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Abstract: In this study, we introduced a mathematical model mimicking as much as possible
the evolutions and interactions between glioma and lactate in the brain, in order to test different
therapies and administration protocols. We simulated both glioma cell density evolution and
lactate concentration, and considered two therapies: chemotherapy and a treatment targeting lactate
production. Three different protocols for administrating the therapies were tested. We compared the
efficiency of the combined therapies, depending on the administration protocols and the dosage of
the drugs, in order to evaluate the importance of controlling lactate production. Results show that
the use of an agent to reduce lactate concentration permits one to significantly reduce the dose of the
chemotherapeutic drug.
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1. Introduction

Gliomas represent 80% of all malignant brain tumors. High grade gliomas (grade III and IV)
tends to grow back even after complete excision. Radiation and chemotherapy remain the treatment
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of choice, although they are not optimal. They give rise to several undesirable side effects, making
it necessary to improve their efficiency and reduce their detrimental impact. Recently, the role of
lactate as an important substrate to sustain tumor growth has emerged, suggesting that controlling its
production by the tumor itself might be an efficient therapeutic option, especially in combination with
standard chemotherapy [4, 7, 18, 22]. Lactate can be identified and quantified at high field MRI (3T &
7T) by MRSpectroscopy during imaging monitoring.

In this study, we introduced a mathematical model mimicking as much as possible the evolutions
and interactions between glioma and lactate in the brain in order to test different therapies and
administration protocols. We simulated both tumor density evolution with a parabolic equation
and lactate concentration using a Cahn-Hilliard type of equation when two different therapies are
considered. The effect of chemotherapy alone or in combination with a treatment to target lactate
production was studied following two standard clinical protocols and a theoretical protocol suggested
to improve treatment efficacy. Simulations were performed for either grade III or grade IV patients
with the goal of achieving a substantial reduction of the tumor. Results show that the use of an agent
to reduce lactate concentration permits one to significantly reduce the dose of the chemotherapeutic
drug. Moreover, for the three protocols tested, it appears that if Monocarboxylate Transporters
(MCT) inhibitors are given continuously, it allows for the greatest reduction in chemotherapeutic
agent concentration while maintaining the same efficacy. In conclusion, our data suggest it would
be possible to combine chemotherapy and a treatment to decrease lactate levels for reducing the dose
of the chemotherapeutic agent, thus potentially reducing its side effects for the patient.

2. The model

We propose a mathematical model coupling the evolution of a high grade glioma with the evolution
of the intracellular brain lactate concentrations, when two different therapies are being administered:
on the one hand, a conventional chemotherapeutic agent (namely Temozolomide) acting on cancer
cells, and on the other hand, a drug targeting lactate production (e.g. an MCT inhibitor).

Among the many equations modeling a tumor growth in the literature (see [1,5,8,9,12,17,27], and
the references therein), we chose the diffusion and proliferation equation (see [13])

{
∂tu − div(D∇u) = ρu(1 − u

N ) − g u, x ∈ Ω, t ∈ (0,T )
D∇u · n|∂Ω = 0 t ∈ (0,T )

(2.1)

where u(= u(x, t)) is the tumor cell density, Ω a bounded and regular domain of R2 standing for
the part of the brain surrounding the glioma (see Figure 1), n the outward unit vector normal to
the boundary ∂Ω, and T the duration of the therapy. The evolution of the tumor cell density takes
into account diffusion through the matrix D (mm2day−1), the balance between the proliferation and
apoptosis through the rate ρ (per day), and the necrosis through the rate g (per day). The constant N is
the carrying capacity (maximum number of cells that can fit 1 mm2 of tissue).
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Figure 1. The domain Ω, the schematized part of the brain surrounding the tumor (in blue)
and the tumor (in red).

