”. To simplify the terminology, we will refer to “differential extropy” simply as
“extropy” hereafter. This quantity acts as the dual complement of entropy. For a non-negative rv X
with pdf f (x) and survival function (sf) S (x), the extropy of X, denoted by J(X), is obtained as follows:

J(X) = −0.5
∫ +∞

0
f 2(x)dx = −0.5E[ f (F−1(U))], (1.1)

where E(·) represents the expectation operator, U is a random number from [0, 1] and F−1(u) stands
for the right-hand inverse function of F. This measure has proven to be a powerful tool for quantifying
uncertainty, and it is widely used in various fields of research. Qiu and Jia [26] considered an estimator
of extropy to create a goodness-of-fit test for the uniform distribution. Qiu et al. [28] applied extropy
to analyze the lifetime of mixed-reliability systems. Balakrishnan et al. [4] provided an application of
Tsallis extropy in pattern recognition.

It is often necessary to consider the current age of the system in order to estimate the uncertainty
regarding the remaining lifetime of the system. For example, operators want to estimate the uncertainty
regarding the remaining lifetime of the system if they have information about the operation of the
system at a certain time t. This remaining lifetime, denoted as Xt = [X − t | X > t], corresponds to the
time remaining for the system if it has already been operated for a duration of t. In this situation, the
extropy measure J(X) may not be appropriate. Qiu and Jia [26] a novel method, which is described as
follows:

J(X; t) = −0.5
∫ ∞

0

(
f (x + t)

S (t)

)2

dx = −0.5
∫ ∞

t

(
f (x)
S (t)

)2

, (1.2)

for all t > 0, where f (x + t)/S (t) denotes the pdf of Xt.

In the realm of real systems, uncertainty is a pervasive feature that affects future events and past
events. This realization has motivated the development of a complementary concept of extropy that
specifically captures uncertainty related to past events and differs from the traditional notion of extropy
for the remaining lifetime, which is used to evaluate uncertainty related to future events. Imagine an
rv X that represents the lifetime of a system. Note that the pdf of Xt = [X | X < t] is captured as
ft(x) =

f (x)
F(t) such that x ∈ (0, t). In view of this, the past extropy (PEX) at time t for rv X is defined as

follows (see [17, 36])

J̄(X; t) = −0.5
∫ t

0
f 2
t (x)dx
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= −0.5
∫ t

0

(
f (x)
F(t)

)2

dx, (1.3)

for all t > 0. Note that J̄(X; t) has a wide range of possible values, from negative infinity to positive
infinity. In the context of analyzing system failures, J̄(X; t) serves as a valuable metric to quantify
the uncertainty caused by the past lifetime or inactivity time of a system, especially in scenarios
in which the system is inactive at time t. This metric proves particularly useful when comparing
random lifetimes, as it allows the identification of subtle variations in the underlying distributions of
past lifetimes.

Order statistics play an essential role in the construction of a model for the lifetime of systems.
This study is concerned by exploring the PEX for typical ordered rvs derived from a continuous
distribution. Order statistics have proven useful in structural reliability engineering (see Bulleit and
Liu [7], Rosowsky and Bulleit [29], van de Lindt and Goh [37], Diamoutene et al. [10], and Yamakawa
and Ohsaki [42]). Record values and extreme value theory have also proven useful in construction
(see e.g., Dymiotis et al. [11], Saini and Ray-Chaudhuri [30], and Ozer and Feng [22]). In reliability
theory, order statistics are crucial, especially when analyzing the lifetime characteristics of coherent
systems and when performing lifetime tests with censored data. For a comprehensive understanding
of this topic, the work of David and Nagaraja [9] is recommended, which provides a comprehensive
overview.

In addition, the lower record statistic of a sequence of identical and independently distributed (i.i.d.)
rvs {Xi; i = 1, 2, . . .} is examined. The analogous analysis is also applied to the order statistics. A
lower data set exists if an observation X j has a value that is smaller than all previous observations,
i.e. Xi > X j applies to every i for which i < j. Records are important in numerous real-world
scenarios and statistical applications. They are often of interest when it comes to observing new
records, such as Olympic records, and they prove useful in areas such as reliability theory. Consider,
for example, the scenario in which wooden beams are tested for their breaking strength, as Glick [13]
has explained. Further insights into records and their many applications can be found in the work by
Arnold et al. [2] a comprehensive resource. Jose and Sathar [16] focused on studying the residual
extropy of k-data sets derived from various continuous probability distributions. They investigated the
properties and characteristics of extropy with respect to these data sets. In another study, Xiong et
al. [41] presented a new test for evaluating the symmetry of continuous distributions. This test was
based on the symmetric nature of the extropy of data set values and included specific characterizations
of exponential distributions (EDs).

The study of information properties in the context of organized data has received considerable
attention from various researchers. Notable contributions in this area include the work of Wong and
Chen [39], Park [23], Ebrahimi et al. [12], Zarezadeh and Asadi [43], and Baratpour et al. [6]. These
researchers have made considerable efforts to investigate the information properties that are inherent in
ordered data and to shed light on the underlying characteristics and structures. In recent years, extropy
has emerged as a measure of information that is attracting considerable attention. Notable studies in
this area include the work of Lad et al. [19], Qiu [25], and Qiu and Jia [26], among others. Qiu [25]
presented insightful comparative results on extropy and investigated the conditions for the uniqueness
of extropy in terms of the order statistics and record values. They also investigated the monotonic
properties and lower bounds of extropy for the order statistics and record values, as further discussed
by Qiu and Jia [26]. In a recent study by Shrahili and Kayid [34], they developed the concept of
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residual extropy for the i-th order statistic. In particular, they focused on establishing the link between
the residual extropy of the i-th order statistic and the residual extropy of the i-th order statistic derived
from a random sample generated from a uniform distribution; they then obtained several useful results.

The aforementioned works have examined the extropy of the order statistics and the record values
for the remaining terms. Building on these foundations, here we investigate the extropy of the order
statistics and lower record values for past lifetimes, an area that has received little attention. The
main focus of this study is to fill the existing gap in the literature regarding the study of the extropy
properties of order statistics and record values in the past. In particular, the use of extropy in this study
provides computational simplicity compared to other information measures discussed by Zarezadeh
and Asadi [43]. Consequently, it is possible to calculate the PEX of order statistics and capture
values for different distribution functions. This computational simplicity increases the practicality
and applicability of the proposed approach and enables efficient analysis in different scenarios.

