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1. Introduction

Switching systems are a special class of hybrid systems consisting of finite or infinite subsystems
and are adjusted by switching signals. Compared to general systems, switching systems can better
describe many practical situations with multi-mode interactions, such as flight control systems [1],
communication networks [2], power electronic systems [3], mobile robots [4], and multi-agent
systems [5]. In the last decades, there have been many results on the stability of switching systems.
In most of them, the system stability is related to the switching signals that can be divided into time-
dependent or/and state-dependent switching. Compared to state-dependent switching, time-dependent
ones can avoid partitioning the state space and prevent the Zeno phenomenon. This reduces the design
difficulty and makes the conclusions more general. Therefore, this article investigates the stability of
switching systems with time-dependent switching.

As we know, in the reference [6], the dwell time (DT) method was proposed to design time-
dependent switching signals in the stability analysis of switching systems, requiring a long enough
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time interval between two consecutive switching instants to counteract the instability caused by the
switching behavior. In the references [7–9], the DT method played a very important role in the stability
analysis of systems for all stable models. Later in the reference [10], the DT method was extended to
the average dwell time (ADT) method, which relaxed the requirements of DT. Then, the generalization
of ADT, named mode-dependent average dwell time (MDADT), was proposed in the reference [11],
which is, to some extent, more applicable than ADT because it takes into account the differences
between subsystems and allows different subsystems to have different ADT. Recently, the paper [12]
proposed a new concept of Φ-dependent average dwell time (ΦDADT) for switching systems, which
groups different subsystems and is a unified form of ADT and MDADT. This is because they can both
be considered as two corollaries of the new method. Moreover, the switching designs under different
Φ are very different, and each has its advantages. In general, we can take every possible Φ to obtain
stable signals for all kinds of dwell time methods, which is more flexible and less conservative than the
existing results.

As for the case with stable and unstable modes in the reference [13], by limiting the total dwell
time and activation times of unstable modes, the ADT was used to achieve the stability of switching
systems. In the reference [14], the improved stability criterion for discrete-time switching systems
with unstable modes was obtained by combining the multiple Lyapunov function method with the
limit inferior switching strategy for dealing with stable modes and the limit optimal switching strategy
for dealing with unstable modes. In the reference [15], the ΦDADT method was extended to impulse
switching singular systems with stable and unstable subsystems and proposed a new conclusion on the
stability of switching systems. However, the above results all consider switching behavior as a factor
leading to system instability while ignoring the contribution of switching behavior to system stability.

For the case where all modes are unstable, in the reference [16], the maximum-minimum dwell time
(MMDT) switching was provided for switching systems with all modes unstable (SSUS). After that, for
the positive linear switching system, the contribution of the discretized Lyapunov function to the SSUS
was further boosted in the reference [17] by constraining the proportion of unstable switching instant.
Next, the stability of partially unstable switching behaviors in SSUS was studied in the reference [18].
Based on the reference [18], the reference [19] utilized singular perturbation parameters to control the
ratio of stable switching instant to achieve exponential stabilization of the odd perturbation switching
system.

In addition, a new mean dwell time called bounded maximum average dwell time (BMADT) was
presented in the reference [20], and the exponential stability of SSUS was obtained by BMADT. The
switching behavior with stable nature is beneficial for the system’s stability, but the existing results
do not consider the information on the switching instant when constructing the Lyapunov function.
By introducing the DT information into the piecewise Lyapunov function, the stability criteria for
switching linear system relative to MMDT was established in the reference [21]. In the reference [22],
the stabilizing switching dependent average dwell time (SSDADT) method was proposed to ensure the
system stability by introducing switching instant information and constructing a Lyapunov function
that decays at stable switching instant. In the reference [23], from the coordination performance of
switching signals, the stability criterion was established by the mode-partition-dependent average dwell
time (MPDADT) method and the piecewise Lyapunov function approach. However, there are fewer
published studies on the unstable switching behavior caused by the ΦDADT approach, which inspires
this paper.
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In this paper, the stability of SSUS is investigated by the coordinated performance of the switching
signals. A new stability criterion is constructed by a new switching frame named Φ-dependent max-
minimum dwell time (ΦDMDT) and a segmented Lyapunov function approach. The contributions of
this paper are as follows: First, a new frame called ΦDMDT is proposed, which considers the unstable
switching behavior caused by Φ-dependent DT and unstable modes. Second, a new segmented piece-
wise Lyapunov function approach is provided for the stability problem of SSUSs, then the global
exponential stability conditions for linear and nonlinear switching systems are given by the new
switching frame and the new approach. Here the state divergence generated by the unstable model
and unstable switching instant is balanced by the stable switching instant. Third, the parameters are
divided and the DT for different periods is studied separately, which increases the flexibility of unstable
switching behavior and reduces conservativeness.

The rest is organized as follows. Section 2 gives the preliminary knowledge. Section 3 introduces
the stability criteria of nonlinear and linear switching systems with all modes unstable by using the
ΦDMDT method. Section 4 gives the simulation experiment of the main results, and Section 5 is the
conclusion of this paper.

The symbols of this paper are stated in Table 1.

Table 1. Symbols used in the paper.

