AIMS Mathematics, 9(3): 5204-5233.

AIMS Mathematics DOI: 10.3934/math.2024252
Received: 16 November 2023
Revised: 13 January 2024
Accepted: 18 January 2024
Published: 26 January 2024

http://www.aimspress.com/journal/Math

Research article

Developing mathematical models and intelligent sustainable supply

chains by uncertain parameters and algorithms

Massoumeh Nazari!, Mahmoud Dehghan Nayeri%* and Kiamars Fathi Hafshjani!

I Department of Industrial Management, Islamic Azad University, Tehran South Branch, Faculty of
Management, Tehran, Iran

2 Department of Industrial Management, Tarbiat Modares University, Faculty of Management and
Economics, Tehran, Iran

* Correspondence: Email: mdnayeri@modares.ac.ir.

Abstract: In the modern era, uncertainty is a common feature of modeling techniques for designing
sustainable supply chains. The increasing severity of environmental issues necessitates the integration
of sustainable production in supply chain management. The present study aims to develop
mathematical models and intelligent sustainable supply chains with uncertain parameters and
algorithms. The goal is to design a sustainable and eco-friendly model that minimizes environmental
contaminants and system costs. This descriptive-analytical study employs a novel hybrid technique to
manage the uncertainty associated with the model parameters, research problems, and problem
complexity, and tackle large-scale problems. The automotive industry was selected to implement the
mathematical model. These combined techniques consider the disruption-induced capacity reduction
and the uncertainties surrounding shipping costs and demand. Results suggest that hybrid models and
techniques are efficient in solving large-scale problems and delivering high-quality processing. Further,
the findings show that heuristic solutions can significantly reduce computation time for larger
problems.
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1. Introduction

Sustainable supply chain management involves integrating economic, social, and environmental
considerations into intra-organizational systems developed for managing materials and costs of
production, distribution, and procurement of services/products [1]. Limited studies have addressed
environmental issues in supply chain management, mainly focusing on reverse logistics, closed-loop,
and green supply chain management. This may be due to the complexity and ambiguity of
sustainability research, the blurred boundaries between interdisciplinary fields, and the vague
definitions provided for sustainable development and sustainability. Social sustainability entails
meeting people’s needs, economic sustainability requires maximizing profits, and environmental
sustainability calls for minimizing waste and non-renewable material consumption while avoiding
long-term environmental harm [2]. Deteriorating environmental conditions and associated
uncertainties make adopting green production processes in supply chain management crucial [3].

Artificial Intelligence (Al) is an effective approach to handling uncertainty [4]. Various
environmental fluctuations and operationalchallenges in institutions complicate the collection of
planning information.Moreover, the complexity of market systems makes predictions challenging.
However, forecasting market price and demand is highly beneficial for investors.

Supply chain problems in the automotive industry can significantly negatively impact the
environment and annual costs. These issues can result in disruptions in production and delays in the
delivery of componentsand materials, leading to increased energy consumption, waste generation, and
greenhouse gas emissions. They can also cause higher expenses. Furthermore, such problems can
damage the reputation of automotive companies, result in customer dissatisfaction, reduce customer
loyalty, and hinderprogress towards sustainability goals, such as reducing pollutants and utilizing
renewable materials. To address these challenges and improve supply chain performance, it is essential
to implement efficient and sustainable practices.

Using traditional plastic materials in automotive manufacturing can significantly impact
environmental pollution, such as extracting fossil fuels that contribute to greenhouse gas emissions.
Additionally, plastic waste can take hundreds of years to decompose, leadingto pollution in landfills
and of marine environments. Environmental pollution can occur through various activities such as
emissions, waste disposal, resource consumption, and habitat destruction. Companies can contribute
to air pollution by releasing harmful gases and particles into the atmosphere.These can be from
industrial processes, burning fossil fuels, or improper waste management practices. Air pollution can
have serious health effects on bothhumans and wildlife. Companies often discharge untreated or
improperly treated wastewater into rivers, lakes, or oceans. This can contaminate water bodies with
toxic chemicals, heavy metals, and other pollutants, affecting aquatic life and posing risks to human
health. Improper disposal or mishandling of hazardous waste can contaminate soil, making it
unsuitable for agriculture or other purposes. Chemical spills, improper storage and disposal of
industrial waste, and landfills are common sources of soil pollution caused by companies. Industrial
activities, machinery, and transportation associated with companies can generate excessive noise levels,
causing disturbances to both humans and wildlife. Prolonged exposure to high noise levels can lead to
stress, hearing problems, and other health issues. Companies that emit greenhouse gases, such as
carbon dioxide (CO.), methane (CHa), and nitrous oxide (N20) contribute to climate change. Industries
like power generation, manufacturing, and transportation are principal sources of greenhouse gas
emissions, which can lead to global warming and its associated impacts.
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The purpose of a sustainable automotive supply chains with an Al approach in conditions of
uncertainty is to address challenges and mitigate risks associated with operating in unpredictable
environments. By leveraging Al, the supply chain can better adapt to changing circumstances and
make informed decisions in real-time. Most models addressing uncertainty in sustainable supplychains
consider uncertain parameters as a singular type of uncertainty, often posing challenges in real-world
scenarios. This model can increase reliability, remain stable against potential events, consider various
uncertainties, and accurately find the optimal solution. This perspective on uncertainty in
mathematical models brings them closer to reality, produces more reliable solutions, reduces
computation time and problem complexity, and enhances the robustness and resilience of sustainable
supply chains against risks and uncertainties. In this study, a robust heuristic-mathematical
programming model is used to make the obtained solutions reliable because of their robustness.
Accordingly, dealing with the uncertainty in the sustainable supply chain and obtaining results with
sufficient certainty require robust programming under uncertain conditions (e.g., random, fuzzy) using
Al to provide reliable results to managers. The present studyis of particular importance due to its
innovation, diversity, and dynamicsin the face of the uncertainties affecting business, especially in
active supply chains in the automotive industry. In addition to the unprecedented research and
innovative aspects of Al capabilities in predicting uncertain parameters of sustainable supply chains,
this study developed a sustainable supply chain model by employing robust heuristic optimization
technigues under uncertain conditions. This model is helpful in rapidly foreseeing uncertainty.

Also, this study, by utilizing hybrid model Al, the mathematical optimization algorithms NSGA-
Il and HBA can improve the quality of decisions while reducing costs in a sustainable supply chain.
These algorithms possess exceptional efficacy in minimizing environmental pollutants and system
expenses, ultimately leading to improved decision-making outcomes. It also attempts to answer the
following research questions:

e What are the parameters causing uncertainty in the mathematical model of the sustainable supply
chain?

e What are the robust parameters in the sustainable supply chain model?

e Under uncertain conditions, which parameters sustainable supply chain model can be predicted
using the Al approach?

2. Literature review

Generally, this literature review covers the sustainable supply chain (SSC), emphasizing Artificial
Intelligence (AI), robust mathematical models, NSGA-II, HBA algorithms, uncertainty, and robust
optimization.