Moreover, the proposed method proves its effectiveness in the evaluation of distribution functions,
which is confirmed by previous research. The applicability of the method also extends to the area
of reliability systems, where the interpretation of order statistics as lifetimes of i-out-of-n systems
becomes relevant. This demonstrates the extensive versatility and broad applicability of the proposed
method in the comprehensive analysis of reliability and distribution tests. By using this method,
researchers and practitioners can gain valuable insights into the performance and behavior of systems,
which can improve their understanding and enable informed decisions in various fields. In addition,
the results of this study have the potential to be used to predict the remaining useful life of lithium-ion
batteries by using extropy feature extraction and support vector regression techniques. An important
reference related to this context is the work of Jia et al. [15], which investigates the use of similar
approaches.

Here one will find some background information on this application. Since lithium batteries are
used in many different types of electronic devices, it is possible to avoid unexpected device failures
by accurately predicting their remaining useful life. In a recent study by Weddington et al. [38];
they focused on improving the reliability of remaining useful life predictions by integrating prediction
results obtained by using different techniques. The aim was to reduce the uncertainty associated with
these predictions. Specifically, models based on the extended Kalman filter and the particle filter
were developed by using feature data. A fusion approach using the Dempster-Shafer theory was then
applied to combine the results obtained with the Kalman filter and the particle filter. Chen et al. [8]
presented a new method for online prediction of the remaining useful life of lithium-ion batteries based
on permutation entropy. Qu et al. [24] proposed an adaptive noise suppression method to predict the
remaining useful life of lithium-ion batteries.

The concepts and methods discussed can be applied in these areas and benefit from related research,
such as that contributed by Al-Qazzaz et al. [1], Wu et al. [40], and Liu et al. [20]. By utilizing the
insights and techniques explored in these publications, researchers and practitioners in the field of
machine learning and deep learning can further improve their models and algorithms.

The contents of the paper are organized as follows. In Section 2, we present a representation of
the PEX of the ordered rv Xi:n, the i-th smallest value among X1, . . . , Xn as an i.i.d sample, which is
taken from the cumulative distribution function (cdf) F. A lower boundary condition is derived for
the PEX of the order statistics, since closed-form expressions for the PEX of the order statistics are
often not available in many statistical models. In order to provide practical insights, several illustrative

AIMS Mathematics Volume 9, Issue 3, 5827–5849.



5831

examples are presented that show the application of these bounds. It is shown that the PEX of the
minimum and maximum values in a random sample exhibits monotonic behavior with respect to the
number of observations under mild conditions. Section 3 considers the properties of the PEX of lower
record values. Constraints are placed on the PEX of lower record statistics and it is confirmed that
the PEX of records under appropriate conditions grows monotonically with the number of records in
the underlying sequence of rvs. By studying the relationships, deriving bounds, and investigating the
monotonic behavior, this paper contributes to a comprehensive understanding of the PEX of ordered
rvs. Section 4 presents some computational results that validate some of the conclusions drawn from
this study. Estimators for calculating the PEX of the ED are offered. For this reason, the maximum
likelihood estimator (MLE) is derived. Section 5 concludes the study conducted in this paper.

In the remaining part of the paper, the notations “≤st”, “≤hr”, “≤lr” and “≤d” are used to signify the
usual stochastic order, the hazard rate order, the likelihood ratio order and the dispersion order. Further
properties and a more detailed discussion of these stochastic orders can be found in [31].

2. Derivation of PEX for order statistics

We attempt here to find an expression that relates the PEX of order statistics obtained from a
randomly distributed population to the PEX of order statistics obtained from a uniformly distributed
population. To facilitate the analysis, the terms fXi:n(x) and FXi:n(x) are used to represent the pdf and cdf
of the i-th order statistic Xi:n, respectively, where i ranges from 1 to n. The density of Xi:n is therefore

fXi:n(x) =
1

I(i, n + ī)
F i−1(x)S n−i(x) f (x), with ī = 1 − i. (2.1)

Further, the cdf of Xi:n is:

FXi:n(x) =

n∑
k=i

(
n
k

)
Fk(x).S n−k(x), (2.2)

where

I(a, b) =

∫ 1

0
xa−1(x̄)b−1dx,

in which x̄ = 1 − x and a, b ∈ (0,+∞). The function I(·, ·) is known in the literature as a complete
beta function (see [9]). Another useful representation of the cdf FXi:n is based on the imperfect beta
function, which is obtained as

FXi:n(x) =
IF(x)(i, n + ī)

I(i, n + ī)
, (2.3)

where
Ix(a, b) =

∫
u∈(0,x)

ua−1ūb−1du, x ∈ (0, 1).

In this section, the notation Y ∼ Bt(a, b) indicates that the rv Y satisfies the condition of the next
density:

fY(y) =
1

It(a, b)
ya−1ȳb−1, 0 ≤ y ≤ t. (2.4)

Our focus is on the study of the PEX associated with the order statistic Xi:n. The PEX of Xi:n provides
information about the extent and magnitude of uncertainty regarding the results of the conditional rv
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[t−Xi:n|Xi:n ≤ t]. In this context, let us consider a system consisting of n units, where the system operates
as long as at least (n − i + 1) of the n units are in operation. The lifetime of the system is represented
by Xi:n, so i denotes the situation of the underlying ordered rv. In the case of i = 1, the system operates
as a system with a serial structure, while for i = n it operates as a system with a parallel structure.
In order to facilitate the computation of the PEX, a lemma is presented that establishes a connection
between the PEX of the underlying ordered rv in the unitary case and the imperfect beta function. The
next lemma plays a crucial role in the subsequent analysis and simplifies the computation of the PEX.
The proof of this lemma is not included here as it is simple and follows directly from the definition of
the PEX.

Lemma 2.1. Let Ui:n stand as the i-th order statistic of a set of n random numbers generated from
(0, 1) with equal chances. Then,

J̄(Ui:n; t) = −
It(i − ī, 2n − (i − ī))

2I2
t (i, n + ī)

, t ∈ (0, 1).

With the imperfect beta function and a uniform distribution, this lemma simplifies the calculation
of the PEX of the order statistic. This makes it easier to apply the PEX in many contexts. The values
of J̄(Ui:n; t) are shown in Figure 1 for certain cases when i = 1, 2, · · · , 5 and n = 5. From the diagram
shown, it can be seen that J̄(Ui:n; t) decreases with respect to t.