Symbol The denotation of the symbol
R (R+) the set of real numbers (positive real numbers)
N (N+) the set of natural numbers (positive integers)
Rn the space of n dimensional real vectors
Rn

+ the set of n dimensional positive vectors
Rn×n the set of n × n real matrices
‖ · ‖ Euclidean norm
max (min) the maximum (minimum) value
T transposition
υi the ith component of the vector υ
υ � 0 (� 0) υi > 0 (≥ 0), ∀i = 1, · · · , n
, equivalent to
=⇒ imply

2. Preliminaries

Consider the following switching nonlinear system described by

ẋ(t) = fδ(t)(x(t)) (2.1)

where fδ(t)(·) are smooth nonlinear functions from Rn to Rn and fδ(t)(0) = 0, x(t) ∈ Rn is the system state.
A continuous from the right piecewise constant function of time δ(t) : [0,+∞) → IN = {1, 2, . . . ,N},
N ∈ N is the number of modes. For a switching sequence t0 < t1 < · · · < tk < · · · , while tk is the
k th switching instant. When t ∈ [tk, tk + τMΦi], the δ(tk) subsystem is activated. τk , tk − tk−1 is the
DT between switching instants tk−1 and tk, k = 1, 2 . . . . This paper assumes that no state jumps occur
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at the switching instants and that a finite number of switches occur on every bounded time interval.
Let S = {1, 2, · · · , s}, where s ∈ N and s ≤ N, and Φ : IN 7→ S is a surjection operator. Set
Φi = {p ∈ IN | Φ(p) = i ∈ S}.

Definition 1. In the time span [t0, t], let τ j , t j − t j−1 be the corresponding DT of the j th switching,
t j ∈ [t0, t], and τ jΦi denotes the DT of switching signal δ (t) with δ

(
t j

)
∈ Φi, t j ∈ [t0, t]. There exists

two positive integers τMΦi and τmΦi , such that

τMΦi = sup j∈Φi

{
τ j

}
, (2.2)

τmΦi = inf j∈Φi

{
τ j

}
. (2.3)

Let S[τmΦi ,τMΦi] denote the set of switching signals satisfying

τmΦi 6 τ j 6 τMΦi (2.4)

TΦi (t0, t) denotes the total running time of the Φi subsystems family over the interval [t0, t]. For τvΦi >

τuΦi > 0, as shown in Figure 1, let NτuΦi
(t0, t) be the number of switching instants t j belonging to the

Φi subsystems family in the time span [t0, t] such that τmΦi < t j − t j−1 < τuΦi , and let NτvΦi
(t0, t) be the

number of switching instants t j belonging to the Φi subsystems family in the time span [t0, t] such that

τuΦi < t j − t j−1 < τvΦi . Further, let S{
τuΦi ,τvΦi ,c}

[τmΦi ,τMΦi]
stand for the switching signals satisfying (2.4) and the

following condition

NτuΦi
(t0, t) 6 c (t − t0) , 0 6 c 6

1
τMΦi

(2.5)

and
NτvΦi

(t0, t) 6 c (t − t0) , 0 6 c 6
1

τMΦi

. (2.6)

Additionally, NΦi(t0, t) is the total number of the switching instants belonging to the Φi subsystems
family in the time span [t0, t]. Two constants τMΦi and τmΦi are called to be the ΦDMDT for δ

(
t j

)
.

Figure 1. The relationship between stages τmΦi
, τuΦi

, τvΦi
, and τMΦi

in the Φi th-stage.
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Definition 2. [18] If a function f : R+ → R+ is continuous, zero at the origin, and strictly increasing,
then it is called a class K function. If a class K function is also unbounded, it is called the class K∞
function.

Definition 3. [21] A switching system (2.1) under certain switching signal δ (t) is said to be globally
exponentially stable, if the trajectory of the system means

‖x(t)‖ 6 κ ‖x (t0)‖ e−λ
∗(t−t0),∀t > t0, x (t0) ∈ Rn (2.7)

for positive scalars κ, λ∗.

3. Stability analysis

In this section, we will discuss the stability problem of the switching system with all subsystems
unstable.

Theorem 1. For given positive constants λi > 0, 0 < µ1i < 1, µ1i < µ2i < µ3i, µ3i > 1, 0 6 τmΦi 6 τuΦi 6
τvΦi 6 τMΦi , 0 6 c < 1

τMΦi
, Φi = {p ∈ IN | Φ(p) = i ∈ S}, if there exists positive-definite functions

V1p (t, x) ,V2p (t, x) ,V3p (t, x) ,V4p (t, x), and functions α1, α2 ∈ K∞, such that for ∀p, q ∈ IN , p , q,

α1‖x‖2 6 Vp(t, x) 6 α2‖x‖2,∀t > t0, (3.1)

dVp(t, x)
dt

6 λiVp(t, x),∀t ∈ [tn−1, tn) , (3.2)

V1q
(
t+
n , x

)
6 µ1i

[
V1p

(
t−n , x

)
+ τuΦiV2p

(
t−n , x

)
+

(
τvΦi − τuΦi

)
V3p

(
t−n , x

)
+

(
t − tk − τvΦi

)
V4p

(
t−n , x

)]
, t ∈

[
tk + τvΦi , tk + τMΦi

]
,

(3.3)

V1q
(
t+
n , x

)
6 µ2i

[
V1p

(
t−n , x

)
+ τuΦiV2p

(
t−n , x

)
+

(
t − tk − τuΦi

)
V3p

(
t−n , x

)]
, t ∈

[
tk + τuΦi , tk + τvΦi

)
, (3.4)