To our knowledge, the first brain lactate kinetics model in the literature (see [3, 11, 14] and the
references therein) dealt with the evolution of both capillary and intracellular lactate concentrations. It
consisted of two equations and numerous parameters, such as the cerebral blood flow and the arterial
lactate concentrations. Since here we had in mind the identification of the equation parameters from
some in vivo data, we neglected the capillary lactate concentration in order to simplify the model.
More precisely, we only deal with the evolution of the intracellular lactate concentration φ (= φ(x, t)).
Following a previous work from [19, 23], we considered here a Cahn-Hilliard type equation. Indeed,
unlike more commonly used reaction-diffusion equations, this equation allows us to take into account
the heterogeneity of the lactate concentrations both in malignant and normal cells. This heterogeneity
is now well established (see [16,25]). Then, the equation for the intracellular lactate concentration can
be formulated as {

∂tφ + α∆
2φ − ∆ f (φ) + kφ

k′+|φ| = J, x ∈ Ω, t ∈ (0,T )
∂nφ|∂Ω = ∂n∆φ|∂Ω = 0 t ∈ (0,T )

(2.2)

where k is related to the maximum transport velocity between the blood and the cell, k′ is a modified
Michaelis-Menten positive constant, and α is the diffusion constant. The term J characterizes the
balance between production and consumption of lactate by the cells, and implicitly takes into account
the capillary lactate. The function f is the derivative of a double well polynomial function of order 4.
We assume that only k and J in the lactate equation depend on the tumor cell density, whereas ρ and
g in the tumor equation depend on the lactate concentration. Besides, we take into account a standard
cytotoxic drug acting on tumor cells v (= v(t)) and a treatment targeting lactate production ω (= ω(t))
(see [2]). The drug ω takes values in [0, 1].

The complete model finally reads
∂tu − div(D∇u) = (ρ(φ) − v(t))u(1 − u

N ) − ug(φ), x ∈ Ω, t ∈ (0,T )

∂tφ + α∆
2φ − ∆ f (φ) + k(u)φ

k′+|φ| = (1 − ω(t)) J(u), x ∈ Ω, t ∈ (0,T )

D∇u · n|∂Ω = ∂nφ|∂Ω = ∂n∆φ|∂Ω = 0 x ∈ ∂Ω, t ∈ (0,T )
u(0) = u0, φ(0) = φ0.

(2.3)

Our aim is to adjust the dosage of the treatments v and ω in order to reduce the tumor and lactate
concentrations, up to desired targets. Hence, we introduced the following cost functional to minimize:
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J(v, ω, u, φ) =
b1

2

∫ T

0

∫
Ω

(u(x, t) − û(x, t))2 dxdt +
b2

2

∫
Ω

(u(x,T ) − û(x,T ))2 dx

+
b3

2

∫ T

0

∫
Ω

(φ(x, t) − φ̂(x, t))2 dxdt +
b4

2

∫
Ω

(φ(x,T ) − φ̂(x,T ))2 dx

+
b5

2

∫ T

0
ω(t)2dt +

b6

2

∫ T

0
v(t)2dt

(2.4)

where bi, i = 1, .., 6, are positive constants. Here, T stands for the duration of the therapy, and the
functions û and φ̂ refer to prescribed targets for the tumor cell densities and the lactate concentrations
respectively, in Ω × [0,T ]. The last two terms of J penalize large quantities of drug in order to limit
the dangerous side effects of treatments.

The mathematical analysis of problem (2.3) and of the control problem associated to (2.3) and (2.4)
can be found in [24]. However, the main results are summarized in the following theorem.

Theorem 2.1. Let T > 0 and (u0, φ0) be given in H1(Ω) × L2(Ω) such that 0 ≤ u0 ≤ N. We set
Uad = {(v, ω) ∈ L∞(Ω × [0,T ])2; 0 ≤ v ≤ Vmax, 0 ≤ ω ≤ 1}.

For all (v, ω) ∈ Uad, problem (2.3) has a unique weak solution (u, φ) such that 0 ≤ u ≤ N and

u ∈ C([0,T ], L2(Ω)) ∩ L2(0,T ; H1(Ω)); φ ∈ C([0,T ]; H1(Ω)) ∩ L2(0,T ; H3(Ω)).