After conducting a thorough review of both local and international research, it has been
determined that, despite the numerous studies conducted on sustainable supply chains, there are
shortcomings that require improvement. In a recent study, researchers used intelligent methods to
improve the efficiency and sustainability of the supply chain [5]. In another study, Wang et al. utilized
intelligentization in the supply chain to enhance environmental sustainability. They assessed the
ecological repercussions of the supply chain by using Al-based techniques and data analysis, and
proposed measures to mitigate these repercussions. By utilizing Al and optimization techniques, they
significantly enhanced energy consumption and reduced greenhouse gas emissions throughout the
supply chain [6]. Vali-Siar, and Roghanian [7], developed a stable, flexible, and responsive mixed SC
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network under uncertainty due to the disruption of the COVID-19 pandemic. The researchers
developed a multi-objective mixed integer linear programming (MOMILP) model for solving the
flexible, responsive, and stable open-loop and closed-loop SC network design problem. The authors
also developed a Lagrangian relaxation method and a constructive heuristic algorithm to overcome the
complexity of the problem and solve large-scale problems. Hashim et al. [8] investigated a new meta-
heuristic algorithm for solving optimization problems called the Honey Badger Algorithm, inspired by
intelligent search behavior to develop an efficient mathematical strategy for solving optimization
problems. They compared several well-known meta-heuristic algorithms with the solutions obtained
from the HBA algorithm, including simulated annealing (SA), particle swarm optimization (PSO),
covariance matrix adaptive evolution strategy (CMA-ES), and adaptive differential of evolution with
linear population size reduction (L-SHADE), Moth-flame (MFO), Elephant Herding (EHO), the
Whale (WOA), the Grasshopper (GOA), Thermal Exchange (TEO), and the Harris optimization
(HHO). Yang et al. [9] have investigated the impact of manufacturing intelligence on green innovation
performance in China. Their study has examined the effect of manufacturing intelligence on the
effectiveness of green innovation and its internal mechanisms from a theoretical and empirical
perspective. From the view of static and dynamic productivity, a dynamic spatial delay model, a
mediating effect model, and a moderate effect model have been used for analysis. Homayouni et al. [10]
investigated a robust optimization approach for carbon outflow control under uncertainty, which was
solved using multiple-choice programming.

Based on the review of domestic and foreign research literature, it is evident that while many
studies have been conducted on sustainable supply chains, nevertheless gaps need to be addressed.
Foroozesh et al. [11] mainly focused on demand and fuzzy uncertainty while ignoring costs, carbon
emissions, and economic dimensions. Hashim et al. [8] emphasized significant costs, demand and
sustainable supply chains, and parameter prediction using neural networks. Instead, they introduced a
meta-heuristic HBA algorithm. Yang et al. [9] mainly focused on demand and fuzzy uncertainty while
ignoring carbon emissions and economic aspects. Homayouni et al. [10] considered pollutants, cost,
demand, and economic dimension. But, similar to the above, they did not predict the neural network
parameters and did not use HBA in their model. Govindan et al. [12] mainly focused on the demand
and economic dimension and did not pay much attention to carbon emissions and uncertainty. Dormaz
and Bilgen [13] only considered costs and did not pay much attention to carbon pollutants, demand,
economic dimension, and uncertainty. Santibanes et al. [14] focused on the parameters related to
carbon pollutants and costs but did not consider the economic dimension and the demand parameter.
Instead, they used a stochastic uncertainty technique. In Franco and Alfonso Lizarazzo’s [15] study,
the aspect of uncertainty is not mentioned in any of the main parameters of the sustainable supply
chain model. Gholizadeh et al. [16] did not consider carbon pollutants and only focused on demand,
economic dimension, and costs.

Based on the investigated gaps, the present study, showing the capability of the sustainable SC
model, considers demand, costs, and capacity reduction due to disruption (factory, supplier, recycling,
and distributor) as non-deterministic parameters. It uses Al to predict shipping cost parameters. In
addition, the NSGA-II and HBA algorithms are used to optimize the model in the NP-hard problem to
reduce the computation time. In addition to speeding up managers’ problem-solving and decision-
making processes, this model minimizes environmental risks and maximizes profits.
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3. Methodology

The present study adopted a descriptive-analytical approach. A hybrid strategy was employed to
tackle the inherent uncertainty of the problem. This strategy consisted of Al, the robust optimization
model, and the meta-heuristic Honey Badger and NSGA-II algorithms. This model produced greater
resilience than basic models and was designed to manage problem complexity and solve large-scale
instances. Additionally, this innovative heuristic model could significantly reduce computation time
for large-scale problems. Data was analyzed using GAMS software with a simplex solver and Minitab
16, MATLAB 2015, and Microsoft Visio software. The non-deterministic parameters of shipping costs
were predicted using neural networks and integrated into the model. However, due to the absence of
disruption-induced capacity reduction rate and demand parameters, these parameters were entered
non-deterministically and addressed through the robust model proposed by Mulvey. In general, the
Honey Badger and NSGA-II algorithms contribute to improving the performance and sustainability of
supply chains by providing unique optimization methods. These algorithms, considering uncertain
conditions, sudden changes, and multiple objectives, enable resource optimization, waste reduction,
and improved supply chain performance. The combination of Al, HBA, and NSGA-II and the
mathematical robustness model provides a new approach. NSGA-II helps balance conflicting goals.
Utilizing Al and advanced optimization techniques can mitigate risks associated with uncertainty.
Companies can achieve a more sustainable supply chain by using Al-based optimization algorithms
like HBA and NSGA-II, enabling informed decisions, considering uncertainties, and balancing
economic, environmental, and social objectives. This approach improves efficiency, reduces
environmental impact, and enhances overall sustainability performance. The aim is to provide accurate,
robust, and adaptive models that effectively handle uncertainty, leading to improved decision-making
and outcomes. This study presents a precise, adaptable, and resilient model using Al, the HBA, and
NSGA-II in the face of uncertainty. By utilizing mathematical models in the context of a sustainable
supply chain under uncertainty, with the approach of Al and multi-objective algorithms desirable and
fruitful results can be achieved. These methods, employing Al algorithms and optimization, allow for
the examination and evaluation of various variables in the supply chain, leading to better and more
optimal decisions in uncertain conditions. This study applied various innovations that maintain a
specific priority:

1) Implementing a closed-loop sustainable chain model.

2)  Using two objective functions in the robust model.

3) Including the disruption-induced capacity reduction parameter under uncertainty conditions.

4)  Applying the e-constraint technique predominantly used in cases where the values of objective
functions differ and a priority exists.

5) Comparing the newly developed HBA algorithm (2022) with the older NSGA-II algorithm.

6) Utilizing Al to predict non-deterministic parameters of shipping costs, ranging from the
supply of polymer materials to the factory, from the factory to distributors of automotive plastic
accessories, from distributors to customers of plastic car accessories, and from customers to the
recycling and back to the factory.

7) Employing a hybrid approach consisting of Al, the robust model, the HBA, and NSGA-II.

8) Precisely adjusting the parameters of meta-heuristic algorithms due to the inherently complex
nature of design variables, which are largely non-linear and non-convex.

9) Highlighting the high speed of convergence in the HBA for NP-hard problems compared to
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other techniques.
Also, the conceptual model of the study is shown in Figure 1.

i . k
J
b J -

Figure 1. Conceptual models.