V1q
(
t+
n , x

)
6 µ3i

[
V1p

(
t−n , x

)
+ (t − tk) V2p

(
t−n , x

)]
, t ∈

[
tk, tk + τuΦi

)
, (3.5)

ln µ1i + cτMΦi(ln µ2i + ln µ3i − 2 ln µ1i) + λmaxτMΦi < 0 (3.6)

where

Vp (t, x) =


V1p

(
t−n , x

)
+ τuΦiV2p

(
t−n , x

)
+

(
τvΦi − τuΦi

)
V3p

(
t−n , x

)
+

(
t − tk − τvΦi

)
V4p

(
t−n , x

)
, t ∈

[
tk + τvΦi , tk + τMΦi

]
,

V1p
(
t−n , x

)
+ τuΦiV2p

(
t−n , x

)
+

(
t − tk − τuΦi

)
V3p

(
t−n , x

)
, t ∈

[
tk + τuΦi , tk + τvΦi

)
,

V1p
(
t−n , x

)
+ (t − tk) V2p

(
t−n , x

)
, t ∈

[
tk, tk + τuΦi

) (3.7)

and λmax = max
i∈S

λi, then the switching system (2.1) is globally exponentially stable for any switching

signal δ (t) ∈ S{
τuΦi ,τvΦi ,c}

[τmΦi ,τMΦi]
.

Proof. Choose the piece-wise Lyapunov function as V(t, x) = Vδ(t) (t, x). Suppose that tk+τvΦi 6 t 6
tk+τMΦi . It can be obtained from (3.2)–(3.5) that

V(t, x) 6 eλi(t−tn−1)Vδ(t+n−1)
(
t+
n−1, x

(
t+
n−1

))
6 µ1ieλi(t−tn−1)Vδ(t−n−1)

(
t−n−1, x

(
t−n−1

))
. (3.8)
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Similarly, for tk+τuΦi 6 t < tk+τvΦi and tk 6 t < tk+τuΦi , it can be respectively obtained that

V(t, x) 6 eλi(t−tn−1)Vδ(t+n−1)
(
t+
n−1, x

(
t+
n−1

))
6 µ2ieλi(t−tn−1)Vδ(t−n−1)

(
t−n−1, x

(
t−n−1

))
(3.9)

and
V(t, x) 6 eλi(t−tn−1)Vδ(t+n−1)

(
t+
n−1, x

(
t+
n−1

))
6 µ3ieλi(t−tn−1)Vδ(t−n−1)

(
t−n−1, x

(
t−n−1

))
. (3.10)

Therefore, when tk 6 t 6 tk+τMΦi , it can be inferred from (3.8)–(3.10) that

V(t, x)

6
∏IN

p=1µ
NΦi (t0,t)−NτvΦi

(t0,t)−NτuΦi
(t0,t)

1i × µ
NτvΦi

(t0,t)

2i µ
NτuΦi

(t0,t)

3i eλiTΦi (t0,t)V(t0, x(t0))

6
∏IN

p=1exp(ln µ
NΦi (t0,t)−NτvΦi

(t0,t)−NτuΦi
(t0,t)

1i + ln µ
NτvΦi

(t0,t)

2i + ln µ
NτuΦi

(t0,t)

3i + λiTΦi(t0, t))V(t0, x(t0))

6 exp
(∑IN

p=1

(
NΦi (t0, t) − NτvΦi

(t0, t) − NτuΦi
(t0, t)

)
× ln µ1i + NτvΦi

(t0, t) ln µ2i

+NτuΦi
(t0, t) ln µ3i + λiTΦi (t0, t)

)
V (t0, x (t0))

6 exp
(∑IN

p=1NΦi (t0, t) ln µ1i + NτvΦi
(t0, t) × (ln µ2i − ln µ1i) + NτuΦi

(t0, t) (ln µ3i − ln µ1i)

+λiTΦi (t0, t)
)

V (t0, x (t0)) .

(3.11)

Because of (2.5), (2.6), and
NΦi (t0, t) >

t − t0

τMΦi

− 1 (3.12)

the following holds

NΦi (t0, t) ln µ1i + NτvΦi
(t0, t) (ln µ2i − ln µ1i) + NτuΦi

(t0, t)(ln µ3i − ln µ1i) + λiTΦi(t0, t)

6

(
ln µ1i

τMΦi

+ c (ln µ2i + ln µ3i − 2 ln µ1i)
)

(t − t0) + λiTΦi(t0, t) − ln µ1i

6

(
ln µ1i

τMΦi

+ c (ln µ2i + ln µ3i − 2 ln µ1i) + λmax

)
× (t − t0) − ln µ1i.

(3.13)

Combining Eqs (3.1), (3.11), and (3.13), we can obtain

‖x‖ 6 κ ‖x (t0)‖ e−λ(t−t0) (3.14)

where κ =
√

α2
α1µ1i

, λ = −
∑IN

p=1
ln µ1i+cτMΦi (ln µ2i+ln µ3i−2 ln µ1i)+λmaxτMΦi

2τMΦi
. �

Remark 1. When V2p=V3p=V4p, Lyapunov functions can be uniformly written in the form of Vp(t, x) =

V1p
(
t−n , x

)
+ (t − tk) V2p

(
t−n , x

)
, t ∈

[
tk, tk + τMΦi

]
. On the basis of V2p=V3p=V4p, if we further take

S = {1}, the result of the reference [21] can be obtained, which shows it can be seen as a corollary of
this article.

Remark 2. The relationships between this article and the literature [12] and [15] can be summarized
as follows. On the one hand, they all introduce the idea of subsystem classification Φ into the study
of switching system stability. On the other hand, both [12] and [15] are based on the ADT method to
propose the ΦDADT method that is only applicable to the subsystems being stable or partially stable,
while this paper is based on the MMDT method to put forward the ΦDMDT method, which can handle
the situations where all subsystems are unstable.
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Consider the linear case of the system (2.1)

ẋ(t) = Aδ(t)x (3.15)

where Ap, p ∈ IN , is a matrix with appropriate dimension, and the globally exponentially stable is
stated as the following theorem.