−20

−10

0

0.25 0.50 0.75 1.00
t

J(
U

i:n
, t

)

i = 1 i = 2 i = 3 i = 4 i = 5

Figure 1. Values of J̄(Ui:n; t) as a function of t, for t ∈ (0, 1).

The following theorem establishes a connection between the PEX of order statistics from a uniform
population and the PEX of Xi:n.

Theorem 2.1. If Xi:n stands as the i-th order statistic of a set of n random values adopted from cdf F,
then the PEX of Xi:n is derived as follows:

J̄(Xi:n; t) = J̄(Ui:n; F(t))E[ f (F−1(Yi))], t ∈ (0,+∞), (2.5)

AIMS Mathematics Volume 9, Issue 3, 5827–5849.



5833

where Yi ∼ IF(t)(i − ī, 2n − (i − ī)) with ī = 1 − i.

Proof. Making use of the change of variable u = F(x), one extracts the following expressions by
utilizing Eqs (1.2), (2.1) and (2.3):

J̄(Xi:n; t) = −0.5
∫ t

0

(
fXi:n(x)
FXi:n(t)

)2

dx

= −0.5
∫ t

0

(
F i−1(x)S n−i(x) f (x)

IF(t)(i, n + ī)

)2

dx

= −
IF(t)(i − ī, 2n − (i − ī))

2I2
F(t)(i, n + ī)

∫ t

0

F2(i−1)(x)S 2(n−i)(x) f 2(x)
IF(t)(i − ī, 2n − (i − ī))

dx

= −
IF(t)(i − ī, 2n − (i − ī))

2I2
F(t)(i, n + ī)

∫ F(t)

0

u2(i−1)(1 − u)2(n−i) f (F−1(u))
IF(t)(i − ī, 2n − (i − ī))

du

= J̄(Ui:n; F(t))E[ f (F−1(Yi))], t ∈ (0,+∞).

The final equality is derived by applying Lemma 2.1. This step concludes the proof. �

For t = +∞, the particular case of this result is provided by

J(Xi:n) = J(Ui:n)E[ f (F−1(Yi))],

such that Yi ∼ I(i − ī, 2n − (i − ī)), where ī = 1 − i. In the following result, a basic result is established
regarding the monotonicity of the PEX of Xi:n by assuming a descending reversed hazard rate of the
component lifetimes X. Specifically, this means that the rv X is a a distribution with the descending
reverse hazard rate (DRHR) property if the reverse hazard rate (rhr) function of X, i.e., the function τ
given by τ(x) = f (x)/F(x), decreases in x for x ∈ (0,+∞).

Theorem 2.2. If X has a distribution with the DRHR property, then J̄(Xi:n; t) increases in t.

Proof. The DRHR property of the distribution of X allows Xi:n to have a distribution with the DRHR
property. Therefore, the proof follows directly from Theorem 1 of [18]. �

Remark 2.1. If X is an absolutely continuous nonnegative rv with the support (0,∞), cdf F and pdf
f , then X is said to have the decreasing likelihood ratio (DLR) property if f (x) is log-convex or,
equivalently, if the function f ′(x)/ f (x) is increasing in x > 0. Since the DLR property implies the
DRHR propery, if X is DLR, then J̄(Xi:n; t) increases in t.

Using the upcoming example, the application of Theorems 2.1 and 2.2 is illustrated.

Example 2.1. Let us contemplate an rv X with the cdf given by:

F(x) = exp{−x−k}, x, k ∈ (0,+∞). (2.6)

It is found that f (F−1(u)) = ku(− ln u)
k+1

k for 0 < u < 1 upon using the method of inverse
transformation. After performing some manipulations, the following expression is obtained:

J̄(Xi:n; t) = −
k

2I2
e−t−k (i, n + ī)

∫ e−t−k

0
ui−īū2n−2i(− ln u)

k+1
k du. (2.7)
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Numerical methods have been employed to investigate the relationship between the extropy of J̄(Xi:n; t)
and the time t, as it is difficult to derive an explicit formula. The PEX trends with respect to t for various
choices of k, specifically k = 0.5, k = 1, and k = 2, are illustrated in Figure 2. It is plainly shown that
X possesses the DRHR property. Consequently, in line with Theorem 2.2 it is seen that as t increases,
so does the extropy of J̄(Xi:n; t).

−20
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−10

−5

0

0.25 0.50 0.75 1.00
t

J(
X

i:n
, t

)

i = 1 i = 2 i = 3 i = 4 i = 5

k = 0.5
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−50
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0.25 0.50 0.75 1.00
t

J(
X

i:n
, t

)

i = 1 i = 2 i = 3 i = 4 i = 5

k = 1

−1500

−1000

−500

0

0.25 0.50 0.75 1.00
t

J(
X

i:n
, t

)

i = 1 i = 2 i = 3 i = 4 i = 5

k = 2

Figure 2. Values of J̄(Xi:n; t) as a function of t, and as calculated for some k in Example 2.1.

Since the PEX of the underlying ordered rv has no explicit solution for many distributions, it is
necessary to explore alternative approaches to characterize the PEX of order statistics. Given this
restriction, one could explore the use of bounds to express the PEX of Xi:n. To this end, the next result
is presented, which establishes a lower constraint for the PEX of order statistics and sheds light on
their behavior in practical scenarios.

Theorem 2.3. For a nonnegative continuous rv X with density f and distribution function F, letM =

f (m) be finite with m := sup{x : f (x) ∈ [0,M]} as the mode of F. One has the following:

J̄(Xi:n; t) ≥ J̄(Ui:n; F(t))M.

Proof. Because f (F−1(u)) ≤ M, for every u ∈ (0, 1), one thus gets

E[ f (F−1(Yi))] ≤ M.

