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Abstract: A co-infection with Covid-19 and dengue fever has had worse outcomes due to high
mortality rates and longer stays either in isolation or at hospitals. This poses a great threat to a country’s
economy. To effectively deal with these threats, comprehensive approaches to prevent and control
Covid-19/dengue fever co-infections are desperately needed. Thus, our focus is to formulate a new
co-infection fractional model with the Atangana-Baleanu derivative to suggest effective and feasible
approaches to restrict the spread of co-infection. In the first part of this paper, we present Covid-19 and
dengue fever sub-models, as well as the co-infection model that is locally asymptotically stable when
the respective reproduction numbers are less than unity. We establish the existence and uniqueness
results for the solutions of the co-infection model. We extend the model to include a vaccination
compartment for the Covid-19 vaccine to susceptible individuals and a treatment compartment to
treat dengue-infected individuals as optimal control strategies for disease control. We outline the
fundamental requirements for the fractional optimal control problem and illustrate the optimality
system for the co-infection model using Pontraygin’s principle. We implement the Toufik-Atangana
approximating scheme to simulate the optimality system. The simulations show the effectiveness of
the implemented strategy in determining optimal vaccination and treatment rates that decrease the cost
functional to a minimum, thus significantly decreasing the number of infected humans and vectors.
Additionally, we visualize a meaningful decrease in infection cases with an increase in the memory
index. The findings of this study will provide reasonable disease control suggestions to regions facing
Covid-19 and dengue fever co-infection.
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1. Introduction

The novel coronavirus, known as Covid-19, has spread worldwide and has caused millions of
deaths. The virus causes severe lung complications that may result in breathing difficulties; in some
cases, it can cause organ failure or even death of the infected person. The disease is very contagious
among humans and spreads through either direct or indirect bodily contact [1]. Coronavirus is usually
transmitted through inhalation, exhalation, or coughing of an infected person. Therefore, healthy
individuals are always at risk of developing coronavirus disease. The virus has not only affected
people’s lives, but has also had a significant impact on the economies of underdeveloped and developed
countries [2, 3]. The incubation period is between 2 to 14 days. People infected with coronavirus can
still spread the infection to others, even if they do not experience any symptoms after this period. The
majority of coronavirus-infected individuals may experience mild to moderate respiratory symptoms,
such as muscle aches, fever, fatigue, cough, severe headaches, diarrhea, vomiting, a runny nose, and
a sore throat. Individuals who experience any of these symptoms should immediately seek medical
attention. It has been observed that the risk of developing Covid-19 is the greatest in individuals
with co-existing conditions such as diabetes, hypertension, immune deficiency, respiratory infection,
and being aged over 60 [4]. Having a thorough understanding of the dynamics of the disease can
significantly decrease the incidence of infection in society.

Dengue fever is another considerable global public health issue. The disease is spread by Aedes
aegypti and Aedes albopictus mosquitoes, which both act as vectors. Dengue fever is caused by four
different serotypes. When a person exposed to one serotype recovers, they are immune to that specific
serotype; however, they are only partially and temporarily immune to the other three. The severity
of dengue fever varies. Throughout the entire life cycle of the dengue fever virus, the mosquito acts
as a transmitter (or vector), as well as the main source of infection. Those who contract more severe
dengue fever strains typically require hospitalization. Stopping human-vector contact or controlling
mosquito vectors are the only ways to either stop or lessen dengue virus transmission [5, 6]. The
symptoms of dengue infection include fever, rash, nausea, and aches that can last for a week. By better
comprehending the dynamics of this fatal disease better, we can lessen its impact on our society.

According to medical sources, the early symptoms of dengue fever and Covid-19 are comparable,
which is the premise underlying this co-infection modeling [7]. We aim to evaluate and predict the
transmission dynamics of both deadly viruses’ propagation to the same person. We believe that the
patient had a mild case of Covid-19 infection first, and then contracted dengue fever a week later,
while still suffering from the Covid-19 infection. Differentiating between Covid-19 and dengue fever
can be challenging since both conditions share similar clinical signs and test findings, including fever,
headache, myalgia, and exhaustion [8]. According to clinical evidence, co-infections with Covid-19
and dengue fever are linked to increased morbidity and mortality. Verduyn et al. [7] reported the first
case of a co-infection with Covid-19 and dengue fever in a French overseas territory in the Indian
Ocean. A thorough analysis of the information on a possible Covid-19 and dengue co-infection in
a single person has been published, see [9]. Co-epidemics can place a significant burden on local
populations and health systems. Since the symptoms of Covid-19 and dengue are similar, it is possible
to misdiagnose one illness as the other, which would reduce the number of co-infections between the
two diseases [10–13]. Cases of co-infection have also been documented in Pakistan. A study revealed
that patients with Covid-19 and dengue fever had a higher fatality rate than those with Covid-19
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alone [7]. Similar to this, patients with Covid-19 mono-infection display distinct biochemical and
hematological markers separate from those with co-infection. For example, those with mono-infection
did not experience severe thrombocytopenia, though those with co-infection did. Additionally, co-
infected patients have higher concentrations of urea, bilirubin, alanine aminotransferase, creatine
phosphokinase, and prothrombin.

Mathematical modeling is a tool that can be used to forecast the evolution of communicable diseases
with prevention strategies. In recent years, fractional calculus has been used to solve physical problems
that can not be resolved using integer-order differential equations. The fractional-order model is always
better for many real-world applications than the corresponding integer-order model. For example, it is
not possible to gain a better understanding of the memory effects seen in biological models [14–17] by
utilizing integer-order models. In mathematical models, fractional-order operators can be used to solve
differential equations without being limited by an order constraint. This means that fractional models
are more resourceful than classic integer-order models, and therefore provide more accurate and precise
information about complicated systems. Optimal control problems involving fractional operators are
called fractional optimal control problems. Many researchers [17–21] have defined fractional optimal
control problems to provide reasonable and effective control strategies to either eradicate or minimize
infection or addiction within the human population.

In recent years, many researchers have started to include memory effects in fractional models with
various fractional operators to improve epidemiological disease analyses [22–25]. The most common
of these are the Caputo and Riemann-Liouville operators. The basic drawback of these operators
is the singularity of the associated kernels. Since it is difficult to resolve many physical systems
using singular kernels, non-singular fractional derivatives, such as Caputo-Fabrizo (CF), have been
developed and implemented [26–29]. Despite the non-singular kernel of the CF derivative, it has no
memory effects and has an unclear function space [30]. In [31], the authors presented a novel Atangana-
Baleanu-Caputo (ABC) fractional derivative operator that made use of a Mittag-Leffler (ML) kernel
with a single parameter. The non-local and non-singular behavior of the ML function is its key feature.
This feature made the ABC operator the best choice for modeling epidemic diseases. In [32], authors
investigated the stability and existence of a unique solution of a random fractional-order system using
the global and non-singular kernel of the Atangana-Baleanu derivative in the sense of the Caputo.

Several mathematical models have been built to investigate the dynamics of Covid-19 [33–38] and
dengue fever [19, 39] and to propose methods for disease control. The authors in [40] used different
piecewise fractional differential operators to develop a comprehensive nonlinear stochastic model
with six cohorts that relied on ordinary differential equations. Their findings revealed a piecewise
numerical technique to produce simulation studies for these frameworks. In [41], a novel fractional-
order discrete difference Covid-19 model for prevalence and incidence was suggested to advance the
field of epidemiological studies. Li et al. [42] established a novel Covid-19 epidemic model to simulate
the transmission of a mutated Covid-19 strain (Delta strain) in China with a vaccinated population to
develop reasonable and effective plans to restrict the spread of Covid-19.

Meanwhile, researchers also formulated mathematical models to understand the co-dynamics of
various infectious diseases [20,43–45]. For example, the authors in [43] developed a new mathematical
model for dengue and malaria co-infection to better understand the disease dynamics and to create more
effective control strategies. However, there are not many articles in the current literature that address
Covid-19 and dengue fever co-infection. One notable example can be found in [46], which offers a
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thorough analysis of Covid-19/dengue co-infection. In this article, the authors developed and analyzed
an effective integer-order mathematical model with cost-effectiveness and an optimal control analysis
for the co-infection dynamics of Covid-19 and dengue. Various control strategies, such as treatment
controls for both Covid-19 and dengue, controls against co-infection with another disease, and controls
against incident dengue and Covid-19 infections, were taken into consideration and simulated for the
model. Nevertheless, at present, there exists no article that offers a thorough understanding, detailed
investigations, and effective control strategies for a fractional model of Covid-19/dengue fever co-
infections. To address the gap in the existing literature, we offer a more comprehensive Atangana-
Baleanu fractional model for the co-infection of Covid-19 and dengue fever to analyze the dynamics
and control of the disease under the memory effect. Another significant contribution made by this
article is the implementation of the Toufik-Atangana-type numerical scheme to simulate the state and
adjoint equations of the fractional optimal control problem for Covid-19 and dengue co-infection.