According to Azar and Farrokh [17], robust stochastic optimization, first presented by Mulvey [18],
is a stochastic programming technique to manage the impacts of uncertain parameters within
optimization models. This technique combines ideal programming formulations with scenario-based
data related to the problem for robust modeling. Robust modeling is comprised of two decision-making
variables: control and structural (design). For structural variables, decisions are made before the
realization of random parameters, and once this realization is completed, these variables cannot be
modified or adjusted. Control variables, on the other hand, are modified or adjusted when uncertainty
parameters occur. The solution obtained with this model has lower sensitivity to variations in input
data. In the current theory, a solution to the optimization problem is considered optimally (i.e., the
robustness of the key) and justifiably (i.e., model robustness) robust. For a solution to be justifiably
robust, it should maintain its justifiability within the problem’s constraints for nearly all possible
scenarios. The technique proposed by Mulvey et al. [18] uses a penalty function to measure the
unjustifiability level of the solution to maintain its justifiability. The penalty function must assume a
low value. Optimization robustness can be defined as a state where the objective function value for the
solution retains its near-optimal value or its unfavorable deviations from the optimal value are minimal
for every scenario. In Mulvey’s model, the objective function has a penalty function for solving and
the robustness of the model, each receiving weight per the modeler’s defined preferences [17]. In
Mulvey’s model [18] (Eq (2.1)), the vector y represents control variables, and the vector x describes
design variables.

A and B denote vectors of parameter coefficients, and b represents vectors of parameters (values
on the right). A and B are definite values, but parameters B, C, and e are non-deterministic. The specific
state of the parameters is considered a scenario, denoted by s. The probability of each scenario is
determined by the parameter Ps. Q represents a set of scenarios. As a result, for each scenario (s € (2),
Bs and Cs are the coefficients that indicate uncertainty. After the scenario, y (the control variable) is
adjusted. Due to the uncertainty of parameters, the model may be unjustified for some non-
deterministic plans. Consequently, #s can be referred to as the model when subjected to unreasonable
methods. #s is zero when the model is justified. Otherwise, it will assume a positive value. The
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objective function is given by the following:

Mino(x,y1,¥2,----- ,¥s) Tt wp(My, M2, ... M)
s.t.
Ax = b, (2.1)

Bix+cys+ns =e,x=>0,y,=20,n, =20,Vs € .

The solution robustness is calculated by the first term, which indicates the level of risk aversion
of decision-makers and their willingness to reduce costs. The second function measures the model’s
robustness by penalizing solution violations. It is combined using a coefficient (weight) v to strike a
balance between the model and solution robustness. The effect of y can be understood further by
inserting a small value into this parameter. It then minimizes the first objective function and increases
the probability of achieving impossible solutions. For large y values, the solution feasibility will
increase, but the first part of objective function o(x,y1,y2,...) takes on higher values. £&=f(x,y) and § are
recognized as the utility and cost functions, respectively. High values of variance s=f(x,ys) for each
scenario indicate risk decisions. In other words, minor variations in uncertain parameters may cause
significant variations in the function f values. Mulvey et al. [19] confirmed the robustness of the
solution by employing the terms in Eq (2.2). d represents the weight indicating the variance of the

solution.
2
0(0) = ) pis+7 ) s (fs -> p;é;> . 22)

SEN SEN SEN

’ ’ 2 . . .
In Eq (2.2), the squared term Y ;e Ps(&s — YscnPs&s) leads to increased computation time
required to solve the model. Thus, the absolute value of the term was provided [19] to reduce
the operations associated time with total computations:

0-(0) = Zseﬂpsfs + steﬂpslfs - Zse.(lp;{;l- (23)

Two additional variables QF and Q; are defined in Eq (2.3), which denotes absolute value and
nonlinear function, so that the obtained objective function is linearized. If },¢cq ps&s is greater than &g,

then Qg is returned; otherwise, Q¢ is not returned. Consequently, Eq (2.3) can be reformulated as
Eq (2.4):

Min ¥, pés+v Y ps(QF +Q5)

SEN SEN
s.t.
' ' — 2.4
Es_ ZﬂpsgszQ;-l'QSrSE-Q; ( )
SE

Q*,Q” =0,s €.

In line with the constraints of Eq (2.4), it should be noted that one of the value Q_,Q, is always
equal to zero for every y >0. Based on Eq (2.1), the objective function for the robust model

can be reformulated as Eq (2.5):
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Min Y, psés +v X 0s[(§s — Lsenbss) + 265],
SEN SEN
S.t.
2.5
& — Y ps&i+6s 20,65 20. (2.9)

SEN

The expected value of the error vector is considered as a penalty function Y c,psns, and,
finally, the robust programming model can be presented as Eq (2.6):

Min > p.E+y) P, Kf -> psvg’sv}ws}wZ P77,

seQ seQ seQ seQ

st. Ax=b,
BX+CY, +7, =€, VseQ (2.6)
gs_zps’gs’-’_eszo seQ

seQ

6,20,x20,y,20,7,20,VseQ

3.1. Mathematical model design
3.1.1. Robust indexes
Robust indexes are presented in Table 1.

Table 1. Robust indexes and their corresponding groups.

Index Group

S,sES Set of scenarios

i€ Suppliers of polymer material

JEJ Factories

ke K Distributors of automotive plastic accessories
cEC Customers of plastic car accessories
vyEV Vehicles

hEH Recycling center

t€T Period series

pPEP Products of automotive plastic pieces
r€R Polymer materials

3.1.2. Al parameters

Cxijrye: Cost of transportation of polymer materials r from the supplierof polymer materials i to
the factory j within the period t using the vehiclev after determination based on the neural network
(NN).

Czzpj-,: Cost of shipping polymer materials r from the recycling center h to the factory j

within the period t using the vehicle,v after determination based on the neural network (NN).
Cqchpve: The shipping cost of returned products of automotive plastic pieces p from the
customers of plastic car accessories ¢ to the recycling center h within the period t using the vehicle v
after determination based on the neural network (NN).
Cy;(cpvt: The shipping cost of the products of automotive plastic pieces p from the distribution
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center k to the customers of plastic car accessoriesc within the period t using the vehicle v after
determination based on the neural network (NN).
CYjkpve: The shipping cost of products of automotive plastic pieces p from the factory center

Jj to the distributors of automotive plastic accessoriesk within the period t using the vehicle v after
determination based on the neural network (NN).

3.1.3. Conceptual model parameters in condition certain

Xijrve: Shipment volume of polymer materials r from the supplier of polymer materials i to the

factory j during period t using the vehicle v.
ZZpjrye: Shipment volume of the polymer materials r from recycling center h to the factory j

during period t using the vehicle v.
qchvpe: The returned amount of products of automotive plastic pieces p from customers of plastic

car accessories ¢ to recycling center h during period t using the vehicle v.
y,'“,p,,t: Amount of the products of automotive plastic pieces p from distribution center k to

customers of plastic car accessories ¢ during period tusing vehicle v.
Yjipve: Amount of the products of automotive plastic pieces p by factory center j to distributors

of automotive plastic accessories k during period t using vehicle v.
3.1.4.  Robust parameters

Arp: The rate at which polymer material r is converted into the products of automotive plastic
pieces p.

Cl;,,: The inventory cost of the products of automotive plastic pieces p at the factory j within
the period t.

CIK;,,: The inventory cost of the products of automotive plastic pieces p at the distributors
of automotive plastic accessories k within the period t.

CIH,,: The inventory cost of the polymer material r at the recycling center h within the period t.

D pes: The non-deterministic demand for products of automotive plastic pieces p for the
customers of plastic car accessories ¢ in period t per scenario s.

capjjp.: The factory capacity j for the products of automotive plasticpieces p within the
period t.

YJ;: If afactory is selected, one; otherwise, zero.

capl;..: The polymer material supplier i, for supplying polymer material r within the period t.

