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Abstract: Mathematics has several uses for operators on bounded symmetric domains of Bergman
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offer instruments for examining the interaction between complex function theory and the underlying
domain geometry. Here, we extend the Atangana-Baleanu fractional differential operator acting on
a special type of class of analytic functions with the m-fold symmetry characteristic in a bounded
symmetric domain (we suggest the open unit disk). We explore the most significant geometric
properties, including convexity and star-likeness. The boundedness in the weighted Bergman and the
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exist in these spaces. The subordination and superordination inequalities are presented. Our method is
based on Young’s convolution inequality.
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1. Introduction

The Atangana-Baleanu fractional differential operator (ABFDO) [1] has recently been used to
define fractional derivatives (see [2–4]). Additionally, fractional derivatives with nonsingular kernels
are crucial because some models of dissipation processes cannot be properly represented by the
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conventional fractional operators (see [5–7]). Applications are presented using ABFDO together
with different types of polynomials, such as the Chebyshev polynomial, B-spline polynomials and
Alexander polynomials [8–12].

For decades, classical fractional calculus based on the Riemann-Liouville fractional differential and
integral operators has been used to define many classes of fractional analytic functions in an open
unit disk. The recent work has demonstrated the ability to modify these classes and it has offered
a combination between the most important special functions, called the generalized Mittag-Leffler
function (the queen of special functions) and the formula for the fractional integral operator. This work
can be suggested to develop linear operators (convolution operators), as well as the integral formula
for the Bulboaca integral operator, Breaz integral operator and their generalizations. In addition, since
the ABFDO involves the Mittag-Leffler function, it can be extended to k-calculus and q-calculus.

In a recent effort, we have extended the ABFDO to a complex domain (an open unit disk)
to obtain the ABFDOs of a complex variable. To explore the geometric properties of the main
operators, we have acted the operators on a special type of class of analytic functions with the m-
fold symmetry characteristic in a bounded symmetric domain. This class of analytic functions is a
natural generalization of the normalized analytic functions, when m=1. The most discoveries in this
direction involve demonstrating that the operators are convex and have starlike shapes in the open unit
disk under some conditions. Moreover, the boundedness in the weighted Bergman and the convex
Bergman spaces associated with a bounded symmetric domain is investigated. Duality relations are
presented for these spaces. Our method is based on Young’s convolution inequality.

The paper is divided into the following sections. Section 2 deals with the definition of the m-fold
symmetric class of analytic functions and the formula that will be studied. Section 3 involves the
preliminaries that will be utilized in the proof of our results. Section 4 includes the extended ABFDO
and it contains the study of its geometrical characteristics. Sections 5 and 6 discuss the Bergman spaces
for a bounded symmetric domain with applications. Section 7 presents the conclusion of the results
and the future work.

2. m-fold symmetric class

In this section, we deduce the meaning of the m-fold symmetric class of analytic functions in the
open unit disk D := {ζ ∈ C : |ζ | < 1} (see [13]). In this investigation, we consider the class of m-fold
symmetric functions Ωm (see [14–16]), as follows:

ϕm(ζ) = ζ +

∞∑
n=1

anm+1ζ
nm+1, ζ ∈ D.

Akgul [14] modified the class of m-fold symmetric functions in [13] to determine some coefficient
results and complex inequalities. Seker and Taymur [15] described two new subclasses of bivalent
functions, which are both m-fold symmetric analytic functions. In their study, they determined
the upper bounds for the coefficients. Hamzat [16] has analyzed various features of fractional
analytic functions belonging to two novel subclasses of m-fold symmetric starlike and convex
functions in an open unit disk. Furthermore, features of a new subclass of m-fold symmetric bi-
Bazilevic functions associated with modified sigmoid functions are addressed, as are numerous related
minor repercussions.
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Note that for m = 1, we have the normalized function (the class is denoted by Ω)

ϕ(ζ) = ζ +

∞∑
n=2

anζ
n, ζ ∈ D.

Corresponding to ϕm(ζ), we have the following class of function denoted by TΩm

ϕm(ζ) = ζ −

∞∑
n=1

|anm+1|ζ
nm+1, ζ ∈ D,

where TΩ is a special class of TΩm,m = 1 with

ϕ(ζ) = ζ −

∞∑
n=2

|an|ζ
n, ζ ∈ D.

Definition 2.1. Functions ϕm ∈ Ωm are considered to belong to the class of (κ,m)-Janowski starlike
functions symbolized by (κ,m) − ST (u, v), −1 ≤ v < u ≤ 1, κ ≥ 0, whenever the following
inequality is true

<


(v − 1)

(
ζϕ′m(ζ)
ϕm(ζ)

)
− (u − 1)

(v + 1)
(
ζϕ′m(ζ)
ϕm(ζ)

)
− (u + 1)

 > κ
∣∣∣∣∣∣∣∣∣∣∣∣
(v − 1)

(
ζϕ′m(ζ)
ϕm(ζ)

)
− (u − 1)

(v + 1)
(
ζϕ′m(ζ)
ϕm(ζ)

)
− (u + 1)

− 1

∣∣∣∣∣∣∣∣∣∣∣∣ ,
where< indicates the symbol of the real part.