In this work, we will formulate a new co-infection model for Covid-19 and dengue fever using
the Atangana-Baleanu fractional derivative [47]. The selection of the ABC operator for the proposed
model is primarily based on its possession of a non-local and non-singular kernel. Furthermore, when
compared to other fractional operators such as Caputo and Caputo-Fabrizo, this operator demonstrates
an ability to capture higher susceptibilities while resulting in fewer infections [48]. An essential goal
in developing a fractional model for co-infection of Covid-19 and dengue fever is to explore potential
control strategies with time-dependent controls and gain insights into the disease’s progression within
a broader context. To attain our objective, we will first assess the validity of the proposed model.
This assessment will involve establishing fundamental properties of the model, including the existence
of a unique solution that is both positive and bounded, as well as conducting local and global stability
analyses at a disease-free equilibrium point. Furthermore, this article contributes to the advancement of
a fractional optimal control problem aimed at determining the optimal vaccination and treatment rates
necessary for restricting the spread of Covid-19 and dengue fever infections. The Toufik-Atangana
type numerical scheme will be implemented to evaluate the fractional optimal control problem for the
co-infection model.

The distribution of the rest of the article is as follows. The co-dynamic fractional model is
formulated in Section 2. Section 3 provides a theoretical analysis of the model. This analysis
includes the existence and uniqueness of a positive and bounded solution, and a stability analysis
at a disease-free equilibrium point with restriction to the reproduction number R0. In Section 4, a finite
difference scheme of the Toufik-Atangana type is established for the proposed model and implemented
for numerical simulations to see the effect of a fractional order on disease transformation. The model is
further updated in Section 5 with time-dependent controls to define an optimal control problem. Then,
the Toufik-Atangana numerical system is used to numerically resolve the related optimality conditions
arising from Pontryagin’s principle to determine the optimal time-dependent vaccination and treatment
rates to prevent dengue fever and Covid-19 co-infection. Additionally, Section 5 includes numerical
simulations that are performed to support theoretical results. The conclusion with future direction is
provided in Section 6.
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2. Formulation of co-infection model

In this section, we develop a fractional mathematical model of Covid-19 and dengue fever co-
infection by dividing the total population into two groups, namely the human population denoted by
Nh and the vector population (mosquitoes) denoted by Nv. The human population is categorized as
susceptible humans S h, humans exposed to Covid-19 Ehc, humans infected with Covid-19 Ihc, humans
recovered from Covid-19 Rhc, humans exposed to dengue fever Ehd, humans infected with dengue fever
Ihd, humans recovered from dengue fever Rhd, and humans infected with both Covid-19 and dengue
fever Idc. The vector population is subdivided into susceptible vectors S vd and infectious vectors Ivd.
The recruitment rate into the human population is denoted by ϕh and the recruitment rate into the vector
population is specified by ϕv.

Susceptible humans are exposed to Covid-19 at the following rate:

λc =
χhc(Ihc + Idc)

Nh
.

Equivalently, the rate at which susceptible humans are exposed to dengue is as follows:

λd =
χvdIvd

Nh
.

Moreover, susceptible mosquitoes after interacting with infectious humans are infected at the
following rate:

λdc =
χhd(Ihd + Idc)

Nh
.

The parameters χhd, χvd, and χhc represent the effective contact rates for the acquisition of dengue
fever and Covid-19. Furthermore, we made the following assumptions to build the Covid-19 and
dengue fever co-infection model:

• Dengue infections can affect people who have Covid-19 infections, and vice versa;
• Co-infected people can transmit either Covid-19 or dengue fever, but not both at the same time;
• Co-infected people can recover from either Covid-19 or dengue fever, but not both at the same

time;
• It is assumed that the transmission rates for those who are only infected and those who are co-

infected are the same.

Figure 1 illustrates the transmission dynamics of Covid-19 and dengue fever co-infection. From
Figure 1, we establish the Atangana-Baleanu fractional order model to explain the co-dynamics of
Covid-19 and dengue fever. The fractional model will allow us to observe the internal memory effects
of Covid-19 and dengue fever co-infection.
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Figure 1. A graphical representation of the co-dynamics of Covid-19 and dengue fever
model (2.1).

Thus, the Atangana-Baleanu fractional model describing transmission dynamics of the co-infection
is given as follows:

ABC
0 Dρ

t S h(t) = ϕh −

[(
χhc(Ihc + Idc)

Nh

)
+

(
χvdIvd

Nh

)]
S h + ξhdRhd + ξhcRhc − σhS h, (2.1a)

ABC
0 Dρ

t Ehc(t) =

(
χhc(Ihc + Idc)

Nh

)
S h − (αc + σh)Ehc, (2.1b)

ABC
0 Dρ

t Ihc(t) = αcEhc + βhcIdc +

(
χhc(Ihc + Idc)

Nh

)
Rhd −

(
τd

(
χvdIvd

Nh

)
+ µh2 + σh + ζhc

)
Ihc, (2.1c)

ABC
0 Dρ

t Rhc(t) = ζhcIhc −

(
ξhc +

(
χvdIvd

Nh

)
+ σh

)
Rhc, (2.1d)

ABC
0 Dρ

t Ehd(t) =

(
χvdIvd

Nh

)
S h − (αd + σh)Ehd, (2.1e)

ABC
0 Dρ

t Ihd(t) = αdEhd + βhdIdc +

(
χvdIvd

Nh

)
Rhc −

(
τc

(
χhc(Ihc + Idc)

Nh

)
+ µh1 + σh + ζhd

)
Ihd, (2.1f)

ABC
0 Dρ

t Rhd(t) = ζhdIhd −

(
ξhd +

(
χhc(Ihc + Idc)

Nh

)
+ σh

)
Rhd, (2.1g)

ABC
0 Dρ

t Idc(t) = τd

(
χvdIvd

Nh

)
Ihc + τc

(
χhc(Ihc + Idc)

Nh

)
Ihd − (βhc + βhd + σh + µh1 + µh2)Idc, (2.1h)

ABC
0 Dρ

t S vd(t) = ϕv −

(
χhd(Ihd + Idc)

Nh

)
S vd − σvS vd, (2.1i)

AIMS Mathematics Volume 9, Issue 3, 5171–5203.



5177

ABC
0 Dρ

t Ivd(t) =

(
χhd(Ihd + Idc)

Nh

)
S vd − σvIvd, (2.1j)

along with the initial conditions:

S h(0) > 0, Ehc(0) ≥ 0, Ihc(0) ≥ 0, Rhc(0) ≥ 0 Ehd(0) ≥ 0,
Ihd(0) ≥ 0, Rhd(0) ≥ 0, Idc(0) ≥ 0, S vd(0) > 0, Ivd(0) ≥ 0,

where the description of parameters with their corresponding numerical values are provided in Table 1,
and the Atangana-Baleanu derivative in the Caputo sense is defined as follows.

Definition 2.1. The Atangana-Baleanu fractional derivative of a differentiable function h(t), i.e., h :
[a, b]→ R of order ρ where ρ ∈ (0, 1), b > a, is denoted by ABC

a Dρh(t), where h ∈ H1(a, b) is defined as
follows:

ABC
a Dρh(t) =

M(ρ)
(1 − ρ)

t∫
a

h′(τ)Eρ

[
−

ρ

1 − ρ
(t − τ)ρ

]
dτ,

where M(ρ) represents the normalization function satisfying M(0)=M(1)=1. Eρ is known as the Mittag-
Leffler(ML) function, which is defined as follows:

Eρ(z) =

∞∑
n=0

(z)n

Γ(ρn + 1)
.

The compact form of the model (2.1) is stated as follows:

ABC
0 Dρ

tY(t) = φ(t,Y(t)), Y(0) = Y0 ≥ 0. (2.2)

Since the given system is autonomous, it can be expressed as follows:

ABC
0 Dρ

tY(t) = φ(Y(t)), Y(0) = Y0, (2.3)

where

Y(t) =
(
S h(t), Ehc(t), Ihc(t),Rhc(t), Ehd(t), Ihd(t),Rhd(t), Idc(t), S vd(t), Ivd(t)

)T
∈ R10,

represents state variables and

Y0 =
(
S h(0), Ehc(0), Ihc(0),Rhc(0), Ehd(0), Ihd(0),Rhd(0), Idc(0), S vd(0), Ivd(0)

)T
,

is the initial vector.
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Table 1. Description of model parameters with values.