The proof is now complete, and the result may be obtained with ease from Eq (2.5). �

A lower constraint on the PEX of Xi:n is provided by the following theorem. This lower limit
is dependent on the mode of the base distribution, m, and the PEX of the underlying ordered rv in
the uniform case. This solution provides a quantifiable lower bound for the PEX based on the mode
of the distribution, and it provides relevant information about Xi:n. For a few common distributions,
Theorem 3.3 is used to determine the PEX limits of the order statistics. A table showing the results is
Table 1.
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Table 1. Bounds on J̄(Xi:n; t) derived from Theorem 3.3 (Parts (i) and (ii)).

pdf Constraints
f (x) = 2

π(1+x2) , x > 0, ≥ J̄(Ui:n; F(t))
(

2
π

)
f (x) = 2

σ
√

2π
e−(x−µ)2/2σ2

, x > µ > 0, ≥ J̄(Ui:n; F(t))
(

2
σ
√

2π

)
f (x) = λ

β
e−

(x−µ)
β (1 − e−

(x−µ)
β )λ−1, x > µ > 0, ≥ J̄(Ui:n; F(t))β−1(1 − 1

λ
)λ−1

f (x) = bc

Γ(c) xc−1e−bx, x > 0, ≥ J̄(Ui:n; F(t))( I(c−1)c−1e1−c

Γ(c) )

The next finding provides an upper bound on the parallel system’s PEX in terms of the parent
distribution’s rhr function.

Theorem 2.4. Let X denote a nonnegative continuous rv with the DRHR property. Then,

J̄(Xn:n; t) ≤ −
τ(t)
4
,

where τ(t) is the rhr of X.

Proof. If X has the DRHR property, then Theorem 2.2 implies that J̄(Xn:n; t) increases in t. Therefore,
based on Theorem 2.1 of [17] one has:

J̄(Xn:n; t) ≤ −
τn:n(t)

4
≤ −

τ(t)
4
, t > 0.

Since τn:n(t) = nτ(t) ≥ τ(t), the last inequality is easily obtained which completes the proof. �

The monotonicity of the PEX of extreme order statistics with uniformly distributed components’
lifetimes is explored in the ensuing lemma.

Lemma 2.2. The PTE of the system lifetime drops with an increasing number of components in a
parallel (serial) structure with n components whose lifetimes are evenly distributed over the unit
interval.

Proof. The presumption is that the system operates in parallel. Analogous reasoning can be applied to
a series system. Let us contemplate the rvs Z1 and Z2 with pdfs f1,t(z) and f2,t(z), respectively, given
by:

f1,t(z) =
zn−1∫ t

0
xn−1dx

and f2,t(z) =
z2(n−1)∫ t

0
x2(n−1)dx

, z ∈ (0, t).

It is then deduced that

Θ(n) = J̄(Un:n; t) = −

∫ t

0
x2(n−1)dx

2
(∫ t

0
xn−1dx

)2 , 0 < t < 1. (2.8)

By assuming that Θ(n) is a differentiable function of n, one can obtain

∂Θ(n)
∂n

= −0.5
∂g(n)
∂n

,
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where

g(n) =

∫ t

0
x2(n−1)dx(∫ t

0
xn−1dx

)2 .

It is observed plainly that

∂g(n)
∂n

=
2A(t)
B2(t)

(
E[ln(Z2)] − E[ln(Z1)]

)
≥ (≤)0, (2.9)

where

A(t) =

∫ t

0
x2(n−1)dx, and also B(t) =

∫ t

0
xn−1dx.

It can be observed that Z2 is greater than Z1 in the usual stochastic order. Consequently, as ln(z)
increases in z, by applying Theorem 1.A.3. of [31] one thus obtains that E[ln(Z2)] ≥ (≤)E[ln(Z1)].
This suggests that Θ(n) is a descending function of n since (3.8) is positive (negative). That is, as the
number of components increases, the PTE of the parallel system decreases. �

Theorem 2.5. Think of a parallel system made up of n units with i.i.d. component lifetimes X1, . . . , Xn.
Let us assume that X1 has a growing pdf f . The system lifetime’s PTE then has descending
characteristics as n increases.

Proof. Assuming that Yn ∼ BF(t)(2n − 1, 1), fYn(y) indicates the pdf of Yn. Evidently,

fYn+1(y)
fYn(y)

=
BF(t)(2(n − 1) + 1, 1)

BF(t)(2n + 1, 1)
y2, 0 < y < F(t),

increases in y. It is deduced that Yn is less than Yn+1 in likelihood ratio order and, therefore, Yn is also
less than Yn+1 in the usual stochastic order. In addition, f (F−1(x)) increases with respect to x. Therefore

E[ f (F−1(Yn))] ≤ E[ f (F−1(Yn+1)]. (2.10)

From Theorem 2.1, one obtains

J̄(Xn:n; t) = J̄(Un:n; F(t))E[ f (F−1(Yn))]
≥ J̄(Un:n; F(t))E[ f (F−1(Yn+1))]
≥ J̄(Un+1:n+1; F(t))E[ f (F−1(Yn+1))]
= J̄(Xn+1:n+1; t).

The first inequality is obtained by noting that J̄(Un:n; F(t)) is non-positive. The last inequality
is obtained from Lemma 2.2. Thus, it can be inferred that J̄(Xn:n; t) ≥ J̄(Xn+1:n+1; t) for every
nonnegative t. �

Certain distributions, like the power distribution, possess pdfs that exhibit increasing behavior. It
is remarked that the result obtained from Theorem 2.5 does not hold universally for all systems with
an (n − i + 1)-out-of-n structure. To illustrate this point, an example is given that demonstrates the
deviation from the general validity of the theorem.
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Example 2.2. Assume that for the system to function, at least (n−1) of its n components must function.
Then, X2:n, i.e., the second-smallest component lifetime, is the lifespan of the system. On (0, 1), the
components’ lifetimes are uniformly distributed. The effect of n on the PEX of X2:n at t = 0.2 is seen in
Figure 3. The graph makes it abundantly evident that the system’s PEX does not change monotonically
as n increases.

−4.0

−3.5

−3.0

10 20 30

n

J(
U

2:
n,

 0
.2

)

Figure 3. Values of PEX for several choices of n in a system with the (n − 1)-out-of-n
structure where the components’ lifetimes are subject to (0, 1) and t = 0.2.

3. Past extropy of lower record values

Let {Xi, i = 1, 2, . . .} be a sequence of i.i.d. rvs with the cdf F(x) and pdf f (x). Let us assume that
Xi:n is the i-th order statistic arising from X1 . . . , Xn. The n-th lower record time L(n), n = 1, 2, . . . with
L(1) = 1 is stated as

L(1) = 1, L(n + 1) = min{ j : j > L(n), X1:L(n) > X1: j}, n = 1, 2, . . . .

and the n-th lower record is enumerated as Zn = X1:L(n), n = 1, 2, . . . . The pdf of Zn can be acquired as
follows:

fn(x) =
[− ln F(x)]n−1

(n − 1)!
f (x), x ∈ (0,+∞). (3.1)

Moreover, Zn has the following cdf:

Fn(x) = F(x)
n−1∑
k=0

[− ln F(x)]k

k!
=

Γ(n,− ln F(x))
(n − 1)!