Also, we have the following class of convex functions:

Definition 2.2. Functions ϕm ∈ Ωm are supposed to belong to the class of (κ,m)-Janowski convex
functions symbolized by (κ,m) − CT (u, v), −1 ≤ v < u ≤ 1, κ ≥ 0, whenever the following
inequality is true

<


(v − 1)

((
ζϕ′m(ζ)

)′
ϕ′m(ζ)

)
− (u − 1)

(v + 1)
((
ζϕ′m(ζ)

)′
ϕ′m(ζ)

)
− (u + 1)

 > κ
∣∣∣∣∣∣∣∣∣∣∣∣
(v − 1)

((
ζϕ′m(ζ)

)′
ϕ′m(ζ)

)
− (u − 1)

(v + 1)
((
ζϕ′m(ζ)

)′
ϕ′m(ζ)

)
− (u + 1)

− 1

∣∣∣∣∣∣∣∣∣∣∣∣ .
When m = 1, we have the Noor-Malik class described in [17].

3. Lemmas

This section deals with the supplement results.

Lemma 3.1. ( [18, Theorem 2.4] or [19, Theorem 11.2]) If σ, ς, τ ∈ C with <(σ) > 0,<(ς) >

0,<(τ) > 0, then ∫ ζ

0
χς−1Eσ

ς,τ(wχ
σ)dχ = ζςEσ

ς+1,τ(wζ
σ).
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Lemma 3.2. [20] For the function ϕ(ζ) = ζ +
∑∞

n=2 anζ
n, ζ ∈ D, if

∑∞
n=2(n − q)|an|ζ

n ≤ 1 − q then ϕ is
starlike of order q. Moreover, if

∑∞
n=2 n(n − q)|an|ζ

n ≤ 1 − q then ϕ is convex of order q.

Lemma 3.3. [21] Let ρ1 ≥ 0, ρ2 > 0, and ω > 1/2. If f is starlike and g is convex then the integral(
ζω−1

∫ ζ

0

(
f (τ)
τ

)ρ1
(
g(τ)
τ

)ρ2

dτ
)1/ω

is starlike of order (2ω − 1)/2ω.

Lemma 3.4. [22] For some integer m ≥ 1, let

ρ(ζ) = 1 + ρmζ
m + ρm+1ζ

m+1 + ...

be analytic in D with its nonpositive real part in D. Then, there exists a point ζ0 ∈ D with ρ(ζ0) = iξ
and ζ0ρ

′(ζ0) = ϑ, where ϑ ≤ −m(1 + ξ2)/2.

4. Fractional differential operator

Numerous mathematical, physical and engineering fields make use of the Mittag-Leffler function,
particularly in relation to fractional calculus, fractional differential equations and fractional order
systems. It appears in issues with anomalous diffusion, viscoelasticity and memory effects. Recursive
relations, integral representations and linkages to other special functions are only a few of the Mittag-
Leffler function’s intriguing characteristics. It is essential to fractional calculus and serves as a potent
tool for comprehending and resolving issues involving fractional derivatives and integrals.

A branch of fractional calculus, which is an extension of ordinary calculus, is the fractional operator
based on the Mittag-Leffler function. It has been applied to simulate a variety of physical events and is
especially helpful when representing non-local or memory effects-based systems. There are numerous
scientific and engineering domains for which the Mittag-Leffler function and the fractional operator it
defines are applied, including physics, biology, economics and signal processing. These methods offer
a more thorough framework for comprehending and examining intricate systems involving fractional
order dynamics. The advantages of using the Mittag-Leffler function include, but are not limited to the
following observations. It is simpler to deal with the Mittag-Leffler function in theoretical analysis and
modeling since it has good features. It makes the exploration of fractional operators more approachable
by allowing mathematicians and scientists to find closed-form solutions to fractional differential
equations. In order to ensure that numerical simulations and approximations are well-behaved and
accurately converge to the true solution, it gives stable solutions to fractional differential equations.
Regarding its relationship to practical applications, in numerous real-world applications, such as the
modeling of biological systems, financial mathematics, control systems, and diffusion operations in
porous media, fractional calculus with the Mittag-Leffler function has shown great potential.

In this section, we proceed to extend the ABFDO in D.

Definition 4.1. The generalized Mittag-Leffler function is defined by

Eα
β,γ(ζ) =

∞∑
n=0

(α)n

Γ(βn + γ)
ζn

n!
, (ζ, α, β, γ ∈ C, Re β > 0) ,

where (α)n represents the Pochhammer symbol.
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We will employ double Mittage-Leffler functions in definition to display the modified ABFDOs of
a complex variable.

Definition 4.2. For ϕm ∈ Ωm, the extended fractional operators are given, as follows:

ABC∆ν
ζϕm(ζ) =

w(ν)
1 − ν

∫ ζ

0
ϕ′m(η)Eν,ω(−µνην)Eν(−µν(ζ − η)ν)dη (4.1)

and
ABR∆ν

ζϕm(ζ) =
w(ν)
1 − ν

d
dζ

∫ ζ

0
ϕm(ζ)Eν,ω(−µνην)Eν(−µν(ζ − η)ν)dη, (4.2)

where ω indicates the power of ζ in the power series of ϕm(ζ).