Parameter Description Values Source
ϕh Recruitment rate of human population 7674.7 [46]
ϕv Recruitment rate of vector population 20, 000 [46]
χhc Contact rate of S to Ihc and Idc for Covid-19

transmission to human
0.1958 [46]

χhd Contact rate of S v to Ihd and Idc for dengue fever
transmission to vector

0.26 [46]

χvd Contact rate of S to Ivd for dengue transmission to
human

0.015 assumed

σh Natural death rate of human population 3.611 × 10−5 [46]
σv Natural death rate of vector population 0.026 assumed
αc Rate of exposed people to become infectious with

Covid-19
0.2 assumed

αd Rate of exposed people to become infectious with
dengue fever

0.13 assumed

µh1 Death rate of infected humans due to dengue fever 0.001 [46]
µh2 Death rate infected humans due to Covid-19 0.006 [46]
µh3 Death rate of humans under treatment due to

dengue fever
0.01 assumed

ζhc Covid-19 recovery rate 0.08835 [46]
ζhd Dengue fever recovery rate 0.1835 [46]
ξhc Loss of infection-acquired Covid-19 immunity 4.312 × 10−7 [46]
ξhd Loss of infection-acquired dengue fever immunity 0.00026 assumed
βhc Rate of becoming recovered from dengue but

infected with Covid-19
0.1835 assumed

βhd Rate of becoming recovered from Covid-19 but
infected with dengue fever

0.15 assumed

δ1 Rate of being vaccinated with Covid-19 vaccine 0.1 assumed
δ2 Rate of being treated in hospital for dengue fever 0.03 [34]
κhd Rate of becoming recovered from dengue fever

after getting treatment from hospital
0.02 [34]

γhc Rate of becoming recovered from Covid-19 after
being vaccinated

0.1 assumed

3. Theoretical analysis

In the first part of this section, we examine the dynamics of the two sub-models: the Covid-19
sub-model and the dengue fever sub-model. In the second part of this section, the local and global
stabilities of the complete co-infected fractional model (2.1) are theoretically discussed at a disease-
free equilibrium point.
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3.1. Covid-19 sub-model and analysis

First, we consider the Covid-19 sub-model by considering the dengue-associated state variables and
the vector-associated variables as zero in (2.1), i.e., we take Ehd = Ihd = Rhd = Idc = S vd = Ivd = 0
in (2.1) to obtain the following:

ABC
0 Dρ

t S h(t) = ϕh −

(
χhcIhc

Nh

)
S h − σhS h + ξhcRhc, (3.1a)

ABC
0 Dρ

t Ehc(t) =

(
χhcIhc

Nh

)
S h − (αc + σh)Ehc, (3.1b)

ABC
0 Dρ

t Ihc(t) = αcEhc − (ζhc + µh2 + σh)Ihc, (3.1c)
ABC
0 Dρ

t Rhc(t) = ζhcIhc − (ξhc + σh)Rhc, (3.1d)

with

S h(0) > 0, Ehc(0) ≥ 0, Ihc(0) ≥ 0, Rhc(0) ≥ 0, (3.1e)

where the total population for this sub-model is given as follows:

Nh = S h + Ehc + Ihc + Rhc. (3.2)

Differentiating equation (3.2) with respect to time t and then using equations of sub-model (3.1),
we obtain the following:

ABC
0 Dρ

t Nh(t) = ϕh − σhS h − σhEhc − µh2 Ihc − σhIhc − σhRhc ≤ ϕh − σhNh. (3.3)

Using Birkhoff and Rota’s theorem [49], the differential inequality (3.3) gives us 0 < Nh(t) ≤ ϕh
σh

as
t → ∞.

Thus, the feasible region for sub-model (3.1) can be defined as follows:

Ψhc = {(S h, Ehc, Ihc,Rhc) ∈ R4
+ : Nh(t) ≤

ϕh

σh
},

which is positively invariant [37, 47].
If we put ABC

0 Dα
t S h =ABC

0 Dρ
t Ehc =ABC

0 Dρ
t Ihc =ABC

0 Dρ
t Rhc = 0, the disease-free equilibrium point of

the Covid-19-only fractional model (3.1) is computed to give the following:

P∗c = (S ∗h, E
∗
hc, I

∗
hc,R

∗
hc) =

(ϕh

σh
, 0, 0, 0

)
.

Next, we use the next-generation method [50] to compute the reproduction number Roc for the
Covid-19 sub-model (3.1). The column matrix of the rate of appearance of new infections, denoted by
Fa, and the column matrix of transitional terms, denoted by Va, is presented as follows:

Fa =


(
χhcIhc

Nh

)
S h

0

 , Va =


(αc + σh)Ehc

−αcEhc + (ζhc + µh2 + σh)Ihc

 .
AIMS Mathematics Volume 9, Issue 3, 5171–5203.



5180

The Jacobian of matrices Fa and Vb at point P∗c are represented as follows:

Fa =


0 0

0 χ1

 , Va =


K1 0

−γ2 K2

 .
Then, we compute the spectral radius of the matrix FaV

−1
a to obtain the following reproduction

number:

Roc =
χ1γ2

K1K2
,

where γ2 = αc, χ1 = χhc, K1 = αc + σh, K2 = ζhc + µh2 + σh.

Theorem 3.1. The disease-free equilibrium P∗c of the Covid-19 sub-model is locally asymptotically
stable if Roc < 1 and it is unstable when Roc > 1.

Proof. The Jacobian for the system (3.1) at P∗c is as follows:

J(P∗c) =



−σh 0 −χ1 ξhc

0 K1 χ1 0

0 αc −K2 0

0 0 ζhc −K3


,

where K3 = ξhc+σh. Eigenvalues of the Jacobian matrix are computed to give the following: λ1 = −σh,
λ2 = −K3, λ3 = −K1, λ4 = −K2(1−Roc). Here, λ4 is negative if Roc < 1. Thus, the Covid-19 sub-model
is locally asymptotically stable if Roc < 1 and unstable when Roc > 1. �

3.2. Dengue fever sub-model and analysis

Now, we set Ehc, Ihc, Rhc, Idc equal to zero in (2.1) to write the following equations of the dengue
fever sub-model:

ABC
0 Dρ

t S h(t) = ϕh −

(
χvdIvd

Nh

)
S h − σhS h + ξhdRhd, (3.4a)

ABC
0 Dρ

t Ehd(t) =

(
χvdIvd

Nh

)
S h − (αd + σh)Ehd, (3.4b)

ABC
0 Dρ

t Ihd(t) = αdEhd − (ζhd + µh1 + σh)Ihd, (3.4c)
ABC
0 Dρ

t Rhd(t) = ζhdIhd − (ξhd + σh)Rhd, (3.4d)

ABC
0 Dρ

t S vd(t) = ϕv −

(
χhdIhd

Nh

)
S vd − σvS vd, (3.4e)

ABC
0 Dρ

t Ivd(t) =

(
χhdIhd

Nh

)
S vd − σvIvd, (3.4f)

with

S h(0) > 0, Ehd(0) ≥ 0, Ihd(0) ≥ 0, Rhd(0) ≥ 0, S vd(0) > 0, Ivd(0) ≥ 0, (3.4g)
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where the total human population in this case will be as follows:

Nh = S h + Ehd + Ihd + Rhd, (3.5)

and the total vector population is given as follows:

Nv = S vd + Ivd. (3.6)

By differentiation equation (3.5) and then using Eq (3.4a) to (3.4d), we obtain the following
inequality:

ABC
0 Dρ

t Nh(t) ≤ ϕh − σhNh.

Similarly, by differentiating equation (3.6) with respect to time and then using Eq (3.4e) and (3.4f),
we obtain the following inequality:

ABC
0 Dρ

t Nv(t) ≤ ϕv − σvNv.

Then, the feasible invariant region for the dengue sub-model is defined as follows:

Ψd =

{
(S h, Ehd, Ihd,Rhd, S vd, Ivd) ∈ R6

+ : Nh(t) ≤
ϕh

σh
; Nv(t) ≤

ϕv

σv

}
.

Thus, solutions of the dengue sub-model (3.4) will enter the region Ψd, which is a positively
invariant region.

If we put ABC
0 Dα

t S h =ABC
0 Dρ

t Ehd =ABC
0 Dρ

t Ihd =ABC
0 Dρ

t Rhd =ABC
0 Dρ

t S vd =ABC
0 Dρ

t Ivd = 0 in (3.4), we
obtain the following disease-free equilibrium point for the dengue sub-model:

P∗d = (S ∗h, E
∗
hd, I

∗
hd,R

∗
hd, S

∗
vd, I

∗
vd) =

(ϕh

σh
, 0, 0, 0,

ϕv

σv
, 0

)
.

Next, we compute the reproduction number Rod for the dengue sub-model (3.4). The matrix of the
rate of occurrence of new infections and the column matrix of transitional terms, denoted by Fb and
Vb, respectively, are given as follows:

Fb =



(χvd Ivd
Nh

)
S h

0(χhd Ivd
Nh

)
S vd


, Vb =


(αd + σh)Ehc

−αdEhc + (ζhd + µh1 + σh)Ihc

σvIvd


.