, x ∈ (0,+∞), (3.2)

where
Γ(a, x) =

∫ ∞

x
ua−1e−udu, a, x > 0, (3.3)
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stands as the imperfect gamma function (see e.g., [3]). Let us write V ∼ Γt(a, b) to specify that the rv
V follows a truncated gamma distribution with the following density

fV(v) =
ba

Γ(a, t)
va−1e−bv, v ∈ (0, t), (3.4)

where a, b ∈ (0,+∞). Hereafter, the PEX of the rv Zn is concentrated, and it yields the degree of
uncertainty present in the density of [t−Zn|Zn ≤ t]. The predictability of the system’s inactivity time is
assessed in this way. To facilitate the efficiency of computations, a lemma is introduced that proves a
formula that connects the PEX of order statistics in the uniform case with the imperfect beta function.
Practically speaking, this connection is essential as it makes calculating the PEX easier. This lemma’s
demonstration, which comes immediately from the PEX’s definition, is left out because it only requires
a few simple computations.

Lemma 3.1. Let {Ui, i = 1, 2, . . .} be a sequence of i.i.d. rvs adopted for a uniformly distributed
population. In addition, let Z?

n denote the n-th lower records of {Ui, i = 1, 2, . . .}. Then

J̄(Z?
n ; t) = −

Γ(2(n − 1) + 1,− ln t)
2Γ2(n,− ln t)

, 0 < t < 1.

Researchers and practitioners can easily use the well-known imperfect gamma function to determine
the PEX of record values from a uniform distribution by utilizing this lemma. The PEX is more useful
and applicable in a variety of situations as a result of this computational reduction. The PEX of record
values Zn and the PEX of record values from a uniform distribution are related, as will be shown in the
following theorem.

Theorem 3.1. Let {Xi, i = 1, 2, . . .} be a sequence of i.i.d. rvs with the cdf F and pdf f . Let Zn denote
the n-th lower record value of the sequence {Xi}. Then, the PEX of Zn, is obtained as follows:

J̄(Zn; t) = J̄(Z?
n ; F(t))E[ f (F−1(e−Vn))], t ∈ (0,+∞), (3.5)

such that Vn ∼ Γ− ln F(t)(2n − 1, 1).

Proof. By appealing to the change in variable of u = F(x), and in the spirit of Eqs (1.3), (3.1) and (3.2)
one gets

J̄(Zn; t) = −0.5
∫ t

0

(
fZn(x)
FZn(t)

)2

dx

= −0.5
∫ t

0

(
[− ln F(x)]n−1 f (x)

Γ(n,− ln F(t))

)2

dx

= −
1

2Γ2(n,− ln F(t))

∫ t

0
[− ln F(x)]2(n−1) f (x)dx

= −
Γ(2n − 1,− ln F(t))

2Γ2(n,− ln F(t))

∫ F(t)

0

(− ln u)2(n−1) f (F−1(u))
Γ(2n − 1,− ln F(t))

du

= −
Γ(2n − 1,− ln F(t))

2Γ2(n,− ln F(t))

∫ ∞

− ln F(t)

z2(n−1)e−z f (F−1(e−z))
Γ(2n − 1,− ln F(t))

dz

= J̄(Z?
n ; F(t))E[ f (F−1(e−Vn))], t > 0. (3.6)

The proof is finished when Lemma 3.1 yields the final equality. �
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In the next theorem, a clear breakup of the historical extropy of lower record statistics is found. In
particular, it is shown that this extropy metric can be written as the product of two essential elements:
the expectation of a truncated gamma rv and the historical extropy of the lower records from the
uniform distribution.

Theorem 3.2. If X has a distribution which processes the DRHR property, then J̄(Zn; t) increases in t.

Proof. It is well known that if X has the DRHR property, then Zn also has the DRHR property.
Therefore, the proof follows directly by using Theorem 1 of [18]. �

Using the example given below, the application of Theorems 3.1 and 3.2 is illustrated.

Example 3.1. Let us contemplate a sequence of i.i.d. rvs {Xi, i = 1, 2, . . .} following power law
distribution. The associated pdf is

F(x) = xβ, 0 < x < 1, β > 0.

The right-continuous inverse cdf of X is f (F−1(u)) = βu
β−1
β , u ∈ (0, 1). Then, one can calculate

E[ f (F−1(e−Vn))] =
βΓ(2n − 1

β
,−β ln(t))

Γ(2n − 1,−β ln(t))
.

It can also be obtained that
J̄(Z?

n ; F(t)) = −
Γ(2n − 1,−β ln(t))

2Γ2(n,−β ln(t))
.

Therefore, using Eq (3.5), one gets

J̄(Zn; t) = −
βΓ(2n − 1

β
,−β ln(t))

2Γ2(n,−β ln(t))
, n ≥ 1.

A theoretical result is now developed that states that the PEX of lower records from any continuous
distribution has a lower bound. Two important aspects affect the lower bound for the PEX of lower
records: the original distribution’s mode and the PEX of lower records from the uniform distribution
on the interval (0, 1).

Theorem 3.3. Under the circumstances mentioned in Theorem 3.1, let us assume that M = f (m) <
+∞, where m denotes the mode of the underlying distribution with density f . Based on this assumption,
one can arrive at the following result:

J̄(Zn; t) ≥ J̄(Z?
n ; F(t))M.

Proof. Since
f (F−1(e−v)) ≤ M, v ∈ (0, 1),

one can write
E[ f (F−1(e−Vn))] ≤ M.

The proof is now complete, and the result may be obtained with ease from Eq (3.5). �
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Consequently, a result was proved that provides a lower bound for J̄(Zn; t), the PEX of Zn. This
lower bound depends on the mode of the pdf, M, the original distribution and the PEX of the record
values from the uniform case. This solution provides a measurable lower bound for the PEX with
respect to the mode of the underlying distribution and sheds light on several intriguing informational
properties of Zn.