Example 4.3. Suppose that ϕm(ζ) = ζ. By Lemma 3.1, we have

ABC∆ν
ζ(ζ) =

w(ν)
1 − ν

∫ ζ

0
Eν(−µνην)Eν(−µν(ζ − η)ν)dη

=
w(ν)
1 − ν

(
ζE2

ν,2(−µν(ζ)ν)
)

=
w(ν)
1 − ν

ζ ∞∑
k=0

(2)kζ
k

k!Γ(kν + 2)

 ,
where (y)n = y(y + 1)...(y + n − 1). And,

ABR∆ν
ζ(ζ) =

w(ν)
1 − ν

d
dζ

∫ ζ

0
Eν(−µνην)Eν(−µν(ζ − η)ν)η dη

=
w(ν)
1 − ν

(
ζ2E2

ν,3(−µν(ζ)ν)
)′

=
w(ν)
1 − ν

(
ζE2

ν,2(−µν(ζ)ν)
)
.

As a result, we obtain the relation ABC∆ν
ζ(ζ) = ABR∆ν

ζ(ζ). In general, we get

ABC∆ν
ζ(ζ

mn) =

(
w(ν)
1 − ν

)
nζmn

(
E2
ν,1+mn(−µν(ζ)ν)

)
, n ≥ 1,

ABR∆ν
ζ(ζ

mn) =

(
w(ν)
1 − ν

)
ζmn

(
E2
ν,1+mn(−µν(ζ)ν)

)
.

We have the following result:

Proposition 4.4. Let ϕm ∈ Ωm and b(ν) :=
w(ν)

(1 − ν)
. Then,

ABC∆ν
ζϕm(ζ) :=

ABC∆ν
ζϕm(ζ)

b(ν)E2
ν,2 (−µν(ζ)ν)

∈ Ωm

and
ABR∆ν

ζϕm(ζ) :=
ABR∆ν

ζϕm(ζ)

b(ν)E2
ν,2 (−µν(ζ)ν)

∈ Ωm.
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Proof. Let ϕm ∈ Ωm. A calculation implies that

ABC∆ν
ζϕm(ζ) =

ABC∆ν
ζϕm(ζ)

b(ν)E2
ν,2 (−µν(ζ)ν)

=
ζ−νn ABC∆ν

ζϕm(ζ)

b(ν)ζ−νn E2
ν,2 (−µν(ζ)ν)

=
ζ−νn

(
b(ν)E2

ν,2 (−µν(ζ)ν) ζ +
∑∞

n=1 anm+1b(ν)(nm + 1)
(
E2
ν,2+nm (−µν(ζ)ν)

)
ζnm+1

)
b(ν)ζ−νnE2

ν,2 (−µν(ζ)ν)

= ζ +

ζ−νn
(∑∞

n=1 anm+1b(ν)(nm + 1)
(
[
∑∞

n=0
(2)n

Γ(νn + (mn + 2))
(−µν)nζνn

n!
]
)
ζnm+1

)
b(ν)ζ−νn[

∑∞
n=0

(2)n

Γ(νn + 2)
(−µν)nζνn

n!
]

= ζ +

∑∞
n=1 anm+1(nm + 1)

(
[
∑∞

n=0
(2)n

Γ(νn + (nm + 2))
(−µν)n

n!
]
)
ζnm+1

[
∑∞

n=0
(2)n

Γ(νn + (nm + 2))
(−µν)n

n!
]

= ζ +

∞∑
n=1

anm+1(mn + 1)

E2
ν,2+mn (−µν)

E2
ν,2 (−µν)

 ζnm+1

:= ζ +

∞∑
n=1

∆nm+1 ζ
nm+1 =

ζ +

∞∑
n=1

anm+1 ζ
nm+1

 ∗ ζ +

∞∑
n=1

σ
ν,µ
mn+1 ζ

nm+1

 =: ϕm(ζ) ∗ σm(ζ),

where σν,µ
mn := (nm + 1)

E2
ν,2+mn (−µν)

E2
ν,2 (−µν)

 , and the notation “∗” indicates the convolution product. Thus,

we conclude that ABC∆ν
ζϕm(ζ) ∈ Ωm. Similarly, we have that ABR∆ν

ζϕm(ζ) ∈ Ωm. �

Note that the integral corresponding to ABC∆ν
ζϕm(ζ) is given by the following series:

ABCIνζϕm(ζ) = ζ +

∞∑
n=1

anm+1

 E2
ν,2 (−µν)

(mn + 1)E2
ν,2+mn (−µν)

 ζnm+1

satisfying
ABCIνζ ∗

ABC∆ν
ζϕm(ζ) = ABC∆ν

ζ ∗
ABC Iνζϕm(ζ) = ϕm(ζ).