The control-to state map S is defined by
S : (v, ω) ∈ Uad 7→ S (v, ω) = (u, φ)

where (u, φ) is the unique solution to (2.3) with initial data (u0, φ0) and therapy dosages (v, ω) over
[0,T ].

Moreover, there exists at least a pair (v∗, ω∗) such that

inf
(v,ω)∈Uad

J(v, ω, S (v, ω)) = J(v∗, ω∗, S (v∗, ω∗)) (2.5)

with J defined by (2.4).

In the following, we denote by “optimal dosage” the pair (v∗, ω∗) solution to the minimization
problem (2.5). This means that ω∗ and v∗ are the smallest therapy dosages allowing to reach the given
targets. The optimal dosage is computed using a descent optimization algorithm based on an adjoint
equation, which are both specified in the Appendix.

When we do not consider treatment for lactate, the optimal chemotherapy dosage stands for the
solution of the minimization problem (2.5), taking ω = 0 in (2.3) and (2.4).

During the simulations below, we tested three protocols:

• Stupp’s protocol - 1 day: A chemotherapy cycle lasting 4 weeks, the chemotherapy is being
administered during 1 day at the beginning of the cycle (v(t) = v > 0), then v(t) = 0 till the
end of the cycle. Computations are performed up to 24 weeks, namely 6 cycles of chemotherapy,
the first cycle starting at t = 0.
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• Stupp’s protocol - 5 days (see [28]): A chemotherapy cycle lasting 4 weeks, the chemotherapy is
being administered during 5 days at the beginning of the cycle (v(t) = v > 0), then v(t) = 0 till the
end of the cycle. Computations are performed up to 24 weeks, namely 6 cycles of chemotherapy,
the first cycle starting at t = 0.
• Third Protocol (see [26]): A chemotherapy cycle lasting 6 weeks, the chemotherapy is being

administered during 2 weeks at the beginning of the cycle (v(t) = v > 0), then v(t) = 0 till the end
of the cycle. Computations are performed up to 24 weeks, namely 4 cycles of chemotherapy, the
first cycle starting at t = 0.

As far as the computations are concerned, we made the following assumptions:

• We chose b1 = b2 = 10−6, b3 = b4 = 1, in order to take into account the different orders of
magnitude between the tumor cell density and the lactate concentration, and b5 = b6 = 10−8 as
Tikhonov regularization coefficients.
• We know from biological observations that k, J are increasing with respect to the tumor, and ρ, g

are increasing with respect to the lactate. Without precise information provided by the literature,
we assumed that the growths are linear:
k(u) = k0+ k1u, J(u) = J0+ J1u, with k0, J0 > 0 standing for normal values (in healthy tissues),
and k1, J1 > 0.
ρ(φ) = ρ0 + ρ1φ, with ρ0, ρ1 > 0.
g(φ) = g1φ, g1 ≥ 0.

3. Simulations for a virtual patient of grade 3

In this section, Ω is an ellipse parametrized by x = 6 cos θ and y = 8 sin θ, with θ ∈ [0, 2π]. Inside
the domain Ω, the tumor is initially delimited by a smaller ellipse centered at (0, 0) and defined with
x = 1.2 cos θ and y = 1.6 sin θ. We set α = 0.01, f (φ) = 0.002φ(φ − 2)(φ − 4), N = 106, g1 = 0 (no
necrosis). Moreover, we chose:

k0 = 0.0764 mM/day k1 = 8 × 10−5,
J0 = 0.0678 mM/day J1 = 8 × 10−5,
ρ0 = 0.012 day−1 ρ1 = 0.1,
k′ = 0.515 mM,

D(x) = 7.5 × 10−3

(
1 0
0 5

)
.

The “normal” values k0, J0, and k′ were identified on the basis of lactate data from the University
Hospital of Poitiers (see [23] for details). The parameter ρ0 was taken from [17, 26]. Without any
information in the literature about the other parameters, we chose data leading to biologically coherent
simulations. We used the following initial conditions and targets:

φ0 =

 4.37 mM inside the tumor

0.8 mM outside,
φ̂ =

 1.2 mM inside the tumor

0.8 mM outside,
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u0 =

 4 × 105 inside the tumor

0 outside,
û =

 104 inside the tumor

0 outside.