YI: If the supplier is selected, one; otherwise, zero.

capK,,,: The capacity of the distributors of automotive plastic accessories k for the products of
automotive plastic pieces p within the period t.

YK, : If the distributor is selected, one; otherwise, zero.

capHy,,: The capacity of the recycling center h for the products of automotive plastic pieces
p within the period t.

YH, : If the recycling centers are selected, one, otherwise zero.

YYrepe- |f the quantity of goods is shipped from the distribution center to the customer in the

period, one; otherwise, zero.
Zycpt- 1T the number of goods from the distribution center to the customer in the period was lower

than the minimum quality in terms of quality, one, otherwise zero.
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@,p: Percentage of the polymer materials r that is recyclable from the products of automotive
plastic pieces p.

a,: Percentage of the demand products of automotive plastic pieces pfrom the customers of
plastic car accessories c for the purpose of recycling.

Yvp- The amount of pollution from the vehicle v per unit of the productsof automotive plastic
pieces p.

V.- The amount of pollution caused by the vehicle v per unit of the polymer materials r.

Bljpes: The capacity reduction rate caused by disruption for the factory j and products of
automotive plastic pieces p within the period t per scenario s.

BI,..: The capacity reduction rate caused by disruption for the supplier of polymer materials i,
for the polymer material r, within the period t per scenario s.

BKpes: The capacity reduction rate caused by disruption for the distributors of automotive
plastic accessories k for products of automotive plastic pieces p within the period t per scenario s.

BH ;.. The capacity reduction rate caused by disruption for the recycling center h for products
of automotive plastic pieces p within the period t per scenario s.

1,: The inflation rate during period t.

P,.: The selling price of the products of automotive plastic pieces p, within period t.

CSj,:: The shortage cost of the products of automotive plastic pieces p at the factory j during
period t.

CSK .. The shortage cost of the product at the distributors of automotive plastic accessories k
during period t.

CSH,,: The shortage cost of the polymer material r at the recycling center h during period t.

Bd,: The sum of the budget for each period t.

q,"pt: The quality of the products of automotive plastic pieces p for distributors of automotive

plastic accessories k during period t.
Qcp¢: The minimum demanded quality of products of automotive plastic pieces p for customers

of plastic car accessories ¢ within the period t.
3.1.5. Robust variables

I;,s: Inventory of the products of automotive plastic pieces p at the factory j during period t per
scenario s.

Sipes: The shortage of the products of automotive plastic pieces p at the factory j during period t

per scenario s.

IKps: The inventory of the products of automotive plastic pieces p at thedistributors of
automotive plastic accessories k during period t per scenario s.

IH,,.,: The inventory of the polymer material r at the recycling center h during period t per

scenario s.
SKyp,es: The shortage of the products of automotive plastic pieces p at the distributors of

automotive plastic accessories k during period t per scenario s.
SHy,.s: The shortage of polymer materials r in the recycling center h during period t per scenario

Xijrves- Shipment volume of polymer materials r from the supplier of polymer materials i to the

factory j during period t using the vehicle v per scenario s.
ZZp s Shipment volume of the polymer materials r from recycling center h to the factory |
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during period t using the vehicle v per scenario s.
qchopes: Returned amount of products of automotive plastic pieces p from customers of plastic

car accessories ¢ to recycling center h during period t using the vehicle v per scenario s.
y,"cpvts: Amount of the products of automotive plastic pieces p from distribution center k to

customers of plastic car accessories ¢ during period using vehicle v per scenario s.
Yikpves: Amount of the products of automotive plastic pieces p by factory center j to distributors

of automotive plastic accessories k during period t using vehicle v per scenario s.
D5 The demand of the customers of plastic car accessories ¢ during period t based on the

inflation rate per scenario s.
&s: The total value of the objective functions for every single scenario irrespective of its
probability.

3.1.6. Binary variables

Yli’ YKk'YHh’YJJ"yykcpts’zkcpts.

3.1.7. Robust decision variables

| .S, IK. ., IH, ., SK..,SH

’
- . >
jpts 7 jpts kpts ? kpts 7 hrts 7 lervts ’ ZZhjrvts ’ qchvpts ’ ykcpvts ’ Dc'pts ’ yjkatS 20 ’

yykcpts 4 chpts YT Y, ’Y‘Jj PYH, & {0’1} .
3.1.8.  Modeling the objective functions

Optimum maintenance is the first part of the objective function and calculates the costs of
inventory and shortage in the factory, distributors, and recycling centers and the shipping cost of
the product to the factory, distributors, customers, and recycling centers during each period.

Fly, = Z Z(ijts- Cljpt + Sjpts- CSJ'pt)

JEJ pEP

+ z Z (IKypes- CIKype + SKigprs- CSKipr )
kEK pepP

2 (Hypeg. ClHype + SHypes. CSHy)

h€H rER

+ ZZ Z Z xijrvts- Cxijrvt

JE€J i€l veEVTER

+ Z z Z z ZZpjrvts CZZhert

Jj€J] heHVEV rER

+ Z Z Z Z qchvpts- chhvpt

CcEC heH vEV pEP
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+ Z Z yjkpvts- Cyjkpvt
j€J] kEK vEV pEP

+ ZCEC ZkEK ZVEV ZpEP yI,CCpUtS' Cyl;cpvtv Vs € S' terT.

The maintainability of the models is the second part of the objective function and calculates the
volume of environmental pollution generated during the shipping process under each scenario.

F2, = Z Z Z Z Z YI;T'ZZh]'TUtS

JEJ h€H VEV TER tET

SIS Y e

CEC hEH VEV pEP tET

YT S

j€J i€l VEVTreER teT

#0020, ) ety

j€J kEK VEV pEP tET
+ Ycec Lkek Lvev Lpep ZtETyl’ccpvtS' Yop: VSES, LET.
Overall objective function 1 minimizes the amount of system costs for each scenario, as below:
Min(Aly) = Yier(F1,5),Vs € S.
Objective function 2 minimizes the amount of environmental pollutionper scenario, as below:
Min(A2) = F2;.

If the weighted summation technique is used, the sum of the first andsecond objective
functions is as follows:

& = (W Al + wy A2,)Vs E S.
3.1.9. Modeling the constraints

Constraint 1 calculates the shortage, inventory, shipment, and receipt atthe factory for each
scenario.

ijts - Sjpts = ljpt-1s — Sjpt—ls + z Z Z Xijrots- Arp
TERVEV i€l (31)
_ZkEK Z‘UEV Yjkpvts + ZrER ZvEV Zﬁe[—] ZZﬁjryt_ls' Arp:vj € ]:p € P; te T; SES.

Constraint 2 calculates the capacity of the supplier of polymer materialin terms of disruption
for each scenario.

ZvEVZjE]xijrvts - 771'1rts = (1 - Blirts)- Cap[irt- YIiSa VielLteT,reRssES. (32)
Constraint 3 calculates the factory capacity in terms of disruption for each scenario.

Zvev ZkeKyjkpvts - n]zpts = (1 - B]jpts)'cap]jpt-ylja Vj eJte T;p EP,s€eS. (33)
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Constraint 4 calculates the capacity of plastic accessory distributorsin terms of disruption
for each scenario.

ZvEV ZceCyl,ccpvts - nzpts <(1- BKkpts)' capKkpt- YKy, (3.4)
VkeK teT,peP,sES. '

Constraint 5 calculates the maximum shipment to the recycling centers of plastic auto pieces
in terms of disruption for each scenario.