The Jacobian of matrices Fb and Vb at point P∗d are respectively given as follows:

Fb =


0 0 χ3

0 0 0

0 χ2 0


, Vb =


K4 0 0

−γ4 K5 0

0 0 K8


.

Then,

Rod = ρ
(
FbV

−1
b

)
=
χ2γ4

K4K5
,

where K4 = αd + σh, K5 = ζhd + µh1 + σh, K8 = σv, χ2 = χhd, χ3 = χvd, γ4 = αd.
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Theorem 3.2. The disease free equilibrium P∗d of dengue fever is locally asymptotically stable if Rod <

1 and it is unstable when Rod > 1.

Proof. The Jacobian for system (3.4) at P∗d is as follows:

J(P∗d) =



−α 0 0 β2 0 −χ3

0 −K4 0 0 0 χ3

0 γ4 −K5 0 0 0

0 0 γ5 −K6 0 0

0 0 −χ2 0 −K8 0

0 0 χ2 0 0 −K8



,

where K6 = ξhd + σh, γ5 = ζhd, β2 = ξhd, α = σh.

The eigenvalues of this Jacobian matrix are computed to give the following: λ1 = −K8, λ2 = −K5,
λ3 = −K4, λ5 = −α, λ6 = −K6, and

λ4 = −
K4K5K8 − χ2χ3γ4

K4K5
= −K8(1 − Rod

χ3

K8
).

All of the above eigenvalues are negative provided that Rod < 1. Thus, the dengue fever sub-model
is locally asymptotically stable if Rod < 1. The frequency of dengue fever approaches an endemic
equilibrium when Rod > 1. �

3.3. Co-infection model and analysis

In this section, we first prove that the Covid-19 and dengue co-infection model (2.1) has a unique
solution. Second, we establish results for the local stability of the disease-free equilibrium point.

3.3.1. Existence and uniqueness of solutions

To establish the existence and uniqueness of solutions of the co-infected model (2.1), we consider
its compact form as given in (2.2), i.e.,

ABC
0 Dρ

tY(t) = φ(t,Y(t)), Y(0) = Y0 ≥ 0.

where φ denotes a continuous vector that satisfies the Lipschitz condition as follows:

‖φ(t,Y1(t) − φ(t,Y2(t))‖ ≤ N‖Y1(t) − Y2(t)‖, (3.7)

whereN > 0 is constant. We follow the steps of the proof of Theorem 3.4 described in [45] to establish
the existence of a unique solution of (2.2).
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Theorem 3.3. If the Lipschitz condition (3.7) and the inequality( (1 − ρ)N
Bρ

+
ρN

BρΓ(ρ + 1)
T ρ

max

)
< 1. (3.8)

are satisfied, then there exists a unique solution to the initial value problem (2.2) for t ∈ [0,T ] in
C1 ∈ ([0,T ],D).

Proof. The application of the Atangana-Balneau fractional integral on both sides of (2.2) will give us
the following:

Y(t) = Y0 +
(1 − ρ)
Bρ

φ(t,Y(t)) +
ρ

(Bρ)Γ(ρ)

t∫
0

(t − τ)ρ−1φ(τ,Y(τ))dτ. (3.9)

We define the operator Q : C(M,R10)→ C(M,R10) by the following:

Q[Y(t)] = Y0 +
(1 − ρ)
Bρ

φ(t,Y(t)) +
ρ

(Bρ)Γ(ρ)

t∫
0

(t − τ)ρ−1φ(τ,Y(τ))dτ,

whereM = (0,N). Then, (3.9) can be re-written as follows:

Y(t) = Q[Y(t)].

We define the supremum norm onM as follows:

‖Y(t)‖M =
sup
t∈M ‖Y(t)‖.

It is obvious that the space C(M,R10) together with the norm ‖.‖M is a Banach space.
Let Y(t) ∈ C(M,R10) and Z(t, τ) ∈ C(M2,R) with |Z(t, τ)|M =

sup
t,τ∈M |Z(t, τ)|; then, the following

inequality holds:

∥∥∥∥∥
t∫

0

Z(t, τ)Y(τ)dτ
∥∥∥∥∥ ≤ N‖Z(t, τ)‖M‖Y(t, τ)‖M.

Consider the following:

‖Q[Y1(t)] − Q[Y2(t)]‖M =

∥∥∥∥∥1 − ρ
Bρ

(φ(t,Y1(t)) − φ(t,Y2(t)))

+
ρ

Bρ Γ(ρ)

t∫
0

(t − τ)ρ−1(φ(τ,Y1(τ)) − φ(τ,Y2(τ)))dτ
∥∥∥∥∥
M

≤
1 − ρ
Bρ
N‖Y1(t) − Y2(t)‖M +

ρN

Bρ Γ(ρ)

t∫
0

(t − τ)ρ−1‖Y1(t) − Y2(t)‖Mdτ,

≤
1 − ρ
Bρ
N sup
Y∈[0,T ]

‖Y1(t) − Y2(t)‖
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+
ρN

Bρ Γ(ρ)


t∫

0

(t − τ)ρ−1dτ

 sup
Y∈[0,T ]

‖Y1(τ) − Y2(τ)‖

≤

(1 − ρ
Bρ
N +

ρN

Bρ Γ(ρ + 1)
T ρ

max

)
‖Y1(t) − Y2(t)‖M.

Thus,

‖Q[Y1(t)] − Q[Y2(t)]‖M ≤ ‖Y1(t) − Y2(t)‖M,

provided condition (3.8) holds. Thus, the operator Q becomes a contraction, and hence Q has a unique
fixed point, which is the solution to the initial value problem (2.2). �

3.3.2. Positively invariant region

The total number of the human population for the complete model (2.1) is as follows:

Nh = S h + Ehc + Ihc + Rhc + Ehd + Ihd + Rhd + Idc, (3.10)

whereas the total number of the vector population is given as follows:

Nv = S vd + Ivd. (3.11)

From Eq (3.10), we have the following:

ABC
0 Dρ

t Nh(t) =ABC
0 Dρ

t S h +ABC
0 Dρ

t Ehc +ABC
0 Dρ

t Ihc +ABC
0 Dρ

t Rhc

+ABC
0 Dρ

t Ehd +ABC
0 Dρ

t Ihd +ABC
0 Dρ

t Rhd +ABC
0 Dρ

t Idc.

Now, we incorporate equations of model (2.1) and simplify the resulting equation to obtain the
following inequality:

ABC
0 Dρ

t Nh(t) ≤ ϕh − σhNh.

Similarly, from Eq (3.11), we obtain the following inequality:

ABC
0 Dρ

t Nv(t) ≤ ϕv − σvNv.

Thus, the feasible region for the co-infection model (2.1) is defined as follows:

Ψhv = Ψh × Ψv,

where

Ψh =
{
(S h, Ehc, Ihc,Rhc, Ehd, Ihd,Rhd, Idc) ∈ R8

+ : Nh(t) ≤
ϕh

σh

}
,

and

Ψv =
{
(S vd, Ivd) ∈ R2

+ : Nv(t) ≤
ϕv

σv

}
.

Following the procedure given in [43, 51], it can be proven that the solutions of the co-infection
model (2.1) with non-negative initial conditions belong to the feasible region Ψhv for all t ≥ 0. Thus,
the region Ψhv is a positively invariant region.
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3.3.3. Local stability analysis

We take the infected states Ihc, Ihd, Idc, and Ivd equal to zero and solve the steady state equation of
the co-infection model (2.1) to obtain the following disease-free equilibrium (DFE) point:

P∗ = (S ∗h, E
∗
hc, I

∗
hc,R

∗
hc, E

∗
hd, I

∗
hd,R

∗
hd, I

∗
dc, S

∗
vd, I

∗
vd) =

(ϕh

σh
, 0, 0, 0, 0, 0, 0, 0,

ϕv

σv
, 0

)
.

Here, we used the next-generation matrix approach to determine the relation for the reproduction
number Rodc . The matrix of the appearance of new infections and the column matrix of transitional
terms in the compartments Ehc, Ihc, Ehd, Ihd, Idc, and Ivd are denoted by Fc and Vc, respectively. These
matrices are given as follows:

Fc =



(χhc(Ihc+Idc)
Nh

)
S h

0(χvd Ivd
Nh

)
S h

0

0

(χhd(Ihd+Idc)
Nh

)
S vd



, Vc =



(αc + σh)Ehc

−αcEhc + (ζhc + µh2 + σh)Ihc

(αd + σh)Ehd

−αdEhd + (ζhd + µh1 + σh)Ihd

(βhc + βhd + σh + µh1 + µh2)Idc

σvIvd



.