We emphasize that 0.8 mM is a normal value for lactate in healthy tissues. Inside the tumor area,
we chose initial data for lactate and tumor consistent with a patient of grade 3 and we searched for a
substantial but not complete reduction of the tumor within 24 weeks.

The figures below display the trajectories of lactate concentrations and tumor cell densities with
respect to time, at a point of the brain localized in the center of the tumor. Our purpose is to compare
the optimal chemotherapy dosages required for attaining the target for the tumor, under the different
delivery protocols, with or without additional treatment for lactate.

3.1. Stupp’s protocol - 1-day

3.1.1. No treatment for lactate

In Figure 2 the chemotherapy is administered following the Stupp’s 1-day protocol, without
treatment for lactate. The target for the tumor cell density is obtained with a large optimal dosage
of the chemotherapy, namely v∗ = 127.1 day−1. The lactate concentration still increases during the
therapy. But, it stabilizes at the end due to the decrease of the tumor cell density.

Figure 2. No treatment for lactate (ω = 0), optimal chemotherapy for the tumor (v∗ = 127.1).

3.1.2. Concomitant therapies

In Figure 3, the chemotherapy and the treatment for lactate are administered concomitantly,
following the Stupp’s 1-day protocol. Even though the target for lactate cannot be attained (ω∗ = 1
means that the production of lactate is entirely disrupted), the concentration is reduced, compared to
Figure 2. The chemotherapy dosage is very slightly reduced (v∗ = 124.1 day−1).
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Figure 3. Concomitant therapies, v∗ = 124.1, ω∗ = 1.

3.1.3. Continuous treatment for lactate

In Figure 4, the chemotherapy still follows the Stupp’s 1-day protocol, but the treatment for lactate
is administered continuouly (every day). This time, both the targets for lactate and the tumor are
achieved (ω∗ = 0.44 and v∗ = 108.7 day−1). We emphasize that the optimal chemotherapy dosage is
reduced by 14.5%, in comparison to the results of Figure 2.

Figure 4. Continuous lactate therapy (ω∗ = 0.44), Stupp’s 1-day protocol for the tumor
(v∗ = 108.7).

3.2. Stupp’s protocol - 5-days

We carried out again the same tests as above, the only difference being that, this time, the
chemotherapy is administered following the Stupp’s 5-days protocol. As expected, the order of
magnitude of the chemotherapy quantity administered per day is much smaller with this protocol.
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Figure 5. No treatment for lactate (ω = 0), optimal chemotherapy for the tumor (v∗ = 17.8).

The results are similar to those of section 3.1: With chemotherapy alone, lactate still increases
and stabilizes at the end (see Figure 5); with a concomitant treatment, the target for lactate cannot
be attained (see Figure 6), whereas it is achieved when the treatment for lactate is administered
continuously (see Figure 7). The optimal dosage for chemotherapy with continuous therapy is reduced
by 11% with an everyday treatment for lactate.

Figure 6. Concomitant therapy, ω∗ = 1, v∗ = 16.6.

Figure 7. Continuous lactate therapy, ω∗ = 0.43, v∗ = 15.8.
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3.3. Third protocol

We carried out again the same three tests as above, but now the chemotherapy is administered
according to the third protocol (see Figures 8, 9, 10). We emphasize that, this time, with a concomitant
treatment the target for lactate is almost attained; it is achieved when the treatment is administered
continuously. The optimal dosages for chemotherapy are very similar, whatever the way the treatment
for lactate is administered (v∗ = 8.14 day−1 or v∗ = 8.19 day−1). Moreover, combining the two therapies
leads to a reduction of the optimal chemotherapy dosage of about 11%.

Figure 8. No treatment for lactate (ω = 0), optimal chemotherapy for the tumor (v∗ = 9.17).

Figure 9. Concomitant therapies, ω∗ = 1, v∗ = 8.14.