Z Z Gempvts — n‘/tpts < (1 - ﬁH//pts)-CapH//pt-YHﬁ;
vEV ceC (35)
Vhe HteT,peP,s€S.

Constraint 6 calculates the shortage, inventory, shipment, and receipt atthe distributors of
automotive plastic accessories for every scenario.

IKkpts - SKkpts = IKkpt—ls - SKkpt—ls

+ZZ Yjkpvts — ZZy,;Cpm,Vk EK,peEP,teTsES. (3.6)

j€J] vev ceC veV

Constraint 7 calculates the amount of shipments to customers for every scenario.

ZkEKZvEVyl;cpvts = D;ptS’ Vce Crp EP,teT,se€S. (37)

Constraint 8 calculates the shortage, inventory, and shipment of the polymer materials at the
recycling center for each scenario.

IHhrts - SHhrts = IHhrt—ls - SHhrt—ls - Z Z ZZpjryts + Z Z Z Prp-Ychopts,

vevV jej ceCveV peP (38)

VheH teT, reR,s €S.

Constraint 9 determines the quantity demanded in accordance with theprice and inflation
rate for every scenario.

D(pes + Mepes = Depes — (1 +1,). Py, VCEC,p EP,t ET,s ES. (3.9)

Constraint 10 determines the costs for each scenario based on the budget.

F1l,, < Bd,. (3.10)

Constraints 11 and 12 calculate the binary variable for every scenario.
YYkepts < Zwev Yiepos: VEECKEK,pE Pt €T, s €S. (3.11)
YYkepts MM = Yoey Yiepvis, Ve ECKEK,p EP,t €T, s ES. (3.12)

For each scenario, constraints 13 and 14 determine, that if the quality of the shipped product is
lower than the minimum quality, it is allowed to be sent to the recycling location.

(Qcpt - ql:tpt)-yykcpts = (chpts —1).MM,Vvce CkeK,peP,teT,s€ES. (3.13)
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(Qecpt = Digpe)- YYkepts < Zkepes- MM, Ve € CKEK,p EP,t €T, s ES. (3.14)

Constraints 15 and 16 determine the returns of plastic accessories to the recycling center based
on low-quality products for every scenario.

ZhEthEV q chpvts 2 Acp ZvEVyl;cpvts - (1 - chpts)-MMa

VceCkeKpeP,teT,seS.

(3.15)

ZhetheV qchpvts = acp-ZveVyl’ccpvts + (1 - chpts)-MMa
VceCkeK,peP, teT,seS.

(3.16)

ijtsasjpts' IKkptssthrts,SKkpts aSHhrtssxijrvts’Zzh]’rvtsaqchvptw)’kcpvts’Dcpts’yjkvpts = 0’

yykcpts’chpts’YIi’YKkay]jaYHh € {0: 1}-

Consequently, according to the technique suggested by Mulvey [18] to deal whit this type of
uncertainty, the above model is reformulated in the next section using the following two new
parameters and two positive variables.

Parameters:

pps: The probability of each scenario.
: The unjustifiability weight of the model.

Positive variables:

65" The difference between the objective function from its mean for each scenario.
Nires: Mipts: Mipes: Mhpes: Mepes: Te constraint violation is due to uncertainty in the parameter

(indicating that the model is not justified).
3.2. Finalized model

Mulvey’s [18] objective function can be rewritten as follows:

MinZ) = ) ppy &0+ ) ppolGEy = ppss) + 2.0,

s'es SES

+aw. Z pps'-(z ZZ Mires + Z Z Z Mipes + Z Z Z Miepes

s'€S TER (€l tET JEJ PEP tET kEK pEP te€T

+ Yhen Lpep Xter ngts + Ycec Zpep Dter Napts)-

Yvev Zjey Xijrves — Mipes < (1 — Blies).caply Yy, Vi€ Lt €T, r €R,sES. (3.17)
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ZvEVZkGKyjkpvts_n]?pts < (1 _ﬁ]jpts)-cap]jpt-ylh V].E],tET;p EP:SES- (318)
ZvEVZCECy;ccpvts - nipts < (1 - BKkpts)-capKkpt-YKka VkeEK,te T'p EP,sES. (319)
Qchpvts — n;lzpts = (1 - Bthts)'Cathpt'YHh' Vhe HteT, pE P,s€ES. (320)

veV ceC

’ 5 —
Dcpes + Mopes = Depes — (1 + 1) Py, VCECPEPLET,SES. (3.21)
Es' - Z pps$s + es' =0, Vs €S. (322)
SES
ijts - Sjpts = Ijpt-1s — S]'pt—ls + Z Z Z xijrvts-lrp
reR vevV iel

(3.23)

- ZkEK ZvEV Yjkpvts + ZrER zveV ZhEH Zzhjrvt—ls-)]-rp:

Vie],peP, teT,seS.

IKkpts _SKkpts = IKkpt—ls —SKkpt—ls +Zzyjkpvts _Zzy;ccpvts' vk e K,p € P’ te T,S ES. (3'24)
Jj€J vev ceC vev
Ykek Zvev Ycpots = Deptsr VCEC,pEP,tET,SES. (3.25)

IHhrts - SHhrts = IHhrt—ls - SHhrt—ls - ZvEV Zje] Zzhjrvts + ZCEC ZvEV ZpEP ‘prp- ‘Ichvptsr

(3.26)
VheH,teT, reR,s€ES.
F1,, < Bd,. (3.27)
YYkepts = Z Ykepvts' VceCkeK,peP,teT,sES. (3.28)
veV
yykcpts-MM = Zyl;cpvts' VceC, ke K,peP,teT,s €S. (329)
vev
(Qept = Aipt)- YVkepts = (Ziepes —1)-MM, VcECkEK,pEP,tET,s€ES. (3.30)

(Qept = Qipt)- YYiepts < Zkepes MM, VcEC,k e K,pE P,t€eT,s€S. (3.31)
D ewpres = ey ) Feepws = (1= Ziaps) MM, e e Ck €K, pe P,tET,s€S. (3.32)

heHveV vev

Y i Zvev Qeppoes < Cep- Zvev Yiepves + (1= Zkepts)-MM, Ve € C,k € K,pEP,t€T,s€S. (3.33)
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ES = (Wl.Als + Wz.Azs), Vs € S (334)

ijts:SjptsaIKkpts aIHhrtsaSKkpts aSHhrts axijrvtsaZZhjrvts>QChvptsaykcpvts chpts ayjkpvts = Oa
yykcptsaZchpts:YIi:YKk:Y]j:YHh € {Orl}a

1 2 3 4 5
65" Nirtss Njpts Nkpts: Nhpts» Nepts = 0.

4. Validation and analysis

Initially, the deterministic model was validated using examples and random data (Figure 2)
to ensure that the model aligned with the system behavior.

X(Ja 12 Va) =349.000y(j, k,,p,,v,) =848.000 V(K Cpy PaV,) =817.000 D63, Pity) = 230.963

IK

X(jy+ 15, V) = 308.000

IK (k,, p,,S,) =178.000

Inventory
\

SK

X(J, 1, v,) = 330.000
SK (k,, p,,S;) = 528.000

Figure 2. Validation of the random example set.