A modification of the ABFDO is given for the normalized univalent functions and quantum analytic
functions described in [23].

4.1. Properties of the operator

In this part, we shall investigate the most important geometric properties of the operator
ABC∆ν

ζϕm(ζ) ∈ Ωm.

Theorem 4.5. The operator ABC∆ν
ζϕm(ζ) ∈ Ωm can be included in the class (κ,m)−ST (u, v), −1 ≤ v <

u ≤ 1, κ ≥ 0, if it satisfies the following condition:

∞∑
n=1

(2(mn)(κ + 1) + |(mn + 1)(v + 1) − (1 + u)|) |anm+1σ
ν,µ
nm+1| < |v − u|. (4.3)
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Proof. We aim to show that

κ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(v − 1)

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 − (u − 1)

(v + 1)

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 − (u + 1)

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−<


(v − 1)

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 − (u − 1)

(v + 1)

ζ[ABC∆ν
ζϕm(ζ)]

[ABC∆ν
ζϕm(ζ)]

 − (u + 1)

− 1

 < 1.

A computation yields

κ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(v − 1)

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 − (u − 1)

(v + 1)

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 − (u + 1)

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−<


(v − 1)

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 − (u − 1)

(v + 1)

ζ[ABC∆ν
ζϕm(ζ)]

[ABC∆ν
ζϕm(ζ)]

 − (u + 1)

− 1



≤ (κ + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(v − 1)

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 − (u − 1)

(v + 1)

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 − (u + 1)

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2(κ + 1)

∣∣∣∣∣∣∣ [ABC∆ν
ζϕm(ζ)] − ζ[ABC∆ν

ζϕm(ζ)]′

(v + 1)ζ[ABC∆ν
ζϕm(ζ)]′ − (1 + u)[ABC∆ν

ζϕm(ζ)]

∣∣∣∣∣∣∣
≤ 2(κ + 1)

( ∑∞
n=1(mn)|anm+1σ

ν,µ
nm+1|

|v − u| −
∑∞

n=1 |(nm + 1)(1 + v) − (1 + u)||anm+1σ
ν,µ
nm+1|

)
.

If the condition (4.3) is true, the last assertion is bounded by 1, which completes the proof. �

For a comparison with other works, we have the following observations:

• m = 1 and σν,µ
nm+1 = 1⇒ [17];

• m = 1, u = 1, v = −1 and σν,µ
nm+1 = 1⇒ [24];

• m = 1, u = 1 − 2a, a ∈ [0, 1), v = −1 and σν,µ
nm+1 = 1⇒ [25];

• m = 1, u = 1 − 2a, a ∈ [0, 1), v = −1, κ = 0 and σν,µ
nm+1 = 1⇒ [20].

In a similar proof of Theorem 4.5, we have the following result:

Theorem 4.6. The operator ABC∆ν
ζϕm(ζ) ∈ Ωm is included in the class (κ,m)−CT (u, v), −1 ≤ v < u ≤

1, κ ≥ 0, if it satisfies the following condition:
∞∑

n=1

(mn + 1) (2(nm)(κ + 1) + |(mn + 1)(v + 1) − (1 + u)|) |anm+1σ
ν,µ
nm+1| < |v − u|. (4.4)

Theorem 4.7. Let ϕm ∈ Ωm be starlike of order ℘, ℘ ∈ [0, 1) with non-positive coefficients (anm+1 ≤ 0).
Moreover, let

∞∑
n=1

(
1 + nm − ℘

1 − ℘

)
anm+1σ

ν,µ
nm+1 ≤ 1.

Then,

AIMS Mathematics Volume 9, Issue 2, 3810–3835.
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(1) [ ABC∆ν
ζϕm(ζ)] achieves the starlikeness under the order ℘.

(2) It satisfies the boundedness inequality

|ζ | −
1 − ℘

1 + m − ℘
|ζ |1+m ≤ |[ABC∆ν

ζϕm(ζ)]| ≤ |ζ | +
1 − ℘

1 + m − ℘
|ζ |1+m.

(3) Its derivative reaches the following maximum bound and minimum bound:

1 −
(1 + m)(1 − ℘)

(1 + m − ℘)
|ζ |m ≤ |[ ABC∆ν

ζϕm(ζ)]′| ≤ 1 +
(1 + m)(1 − ℘)

(1 + m − ℘)
|ζ |m.

(4) The maximal function is given by the formula

[ ABC∆ν
ζϕm(ζ)] = ζ −

(
1 − ℘

1 + m − ℘

)
ζ1+m.

(5) If σm(ζ) and ϕm(ξ) are starlike of order ℘, then [ABC∆ν
ζϕm(ζ)] is starlike of order q, where

q :=
1 + m − ℘2

m + 2 − 2℘
.

Proof. By the positivity of the connections, ϕm can be represented by the power series

ϕm(ζ) = ζ −

∞∑
n=1

anm+1 ζ
mn+1, ζ ∈ D, m ∈ N.