Figure 10. Continuous lactate therapy, ω∗ = 0.43, v∗ = 8.19.
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4. Simulations for a virtual patient of grade 4

For the simulations in this section, Ω is an ellipse parametrized by x = 6 cos θ and y = 8 sin θ,
with θ ∈ [0, 2π]. Inside Ω, the tumor is (initially) delimited by a smaller ellipse centered at (0, 0) and
defined with x = 1.5 cos θ and y = 2 sin θ. We set α = 0.01, f (φ) = 0.002φ(φ− 2)(φ− 4), and N = 106.
Moreover, we take:

k0 = 0.0374 mM/day k1 = 5 × 10−5,
J0 = 0.0134 mM/day J1 = 5 × 10−5,
ρ0 = 0.012 day−1 ρ1 = 0.2,
k′ = 1.31 mM g1 = 0.002,

D(x) = 7.5 × 10−3

(
2 0
0 10

)
.

As before, the “normal” values k0, J0, and k′ were identified on the basis of lactate data from the
University Hospital of Poitiers (see [23] for details). The parameter ρ0 was taken from the literature
[17, 26]. Without any information about the other parameters, we chose data which lead to consistent
simulations. We used the following initial conditions and targets:

φ0 =

 8.54 mM inside the tumor

0.8 mM outside
φ̂ =

 2 mM inside the tumor

0.8 mM outside,

u0 =

 7 × 105 inside the tumor

0 outside
û =

 105 inside the tumor

0 outside.

We chose initial data for lactate and tumors consistent with a patient of grade 4 and we searched for
a substantial but not complete reduction of the tumor within 24 weeks.

Again, the figures below display the trajectories of the lactate concentration and tumor cell densities
with respect to time, at a point of the brain localized in the center of the tumor. We compare the optimal
chemotherapy dosages required for attaining the targets. Since Stupp’s 1-day protocol is not used by
oncologists for patients of grade 4, we only tested Stupp’s 5-days protocol and the third protocol.

4.1. Stupp’s protocol - 5-days

4.1.1. No treatment for lactate

In Figure 11, the chemotherapy is administered following Stupp’s 5-days protocol, without
treatment for lactate. The target for the tumor cell density is obtained with the optimal dosage
v∗ = 21.9 day−1. The lactate concentration still increases during the therapy. But, at the end, the
decrease of the tumor cell density leads to a decrease of lactate.
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Figure 11. No treatment for lactate (ω = 0), optimal chemotherapy for the tumor (v∗ = 21.9).

4.1.2. Concomitant therapies

In Figure 12, chemotherapy and the treatment for lactate are administered concomitantly, following
Stupp’s 5-days protocol. Even though the target for lactate cannot be attained (ω∗ = 0.99), its
concentration is reduced. Compared to the sole chemotherapy treatment (Figure 11), the optimal
chemotherapy dosage v∗ = 18.6 day−1 has decreased by about 15%.

Figure 12. Optimal concomitant therapies, ω∗ = 0.99, v∗ = 18.6.

In Figure 13, the dosage for chemotherapy is fixed (v = 21.9 day−1). We tested three dosages for the
treatment targeting the lactates (ω = 0, ω = 0.48, and ω = 0.9) and compared the resulting trajectories
for the lactate concentration and tumor cell density. As expected, the decrease of the tumor cell density
is enhanced with the combination of the two therapies; the lactate concentration is stabilized.
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Figure 13. Concomitant therapies, fixed v(= 21.9), varying ω(= 0; 0.48; 0.9).

4.1.3. Continuous treatment for lactate

In Figure 14, the chemotherapy still follows Stupp’s 5-days protocol, but the treatment for lactate is
administered continuouly (every day). This time, both the targets for lactate and the tumor are attained
(ω∗ = 0.48 and v∗ = 14.4 day−1). The optimal chemotherapy dosage is reduced by 34% in comparison
to the results of Figure 11 thanks to the additional therapy for lactate.

Figure 14. Continuous lactate therapy, ω∗ = 0.48, v∗ = 14.4.