Theorem 2. For given positive constants λi > 0, α ≥ 0, 0 < µ1i < 1, µ1i < µ2i < µ3i, µ3i > 1,
0 6 τmΦi 6 τuΦi 6 τvΦi 6 τMΦi , 0 ≤ c < 1

τMΦi
, Φi = {p ∈ IN | Φ(p) = i ∈ S}, if there exists positive

definite matrices Pp, Qp , Rp and S p, ∀p, q ∈ IN , p , q, such that (3.6) holds and

φp < 0, (3.16)

eατmΦpφp + hnψp + hnωp + hnξp < 0, hn ∈ [τmΦi , τMΦi], (3.17)

Pq 6 µ1i

[
Pp + τuΦie

−ατuΦi Qp +
(
τvΦi − τuΦi

)
e−α(τvΦi−τuΦi)Rp

+
(
t − tk − τvΦi

)
e−α(t−tk−τvΦi)S p

]
, t ∈

[
tk + τvΦi , tk + τMΦi

]
,

(3.18)

Pq 6 µ2i

[
Pp + τuΦie

−ατuΦi Qp +
(
t − tk − τuΦi

)
e−α(t−tk−τuΦi)Rp

]
, t ∈

[
tk + τuΦi , tk + τvΦi

)
, (3.19)

Pq 6 µ3i

[
Pp + (t − tk) e−α(t−tk)Qp

]
, t ∈

[
tk, tk + τuΦi

)
(3.20)

for ∀p ∈ IN , where

φp = PpAp + AT
pPp + e−ατmΦi Qp + e−ατmΦi Rp + e−ατmΦi S p − λiPp, (3.21)

ψp = QpAp + AT
pQp − (α + λi)Qp, (3.22)

ωp = RpAp + AT
pRp − (α + λi)Rp, (3.23)

ξp = S pAp + AT
pS p − (α + λi)S p, (3.24)

hn = tn+1 − tn (3.25)

then the switching linear system (3.15) is globally exponentially stable for any switching signal δ(t) ∈
S
{τuΦi ,τvΦi ,c}
[τmΦi ,τMΦi ]

.

Proof. For t ∈
[
tk, tk + τMΦi

]
, p ∈ IN , construct the piece-wise Lyapunov function of the switching

linear system (3.15) as

Vp (t, x) =



xTPpx + τuΦie
−ατuΦi xTQpx +

(
τvΦi − τuΦi

)
e−α(τvΦi−τuΦi)xTRpx

+
(
t − tk − τvΦi

)
e−α(t−tk−τvΦi)xTS px, t ∈

[
tk + τvΦi , tk + τMΦi

]
,

xTPpx + τuΦie
−ατuΦi xTQpx+

(
t − tk − τuΦi

)
e−α(t−tk−τuΦi)xTRpx,

t ∈
[
tk + τuΦi , tk + τvΦi

)
,

xTPpx + (t − tk) e−α(t−tk)xTQpx, t ∈
[
tk, tk + τuΦi

)
.

(3.26)

AIMS Mathematics Volume 9, Issue 2, 4863–4881.



4870

When tk+τvΦi 6 t 6 tk+τMΦi , the derivative of Vp(t, x) is

dVp(t, x)
dt

= 2xTPp ẋ + e−ατuΦi xTQpx + 2τuΦie
−ατuΦi xTQp ẋ − ατuΦie

−ατuΦi xTQpx + e−α(τvΦi−τuΦi)xTRpx

+ 2
(
τvΦi − τuΦi

)
e−α(τvΦi−τuΦi)xTRp ẋ − α

(
τvΦi − τuΦi

)
e−α(τvΦi−τuΦi)xTRpx + e−α(t−tk−τvΦi)xTS px

+ 2
(
t − tk − τvΦi

)
e−α(t−tk−τvΦi)xTS p ẋ − α

(
t − tk − τvΦi

)
e−α(t−tk−τvΦi)xTS px.

(3.27)

By simple calculation, it is easy to show that

dVp(t, x)
dt

− λiVp(t, x)

= xT
{
PpAp + AT

pPp + e−ατuΦi Qp + e−α(τvΦi−τuΦi)Rp + e−α(t−tk−τvΦi)S p − λiPp

+τuΦie
−ατuΦi ×

[
QpAp + AT

pQp − (α + λi)Qp

]
+

(
τvΦi − τuΦi

)
e−α(τvΦi−τuΦi) ×

[
RpAp + AT

pRp − (α + λi)Rp

]
+

(
t − tk − τvΦi

)
e−α(t−tk−τvΦi) ×

[
S pAp + AT

pS p − (α + λi)S p

]}
x

6
(tn+1 − t)

hn
xTφpx +

(t − tn) e−α(t−tn)

hn
× xT

(
eατmΦiφp + hnψp + hnωp + hnξp

)
x.

(3.28)

Similarly, when tk+τuΦi 6 t < tk+τvΦi and tk 6 t < tk+τuΦi , it can be respectively obtained that

dVp(t, x)
dt

− λiVp(t, x)

= xT
{
PpAp + AT

pPp + e−ατuΦi Qp + e−α(t−tk−τuΦi)Rp − λiPp

+τuΦie
−ατuΦi ×

[
QpAp + AT

pQp − (α + λi)Qp

]
+

(
t − tk − τuΦi

)
e−α(t−tk−τuΦi) ×

[
RpAp + AT

pRp − (α + λi)Rp

]}
x

6
(tn+1 − t)

hn
xTφpx +

(t − tn) e−α(t−tn)

hn
× xT

(
eατmΦiφp + hnψp + hnωp + hnξp

)
x

(3.29)

and

dVp(t, x)
dt

− λiVp(t, x)

= xT
{
PpAp + AT

pPp + e−α(t−tk)Qp − λiPp + (t − tk) e−α(t−tk)
[
QpAp + AT

pQp − (α + λi)Qp

]}
x

6
(tn+1 − t)

hn
xTφpx +

(t − tn) e−α(t−tn)

hn
× xT

(
eατmΦiφp + hnψp + hnωp + hnξp

)
x.