In addition, since ϕm is starlike of order ℘, where ℘ ∈ [0, 1) and the following inequality is satisfied:

∞∑
n=1

(
1 + nm − ℘

1 − ℘

)
amn+1σ

ν,µ
nm+1 ≤ 1,

then, according to Lemma 3.2, we get the starlikeness of [ABC∆ν
ζϕm(ζ)] under the order ℘.

Using the leader component, we can obtain(
1 + m − ℘

1 − ℘

) ∞∑
n=1

amn+1σ
ν,µ
nm+1 ≤

∞∑
n=1

(
1 + nm − ℘

1 − ℘

)
amn+1σ

ν,µ
nm+1 ≤ 1,

which yields

∞∑
n=1

amn+1σ
ν,µ
nm+1 ≤

1 − ℘
1 + m − ℘

.

Consequently, we get

|[ABC∆ν
ζϕm(ζ)]| ≥ |ζ | − |ζ |1+m

∞∑
n=1

amn+1σ
ν,µ
nm+1 ≥ |ζ | − |ζ |

1+m

(
1 − ℘

1 + m − ℘

)
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and

|[ABC∆ν
ζϕm(ζ)]| ≤ |ζ | + |ζ |1+m

∞∑
n=1

amn+1σ
ν,µ
nm+1 ≤ |ζ | + |ζ |

1+m

(
1 − ℘

1 + m − ℘

)
.

We get the second portion by combining the two inequalities above.
Using the information below,

∞∑
n=1

(nm + 1)amn+1σ
ν,µ
nm+1 ≤ 1 − ℘ +

℘(1 − ℘)
1 + m − ℘

=
(1 + m)(1 − ℘)

1 + m − ℘
,

we have

|[ ABC∆ν
ζϕm(ζ)]′| ≥ 1 − |ζ |m

∞∑
n=1

(1 + nm)amn+1σ
ν,µ
nm+1 ≥ 1 −

(1 − ℘)(1 + m)
(1 + m − ℘)

|ζ |m

and

|[ ABC∆ν
ζϕm(ζ)]′| ≤ 1 + |ζ |m

∞∑
n=1

(1 + nm)amn+1σ
ν,µ
nm+1 ≤ 1 +

(1 − ℘)(1 + m)
(1 + m − ℘)

|ζ |m.

We get the third item when we combine the above inequalities. The maximal function obtained from a
direct calculation is as follows:

[ ABC∆ν
ζϕm(ζ)] = ζ −

(
1 − ℘

1 + m − ℘

)
ζ1+m,

which completes part four.
Using the definition of the convolution product, we get

ABC∆ν
ζϕm(ζ) = (σm ∗ ϕm) (ζ),

where σm and ϕm are starlike of order ℘. To prove the starlikeness of ABC∆ν
ζϕm(ζ), it is sufficient to

show that
∞∑

n=1

(
1 + nm − q

1 − q

)
amn+1σ

ν,µ
nm+1 ≤ 1.

Since
∞∑

n=1

(
1 + nm − ℘

1 − ℘

)
amn+1 ≤ 1

and
∞∑

n=1

(
1 + nm − ℘

1 − ℘

)
σ
ν,µ
nm+1 ≤ 1,
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the Cauchy-Schwarz inequality implies that

∞∑
n=1

(
1 + nm − ℘

1 − ℘

) √
amn+1σ

ν,µ
nm+1 ≤ 1,

where √
amn+1σ

ν,µ
nm+1 ≤

1 − ℘
1 + nm − ℘

.

But,
1 − ℘

1 + nm − ℘
≤

(1 + nm − ℘)(1 − q)
(1 − ℘)(1 + nm − q)

;

or, equivalently,

q ≤
(1 + nm − ℘)2 − (1 + nm)(1 − ℘)2

(1 + nm − ℘)2 − (1 − ℘)2 .

But the above fraction is an increasing function; thus, by letting n = 1, the inequality of the above
conclusion yields

q :=
1 + m − ℘2

2 + m − 2℘
.

Hence, according to Lemma 3.2, we have that [ABC∆ν
ζϕm(ζ)] is starlike of order q. �

Theorem 4.8. Assume the convexity of ϕm ∈ Ωm with order ℘, ℘ ∈ [0, 1) and non-positive
coefficients (anm ≤ 0). Moreover, suppose that

∞∑
n=1

(
(mn + 1)(1 + nm − ℘)

1 − ℘

)
amn+1σ

ν,µ
mn+1 ≤ 1.

Then,

(1) [ABC∆ν
ζϕm(ζ)] achieves convexity under order ℘.

(2) It satisfies the boundedness inequality

|ζ | −
1 − ℘

(1 + m)(1 + m − ℘)
|ζ |1+m ≤ |[ABC∆ν

ζϕm(ζ)]| ≤ |ζ | +
1 − ℘

(1 + m)(1 + m − ℘)
|ζ |1+m.

(3) Its derivative admits the following boundedness inequality:

1 −
1 − ℘

(1 + m − ℘)
|ζ |m ≤ |[ABC∆ν

ζϕm(ζ)]′| ≤ 1 +
1 − ℘

(1 + m − ℘)
|ζ |m.