The factory received a total of 987 tons of polymer materials from suppliers 1, 3, and 4. It produced
848,000 plastic auto pieces but delivered 817,000 pieces, to the distributors of automotive plastic
accessories by vehicle 2 to deliver to customers of plastic car accessories. The distributor of automotive
plastic accessories sent the received pieces by vehicle 3 to the customers of plastic car accessories and
stored the rest in the warehouse in the following way: The distributor delivered 235,963 pieces to
customer 1 in period3, 203,963 pieces to customer 2 in period 3, and 230,963 pieces to customer3
in period 3, considering that the distributors of automotive plastic accessories already had a shortage
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of 528,000 pieces. Out of the 817,000 pieces received, the distributors of automotive plastic
accessories still had 146,011pieces, which were added to their warehouse. It should be noted that the
distributor’s previous inventory was 178,000 pieces, indicating the model’s validity.

A sensitivity analysis was conducted based on the shortage costs at the automotive plastic
accessories distributor center CSKy,, due to the role of customer losses and the credibility of the
distributors. The sensitivity of parameters CSK,, for period 3 (t=3), distributor k4, and product p,

were examined, and the results are presented in Table 2.

Table 2. The sensitivity analysis based on randomness data.

Parameter Variations in shortage Shortage rate Al A2 Weighted sum of the
costCSK . 1.+, CSKy pyts objective function
+50% 0 9675400 5409,983 4835000
CSKipyts 0 426,962 9663000 5392,468 4828800
-50% 652,943 9516200 5314,817 4755500
-70% 1074,537 9423900 4930,272 4709500

According to the decided parameters and with the increment in deficiency costs due to the
increment in costs, the deficiency desire for that center ought to be decreased. Also, due to the
reduction of shortage costs and, due to the state of zero changes, a shortage value has been considered
for it, so the most optimal state is to increase the shortage for that period and the distributor due to the
reduction of the shortage cost for the distribution center k. As a result, according to the outputs of the
above table, this amount of change in the variables and objective functions is consistent with the
described and expected behavior, which indicates that it is correct.

Also, according Table 3, the sensitivity of the model was analyzed in real conditions to ensure

the reliability and performance of the system. A sensitivity analysis was conducted based on the
shortage costs at the automotive plastic accessories distributor center CSKy, ., due to the role of

customer losses and the credibility of the distributors. Thesensitivity of parameter CSKy, ., for
period 3 (t=3), distributor k2, and product ps was examined and the results are presented in Table 3.

Table 3. The sensitivity analysis of the uncertainty model subject to real-world conditions.

Parameter Variations in shortage Shortage rate Al A2 Weighted sum of the
cost CSKy,pot, CSKy,pots objective function
CSKy,pots +50% 0 2.3242e+8 41300.696 1.1623e+8
-70% 683.020 2.3174e+8 41303.445 1.1589¢+8
-80% 737.190 2.3018e+8 41239.445 1.1511e+8

The increased shortage costs and the described parameters necessitate decreasing the expected
shortage at the distribution centre to prevent high costs. A decreasing trend is observed in the second
objective function (41300.696) as the prices increase by 50%, but the value of the first objective
function (2.3242e+8) is improved, and the number of shortages becomes zero.

Nonetheless, as the costs increase by 50%, the weighted sum of the objective functions increases
to a reliable high value, and reducing shortage costs by 70% leads to an increase in the shortage rate
(683.020). However, compared to when the prices are increased, a decrease is observed in the value of
the first objective function (2.3174e+8) and the value of the second objective function (41303.445). In
addition, the weighted sum of the second and first objective functions declines to 1.1589E+8.
Decreasing the shortage costs by 80% leads to an increased shortage rate of 737.190, and the dual
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(41239.445) and first (2.3018e+8) objective functions. Also, the weighted sum of the same objective
functions (1.1511e+8) indicates a declining trend compared to increased costs. Therefore, the optimal
action is to increase the shortage for that period and for the distributor to reduce the shortage costs.
Therefore, based on the outputs presented in Table 2, the variations observed in the objective functions
and variables agree with the predicted and defined behavior, reflecting the model’s accuracy. As a
result, eco-friendly automotive companies can modify their strategies according to the mathematical
model developed in this investigation to be prepared for quick reactions in risky and challenging
conditions to prevent bankruptcy and, avoid the purchase of low-quality and non-eco-friendly
materials with low monetary values to prevent endangering the environment.

In this research, the Taguchi method, a method for designing experiments, is used to reduce the
number of experiments and adjust the input parameters in the design algorithm. Utilizing the Taguchi
method, estimating various response functions based on the specified factors is possible. These
estimated results aid in identifying the factors that yield the optimal results for the given experiment.
Overall, this method decreases the number of tests needed for optimization and enhances the accuracy
of the results. Mulvey’s model is a multi-product, multi-period sustainable supply chain model.
Initially, it was solved on a small scale using the GAMS software and CPLEX to demonstrate its correct
functionality. Subsequently, MATLAB software and the NSGA-II and HB algorithms were employed
to solve the model on a larger scale due to their high efficiency. Before solving it, the solution
parameters were determined using the Taguchi parameter setting method. The model was then solved
on a large scale, and the results were recorded. The impacts of adjusting the parameters with the
Taguchi method are given in Figures 3—6.

Main Effects Plot for Means
Data Means
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. e .- ad
—
1500000 ) T~
T T T T T T T T T
@ 1 2 3 1 2 3 1 2 3
C1 Nrepl Ngrid1
] Nrep,
B 2500000
=
u= 2000000
5 -
1 2 3 1 2 3 1 2 3
2500000 Betapl Alphal Gammal
20000004
— \ ~— e
———
1500000 e T~—
T T T T T T T T T
1 2 3 1 2 3 1 2 3

Figure 3. HBA mean of means.
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Main Effects Plot for SN ratios
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Figure 4. Signal noise of HBA.
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After validating the parameters using the Taguchi method in Minitab 16, the model was
implemented in natural conditions at Gibor Sepehr Automotive Company, an auto parts supplier. This
company works in the field of the design and production of all kinds of plastic and metal parts, the
design and manufacture of all types of industrial models, the design and production of all kinds of car
parts, the production of all types of features, the agricultural industry, the import and export of all raw
materials related to the purchase of manufactured products, and the sale of all kinds of parts and
industrial machines. The shipping cost parameter from the polymer material supplier to the factory
was analyzed after data normalization and removal of disruptive outliers. As shown in Figure 7,
this parameter consists of an intermediate layer with 25 neurons. As shown in Figure 7, this
parameter consists of an intermediate layer with 25 neurons. Also, shallow neural network perceptron
and the Levenberg-Marquardt machine learning algorithm, and three-time periods and MSE
performance (i.e., mean squared errors of the performance function) are used. In this parameter used,
the train-validation-test data division ratio is 20/10/75 and NARNET neural network and sigmoid
activation function. After six iterations, the NN model stabilized with MSE=4.05*102! and with
very good qualitative performance.

Meural Network

Hidden Output
¥ ( 1».1"»-| wl ) o—| wl. ] "'m|
el Tl
Algorithms

Data Division: Random  (dividerand)
Training: Levenberg-Marquarde  (traininn )
Performance:  Mean Squared Error (mse)
Calculations:  MEX

Progress

Epoch: o | & ikerations 1000
Time: 0:00:00

Petformance: 0977 | 4.058-21 | o.00
Gradient! 1.89 1.08e-11 1.00e-07
u: 0.00100 1,00e-09 1.00e+10
‘alidation Checks: a 1} &

Figure 7. Epochs of shipping costs from the supplier of polymer materials to the factory.