The Jacobian of the matrices Fc and Vc at DFE point P∗ are computed to give the following matrices:

Fc =



0 χ1 0 0 χ1 0

0 0 0 0 0 0

0 0 0 0 0 χ3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 χ2 χ2 0



, Vc =



K1 0 0 0 0 0

−γ2 K2 0 0 −γ1 0

0 0 K4 0 0 0

0 0 −γ4 K5 −γ6 0

0 0 0 0 K7 0

0 0 0 0 0 K8



.

Then, the spectral radius of the product matrix FcV
−1
c is computed to give the reproduction number

Rodc , i.e.,

Rodc = ρ
(
FcV

−1
c

)
=

αcχhc

(αc + σh)(ζhc + µh2 + σh)
.

Theorem 3.4. The disease free equilibrium P∗ of model (2.1) is locally asymptotically stable ifRodc < 1
and it is unstable when Rodc > 1.
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Proof. The Jacobian of model (2.1) at P∗ is computed to give the following matrix:

J(P∗) =



−α 0 −χ1 β1 0 0 β2 −χ1 0 −χ3

0 −K1 χ1 0 0 0 0 χ1 0 0

0 γ2 −K2 0 0 0 0 γ1 0 0

0 0 γ3 −K3 0 0 0 0 0 0

0 0 0 0 −K4 0 0 0 0 χ3

0 0 0 0 γ4 −K5 0 γ6 0 0

0 0 0 0 0 γ5 −K6 0 0 0

0 0 0 0 0 0 0 −K7 0 0

0 0 0 0 0 −χ2 0 −χ2 −K8 0

0 0 0 0 0 χ2 0 χ2 0 −K8



,

where K1 = αc + σh, K2 = ζhc + µh2 + σh, K3 = ξhc + σh, K4 = αd + σh, K5 = ζhd + µh1 + σh, K6 =

ξhd + σh, K7 = βhc + βhd + µh1 + µh2 + σh, K8 = σv, χ1 = χhc, χ2 = χhd, χ3 = χvd, γ1 = βhc, γ2 =

αc, γ3 = ζhc, γ4 = αd, γ5 = ζhd, γ6 = βhd, β1 = ξhc, β2 = ξhd, α = σh.

The characteristic equation corresponding to the Jacobian matrix is given as follows:

(K3 + λ)(K6 + λ)(K7 + λ)(K8 + λ)(α + λ)[(K1 + λ)(K2 + λ) − γ2χ1]
[(λ + K4)(λ + K5)(λ + K8) − γ4χ2χ3] = 0. (3.12)

From Eq (3.12), we obtain some of the eigenvalues directly as follows: λ1 = −α, λ2 = −K3,
λ3 = −K6, λ4 = −K7, λ5 = −K8. Additionally, the characteristic equation (3.12) gives us the following
two polynomials in λ, i.e.:

λ2 + (K1 + K2)λ + K1K2[1 − Rodc] = 0, (3.13)
λ3 + A1λ

2 + A2λ + A3 = 0, (3.14)

where A1 = K4 + K5 + K8, A2 = K4K5 + K4K8 + K5K8, A3 = K4K5K8 − γ4χ2χ3.
Since all coefficients of Eq (3.13) are positive provided that Rodc < 1, by the Routh Hurwitz criterion,

the real part of all corresponding eigenvalues are negative. It is obvious that coefficients A1, A2, and
A3 of Eq (3.14) are positive; additionally, it can be shown that A1A2 > A3. Therefore, by the Routh
Hurwitz criterion, the real part of the roots of Eq (3.14) are negative. Thus, the co-infection model (2.1)
is locally asymptotically stable if Rodc < 1. �
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3.3.4. Global stability analysis

Theorem 3.5. The disease-free equilibrium point P∗ of the co-infection model (2.1) is globally
asymptotically stable in the region Ψhv when Rodc < 1.

Proof. We construct a candidate Lyapunov function G0 : Ψhv → R [19, 34] at P∗ such that

G0(S h, Ehc, Ihc,Rhc, Ehd, Ihd,Rhd, Idc, S vd, Ivd) =

(
S h − S ∗h − S ∗h ln

S h

S ∗h

)
+ Ehc + Ihc

+ Rhc + Ehd + Ihd + Rhd + Idc + S vd + Ivd,

We apply the Atangana-Baleanu fractional derivative to obtain the following:

ABC
0 Dρ

t G0 ≤
(
1 −

S ∗h
S h

)
ABC
0 Dρ

t S h +ABC
0 Dρ

t Ehc +ABC
0 Dρ

t Ihc +ABC
0 Dρ

t Rhc

+ABC
0 Dρ

t Ehd +ABC
0 Dρ

t Ihd +ABC
0 Dρ

t Rhd +ABC
0 Dρ

t Idc +ABC
0 Dρ

t S vd +ABC
0 Dρ

t Ivd.

We use equations of system (2.1) to replace the fractional derivatives in the above expression:

ABC
0 Dρ

t G0 ≤
(
1 −

S ∗h
S h

)[
ϕh −

[(
χhc(Ihc + Idc)

Nh

)
+

(
χvdIvd

Nh

)]
S h + ξhdRhd + ξhcRhc − σhS h

]
+

[(χhc(Ihc + Idc)
Nh

)
S h − (αc + σh)Ehc

]
+

[
αcEhc + βhcIdc +

(
χhc(Ihc + Idc)

Nh

)
Rhd −

(
τd

(
χvdIvd

Nh

)
+ µh2 + σh + ζhc

)
Ihc

]
+

[
ζhcIhc −

(
ξhc +

(
χvdIvd

Nh

)
+ σh

)
Rhc

]
+

[(χvdIvd

Nh

)
S h − (αd + σh)Ehd

]
+

[
αdEhd + βhdIdc +

(
χvdIvd

Nh

)
Rhc −

(
τc

(
χhc(Ihc + Idc)

Nh

)
+ µh1 + σh + ζhd

)
Ihd

]
+

[
ζhdIhd −

(
ξhd +

(
χhc(Ihc + Idc)

Nh

)
+ σh

)
Rhd

]
+

[
τd

(
χvdIvd

Nh

)
Ihc + τc

(
χhc(Ihc + Idc)

Nh

)
Ihd − (βhc + βhd + σh + µh1 + µh2)Idc

]
+

[
ϕv −

(
χhd(Ihd + Idc)

Nh

)
S vd − σvS vd

]
+

[(χhd(Ihd + Idc)
Nh

)
S vd − σvIvd

]
.

After re-arranging terms, we obtain the following:

ABC
0 Dρ

t G0 ≤(ϕh − σhS h) −
S ∗h
S h

(ϕh − σhS h) +
[χhc(Ihc + Idc)

Nh
+
χvdIvd

Nh

]
S ∗h

− (ξhcRhc + ξhdRhd)
S ∗h
S h
− σh(S h + Ehc + Ihc + Rhc + Ehd + Ihd + Rhd + Idc)

− µh1 Ihd − µh2 Ihc − (µh1 + µh2)Idc + ϕv − σv(S vd + Ivd).
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Since
(
(χhc(Ihc+Idc)

Nh
) + (χvd Ivd

Nh
)
)
S ∗h ≥ 0, the above expression can be written as follows:

ABC
0 Dρ

t G0 ≤ −
σh

S h
(S h − S ∗h)2 − (ξhdRhd + ξhcRhc)

S ∗h
S h

− σh(S h + Ehc + Ihc + Rhc + Ehd + Ihd + Rhd + Idc)
− µh1 Ihd − µh2 Ihc − (µh1 + µh2)Idc − σv(S vd − S ∗vd) − σvIvd.

This implies that ABC
0 Dρ

t G0 ≤ 0. Additionally, we observe that ABC
0 Dρ

t G0 = 0 if and only if S h = S ∗h,
Ehc = E∗hc, Ihc = I∗hc, Rhc = R∗hc, Ehd = E∗hd, Ihd = I∗hd, Rhd = R∗hd, Idc = I∗dc, S vd = S ∗vd, Ivd = I∗vd. Hence,
by LaSalle’s invariance principle [34, 46], the DFE point P∗ is globally asymptotically stable in the
region Ψhv. �

The global stability at a disease-free point means that the disease will not persist in the population
if a disturbance of any size is introduced into the population.

4. Numerical discretization and implementation

This section briefly describes the development of a Toufik-Atangana type numerical scheme [52] to
approximate the fractional differential equation of type (2.2). We implement this scheme to discretize
each equation of the co-infection model (2.1) and simulate the resulting equations for different values
of the fractional order ρ to study its impact on the disease dynamics.

We employ the fundamental theorem of fractional calculus to model (2.2) to obtain the following:

Y(t) − Y(0) =
1 − ρ
M(ρ)

φ(t,Y(t)) +
ρ

M(ρ)Γ(ρ)

∫ t

0
(t − θ)ρ−1φ(θ,Y(θ))dθ.