The monotonic behavior of the PEX of n-th lower records with respect to n is proved in the next
theorem. First, the lemma that follows is required.

Lemma 3.2. Let {Xi, i = 1, 2, . . .} be a sequence of i.i.d. rvs with the cdf F and pdf f . Further, assume
that Z?

n signifies the n-th lower record in the uniform case. Then J̄(Z?
n ; F(t)) ≥ J̄(Z?

n+1; F(t)) for all
t ∈ (0,+∞).

Proof. Let us set two rvs Z1 and Z2 having densities f1,t(z) and f2,t(z) which are respectively derived as
follows:

f1,t(z) =
(− ln(z))n−1∫ F(t)

0
(− ln(u))n−1du

and f2,t(z) =
(− ln(z))2(n−1)∫ F(t)

0
(− ln(u))2(n−1)du

, z ∈ (0, F(t)).

Moreover, one has

Θ(n) = J̄(Z?
n ; F(t)) = −

∫ F(t)

0
(− ln(u))2(n−1)du

2
(∫ F(t)

0
(− ln(u))n−1du

)2 , t > 0. (3.7)

One can get
∂Θ(n)
∂n

= −
1
2
∂g(n)
∂n

,

where

g(n) =

∫ F(t)

0
(− ln(u))2(n−1)du(∫ F(t)

0
(− ln(u))n−1du

)2 .

Easily, one can write the following:

∂g(n)
∂n

=
2A(t)
B2(t)

(
E[ln(− ln(Z2))] − E[ln(− ln(Z1))]

)
≥ 0, (3.8)

so that

A(t) =

∫ F(t)

0
(− ln(u))2(n−1)du, and I(t) =

∫ F(t)

0
(− ln(u))n−1du.

One can observe that Z1 ≥lr Z2 and hence Z1 ≥st Z2. As a result, as ln(− ln(z)) decreases in z, one can
deduce upon using Theorem 1.A.3. of [31] that E[ln(− ln(Z2))] ≥ E[ln(− ln(Z1))]. Now, it follows that
Eq (3.8) is positive; thus, Θ(n) decreases as n grows. �

Theorem 3.4. Let {Xi, i = 1, 2, . . .} represent a sequence of i.i.d. rvs with the cdf F and associated pdf
f . Let Zn, signify the n-th lower record of the sequence {Xi, i = 1, 2, . . .}. If f (F−1(x)) increases with
respect to x, then J̄(Zn; t) decreases in n as n grows.
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Proof. Let us suppose that Vn ∼ Γ− ln F(t)(2n − 1, 1). Then, one can demonstrate that Vn is less than Vn+1

in likelihood ratio order and, as a result, Vn is also less than Vn+1 in the usual stochastic order. Since
f (F−1(x)) increases with respect to x, it follows that

E[ f (F−1(eVn))] ≤ E[ f (F−1(eVn+1)]. (3.9)

So using Eq (3.5), one gets

J̄(Zn; t) = J̄(Z?
n ; F(t))E[ f (F−1(eVn))]

≥ J̄(Z?
n ; F(t))E[ f (F−1(eVn+1))]

≥ J̄(Z?
n+1; F(t))E[ f (F−1(eVn+1))]

= J̄(Un+1; t).

The inequality given firstly follows because J̄(Un:n; F(t)) is non-positive. The inequality given lastly is
due to Lemma 3.2. Consequently, it is proved that J̄(Zn; t) ≥ J̄(Zn+1; t) for every t ∈ (0,+∞). �

Using the example given below, the application of Theorem 3.4 is illustrated.

Example 3.2. Assume a sequence of i.i.d. rvs {Xi, i = 1, 2, . . .} following uniform distribution on
[0, 1]. It is evident that f (F−1(e−u)) = 1, u ∈ (0, 1). Then, one can calculate the following:

E[ f (F−1(e−Vn))] = 1,

and hence we have
J̄(Zn; t) = −

Γ(2n − 1,− ln(t))
2Γ2(n,− ln(t))

, n ≥ 1.

The effect of n on the PEX of Zn at t = 0.2 is seen in Figure 4. It is evident that the PEX of Zn decreases
with the increase of n.
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Figure 4. Values of PEX for several choices of n = 2, · · · , 8 in Zn where the components’
lifetimes are subject to (0, 1) and t = 0.2.
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4. Computational results

Hereafter, the value of J̄(Xi:n; t), i = 1, 2, · · · , n, is estimated for an ED with mean 1/λ.
Equation (2.5) will be used to obtain the PEX of order statistics based on an ED with mean 1/λ as
follows:

J̄(Xi:n; t) = −
λI1−e−λt(2i − 1, 2(n + ī))

2I2
1−e−λt(i, n + ī)

, i = 1, 2, · · · , n. (4.1)

Toward this aim, the MLE of λ is employed to estimate the value of J̄(Xi:n; t) for simulated exponential
data. Let us consider a random sample X1, X2, · · · , Xm adopted from an ED with a mean of 1/λ. The
MLE of λ is calculated as λ̂ = m/

∑m
i=1 Xi = 1/X. It is significant to remember that the Monte Carlo

simulation is used to generate the statistical data. The parameters are estimated based on 5000 samples
with various sizes of the sample, such as m = n = 5, 10, 20, 25, 30 and different parameter values of
λ = 0.5, 1, 2, and values of t = 0.5, 1, 1.5, 2. Since the MLE is an invariant estimator, one can estimate
J̄(Xi:n; t) for an ED by using the MLE as follows:

̂̄J(Xi:n; t) = −
λ̂I1−e−λ̂t(2i − 1, 2(n + ī))

2I2
1−e−λ̂t

(i, n + ī)

= −
I
1−e

− t
X

(2i − 1, 2(n + ī))

2XI2

1−e
− t

X
(i, n + ī)

, with ī = 1 − i, (4.2)

for i = 1, 2, · · · , n. To maintain simplicity, we focus on presenting the results specifically for series
and parallel systems. Nevertheless, it is worth noting that similar trends have been observed across
different parameter values and sample sizes.