(4) The maximal function is given by the formula

[ABC∆ν
ζϕm(ζ)] = ζ −

(
(1 − ℘)

(1 + m − ℘) (1 + m)

)
ζ1+m.

(5) If σm and ϕm are convex of order ℘, then [ABC∆ν
ζϕm(ζ)] is convex of order ℘, where

q :=
(1 + m − ℘)2 − 2(1 + m)(1 − ℘)2

(1 + m − ℘)2 − 2(1 − ℘)2 .
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Proof. Assume that

ϕm(ζ) = ζ −

∞∑
n=1

amn+1 ζ
mn+1, ζ ∈ D,

satisfies the inequality
∞∑

n=1

(
(1 + mn)(1 + mn − ℘)

1 − ℘

)
amn+1σ

ν,µ
nm+1 ≤ 1.

And in view of Lemma 3.2 (the second part), we have that [ABC∆ν
ζϕm(ζ)] admits a convexity under

order ℘.
As a consequence of the above conclusion, we get(

(1 + m) (1 + m − ℘)
1 − ℘

) ∞∑
n=1

amn+1σ
ν,µ
nm+1 ≤

∞∑
n=1

(1 + mn)
(
1 + mn − ℘

1 − ℘

)
amn+1σ

ν,µ
nm+1,

≤ 1

which yields

∞∑
n=1

amn+1σ
ν,µ
nm+1 ≤

1 − ℘
(1 + m) (1 + m − ℘)

.

Moreover, we have

∞∑
n=1

nmamn+1σ
ν,µ
nm+1 ≤

1 − ℘
(1 + m − ℘)

.

Thus, we are left with the second and third sections, respectively. Clearly, the formula gives the greatest
sharp function, as follows:

[ABC∆ν
ζϕm(ζ)] = ζ −

(
(1 − ℘)

(1 + m − ℘) (1 + m)

)
ζ1+m.

A convolution property implies that

[ABC∆ν
ζϕm(ζ)] = σm(ζ) ∗ ϕm(ζ),

whereσm and ϕm are convex of order ℘. To obtain that [ABC∆ν
ζϕm(ζ)] is convex of order q,we obtain that

∞∑
n=1

(1 + mn)
(
1 + mn − q

1 − q

)
amn+1σ

ν,µ
nm+1 ≤ 1.

Since

∞∑
n=1

(1 + mn)
(
1 + mn − ℘

1 − ℘

)
amn+1 ≤ 1
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and
∞∑

n=1

(1 + mn)
(
1 + mn − ℘

1 − ℘

)
σν,µ

nm ≤ 1,

the Cauchy-Schwarz inequality yields

∞∑
n=1

(1 + nm)
(
1 + nm − ℘

1 − ℘

) √
anm+1σ

ν,µ
nm+1 ≤ 1,

where √
anm+1σ

ν,µ
nm+1 ≤

1 − ℘
(1 + nm)(1 + mn − ℘)

.

But,
1 − ℘

(1 + nm)(1 + mn − ℘)
≤

(1 + nm − ℘)(1 − q)
(1 + mn)(1 − ℘)1 + (nm − q)

,

or, equivalently, we have the increasing inequality

q ≤
(1 + mn − ℘)2 − 2(1 + mn)(1 − ℘)2

(1 + mn − ℘)2 − 2(1 − ℘)2 .

By assuming that n = 1, computation yields

q =
(1 + m − ℘)2 − 2(1 + m)(1 − ℘)2

(1 + m − ℘)2 − 2(1 − ℘)2 .

Hence, [ABC∆ν
ζϕm(ζ)] addresses the convexity under order q. �

Theorem 4.9. Consider the operator [ABC∆ν
ζϕm(ζ)]. Then,

[ABC∆ν
ζϕm(ζ)] ∈ S∗ ⇒

ζω−1
∫ ζ

0

 [ABC∆ν
ζϕm(τ)]

τ

ρ1 (
gm(τ)
τ

)ρ2

dτ

1/ω

∈ S ∗(
2ω − 1

2ω
),

where gm is a convex univalent function, ω > 1/2, ρ1 ≥ 0 and ρ2 > 0.

Moreover, if

gm(ζ) =
ζ

1 − ζm , ρ2 = 1,

then

[ABC∆ν
ζϕm(ζ)] ∈ S∗ ⇒

ζω−1
∫ ζ

0

 [ABC∆ν
ζϕm(τ)]

τ(1 − τm)1/ρ1

ρ1

dτ

1/ω

∈ S ∗(
2ω − 1

2ω
),

where g is a convex univalent function and ρ1 ≥ 0 and ρ2 > 0.