(3.30)

It is worth noting that
dVp(t, x)

dt
− λiVp(t, x) < 0 (3.31)

holds for any t ∈
[
tk, tk + τMΦi

]
, if (3.16) and (3.17) hold. On the other hand, it is easy to obtain

(3.3)–(3.5) from (3.18)–(3.20), then the proof ends according to Theorem 1. �
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As a special case of 0 < τmΦi 6 τuΦi 6 τvΦi 6 τMΦi , it is easy to prove the following corollary when
τmΦi = τuΦi = τvΦi .

Corollary 1. For given positive constants λi > 0, α > 0, 0 < µ1i < 1, 0 < τmΦi 6 τMΦi , Φi =

{p ∈ IN | Φ(p) = i ∈ S}, if there exists positive definite matrices Pp and Qp, ∀p, q ∈ IN , p , q, such
that (3.16) and (3.17) hold and

Pq 6 µ1i

(
Pp + τmΦie

−ατMΦi Qp

)
, (3.32)

ln µ1i + λiτMΦi < 0 (3.33)

then the switching linear system (3.15) is globally exponentially stable for any switching signal δ(t) ∈
S[τmΦi ,τMΦi ].

Remark 3. The condition (3.33) shows that 0 < λi < −
lnµ1i
τMΦi

. Introduce a lower bound of λi such that

−
βlnµ1i

τMΦi

< λi < −
lnµ1i

τMΦi

(3.34)

for a given scalar β ∈ (0, 1), then the condition of Corollary 3.1 is improved as that: For given constants
α > 0, 0 < β < 1, 0 < µ1i < 1, 0 < τmΦi 6 τMΦi , if there exists positive definite matrices Pp and Qp,
∀p ∈ IN , such that Eqs (3.32)–(3.34) hold with

φrp = PpAp + AT
pPp + e−ατmΦi Qp +

β ln µ1i

τMΦi

Pp < 0, (3.35)

eατmΦiφrp + hn

(
QpAp + AT

pQp − αQp +
β ln µ1i

τMΦi

Qp

)
< 0. (3.36)

This operation provides a new degree of freedom to the parameter λi while avoiding the nonlinear
coming from λiPp. For the given α, β, µ1i, τMΦi , the admissible minimal dwell time τmΦi can be
estimated by

min
τmΦi6τMΦi

τmΦi , s.t. (3.32)–(3.36). (3.37)

This inference derives linear condition by introducing the information of switching instants into the
Lyapunov function in form as (t − tk) e−α(t−tk)Qp.

4. Simulation

Example 1. In this section, simulations are performed with the highly maneuverable aircraft
technology (HiMAT) as an example, thus verifying the effectiveness and practicality of the method
in this paper. Considering the short-period motion characteristics of the aircraft, a longitudinal short-
period linear model is used to construct the switching system and the corresponding data are obtained
from [24,25]. For more clarity, three operating points are selected within the flight envelope. Therefore,
it is reasonable to assume that three linear modes can describe the dynamic behavior of the HiMAT
vehicle at the three operating points, as shown in Table 2.

AIMS Mathematics Volume 9, Issue 2, 4863–4881.



4872

Table 2. Three operating points of HiMAT vehicle.

Operating point Mach Altitude Angle of attack
1 0.6 20000 ft 4.55 deg
2 0.9 35000 ft 4.89 deg
3 1.3 27000 ft 5.36 deg

Based on this data, the no-fault delta operator switching linear system can be described as

ẋ(t) = Aδ(t)x + Bδ(t)u. (4.1)

The state of the linearized HiMAT dynamics is x(t) = (g, h)T , with g and h denoting the angle of
attack and pitch rate, respectively. The control input is u(t) = (Θe,Θc)T , where Θe and Θc are the
elevon and carnard input, respectively. Assuming the control input u(t) = (0, 0), the switching law
determines the alternating operation of the three operating points of the vehicle. Thus, the problem
can be simplified by considering the linear switching systems (3.15) with the following parameters:

IN = {1, 2, 3}, A1 =

[
−1.9 0.6
0.6 −0.1

]
, A2 =

[
0.1 −0.9
0.1 −1.4

]
, A3 =

[
0.3 −0.2
2.1 −1.7

]
, and x(t0) =

[
5 −3

]T
. It is

clear that all subsystems are unstable. The state response of each mode is shown in Figure 2. Letting
α = 0.1, a feasible solution of Eqs (3.33) and (3.16)–(3.20) is obtained by applying the Matlab linear
matrix inequality (LMI) toolbox. By dividing different subsystem families, the following cases are
obtained.
Case 1: S = {1}, Φ1 = {1, 2, 3};
Case 2: S = {1, 2}, Φ1 = {1, 2}, Φ2 = {3};
Case 3: S = {1, 2}, Φ1 = {1, 3}, Φ2 = {2};
Case 4: S = {1, 2}, Φ1 = {1}, Φ2 = {2, 3};
Case 5: S = {1, 2, 3}, Φ1 = {1}, Φ2 = {2}; Φ3 = {3}.
Among them, Cases 1 and 5 correspond to the results of the DT and mode-dependent DT methods,
respectively.