As shown in Figure 8, the gradient reached a minimum value of 1.08*%10~!!. The average shipping
costs from the supplier of polymer materials to the factory after six iterations (1*1079%) achieved its
minimum value and showed a downward trend.
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Gradient = 1.0807e-11, at epoch 6
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Figure 8. Gradient and mean of shipping costs from the supplier of polymer materials to the

factory.

Next the parameter of shipping costs from the factory to the distributors of automotive plastic
accessories was analyzed. This parameter (Figure 9) employed the perceptron of a shallow neural
network, a middle layer with 20neurons, three time periods, the Levenberg-Marquardt machine
learning algorithm, train-validation-test data split ratio of 85/5/10, the MSE quality performance, a
sigmoid activation function, and a NARNET neural network. The neural network model stabilized
after 12 iterations with MSE=4.24*10"'7, and has excellent qualitative performance.
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Figure 9. Epochs of shipping costs from the distributors of automotive plastic accessories to the
customers of plastic car accessories.

As shown in Figure 10, the gradient reached a minimum of 4.40*10°%. The average shipping
costs from the factory to the distributors of automotive plastic accessories (1*107%)in 12 repetitions
passed zero and had a downward trend.
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Gradient = 4.3986e-09, at epoch 12
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Figure 10. Mean and gradient of shipping costs from the distributors of automotive plastic
accessories to the customers of plastic car accessories.

Next, the parameter of shipping costs from the distributors of automotive plastic accessories to
the customers of plastic car accessories was analyzed. As shown in Figure 11, this parameter employed
the perceptron of a shallow neural network, a middle layer with 27 neurons, three time periods, the
Levenberg-Marquardt machine learning algorithm, a train-validation-test data split ratio of 85/10/5,
the MSE quality performance, a sigmoid activation function, anda NARNET neural network. The
neural network model stabilized in eight iterations with MSE=(3.32*10%) qualitatively performed very

well.
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Figure 11. Epochs of shipping costs from the distributors of automotive plastic accessories to
the customers of plastic car accessories.

According to Figure 12, the gradient reached its minimum of 6.34*10713. Mean shipping costs
from the factory to the distributors of automotive plastic accessories (1.00%107!") in eight repetitions
passed zero and had a downward trend.
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Gradient = 6.3351e-13, at epoch 8
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Figure 12. Mean and gradient of shipping costs from the distributors of automotive plastic
accessories to the customers of plastic car accessories.

Next, the parameter of shipping costs from the customers of plastic car accessories to the recycling
center was analyzed. As shown in Figure 13, this parameter employed the perceptron of a shallow
neural network, a middle layer with 42 neurons, three time periods, the Levenberg-Marquardt machine
learning algorithm, a train-validation-test data split ratio of 75/15/10, the MSE quality performance, a
sigmoid activation function, and a NARNET neural network. The neural network model stabilized in
four iterations with MSE= (1.08*1022), and qualitatively performed very well.
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Figure 13. Epochs of shipping costs from the customers of plastic car accessories to the

recycling center.

As shown in Figure 14, the gradient reached a minimum of 3.148*1012. The mean of shipping
costs from the customers of plastic car accessories to the recycling center (1.00* 1077) in four

repetitions passed 0.
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Gradient = 3.1481e-12, at epoch 4
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Figure 14. Mean and gradient of shipping costs from the customers of plastic car accessories
to the recycling center.

The parameter of shipping costs from the recycling center to the factory was analyzed next. As
shown in Figure 15, this parameteremployed the perceptron of a shallow neural network, a middle
layer with 38 neurons, three time periods, the Levenberg-Marquardt machine learningalgorithm, a
train-validation-test data split ratio of 45/35/20, the MSE quality performance, a sigmoid activation
function, and a NARNET neural network. The neural network model stabilized in three iterations
with MSE=(5.32*1016) and qualitatively performed very well.
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Figure 15. Epochs of shipping costs from the plastic pieces recycling center to the factory the
auto plastic pieces.

As shown in Figure 16, the gradient reached a minimum of 3.04* 10798, Mean shipping costs from
the recycling center to the factory (1.00* 107%),in three repetitions passed 0.
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Gradient = 3.0428e-08, at epoch 3
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Figure 16. Mean and gradient of shipping costs from the plastic pieces recycling center to the
factory for the auto plastic pieces.

After predicting the Al parameters, the data were entered into The GAMS software, and the
outputs of the robust optimization modeland meta-heuristic HBA and NSGA-II algorithms were
obtained. The Pareto front of the robust e-constraint model is shown in Figure 17.
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Figure 17. The Pareto front of the robust e-constraint model.

Table 4 presents the optimal, best, and worst solutions of the GAMS objective functions
compared to the solutions obtained from the HBA and NSGA-II algorithms, highlighting their
respective best and worst solutions. Table 4 compares the performance of the employed algorithms
mentioned above.

Overall, this study indicated the effectiveness and feasibility of the presented model in achieving
high-quality solutions within shorter processing times. After ensuring model validity and tuning the
parameters of the meta-heuristic algorithm, Al was used. The NAR neural network wasemployed for
time series forecasting and successfully predicted the parameters of shipping costs, surpassing other
techniques in performance. Next, the mathematical robust optimization model (presented by Mulvey [19])
was used. As shown in Table 4, the worst point in the first objective function is 2.257432e+8, and the
worst point in the second objective function is 73394.876. Inthe HBA, the worst point of the first objective
function was 1.7892e+09, and the worst point of the second objective function was 2.0082e+04.
Based on the results, the best solution obtained with the HBA indicated that, in the best case, the
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minimums ofthe second (1.9865e+04) and first (1.6272e+09) objective functions dominate other
points of the Pareto front.

NSGA-II algorithm results (see Table 4) indicate that the worst point of the first objective function
was 1.8407e+09, and the worst point of the second objective function was 2.0145e+04. According to
the best solution obtainedwith the NSGA-II algorithm, in the best case, the minimums of the
second (1.9127e+04) and first (1.6051e+09) objective functions are dominant over other points of the
Pareto front. In the HBA, the worst solution on the Pareto front contains the maximums of the
second (2.0082e+04) and first (1.7892e+09) objective functions, and in the NSGA-1I algorithm, the
worst solution on the Pareto front contains the maximums of the second (2.0145e+04) and first
(1.8407e+09) objective functions, which are the non-dominated points (see Table 4).

Comparing the Pareto fronts of therobust optimization model and the HBA and NSGA-II
algorithms showed that, in the robust optimization model, point (40031.748) dominates other points
because the goal is minimization. In the HBA and NSGA-II algorithms, the Pareto front points
1.9865e+04 and 1.9127e+04 dominate otherpoints, respectively. It should be noted that, since the goal
of the model is minimization, the lowest point dominates the higher points and is selected.

Table 4. The Pareto front of the objective functions.

g-constraint HBA NSGA-II
ffl ff2 ffl ff2 ffl ff2
1 4.37e+04 1.81e+08 1627223532.2 20082.333 1605120815.82  20145.0415
2 4.83e+04 1.35e+08 1678270448.7 20001.9491 1840651942.59  19126.8662
3 5436.73 9.03e+07 1787959645.8 19941.6493 1667663152.29  19653.1567
4 162115.564 451e+07 1789224333.8  19864.7403 1778997220.47  19217.8833
5 73394.876 0 1704746697.55  19423.0377
6 40031.743 2.26e+08 1721771354.47  19263.8599
Best 0 40031.748 1.6272e+09 1.9865e+0 1.6051e+09 1.9127e+04
Worst 2 257432e+8  73394.876 1.7892e+09 2.0082e+0 1.8407e+09 2.0145e+04

Then, Mulvey’s e-constraint model, the HBA algorithm, and the NSGA-II algorithm were
compared based on performance indicators (see Table 5). The findings indicated that the MID of the
HBA algorithm (0.0604) had a shorter distance than the e-constraint model (0.789) and the NSGA-II
algorithm (0.0822). In terms of performance of the indicator of computation time, Mulvey’s model
took a shorter time (0.327) to solve the problems than the NSGA-1I (203.0374) and HB (140.7682)
algorithms.