In Figure 15, the dosage for the treatment targeting the lactates is fixed (ω = 0.48) and we tested two
dosages for the chemotherapy (v = 21.9 day−1 and v = 14.4 day−1), and the combination of ω = 0.48
and v = 14.4 day−1 was determined to be optimal (see Figure 14). As expected, the decrease of the
tumor is improved with the higher chemotherapy dosage v = 21.9 day−1. However, the evolution of
the lactate concentration may be surprising at first sight: the therapy for lactate seems to be more
efficient for higher cell density tumors (i.e. for smaller dosage of chemotherapy). This observation
might be explained by the higher production of lactate by high density tumors, which accounts for
their aggressiveness. This result seems consistent with in vivo observations from patients.
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Figure 15. Continuous lactate therapy, fixed ω (= 0.48), varying v (= 14.4; 21.9).

4.2. Third protocol

We compare again the optimal treatment dosages required to attain the targets for the tumor cell
density and lactate concentration, according to the third protocol (see Figures 16, 17, 18). We
emphasize that, with this protocol, the target for lactate is almost attained with the concomitant delivery
of treatment (Figure 17), and attained with continuous delivery (Figure 18). In both cases, the reduction
of the optimal chemotherapy dosage is substantial (around 30%).

Figure 16. No treatment for lactate (ω = 0), optimal chemotherapy for the tumor (v∗ =
11.15).

Figure 17. Concomitant therapies, ω∗ = 1, v∗ = 8.02.
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Figure 18. Continuous lactate therapy, ω∗ = 0.49, v∗ = 7.46.

Figure 19 displays the evolution of the tumor cell density before, at the middle, and at the end of
the optimal therapy, in the case of continuous lactate therapy (ω∗ = 0.49, v∗ = 7.46 day−1).

Figure 19. Evolution of the tumor at t=0 (left), t=84 (middle), t=168 (right); (Continuous
lactate therapy, ω∗ = 0.49, v∗ = 7.46).

5. Discussion

In the various simulations carried out on grade III and IV gliomas, as well as on the more theoretical
one based on Swanson’s growth model (close to diffuse low-grade glioma, WHO II), the following
common elements were observed.

Table 1. Summary of the optimal dosages obtained in sections 3 and 4.

Grade Protocol Only chemotherapy Concomitant therapy Continuous therapy
3 Stupp 1 v∗ = 127.1 ω∗ = 1, v∗ = 124.1 ω∗ = 0.44, v∗ = 108.7
3 Stupp 5 v∗ = 17.8 ω∗ = 1, v∗ = 16.6 ω∗ = 0.43, v∗ = 15.8
3 Third v∗ = 9.17 ω∗ = 1, v∗ = 8.14 ω∗ = 0.43, v∗ = 8.19
4 Stupp 5 v∗ = 21.9 ω∗ = 0.99, v∗ = 18.6 ω∗ = 0.48, v∗ = 14.4
4 Third v∗ = 11.15 ω∗ = 1, v∗ = 8.02 ω∗ = 0.49, v∗ = 7.46

(i) Complementary “anti-lactate” treatment, such as anti-MCT 1 and 4, enhances the efficiency of
conventional treatment in all the scenarios studied above (see summary in Table 1). These
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5264

findings, confirmed by results obtained in vivo on WHO III and IV gliomas using proton
spectroscopy at 3 and 7 Teslas, are consistent with the now well-known role of lactate as an
important alternative energetic and biosynthetic substrate for oxidative metabolism in glioma and
its capacity to sustain their growth under conditions of glucose deprivation [21].
More recently, 13C MRS studies have demonstrated a drastic reduction in lactate production by
IDH1 mutated gliomas, unaffected by Temozolomide (TMZ) treatment. Conversely, mutant
IDH1 cells and tumors produced significantly less hyperpolarized [1–13C] lactate compared
to glioblastoma, consistent with their metabolic reprogramming, thus leading to less growth
and less invasiveness observed in IDH1-mutated glioma [10]. Finally, lactate is involved in
remodeling the tumor microenvironment and glial growth [20]. This simulation could therefore
be a realistic adjuvant treatment option, as a pharmacological MCT inhibition strategy in cancer
is now reaching the clinical stage [15].