Next, the following conclusions can be drawn from Figures 3–8 and Tables 3–7:
(I) In Case 1, by comparing Figures 3(a) and 3(b), it can be seen that compared with the DT

method, the MMDT method allows for shorter DTs, thereby reducing conservatism and increasing
design flexibility, and the results corresponding to the MMDT method are shown in Table 3.

(II) In Cases 2–5, due to the superiority of the MMDT method, we have uniformly used this method.
The results are shown in Tables 4–7 and the corresponding system’s state response under switching
signals is shown in Figures 4–7. The convergence curve explains the validity of our results.

(III) In the reference [21], when α = 0, its allowed DT region gradually increases with the increase
of β value. Based on this, according to (3.37), Figure 8 illustrates the minimum DT when β=0.5,
0.8, 0.9, and 0.99 are taken under Case 1. Taking β=0.5 as an example, take the appropriate τu and
τv between τm and τM, and different Lyapunov functions are selected under different DTs to further
reduce conservatism. Compared to reference [21], this paper not only considers the case under the
Φ-dependent DT method but also makes the method more flexible and convenient by constructing a
new segmented Lyapunov function.

(IV) The examples in Tables 3–7 provide some switching signals that can only be obtained through
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the criteria in the corresponding Tables. That is to say, the stability criteria for each table is different,
so they are not comparable to each other.
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Figure 2. State response of each mode.
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(a) τmΦ1 = τMΦ1 = 0.67 (b) τmΦ1 = 0.49, τMΦ1 = 0.67

Figure 3. The state response of the system under the signals 1(a) and 1(b), respectively.

Figure 4. The state response of the system under the signal 2.
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Figure 5. The state response of the system under the signal 3.

Figure 6. The state response of the system under the signal 4.

Figure 7. The state response of the system under the signal 5.

AIMS Mathematics Volume 9, Issue 2, 4863–4881.



4876

Table 3. S = {1}, Φ1 = {1, 2, 3}.
δ τmΦ1 = 0.49, τuΦ1 = 0.57, τvΦ1 = 0.62, τMΦ1 = 0.67
τ

[
τmΦi , τuΦi

) [
τuΦi , τvΦi

) [
τvΦi , τMΦi

]
µ µ11 = 0.68 µ21 = 0.95 µ31 = 1.42
λ λ1 = 0.57

P1

[23.1455 −1.0184
∗ 24.6775

] [18.0000 −3.4430
∗ 15.4327

] [12.2816 −4.7228
∗ 4.5930

]
P2

[47.4731 −15.6408
∗ 26.6013

] [33.2016 −11.5852
∗ 16.4465

] [22.6673 −10.2381
∗ 6.3310

]
P3

[50.9908 −7.9662
∗ 13.9737

] [32.9636 −6.1425
∗ 10.3295

] [19.1526 −6.2937
∗ 4.1589

]
Q1

[43.7268 −14.1297
∗ 6.9276

] [44.7904 −15.2723
∗ 7.4147

] [60.7108 −22.6981
∗ 9.3635

]
Q2

[4.9875 4.0591
∗ 16.8078

] [5.7717 5.1066
∗ 14.3445

] [10.3258 1.3298
∗ 2.0830

]
Q3

[7.6333 −12.8279
∗ 22.9404

] [10.1925 −14.0171
∗ 22.3963

] [27.0090 −18.0787
∗ 14.6216

]
R1

[11.2592 −2.8717
∗ 3.3432

] [8.0780 −2.5442
∗ 1.9918

] [0.5563 −0.2376
∗ 0.1062

]
R2

[4.3474 0.9650
∗ 11.1927

] [2.5397 0.3567
∗ 6.1008

] [0.0414 −0.0334
∗ 0.1254

]
R3

[6.6895 −5.2996
∗ 6.8285

] [4.2319 −3.7296
∗ 4.6057

] [0.0580 −0.0363
∗ 0.0289

]
S 1

[11.2592 −2.8717
∗ 3.3432

] [7.8090 −2.4543
∗ 1.9411

] [0.5246 −0.2241
∗ 0.1002

]
S 2

[7.0833 3.5152
∗ 20.0495

] [4.0294 0.5394
∗ 8.4653

] [0.5454 −0.6141
∗ 0.7593

]
S 3

[6.3717 −3.5740
∗ 3.7721

] [4.3078 −2.3080
∗ 1.8567

] [0.0377 −0.0225
∗ 0.0192

]

Table 4. S = {1, 2}, Φ1 = {1, 2}, Φ2 = {3}.

δ
τmΦ1 = 0.65, τuΦ1 = 0.71, τvΦ1 = 0.75, τMΦ1 = 0.78
τmΦ2 = 0.39, τuΦ2 = 0.44, τvΦ2 = 0.52, τMΦ2 = 0.55