Proof. Let

gm(ζ) = ζ +

∞∑
n=1

gmn+1ζ
nm+1.
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First, we must show that ζω−1
∫ ζ

0

 [ABC∆ν
ζϕm(τ)]

τ

ρ1 (
gm(τ)
τ

)ρ2

dτ

1/ω

∈ Ωm. (4.5)

By the definition of [ABC∆ν
ζϕm(ζ)], we have

I[F,G]m(ζ) :=

ζω−1
∫ ζ

0

 [ABC∆ν
ζϕm(τ)]

τ

ρ1 (
gm(τ)
τ

)ρ2

dτ

1/ω

=

(
ζω−1

∫ ζ

0

(
τ +

∑∞
n=1 ∆nm+1τ

mn+1

τ

)ρ1 (τ +
∑∞

n=1 gmn+1τ
nm+1

τ

)ρ2

dτ
)1/ω

=

ζω−1
∫ ω

0

1 +

∞∑
n=1

∆nm+1τ
mn

ρ1
1 +

∞∑
n=1

gmn+1τ
nm

ρ2

dτ

1/ω

=

ζω−1
∫ ζ

0

1 + ρ1

∞∑
n=1

∆nm+1τ
mn + ...

 1 + ρ2

∞∑
n=1

gmn+1τ
mn + ...

 dτ

1/ω

=

ζω−1
∫ ζ

0

1 + ρ1

∞∑
n=1

∆nm+1τ
nm

 + ...

 dτ

1/ω

.

As a consequence, we obtain (4.5). By the convexity of gm, we attain that it is in the class S∗(1/2).
Since the multiplication of starlike functions implies starlikeness, I[F,G]m(ζ) admits starlikeness of
order (2ω − 1)/2ω (see Lemma 3.3). The second part of the theorem is valid when gm(ζ) = ζ/(1 − ζm)
and ρ2 = 1. �

We have the following outcome for some geometric inequalities:

Theorem 4.10. Consider the operator [ABC∆ν
ζϕm(ζ)]. If∣∣∣∣∣∣∣ [

ABC∆ν
ζϕm(ζ)]′′

[ABC∆ν
ζϕm(ζ)]′

∣∣∣∣∣∣∣ ≤ m
2

+ 1,

then

(1) <

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 < 1
2

;

(2) or, equivalently,

∣∣∣∣∣∣∣ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

− 1

∣∣∣∣∣∣∣ < 1.

Proof. Note that <

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]

 < 1
2

is equivalent to <

 [ABC∆ν
ζϕm(ζ)]

ζ[ABC∆ν
ζϕm(ζ)]′

 > 1
2
. Based on the

above inequality, we define the following function:

ρ(ζ) :=
2[ABC∆ν

ζϕm(ζ)]

ζ[ABC∆ν
ζϕm(ζ)]′

− 1.
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Then one can write the formula series ρ(ζ) = 1 + ρmζ
m + ρm+1ζ

m+1 + ... by using

ζ[ABC∆ν
ζϕm(ζ)]′′

[ABC∆ν
ζϕm(ζ)]′

=
1 − ρ(ζ) − ζρ′(ζ)

1 + ρ(ζ)
.

Assume that ρ(ζ) does not have a positive real component. Lemma 3.4 states that a point ζ0 belongs
to D, where ρ(ζ0) = iξ and ζ0ρ(ζ0) = ϑ, where ϑ ≤ −m(1 + ξ2)/2. Direct computation yields∣∣∣∣∣∣∣ζ[ABC∆ν

ζϕm(ζ)]′′

[ABC∆ν
ζϕm(ζ)]′

∣∣∣∣∣∣∣ =
(1 − ϑ)2 + ξ2

1 + ξ2 ≥
(1 + m(1 + ξ2)/2)2 + ξ2

1 + ξ2 ≥ (1 +
m
2

)2.

This leads to the assertion made by this theorem. �

Not that, when m = 1 and σν,µ
nm+1 = 1, we obtain the result presented in [26], and when σν,µ

nm = 1, we
have the result presented in [13]. Moreover, Theorem 4.10 can be considered for the integral operators
in Theorem 4.9 and the fractional operator corresponds to [ABC∆ν

ζϕm(ζ)].

Theorem 4.11. Consider the operator [ABC∆ν
ζϕm(ζ)]. If∣∣∣∣∣∣∣ [

ABC∆ν
ζϕm(ζ)]′′

[ABC∆ν
ζϕm(ζ)]′k

∣∣∣∣∣∣∣ ≤ m2 − 1
4m

,

for k ∈ Z+ and

[ABC∆ν
ζϕm(ζ)]k =

1
2k

k−1∑
n=0

 [ABC∆ν
ζϕm($nζ)]

$n

 +$n[ABC∆ν
ζϕm($nζ̄)], $ = exp(2πi/k),

then

<

ζ[ABC∆ν
ζϕm($nζ)]′

[ABC∆ν
ζϕm($nζ)]k

 > 0.

Proof. By the assumption of the theorem, we have

[ABC∆ν
ζϕm(ζ)]′k =

1
2k

k−1∑
n=0

(
[ABC∆ν

ζϕm($nζ)]
)′

+ [ABC∆ν
ζϕm($nζ̄)]′

and

[ABC∆ν
ζϕm(ζ)]′′k =

1
2k

k−1∑
n=0

(
[ABC∆ν

ζϕm($nζ)]
)′′

+ [ABC∆ν
ζϕm($nζ̄)]′′.