(ii) Continuous, daily administration results in a faster decline in metabolic activity than sequential,
monthly administration concomitant with conventional chemotherapy. The simulations presented
suggest an increase in treatment efficacy, and/or a reduction in chemotherapy doses. The
possibility of combining more conventional chemotherapy with monocarboxylate transporter
inhibitors to reverse tumor progression has not only been considered previously but it has been
tested with a certain success in various pre-clinical cancer models [4,7,18,22]. However, in order
to implement this approach at the clinical level, it is mandatory to be able to determine for each
patient the exact doses and regimen to aim for the greatest efficacy while reducing potential side
effects. Here we provide evidence of its feasibility based on a modeling approach.

The integration of these simulations, based on real data obtained in vivo, makes it possible to
envisage a different approach to treatment based on the interaction of numerical simulations and in
vivo measurements, aimed at (i) limiting the toxicity of certain treatments and (ii) better predicting
their efficacy, even before they are administered. This approach could enable innovative therapeutics
to be tested upstream of clinical experimentation. It is therefore a promising path towards personalized
medicine and the digital twin.
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Appendix

A. Optimization algorithm

For the sake of completeness, we describe the descent optimization algorithm mentioned in section 2
for the computation of the optimal dosage of treatment. To this aim, we first give the adjoint equations
associated with the state problem (2.3):

Let (u∗, φ∗) = S (v∗, ω∗). Find (ξ, π, y) the solution to



−∂tξ + α∆π − f ′(φ∗)π + k(u∗)h′(φ∗)ξ − a′(φ∗)u∗(1 −
u∗

N
)y

+P′(φ∗)u∗y − b3(φ∗ − φ̂) = 0, on (0,T ) ×Ω

π = ∆ξ, on (0,T ) ×Ω

−∂ty − div(D∇y) + k′(u∗)h(φ∗)ξ − (1 − ω∗)J′(u∗)ξ

−( a(φ∗) − v∗) (1 − 2u∗
N )y + P(φ∗)y − b1(u∗ − û) = 0, on (0,T ) ×Ω

∂νξ = ∂νπ = D∇y.ν = 0 on (0,T ) × Γ
ξ(T ) = b4(φ̂(T ) − φ∗(T )), y(T ) = b2(û(T ) − u∗(T )) in Ω,

with h(φ) = φ

k′+|φ| . The state and adjoint equations were spatially discretized by a finite element
method. The mesh was obtained by dividing Ω into 31, 735 triangles. For the time discretization, a
Crank-Nicolson scheme was considered for the state equations (2.3), and an implicit Euler scheme for
the adjoint equations (A.1). The time step was taken as δt = 0.01.

The descent optimization algorithm is summarized below.
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Algorithm 1 Descent optimization algorithm

Require: n = 0 , v0 = 0 and ω0 = 0, E = 1

while E > 10−8 do
Solve the state equation (2.3) with v = vn and ω = ωn on [0,T ] and get un and φn

Evaluate the objective functional J(ωn, vn, φn, un)

Find (ξn, πn, yn) solution of the adjoint equation (A.1) with u∗ = un, φ∗ = φn, v∗ = vn andω∗ = ωn.

Evaluate the direction of descent by:

dn
v = −b6

∫ T

0
vndt +

∫ T

0

∫
Ω

un(1 −
un

N
) yn dxdt

dn
ω = −b5

∫ T

0
ωndt +

∫ T

0

∫
Ω

J(un)ξn dxdt

Search the descent step σn by Armijo’s rule (see [6])

Update the control parameter:
vn+1 = vn + σndn

v

ωn+1 = ωn + σndn
ω

Evaluate the error E =
|J(vn+1, ωn+1, un+1, φn+1) − J(vn, ωn, un, φn)|

|J(vn+1, ωn+1, un+1, φn+1)|
n = n + 1

end while
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