τ
[
τmΦi , τuΦi

) [
τuΦi , τvΦi

) [
τvΦi , τMΦi

]
µ

µ11 = 0.6,
µ12 = 0.7

µ21 = 1.1,
µ22 = 1.3

µ31 = 1.5,
µ32 = 1.4

λ λ1 = 0.65, λ2 = 0.64

P1

[1.8030 0.0519
∗ 1.9026

] [35.4538 −0.9615
∗ 31.2897

] [32.9410 −10.7097
∗ 9.5317

]
P2

[4.3456 −1.6147
∗ 2.2093

] [75.6495 −27.1008
∗ 39.2251

] [83.3425 −38.1635
∗ 24.0705

]
P3

[3.4673 −0.5049
∗ 0.9682

] [72.6041 −10.2586
∗ 19.8556

] [70.5578 −23.2847
∗ 12.7411

]
Q1

[2.5740 −0.6251
∗ 0.4084

] [60.7027 −13.7958
∗ 7.1664

] [162.6794 −54.2278
∗ 20.8942

]
Q2

[0.6059 0.0989
∗ 0.9366

] [11.2718 3.1598
∗ 18.7407

] [45.2944 3.4210
∗ 3.9775

]
Q3

[0.6441 −1.0339
∗ 1.8021

] [15.7046 −24.2426
∗ 41.4485

] [104.1536 −62.2539
∗ 43.6225

]
R1

[0.7493 −0.1605
∗ 0.2963

] [15.0934 −3.7218
∗ 5.1203

] [2.5914 −1.1278
∗ 0.5088

]
R2

[0.5724 0.0004
∗ 0.8522

] [9.4656 0.4454
∗ 15.7757

] [0.7519 −1.3915
∗ 3.0789

]
R3

[0.4958 −0.3777
∗ 0.5543

] [9.5314 −7.2156
∗ 10.1955

] [0.1622 −0.0990
∗ 0.0747

]
S 1

[0.7493 −0.1605
∗ 0.2963

] [13.6225 −3.3477
∗ 5.0301

] [2.2158 −0.9644
∗ 0.4354

]
S 2

[0.6275 0.2973
∗ 1.7646

] [11.0030 5.0564
∗ 31.3379

] [1.5357 −2.9132
∗ 5.9531

]
S 3

[0.5196 −0.3495
∗ 0.4397

] [9.6860 −5.7207
∗ 8.1551

] [0.1505 −0.0912
∗ 0.0690

]
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Table 5. S = {1, 2}, Φ1 = {1, 3}, Φ2 = {2}.

δ
τmΦ1 = 0.58, τuΦ1 = 0.63, τvΦ1 = 0.66, τMΦ1 = 0.69
τmΦ2 = 1.05, τuΦ2 = 1.17, τvΦ2 = 1.25, τMΦ2 = 1.33

τ
[
τmΦi , τuΦi

) [
τuΦi , τvΦi

) [
τvΦi , τMΦi

]
µ

µ11 = 0.73,
µ12 = 0.5

µ21 = 1.1,
µ22 = 1.3

µ31 = 1.5,
µ32 = 1.46

λ λ1 = 0.45, λ2 = 0.52

P1

[
25.1826 5.0234
∗ 46.4133

] [
0.7806 0.0539
∗ 1.1895

] [
92.8432 −34.6199
∗ 31.7638

]
P2

[
72.0757 −24.2516
∗ 39.5019

] [
2.5068 −0.8700
∗ 1.2439

] [
110.9377 −52.8871
∗ 34.2876

]
P3

[
86.6261 −13.5677
∗ 14.9473

] [
2.4189 −0.3971
∗ 0.4561

] [
97.3575 −29.5522
∗ 15.5354

]
Q1

[
41.6405 −14.3029
∗ 7.9802

] [
1.5272 −0.5695
∗ 0.2678

] [
256.1535 −106.5029
∗ 46.3996

]
Q2

[
7.6862 4.6802
∗ 18.3632

] [
0.3157 0.2196
∗ 0.6849

] [
47.6677 1.0352
∗ 18.9710

]
Q3

[
10.5528 −13.8201
∗ 21.2454

] [
0.3258 −0.4712
∗ 0.7143

] [
120.1687 −73.7954
∗ 51.5851

]
R1

[
13.6659 −3.3204
∗ 4.4454

] [
0.4175 −0.1063
∗ 0.1208

] [
90.0255 −26.1669
∗ 7.6379

]
R2

[
5.9166 −0.0680
∗ 9.4563

] [
0.2020 −0.0048
∗ 0.2804

] [
0.1141 −0.0802
∗ 0.1034

]
R3

[
10.4183 −7.1803
∗ 8.8115

] [
0.3034 −0.2159
∗ 0.2686

] [
0.6266 −0.6588
∗ 0.7310

]
S 1

[
13.6659 −3.3204
∗ 4.4454

] [
0.4040 −0.1004
∗ 0.1195

] [
90.0962 −26.1791
∗ 7.6375

]
S 2

[
8.7216 7.9675
∗ 35.0883

] [
0.2739 0.2216
∗ 0.9458

] [
0.9355 −0.7122
∗ 0.5871

]
S 3

[
9.6164 −5.1749
∗ 5.9313

] [
0.2925 −0.1577
∗ 0.1613

] [
0.2516 −0.2539
∗ 0.2926

]

Table 6. S = {1, 2}, Φ1 = {1}, Φ2 = {2, 3}.