With regard to the number of Pareto solutions (NPS), Mulvey’s model (6) and the NSGA-II
algorithm showed better performance than the HBA (4). The SNS was higher in Mulvey’s model
(1.378) than the NSGA-II (0.0382) and HB (0.0457) algorithms. This finding demonstrates the more
robust performance of this indicator. Additionally, ahigher DM value was obtained for the NSGA-II
algorithm (2.3553e+08) than Mulvey’s model (2.257432¢+8) and the HBA (1.6200e+08). In general,
the mentioned comparisons indicate that the hybrid model features a suitable structure for problem-
solving in uncertain conditions, and eco-friendly companies can use this model to modify their
necessary strategies.

Model and algorithm performance indicators: Spread of non-dominated solutions (SNS), Diverty
Metric (DM), Mean Ideal Distance (MID), and Number of Pareto Solutions (NPS), are given below:
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Table 5. Performance indicators of the algorithms.

DM SNS NPS MID Time

Robust e-constraint, GAMS 2.257433e+08 1.378* 6* 0.789 0.327*
HBA 1.6200e+08 0.0457 4 0.0604* 140.7682
NSGA-I1I 2.3553e+08* 0.0382 6* 0.0822 203.0374

Note: * indicates optimal.

Finally, the following questions of the study were answered:

1) What are the parameters causing uncertainty in the mathematical model of the sustainable
supply chain? Uncertainty parameters in this model are shipping costs estimated by the neural
network and the demand and capacity reduction due to disruption.

2) What are the robust parameters in the sustainable supply chain model? The non-deterministic
demand, the capacity reduction caused by disruption in the factory, the capacity reduction
caused by disruption in the supplier, the capacity reduction caused by disruption in the
distributors, the capacity reduction caused by disruption in the recycling.

3) Under uncertain conditions, which of the parameters of the sustainable supply chain model
can be predicted using the Al approach? Parameters: shipping costs from supplier to factory,
from factory to distributor, from distributor to customer, from customer to recycling.

5. Conclusions

The present study designed a sustainable supply chain model to minimize system costs and
environmental pollutants. In the proposed two-objective model, a new hybrid approach composed of
Al, a robust optimization model, and the HBA and NSGA-1I meta-heuristic algorithms were used to
address the uncertain nature of the problem and deal with the uncertainties. The hybrid model of the
study can significantly improve the economic and environmental aspects. Additionally, the proposed
model can be an efficient tool for designing a stable and flexible supply chain network and making
related decisions. Experimental results and analysis demonstrate the effectiveness of Mulvey’s model,
the HBA, and the NSGA-II algorithm in solving optimization problems with complex and challenging
search spaces. This hybrid model proved effective in overcoming problem complexity and solving
large-scale examples with high processing quality. Heuristic solutions also demonstrated a significant
reduction in computation time for large problems. The results of the Al approach showed its
superiority over other techniques, particularly in predicting shipping cost fluctuationsin conditions
of uncertainty. The robustness-based model effectively dealtwith demand uncertainties, transportation
costs, and disruptions that reduced capacity. Even though the robust model exhibited limitations and
couldnot solve problems with larger sets the HBA and NSGA-II algorithms were used to address
these larger-scale problems. Experimental results showedthe effectiveness of the HBA and NSGA-
Il algorithms in solving NP-hardoptimization problems, surpassing other methods in convergence
speed. Theanalysis of results indicated that the presented hybrid model features a suitable structure for
problem-solving in uncertain conditions, and eco-friendly companies can use this model to modify
their necessary strategies. These results also highlight their superiority in terms of convergence speed
compared to other methods. Furthermore, the results indicate the effectiveness and capability of
implementing the presented model, leading to high-quality solutions in less processing time. This
research helps decision-makers in making quick predictions and developing appropriate strategies in
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uncertain situations. Moreover, our findings affirm that the proposed model holds great significance
in ensuring the sustainability of the supply chain. Based on sensitivity analysis, the level of
accountability greatly influences the goals of a sustainable supply chain, and managers should consider
the trade-off between accountability and their objectives. We provided practical suggestions for
improving sustainable supply chains:

. To moderate environmental pollution caused by companies, differentmeasures can be taken
which include implementing sustainable practices, adopting cleaner technologies, reducing waste
generation, recycling, treating wastewater before disposal, and adhering to ecological regulations and
standards. Additionally, companies can promote environmental awareness, engage in responsible
corporate practices, and invest in renewable energy sources to reduce their overall environmental
impact.

. To have significant impact on the world community and improve air quality, the ultimate
goal should be to reduce greenhouse gas emissions and promote sustainable practices across
industries. This can involve acombination of measures, including transitioning to renewable energy
sources, implementing stricter environmental regulations, and promoting the use of green materials
in manufacturing processes.

. By transitioning to green materials, automotive companies can reduce their carbon
footprint and minimize the negative environmental impactof plastic production and disposal. Green
materials, such as recycled plastics or bio-based alternatives, have a lower carbon footprint andcan
be more easily recycled or biodegraded. While there may be upfront costs associated with adopting
green materials, automotive companies can achieve profitability by complying with these standards
in several ways.

. Cost savings in the long run: Green materials can be more cost-effective in the long term,
as they often require less energy and resources. Additionally, using recycled materials can reduce the
need for raw material extraction.

. Market differentiation: Companies that prioritize sustainability, and utilize green materials
can pull in environmentally-conscious shoppers,driving them to make strides in deals and brand
dependability.

. Access to green markets: Some regions or countries may have specific requirements or
preferences for eco-friendly products. By complyingwith these standards, automotive companies can
gain access to these markets and expand their customer base.

Also, governments can implement stricter rules and standards on using green materials in
automotive manufacturing, which can include requirements for the percentage of recycled or bio-based
materials used in plastic parts. Governments can provide financial incentives and support to automotive
companiesthat adopt green materials in their manufacturing processes, which can offset the additional
costs associated with using environmentally friendly materials. Increasing consumer awareness and
demand for eco-friendly products can push automotive companies to prioritize green materials.
Companies are more likely to adopt sustainable practices if they see a market for such products. Further
suggestions for future research are provided:

e It is suggested that, in future research, all costs (production, inventory, warehouse, salaries,
marketing, advertising, inventory control, etc.) should be considered as uncertainty parameters in the
model, and only certain costs should not be considered.

e [t is suggested that, according to the current research model, in Al, all uncertain parameters
should be used for forecasting. This is because, in uncertain conditions, rapidly forecasting
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uncertainties will speed up problem-solving and timely strategy formulation by managers.

e [t is suggested that future researchers study several larger automobile companies that play a
prominent role in environmental pollution. This will help take better and more important steps to
minimize environmental pollution. Additionally, this supply chain sustainability problem cannot be
solved simply by studying one supplier or one company.
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