To assess the performance of the proposed estimator, we computed the bias and mean squared error
(MSE) of MLEs for different values of n. We used 5000 simulated samples and various values of the
parameter λ. The results can be found in Tables 2–4. Based on the obtained results, it can be inferred
that there is a clear relationship between the sample size n, parameter λ, bias and MSE. Based on the
results, it is evident that the extropy estimator of the parallel system outperforms the extropy estimator
of the series system. This can be observed by comparing the MSE and bias of the MLE for the extropy
of both systems. The MLE of the parallel system exhibits a smaller MSE and bias, indicating better
performance than the series system.
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Table 2. The bias and the MSE for the MLE of J̄(Xi:n; t) derived from the ED when i = 1, n.

n λ t J̄(X1:n; t) Estimate J̄(Xn:n; t) Estimate
Bias MSE Bias MSE

5 0.5 0.5 -1.126939 -0.104854 0.0097907 -2.514453 0.052701 0.026574
1.0 -0.736782 -0.153780 0.0171403 -1.139926 0.042320 0.015800
1.5 -0.655105 -0.164918 0.0231724 -0.691149 0.030014 0.009499
2.0 -0.633480 -0.168026 0.0228708 -0.473595 0.017033 0.005078

10 0.5 0.5 -1.473564 -0.124620 0.0172002 -4.698436 0.062123 0.045933
1.0 -1.266959 -0.145616 0.0237665 -2.094071 0.048292 0.031677
1.5 -1.251383 -0.141123 0.0257697 -1.243757 0.036008 0.022947
2.0 -1.250114 -0.133311 0.0251501 -0.831548 0.023960 0.015076

5 1 0.5 -1.473564 -0.284809 0.0657370 -2.279853 0.079198 0.062196
1.0 -1.266959 -0.315852 0.0905591 -0.947190 0.033354 0.020032
1.5 -1.251383 -0.306120 0.0833041 -0.537801 0.003416 0.007230
2.0 -1.250114 -0.324977 0.0917214 -0.356275 -0.015725 0.004695

10 1 0.5 -2.533918 -0.288676 0.1005330 -4.188142 0.090362 0.127622
1.0 -2.500227 -0.281705 0.1105837 -1.663097 0.052713 0.062478
1.5 -2.500002 -0.318423 0.1236265 -0.887413 0.026214 0.029408
2.0 -2.500000 -0.267311 0.1020075 -0.543467 0.007294 0.012685

5 2 0.5 -2.533918 -0.653003 0.3439694 -1.894380 0.071590 0.082184
1.0 -2.500227 -0.656102 0.3970534 -0.712549 -0.027903 0.013183
1.5 -2.500002 -0.638589 0.3991900 -0.423321 -0.070684 0.024181
2.0 -2.500000 -0.588692 0.3360989 -0.329604 -0.080252 0.033724

10 2 0.5 -5.000454 -0.588085 0.4158159 -3.326193 0.107291 0.253503
1.0 -5.000000 -0.556089 0.4298927 -1.086935 0.0146690 0.050447
1.5 -5.000000 -0.625042 0.4598956 -0.538925 -0.029778 0.009139
2.0 -5.000000 -0.500292 0.3876796 -0.361355 -0.039400 0.004942
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Table 3. The bias and the MSE for the MLE of J̄(Xi:n; t) derived from the ED when i = 1, n.

n λ t J̄(X1:n; t) Estimate J̄(Xn:n; t) Estimate
Bias MSE Bias MSE

15 0.5 0.5 -1.965316 -0.122091 0.0256637 -6.893816 0.059052 0.059921
1.0 -1.877075 -0.137709 0.0318862 -3.054622 0.050809 0.046346
1.5 -1.875049 -0.135785 0.0320493 -1.801141 0.040131 0.036450
2.0 -1.875001 -0.131321 0.0323543 -1.193489 0.026966 0.026097

20 0.5 0.5 -2.533918 -0.143057 0.0382223 -9.091825 0.055946 0.076865
1.0 -2.500227 -0.132793 0.0390871 -4.016651 0.049511 0.059862
1.5 -2.500002 -0.137390 0.0399424 -2.359629 0.039558 0.047363
2.0 -2.500000 -0.135907 0.0402754 -1.556351 0.030845 0.035724

15 1 0.5 -3.754150 -0.266102 0.1288876 -6.109244 0.099820 0.193400
1.0 -3.750002 -0.256237 0.1254352 -2.386979 0.055696 0.102209
1.5 -3.750000 -0.259139 0.1251215 -1.243514 0.028149 0.053924
2.0 -3.750000 -0.274323 0.1264832 -0.736491 0.008811 0.025965

20 1 0.5 -5.000454 -0.283223 0.1613366 -8.033303 0.094893 0.231734
1.0 -5.000000 -0.233758 0.1578165 -3.112701 0.068972 0.141196
1.5 -5.000000 -0.270685 0.1647081 -1.601112 0.030872 0.075755
2.0 -5.000000 -0.270915 0.1594980 -0.930860 0.013404 0.039236

15 2 0.5 -7.500005 -0.564078 0.5244912 -4.773957 0.116747 0.418992
1.0 -7.500000 -0.611541 0.5516031 -1.472982 0.022074 0.105796
1.5 -7.500000 -0.563231 0.5439417 -0.665139 -0.017085 0.019831
2.0 -7.500000 -0.552663 0.5438829 -0.403376 -0.030174 0.003939

20 2 0.5 -10.000000 -0.477626 0.6184213 -6.225402 0.100536 0.531949
1.0 -10.000000 -0.499704 0.6112682 -1.861719 0.029881 0.153196
1.5 -10.000000 -0.501173 0.6392433 -0.793802 -0.01461 0.034486
2.0 -10.000000 -0.559116 0.6486399 -0.447768 -0.025151 0.006309
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Table 4. The bias and MSE for the MLE of J̄(Xi:n; t) derived from the ED when i = 1, n.

n λ t J̄(X1:n; t) Estimate J̄(Xn:n; t) Estimate
Bias MSE Bias MSE

25 0.5 0.5 -3.137089 -0.131123 0.0471761 -11.290854 0.057846 0.095265
1.0 -3.125023 -0.122280 0.0475707 -4.979254 0.047511 0.071655
1.5 -3.125000 -0.125234 0.0479862 -2.918543 0.034157 0.057359
2.0 -3.125000 -0.126639 0.0470828 -1.919569 0.028918 0.045991

30 0.5 0.5 -3.754150 -0.123523 0.0522167 -13.490383 0.058250 0.111171
1.0 -3.750002 -0.128068 0.0570321 -5.942138 0.041810 0.084972
1.5 -3.750000 -0.127573 0.0553299 -3.477668 0.043592 0.071063
2.0 -3.750000 -0.126056 0.0535296 -2.282962 0.030726 0.053814