δ
τmΦ1 = 0.42, τuΦ1 = 0.46, τvΦ1 = 0.56, τMΦ1 = 0.61
τmΦ2 = 0.54, τuΦ2 = 0.68, τvΦ2 = 0.74, τMΦ2 = 0.82

τ
[
τmΦi , τuΦi

) [
τuΦi , τvΦi

) [
τvΦi , τMΦi

]
µ

µ11 = 0.7,
µ12 = 0.6

µ21 = 1.1,
µ22 = 0.9

µ31 = 1.3,
µ32 = 1.2

λ λ1 = 0.58, λ2 = 0.62

P1

[
14.2412 −0.9687
∗ 12.7752

] [
12.0771 −1.3657
∗ 9.7231

] [
0.1492 −0.0140
∗ 0.0578

]
P2

[
25.7962 −8.3240
∗ 15.2188

] [
20.6336 −6.5373
∗ 10.8676

] [
0.1965 −0.0523
∗ 0.0536

]
P3

[
30.8084 −4.0040
∗ 8.0691

] [
23.6927 −3.3149
∗ 6.6102

] [
0.2553 −0.0292
∗ 0.0405

]
Q1

[
30.4620 −9.5505
∗ 4.6947

] [
30.2020 −9.3917
∗ 5.1282

] [
0.6383 −0.1429
∗ 0.0538

]
Q2

[
2.9149 1.4889
∗ 8.8800

] [
2.3365 1.6878
∗ 7.5598

] [
0.0582 0.0632
∗ 0.0770

]
Q3

[
3.1889 −4.5924
∗ 9.5792

] [
2.6112 −3.9970
∗ 8.4352

] [
0.0446 −0.0517
∗ 0.1337

]
R1

[
7.2379 −1.8822
∗ 1.6869

] [
5.7849 −1.6328
∗ 1.0970

] [
0.0191 −0.0076
∗ 0.0034

]
R2

[
2.8166 0.4395
∗ 6.3467

] [
2.1749 0.5789
∗ 4.7941

] [
0.0060 0.0027
∗ 0.0060

]
R3

[
3.3693 −2.7784
∗ 3.7029

] [
2.7576 −2.4861
∗ 3.2929

] [
0.0324 −0.0170
∗ 0.0097

]
S 1

[
7.2379 −1.8822
∗ 1.6869

] [
5.7105 −1.6113
∗ 1.0821

] [
0.0179 −0.0071
∗ 0.0032

]
S 2

[
4.1120 2.2650
∗ 12.8642

] [
3.3561 1.5102
∗ 7.6711

] [
0.0264 0.0061
∗ 0.0059

]
S 3

[
3.5775 −2.0192
∗ 2.8210

] [
2.9734 −1.6497
∗ 2.0698

] [
0.0176 −0.0085
∗ 0.0047

]
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Table 7. S = {1, 2, 3}, Φ1 = {1}, Φ2 = {2}; Φ3 = {3}.

δ
τmΦ1 = 0.39, τuΦ1 = 0.43, τvΦ1 = 0.51, τMΦ1 = 0.57
τmΦ2 = 0.84, τuΦ2 = 0.92, τvΦ2 = 1.01, τMΦ2 = 1.11
τmΦ3 = 0.23, τuΦ3 = 0.29, τvΦ3 = 0.35, τMΦ3 = 0.38

τ
[
τmΦi , τuΦi

) [
τuΦi , τvΦi

) [
τvΦi , τMΦi

]
µ

µ11 = 0.7,
µ12 = 0.6,
µ13 = 0.8

µ21 = 0.9,
µ22 = 1.1,
µ23 = 0.9

µ31 = 1.2,
µ32 = 1.4,
µ33 = 1.1

λ λ1 = 0.62, λ2 = 0.46, λ3 = 0.58

P1

[170.2179 −26.9700
∗ 114.8395

] [81.9472 −18.0570
∗ 49.1218

] [0.5667 −0.2133
∗ 0.2024

]
P2

[339.0560 −129.4043
∗ 171.8188

] [161.2581 −63.8093
∗ 73.4982

] [1.0658 −0.4673
∗ 0.2870

]
P3

[248.5446 −45.5923
∗ 76.7228

] [121.5331 −26.1927
∗ 40.0762

] [0.9123 −0.3153
∗ 0.2129

]
Q1

[304.5953 −96.3485
∗ 46.1145

] [212.5213 −68.0405
∗ 30.9250

] [2.7818 −1.0215
∗ 0.4200

]
Q2

[30.3074 13.9767
∗ 67.1472

] [19.6843 15.5687
∗ 46.7836

] [0.3409 0.1537
∗ 0.0751

]
Q3

[72.6087 −96.0867
∗ 144.0311

] [52.2238 −61.5195
∗ 85.7181

] [1.3211 −0.8988
∗ 0.7293

]
R1

[74.6952 −20.5649
∗ 17.3008

] [39.6596 −12.2920
∗ 7.8771

] [0.0303 −0.0133
∗ 0.0062

]
R2

[25.2725 0.9295
∗ 43.0587

] [11.5189 0.6762
∗ 18.6364

] [0.0034 −0.0014
∗ 0.0030

]
R3

[37.5371 −35.2715
∗ 45.1790

] [19.1271 −17.6947
∗ 21.5690

] [0.0061 −0.0044
∗ 0.0036

]
S 1

[74.6952 −20.5649
∗ 17.3008

] [32.9758 −10.5545
∗ 7.2031

] [0.0276 −0.0122
∗ 0.0058

]
S 2

[38.1771 31.6006
∗ 137.2085

] [15.7266 6.7316
∗ 37.4554

] [0.0552 −0.0333
∗ 0.0222

]
S 3

[35.3095 −26.7339
∗ 36.0276

] [17.1981 −12.6850
∗ 15.0303

] [0.0039 −0.0027
∗ 0.0022

]

 b=0.5,tv
 tM

Figure 8. Stability regions under different β and τ conditions.
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5. Conclusions

Under the assumption that all modes are unstable, this paper studies the stabilization of switching
systems using time-dependent switching signals. Several stability conditions are proposed in the
framework of DT switching, using the stability characteristics of switching behavior to compensate
for unstable modes and state divergence caused by unstable switching instant and providing a new
solution to stability control problems. Finally, the effectiveness of the proposed method is verified by
simulation.
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