In a discrete form, we have the following:

Y(tq+1) − Y(0) =
1 − ρ
M(ρ)

φ(tq,Y(tq)) +
ρ

M(ρ)Γ(ρ)

∫ tq+1

0
(tq+1 − θ)ρ−1φ(θ,Y(θ))dθ.

Correspondingly,

Y(tq+1) = Y(0) +
1 − ρ
M(ρ)

φ(tq,Y(tq)) +
ρ

M(ρ)Γ(ρ)

q∑
p=0

∫ tp+1

tp

(tq+1 − θ)ρ−1φ(θ,Y(θ))dθ. (4.1)

Using interpolation of the function φ(θ,Y(θ)) over [tp, tp+1], we have the following:

Y(tq+1) =Y(0) +
1 − ρ
M(ρ)

φ(tq,Y(tq)) +
ρ

M(ρ)Γ(ρ)

q∑
p=0

[φ(tp,Y(tp))
h

∫ tp+1

tp

(tq+1 − t)ρ−1(t − tp−1)dt

−
φ(tp−1,Y(tp−1))

h

∫ tp+1

tp

(tq+1 − t)ρ−1(t − tp)dt
]
,

which can be reduced to the following discrete form:

Y(tq+1) =Y(t0) +
1 − ρ
M(ρ)

φ(tq,Y(tq)) +
ρ

M(ρ)

q∑
p=0

[hρφ(tp,Y(tp))
Γ(ρ + 2)

{
(q − p + 2 + ρ)(q + 1 − p)ρ
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− (q − p + 2 + 2ρ)(q − p)ρ
}

(4.2)

−
hρφ(tp−1,Y(tp−1))

Γ(ρ + 2)

{
(q + 1 − p)ρ+1 − (q − p + 1 + ρ)(q − p)ρ

}]
, (4.3)

where we have subdivided the time domain [0, T f ] into N subintervals, each of length h =
T f

N
> 0

with tq = qh, q = 0, 1, . . .N. Equations of model (2.1) will be discretized similarly to (4.2).

4.1. Fractional order effect on disease dynamics

To explore the impact of memory on the disease dynamics, we conducted simulations using
continuous equations represented by model (2.1) with the discretization strategy outlined in type (4.2).
The simulations for state variables were carried out for ρ = 0.7, 0.8, 0.9, 1.0, as shown in Figure 2.
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Figure 2. Dynamical behaviour of the co-infection model (2.1) for various values of
fractional order ρ. The infected and infectious population decreases with an increase in the
value of fractional order.
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We observe an evident decrease in each of the infectious human populations as the fractional order
ρ increases. Interestingly, the population infected with Covid-19 initially rises in the early days of
the disease outbreak and subsequently declines steadily as ρ increases. For ρ = 1, all three infected
human populations move to a disease-free state. Additionally, we notice a decrease in individuals
exposed to Covid-19 and dengue fever with an increasing value of fractional order ρ. Ultimately,
these populations also reach a disease-free state for ρ = 1. This suggests that an increased focus on
the past states and interactions within the model has a significant effect on mitigating the spread of
infectious diseases among the human population. Moreover, the figure shows a gradual increase in
humans recovered from Covid-19 and dengue fever with increasing values of the fractional order ρ.
Additionally, the impact of the fractional order on the vector population is observed in this figure. We
notice a decrease in the infectious vector population as the fractional order increases. The findings
of this analysis emphasize the possibility of including memory effects in epidemic models for more
precise forecasts and successful methods in disease prevention and control.

5. Optimization of co-infection model

In this section, we formulate an optimal control problem to suggest the best vaccination and
treatment rates for restricting the spread of Covid-19 and dengue co-infection. To do this, we first
update the disease model (2.1) to adjust vaccination and treatment compartments, thus resulting
in a system of new coupled fractional order differential equations. We consider the vaccination
and treatment rates as control variables and define an objective functional. We will introduce
adjoint variables to formulate the Hamiltonian function for developing optimality conditions using
Pontryagin’s principle [53–55]. The optimality conditions will be numerically solved for optimal
solutions.

5.1. Optimal control problem and optimality conditions

For optimization, we update the co-infection model (2.1) to adjust the vaccination and treatment
compartments, see Figure 3 for a flow diagram of the updated model. We assume that the susceptible
humans are vaccinated for Covid-19 at the rate δ1 and may get infected with either dengue fever or
Covid-19 after interacting with infectious humans or vectors. Vaccinated individuals may recover at
the rate γhc and may die naturally at the rate σh. Additionally, we suppose that the dengue-infected
humans are treated at hospitals or homes at the rate δ2 and move to the recovered class at the rate κhd.
The humans under treatment may either die naturally or due to the disease at the rates σh or µh3 . Thus,
as shown in Figure 3, the updated co-infection model describing the flow of disease is mathematically
described as follows:

ABC
0 Dρ

t S h(t) = ϕh −

[(
χhc(Ihc + Idc)

Nh

)
+

(
χvdIvd

Nh

)]
S h + ξhdRhd + ξhcRhc −

(
σh + δ1

)
S h, (5.1a)

ABC
0 Dρ

t Vhc(t) = δ1S h −

[(
χhc(Ihc + Idc)

Nh

)
+

(
χvdIvd

Nh

)]
Vhc − (γhc + σh)Vhc, (5.1b)

ABC
0 Dρ

t Ehc(t) =

(
χhc(Ihc + Idc)

Nh

)
(S h + Vhc) − (αc + σh)Ehc, (5.1c)

ABC
0 Dρ

t Ihc(t) = αcEhc + βhcIdc +

(
χhc(Ihc + Idc)

Nh

)
Rhd −

(
τd

(
χvdIvd

Nh

)
+ µh2 + σh + ζhc

)
Ihc, (5.1d)
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ABC
0 Dρ

t Rhc(t) = ζhcIhc + γhcVhc −

(
ξhc +

(
χvdIvd

Nh

)
+ σh

)
Rhc, (5.1e)

ABC
0 Dρ

t Ehd(t) =

(
χvdIvd

Nh

)
(S h + Vhc) − (αd + σh)Ehd, (5.1f)

ABC
0 Dρ

t Ihd(t) = αdEhd + βhdIdc +

(
χvdIvd

Nh

)
Rhc −

(
δ2 + τc

(
χhc(Ihc + Idc)

Nh

)
+ µh1 + σh + ζhd

)
Ihd, (5.1g)

ABC
0 Dρ

t Thd(t) = δ2Ihd − (µh3 + σh + κhd)Thd, (5.1h)

ABC
0 Dρ

t Rhd(t) = ζhdIhd + κhdThd −

(
ξhd +

(
χhc(Ihc + Idc)

Nh

)
+ σh

)
Rhd, (5.1i)

ABC
0 Dρ

t Idc(t) = τd

(
χvdIvd

Nh

)
Ihc + τc

(
χhc(Ihc + Idc)

Nh

)
Ihd − (βhc + βhd + σh + µh1 + µh2)Idc, (5.1j)

ABC
0 Dρ

t S vd(t) = ϕv −

(
χhd(Ihd + Idc)

Nh

)
S vd − σvS vd, (5.1k)

ABC
0 Dρ

t Ivd(t) =

(
χhd(Ihd + Idc)

Nh

)
S vd − σvIvd, (5.1l)

with the following initial conditions:

S h(0) > 0, Vhc(0) ≥ 0, Ehc(0) ≥ 0, Ihc(0) ≥ 0, Rhc(0) ≥ 0 Ehd(0) ≥ 0,
Ihd(0) ≥ 0, Thd(0) ≥ 0, Rhd(0) ≥ 0, Idc(0) ≥ 0, S vd(0) > 0, Ivd(0) ≥ 0.

(5.1m)
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Figure 3. Flow diagram of updated co-infection model with vaccination and treatment
compartments.
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For the sake of the optimization process, we replace the constant vaccination rate δ1 and the
treatment rate δ2 in the updated model (5.1) with time-dependent functions u1(t) and u2(t), and declare
them as control variables for the process.

To define a control problem, we consider the following cost functional:

J(Ihc, Ihd, Idc, Ivd, u1, u2) =

T f∫
0

[
b1Ihc(t) + b2Ihd(t) + b3Idc(t) + b4Ivd(t) +

1
2

b5u2
1(t) +

1
2

b6u2
2(t)

]
dt, (5.2)

where Ihc(t), Ihd(t), Idc(t), and Ivd(t) are state variables representing infectious classes, T f is the fixed
terminal time, and u1(t), u2(t) are control variables. The non-negative constants b1, b2, b3, and b4

are the weights associated with the infectious classes Ihc(t), Ihd(t), Idc(t), and Ivd(t), respectively.
Moreover, 1

2b5u2
1(t) and 1

2b6u2
2(t) are the cost functions of considered control approaches respectively for

vaccination and treatment. The non-negative constants b5 and b6 are the corresponding costs associated
with the controls.