25 1 0.5 -6.250047 -0.280522 0.1958465 -9.958508 0.091211 0.299232
1.0 -6.250000 -0.248409 0.1843195 -3.839137 0.057822 0.177945
1.5 -6.250000 -0.234691 0.1893919 -1.959292 0.032423 0.096745
2.0 -6.250000 -0.260344 0.1884239 -1.125750 0.022993 0.051987

30 1 0.5 -7.500005 -0.247795 0.2095243 -11.884277 0.097900 0.351225
1.0 -7.500000 -0.239001 0.2133011 -4.565924 0.061631 0.214314
1.5 -7.500000 -0.233918 0.2061771 -2.317756 0.031360 0.117620
2.0 -7.500000 -0.278120 0.2226443 -1.320897 0.009341 0.066107

25 2 0.5 -12.500000 -0.505647 0.7532867 -7.678274 0.113925 0.677699
1.0 -12.500000 -0.526375 0.7786233 -2.251501 0.030454 0.208226
1.5 -12.500000 -0.549301 0.7515919 -0.923414 -0.008694 0.048269
2.0 -12.500000 -0.482404 0.7479525 -0.493079 -0.021592 0.008962

30 2 0.5 -15.000000 -0.489538 0.8829557 -9.131848 0.119167 0.831820
1.0 -15.000000 -0.483064 0.8599379 -2.641795 0.041806 0.259127
1.5 -15.000000 -0.560034 0.9141531 -1.053494 -0.010025 0.064919
2.0 -15.000000 -0.463070 0.8877873 -0.538841 -0.019564 0.012254

Let us present an investigation with real data to evaluate the performance of the proposed estimators.

Example 4.1. The strength of 1.5 cm glass fibers recorded at the National Physical Laboratory in
England by using a dataset from Smith and Naylor [35] has been analyzed.
“ Data Set: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27,
1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62,
1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84,
1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89
” Shanker et al. [32] established that the ED provides a good fit for the dataset given in [35]. Using this
dataset, the MLE of the parameter λ is computed as λ̂ = 0.663647.

In Table 5, the computed values of ̂̄J(X1:n; t) for the provided data are presented, considering various
values of t = 0.5, 1, 1.5, 2 and different sample sizes n = 10, 15, 20, 25, 30. The results demonstrate a
notable trend: as the sample size n increases, the uncertainty decreases significantly in terms of the
extropy measure.
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Table 5. The values of ̂̄J(X1:n; t) for values of t = 0.5, 1, 1.5, 2 and n = 10, 15, 20, 25, 30 for
the given data in Example 4.1.

t n = 10 n = 15 n = 20 n = 25 n = 30
0.5 -1.783809 -2.523219 -3.326951 -4.149864 -4.977825
1.0 -1.663475 -2.488912 -3.318246 -4.147794 -4.977352
1.5 -1.659275 -2.488677 -3.318235 -4.147793 -4.977352
2.0 -1.659123 -2.488676 -3.318234 -4.147793 -4.977352

5. Conclusions

The aim of this study was to investigate the idea of the PEX in relation to order statistics and
record values. It was found that the PEX of order statistics (or record values) derived from a uniform
distribution and the PEX of order statistics (or record values) derived from a continuous distribution
are significantly related. Since it is difficult to obtain closed formulas for the PEX, a number of
constraints were presented that provide useful methods for estimating the PEX of dataset values and,
furthermore, the PEX of order statistics. A comprehensive study was conducted on the monotonic
trend of data set values with respect to the set of observations. This study sheds important light on
the patterns and behavior of data set values as sample size increases. Numerous illustrated situations
have been included to demonstrate the practical implications and implementations of the given findings
to enhance understanding and provide tangible examples. In addition, the method can be effectively
used to test distribution functions presented in the existing literature. Furthermore, it is relevant in
the area of reliability systems, where order statistics can be interpreted as the lifetimes of i-out-of-n
systems. This underlines the versatility and wide range of applications of the proposed method as a tool
to analyze the reliability and distribution tests. In summary, this research has significantly expanded
the knowledge of the PEX of order statistics and record values. By defining correlations, examining
thresholds, and looking at monotonic behavior, insight was gained into the properties and estimation
of the PEX under different circumstances. The knowledge gained from this study will help researchers
and practitioners to make defensible decisions and draw insightful conclusions in a number of areas in
which the analysis of order statistics and record values is important.

In addition to the results presented in this paper, there is the possibility of generalizing the results
of this paper to other measures of information proposed in the literature, such as cumulative past
entropy and generalized cumulative past entropy. Moreover, an interesting direction for future research
is to study the PEX of order statistics in the presence of dependent lifetimes by implementing the
results from [5, 14, 21] and the references therein. Exploring the behavior and properties of extropy
when the lifetimes of individuals or events are not independent opens up exciting opportunities to gain
new insights. This type of investigation promises to uncover the intricate relationship between order
statistics and dependent lifetime distributions.
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43. S. Zarezadeh, M. Asadi, Results on residual rényi entropy of order statistics and record values,
Inform. Sciences, 180 (2010), 4195–4206. https://doi.org/10.1016/j.ins.2010.06.019

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 3, 5827–5849.

http://dx.doi.org/https://doi.org/10.1007/978-0-387-34675-5
http://dx.doi.org/https://doi.org/10.15406/bbij.2015.02.00042
http://dx.doi.org/https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/https://doi.org/10.3390/axioms12111024
http://dx.doi.org/https://doi.org/10.2307/2347795
http://dx.doi.org/https://doi.org/10.1017/jpr.2023.7
http://dx.doi.org/https://doi.org/10.1016/j.engstruct.2004.05.017
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.06.057
http://dx.doi.org/https://doi.org/10.1109/18.52473
http://dx.doi.org/https://doi.org/10.3390/pr10020360
http://dx.doi.org/https://doi.org/10.1080/10485252.2021.1914338
http://dx.doi.org/https://doi.org/10.1002/9781119831839.ch11
http://dx.doi.org/https://doi.org/10.1016/j.ins.2010.06.019
http://creativecommons.org/licenses/by/4.0

	Introduction
	Derivation of PEX for order statistics
	Past extropy of lower record values
	Computational results
	Conclusions