Then, the optimal control problem is defined as follows:

min
ui(t)∈W

J(Ihc, Ihd, Idc.Ivd, ui) subject to model (5.1), (5.3)

whereW is the control space, which is defined as follows:

W =
{
ui(t) is Lebesgue measurable on [0, ω] and 0 ≤ ui(t) ≤ ω < 1, i = 1, 2

}
.

Now, to derive the optimal conditions by Pontryagin’s maximum principle, we built the following
Hamiltonian for the control problem (5.3):

H(B, u1, u2) =b1Ihc(t) + b2Ihd(t) + b3Idc(t) + b4Ivd(t) +
1
2

b5u2
1(t) +

1
2

b6u2
2(t)

+A1

[
ϕh −

(
χhc(Ihc + Idc)

Nh
+
χvdIvd

Nh

)
S h + ξhdRhd + ξhcRhc −

(
σh + u1(t)

)
S h

]
+A2

[
u1(t)S h −

(
χhc(Ihc + Idc)

Nh
+
χvdIvd

Nh

)
Vhc − (γhc + σh)Vhc

]
+A3

[(χhc(Ihc + Idc)
Nh

)
(S h + Vhc) − (αc + σh)Ehc

]
+A4

[
αcEhc + βhcIdc +

(
χhc(Ihc + Idc)

Nh

)
Rhd −

(
τd

(
χvdIvd

Nh

)
+ µh2 + σh + ζhc

)
Ihc

]
+A5

[
ζhcIhc + γhcVhc −

(
ξhc +

(
χvdIvd

Nh

)
+ σh

)
Rhc

]
+A6

[(χvdIvd

Nh

)
(S h + Vhc) − (αd + σh)Ehd

]
+A7

[
αdEhd + βhdIdc +

(
χvdIvd

Nh

)
Rhc −

(
u2(t) + τc

(
χhc(Ihc + Idc)

Nh

)
+ µh1 + σh + ζhd

)
Ihd

]
+A8

[
u2(t)Ihd − (µh3 + σh + κhd)Thd

]
+A9

[
ζhdIhd + κhdThd −

(
ξhd +

(
χhc(Ihc + Idc)

Nh

)
+ σh

)
Rhd

]
AIMS Mathematics Volume 9, Issue 3, 5171–5203.



5193

+A10

[
τd

(
χvdIvd

Nh

)
Ihc + τc

(
χhc(Ihc + Idc)

Nh

)
Ihd − (βhc + βhd + σh + µh1 + µh2)Idc

]
+A11

[
ϕv −

(
χhd(Ihd + Idc)

Nh

)
S vd − σvS vd

]
+A12

[(χhd(Ihd + Idc)
Nh

)
S vd − σvIvd

]
, (5.4)

where B =
(
S h,Vhc, Ehc, Ihc,Rhc, Ehd, Ihd,Thd,Rhd, Idc, S vd, Ivd

)
is a vector of state variables, Ai, i =

1, 2, ...., 12 are adjoint variables associated with the state equations of model (5.1), and A∗ =(
A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12

)
is called the adjoint vector.

Theorem 5.1. Let S̄ h, V̄hc, Ēhc, Īhc, R̄hc, Ēhd, Īhd, T̄hd, R̄hd, Īdc, S̄ vd, and Īvd be optimal state solutions
of model (5.1) associated with optimal control variables u∗1, u∗2 for the optimal control problem (5.3)
that minimizes J(Ihc, Ihd, Idc, Ivd, u1, u2) overW. Then, there exists an adjoint system consisting of the
following equations:

ABC
0 DρA1(t) = −

∂H

∂S h
, ABC

0 DρA2(t) = −
∂H

∂Vhc
, ABC

0 DρA3(t) = −
∂H

∂Ehc
,

ABC
0 DρA4(t) = −

∂H

∂Ihc
, ABC

0 DρA5(t) = −
∂H

∂Rhc
, ABC

0 DρA6(t) = −
∂H

∂Ehd
,

ABC
0 DρA7(t) = −

∂H

∂Ihd
, ABC

0 DρA8(t) = −
∂H

∂Thd
, ABC

0 DρA9(t) = −
∂H

∂Rhd
,

ABC
0 DρA10(t) = −

∂H

∂Idc
, ABC

0 DρA11(t) = −
∂H

∂S vd
, ABC

0 DρA12(t) = −
∂H

∂Ivd
,

(5.5)

along with the following transversality conditions:

A1(T f ) =A2(T f ) = A3(T f ) = A4(T f ) = A5(T f ) = A6(T f ) = 0,
A7(T f ) =A8(T f ) = A9(T f ) = A10(T f ) = A11(T f ) = A12(T f ) = 0,

and we obtain the control set {u∗1, u
∗
2} characterized by

u∗1(t) = min
{
ω,max

{
A1(t) −A2(t)

b5
S h(t), 0

}}
,

u∗2(t) = min
{
ω,max

{
A7(t) −A8(t)

b6
Ihd(t), 0

}}
.

�

Together, the Hamiltonian (5.4) and the Eq (5.5) lead us to the following system of linear adjoint
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fractional differential equations:

ABC
0 DρA1(t) =(A1(t) −A3(t))

(
χhc(Ihc + Idc)

Nh

)
+ (A1(t) −A6(t))

(
χvdIvd

Nh

)
+ u1(t)(A1(t) −A2(t)) + σhA1(t),

ABC
0 DρA2(t) =(A2(t) −A3(t))

(
χhc(Ihc + Idc)

Nh

)
+ (A2(t) −A6(t))

(
χvdIvd

Nh

)
+ (A2(t) −A5(t))γhc + σhA2(t),

ABC
0 DρA3(t) =(A3(t) −A4(t))αc + σhA3(t),

ABC
0 DρA4(t) = − b1 + (A4(t) −A10(t))τd

(
χvdIvd

Nh

)
+ (A4(t) −A5(t))ζhc

+ (µh2 + σh)A4(t) +
χhc

Nh

[
(A1(t) −A3(t))S h + (A2(t) −A3(t))Vhc

+ (A9(t) −A4(t))Rhd + (A7(t) −A10(t))τcIhd

]
,

ABC
0 DρA5(t) =(A5(t) −A1(t))ξhc + (A5(t) −A7(t))

(
χvdIvd

Nh

)
+ σhA5(t),

ABC
0 DρA6(t) =(A6(t) −A7(t))αd + σhA6(t),

ABC
0 DρA7(t) = − b2 + (A7(t) −A8(t))u2(t) + (A7(t) −A10(t))τc

(
χhc(Ihc + Idc)

Nh

)
+ (A7(t) −A9(t))ζhd + (A11(t) −A12(t))

χhdS vd

Nh
+ (σh + µh1)A7(t),

ABC
0 DρA8(t) =(A8(t) −A9(t))κhd + (σh + µh3)A8(t),

ABC
0 DρA9(t) =(A9(t) −A1(t))ξhd + (A9(t) −A4(t))

(
χhc(Ihc + Idc)

Nh

)
+ σhA9(t),

ABC
0 DρA10(t) = − b3 + (A1(t) −A3(t))

χhcS h

Nh
+ (A2(t) −A3(t))

χhcVhc

Nh

+ (A9(t) −A4(t))
χhcRhd

Nh
+ (A7(t) −A10(t))

τcχhcIhd

Nh
+ (A10(t) −A4(t))βhc

+ (A10(t) −A7(t))βhd + (A11(t) −A12(t))
χhdS vd

Nh
+ (σh + µh1 + µh2)A10(t),

ABC
0 DρA11(t) =(A11(t) −A12(t))

(
χhd(Ihd + Idc)

Nh

)
+ σvA11(t),

ABC
0 DρA12(t) = − b4 + (A1(t) −A6(t))

χvdS h

Nh
+ (A2(t) −A6(t))

χvdVhc

Nh

+ (A4(t) −A10(t))
τdχvdIhc

Nh
+ (A5(t) −A7(t))

χvdRhc

Nh
+ σvA12(t),

(5.6)

along with conditions at the terminal time

Ai(T f ) = 0, i = 1, 2, . . . , 12.

Equations for the controls u1(t) and u2(t) are obtained by applying the first condition of Pontryagin’s
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principle, i.e.,

∂H

∂u1
= 0 ⇒ u1(t) =

A1(t) −A2(t)
b5

S h(t),

∂H

∂u2
= 0 ⇒ u2(t) =

A7(t) −A8(t)
b9

Ihd(t).

Thus, the optimal control characterization for u∗1(t) and u∗2(t) with bounds are given as follows:

u∗1(t) = min
{
ω,max

{
A1(t) −A2(t)

b5
S h(t), 0

}}
,

u∗2(t) = min
{
ω,max

{
A7(t) −A8(t)

b6
Ihd(t), 0

}}
.

(5.7)

The state equations of model (5.1) are simulated by using the Toufik-Atangana type discretizations
described in Section 4; for the corresponding adjoint linear equations (5.6), we employ the Toufik-
Atangana type discretizations backward in time together with the associated terminal conditions.

5.2. Optimization algorithm

The following algorithm is implemented to solve the optimality conditions for the optimal control
problem (5.3).

(1) Set an elementary control uk = ((u1)k, (u2)k) ∈ W for k = 0.
(2) Use the control uk to approximate system (5.1) forward in time and the adjoint system (5.6)

backward in time.
(3) Use (5.7) to find u∗ = (u∗1, u

∗
2).

(4) Refine the control uk by using uk = (uk + u∗)/2.
(5) Stop the iterative process when ‖Ok − Ok−1‖ < σ‖Ok‖ for k > 0,

otherwise k + 1←− k and move to step 2.

Here, O is a symbolic representation for each of the control variables, state variables, and adjoint
variables, and σ > 0 is the tolerance adjusted for accuracy.

5.3. Optimal solutions and discussions

In this section, we will present and discuss the results obtained by resolving the necessary optimality
conditions using steps of the above algorithm. The optimality conditions involving state and adjoint
equations are discretized using the discretizations developed in Section 4. The cost functional (5.2)
is approximated at the discrete points tq = qh, q = 0, 1, . . . ,N using Simpson’s one-by-three rule.
Simulation results for optimal control problem (5.3) will be presented for different values of a fractional
order (i.e., for ρ = 0.7, 0.8, 0.9, 1).

This study aims to determine the best rate of Covid-19 vaccination for susceptible individuals and
the most effective treatment rate for dengue-infected individuals to minimize the cost functional, thus
optimally restricting the spread of co-infection. Figure 4 shows the plots of the best vaccination and
treatment controls that minimize the cost functional (5.2). The optimal curves for time-dependent
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vaccination rates for different values of the fractional order ρ are shown in the left part of the figure.
Notably, early in the disease outbreak, a maximum Covid-19 vaccination to susceptible individuals is
crucial. However, this maximum vaccination period diminishes with the increasing fractional order ρ
and elapsed time t. The right-hand plot of Figure 4 illustrates the optimal rates for treating dengue-
infected individuals. The treatment rates decline over time and with higher fractional order values from
ρ = 0.7 to ρ = 1. By adopting this strategy, the treatment rate approaches zero after the first 50 days
for ρ = 1, thus suggesting a potential recommendation to alleviate the strain on hospitals.

In Figure 5, we present four sub-graphs of cost functional (5.2) for four different values of fractional
order ρ. In each sub-graph, the cost functional reaches its minimum through the application of optimal
vaccination and treatment rates. Although the number of solution iterations remains constant across
all sub-plots, there is a significant decrease in the cost functional with an increasing fractional order ρ.
The most notable reduction in the cost functional is observed when ρ is equal to 1.

Figure 6 shows the solution trajectories for state variables before and after optimization at the
terminal time T f for different values of fractional order ρ. The dotted lines represent the curves before
optimization, whereas the solid lines depict the state variables after optimization. From the figure, we
observe a decrease in the number of infectious people affected by Covid-19 and dengue fever after
optimization. However, the decrease in the optimal curves for co-infected individuals is relatively
small compared to the pre-optimization curves. However in both situations, the curves for co-infected
individuals move to a disease-free state for ρ = 0.9 and ρ = 1. Additionally, we notice a substantial
decrease in the optimal curves for the infectious vector population. Furthermore, the optimized curves
for infectious humans and vectors exhibit a decline with an increasing fractional order ρ. Similar
trends are observed for humans in the exposed class infected with Covid-19, where a more significant
reduction in infected individuals is evident after optimization. However, no reduction is observed in
exposed humans infected with dengue fever. This may be because the susceptibles have only been
vaccinated with the Covid-19 vaccine. However, quarantining dengue-infected humans may help to
reduce the number of dengue-infected exposed cases.
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Figure 4. Plot of time-dependent controls u1 = (δ1), and u2 = (δ2) for different values of
fractional order ρ where u1 represents the Covid-19 vaccination rate and u2 represents the
treatment rate of dengue-infected individuals.
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Figure 5. Plot of the cost functional J for different values of fractional order ρ. In each
sub-plot, the functional attains its minimum.
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Figure 6. Dynamical behavior of state variables before and after optimization at final time
T f .
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The curves for individuals recovered from Covid-19 rise more after optimization, whereas the
rise in the curves of dengue-recovered individuals is not greater than the curves before optimization.
Nevertheless, the number of recovered individuals in both cases rises as the fractional order increases.
Additionally, the figure includes curves for vaccinated and under-treated individuals. It is observed
that a higher vaccination rate is initially necessary, but beyond the initial 50 days, the requirement
significantly reduces to approach zero for ρ = 1. However, the strategy requires the treatment of
a greater number of individuals infected with dengue, potentially posing a burden on the healthcare
infrastructure.

The simulations indicate that the vaccination of susceptible individuals yields better results in terms
of reducing the number of exposed and infected individuals affected with Covid-19, as well as in terms
of a rise in the number of recovered individuals. Moreover, the simulations reveal the treatment impact
on dengue-infected individuals in terms of a reduction in the number of dengue infections. However,
the treatment impact on exposed individuals is negligible. Additionally, it is noticed that these impacts
are preserved under different fractional orders.

6. Conclusions and future directions

In this research, we formulated a new ABC fractional-order model for Covid-19 and dengue co-
infection to study the disease dynamics for an optimal control analysis. In the first part of the
manuscript, we studied the dynamics of the sub-models, as well as the dynamics of the co-infection
model. We proved that there exists a unique solution to the proposed co-infection model that lies
in a feasibly invariant region. We demonstrated that at the disease-free equilibrium point, the model
satisfies the local stability properties. All of these proofs concluded that the newly constructed co-
infection fractional model is well-posed and can be optimally analyzed for disease control.

In the second part of this manuscript, we performed an optimal control analysis to minimize
the number of infected humans. For this, we updated the proposed co-infection model to include
a vaccination compartment to vaccinate susceptible individuals with the Covid-19 vaccine and a
treatment compartment to treat dengue-infected individuals. We considered the vaccination rate of
susceptible individuals and the treatment rate of dengue-infected individuals as the control variables.
We defined an objective functional and formulated an optimal control problem to determine the
best vaccination and treatment rates to minimize the cost functional with a reduction in infectious
humans and vectors. We derived the optimality conditions using Pontryagin’s principle. The
optimality conditions were solved numerically using Toufik-Atangane-type numerical discretizations,
both forward and backward in time.

Graphical results for the presented disease control strategy show that 80 percent of the susceptible
population needs to be vaccinated with the Covid-19 vaccine in the early days. The span of early
days with a maximum vaccination level decreases with an increasing value of the fractional order ρ.
Additionally, we observed the impact of the fractional order on optimal treatment rates. For ρ = 1, the
treatment rate of dengue-infected individuals approached zero after the first 50 days. With both of these
strategies, we achieved a reasonable reduction in the number of Covid-19-infected and dengue-infected
individuals. However, the reduction in co-infected individuals is negligibly small after optimization.
Thus, the graphical results elaborate on the efficacy of the approach to ascertain optimal vaccination
and treatment rates for different fractional orders that significantly decrease infections. Moreover, the
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influence of the memory index on disease transmission and control was explored in this study. We
observed a noteworthy decrease in the infectivity with an increase in the fractional order. Therefore, it
is clear that, in comparison to the integer-order model, the proposed fractional model provides a more
accurate understanding of the disease’s behavior.

This theoretical study was conducted to determine effective and feasible control measures to
either reduce or eradicate the effect of Covid-19 and dengue co-infection from the population. The
findings of this study suggest optimal vaccination and treatment patterns for authorities to follow to
minimize the infection rate in the community. Moreover, it is crucial to mention that the investigated
fractional disease model provides a more precise understanding of the disease dynamics in contrast
to the previously existing integer-order versions. Another distinction of the current research is the
implementation of the Toufik-Atangana numerical scheme; for the first time, this numerical scheme
was used to solve the fractional optimal control problem defined for Covid-19 and dengue fever co-
infection. However, with the proposed control strategies, we do not see a reasonable reduction in
the individuals facing both infections at the same time. In the future, we plan to take various non-
pharmaceutical control approaches into account to modify the current ABC fractional co-infection
model and achieve a more credible and effective optimal control analysis. Additionally, we plan to
work on the Covid-19 and dengue fever fuzzy fractional co-infection model to remove the uncertainty
of different control strategies with the cost-effective analysis.
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