Direct computation yields ∣∣∣∣∣∣∣$
k[ABC∆ν

ζϕm($kζ)]′′

[ABC∆ν
ζϕm(ζ)]′k

∣∣∣∣∣∣∣ ≤ m2 − 1
4m

and ∣∣∣∣∣∣∣∣
$−k[ABC∆ν

ζϕm($kζ)]′′

[ABC∆ν
ζϕm(ζ)]′k

∣∣∣∣∣∣∣∣ ≤ m2 − 1
4m

.
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Combining the above inequalities, we obtain∣∣∣∣∣∣∣ [
ABC∆ν

ζϕm(ζ)]′′k
[ABC∆ν

ζϕm(ζ)]′k

∣∣∣∣∣∣∣ ≤ m2 − 1
4m

.

We proceed to show that <

ζ[ABC∆ν
ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]k

 > 0. Let ρ(ζ) =
ζ[ABC∆ν

ζϕm(ζ)]′

[ABC∆ν
ζϕm(ζ)]k

. Then, by the formula

series ρ(ζ) = 1 + ρmζ
m + ρm+1ζ

m+1 + ... can be applied

ζ[ABC∆ν
ζϕm(ζ)]′′

[ABC∆ν
ζϕm(ζ)]′k

=

 [ABC∆ν
ζϕm(ζ)]k

ζ[ABC∆ν
ζϕm(ζ)]′k

 ζρ′(ζ) − ρ(ζ)

1 − ζ[ABC∆ν
ζϕm(ζ)]′k

[ABC∆ν
ζϕm(ζ)]k

 .
Assume that ρ(ζ) does not have a positive real component. Lemma 3.4 states that ζ0 belongs to D

with ρ(ζ0) = iξ and ζ0ρ(ζ0) = ϑ, where ϑ ≤ −m(1 + ξ2)/2. Direct computation yields

∣∣∣∣∣∣∣ζ0[ABC∆ν
ζϕm(ζ0)]′′

[ABC∆ν
ζϕm(ζ0)]′k

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ϑ + iξ

ζ0[ABC∆ν
ζϕm(ζ0)]′k

[ABC∆ν
ζϕm(ζ0)]k

− 1


∣∣∣∣∣∣∣

2
≥
|ϑ| − |ξ|

2

≥
m(1 + ξ2)/2 − |ξ|

2
≥

m2 − 1
4m

.

This contradicts the assertion made by this theorem. Hence,<

ζ[ABC∆ν
ζϕm($nζ)]′

[ABC∆ν
ζϕm($nζ)]k

 > 0. �

The above theorem is valid for the integrals in Theorem 4.9 and the integral corresponds to
[ABC∆ν

ζϕm($nζ)].

Example 4.12. Consider the fractional differential equationζ[ABC∆ν
ζϕm($nζ)]′

[ABC∆ν
ζϕm($nζ)]

 = 1. (4.6)

Equation (4.6) has the following expression:

[ABC∆ν
ζϕm($nζ)] = ζ,

which satisfies

<

ζ[ABC∆ν
ζϕm($nζ)]′

[ABC∆ν
ζϕm($nζ)]

 = 1 > 0;

thus, it is starlike. Let

gm(ζ) =
ζ

1 − ζm , ρ2 = 1;

then, according to Theorem 4.9,(
ζω−1

∫ ζ

0

(
1

(1 − τm)1/ρ1

)ρ1

dτ
)1/ω

∈ S ∗(
2ω − 1

2ω
),

where gm is a convex univalent function, ρ1 ≥ 0 and ρ2 > 0.
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5. Bergman spaces for a bounded symmetric domain

In this part, we study the boundedness of the operator ABC∆ν
ζϕm(ζ) in some well-known spaces.

We shall use the Bergman space of analytic functions in D (bounded symmetric domain). The
weighted Bergman space is a modification of the Bergman space in which functions are not only
square integrable, but they also have integrability that can be quantified in terms of a specific weight
function. The space of functions that are square-integrable with respect to this weight is affected by this
weight function, which imposes varying weights on various places in the bounded symmetric domain.
Weighted Bergman spaces have been utilized to investigate diverse analytic function qualities for
certain domains and particular actions selected by the weight function. Alongside other mathematical
disciplines these spaces have uses in complex analysis, potential theory,and harmonic analysis. The
characteristics of the related weighted Bergman space might be very different for a given domain and
weight function. Understanding how analytic functions behave in relation to the domain’s underlying
geometry and weight distribution can be accomplished by looking at the properties of functions in these
spaces. These realizations may then contribute to a deeper comprehension of sophisticated analysis and
associated mathematical ideas.

The weighted Bergman space is a set of all analytic functions in D (bounded symmetric domain)
with the norm [27]

‖φ‖
B
β
p

=

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|φ(ζ)|pdΛ(ζ)

)1/p

< ∞, (β > −1, p ∈ (0,∞)) .

The convex structure is formulated when γ ∈ (0, 1/2], as follows:

‖φ‖Bγp =

(
(1 − γ)
γ

∫
D

(
1 − |ζ |2

) 1−2γ
γ
|φ(ζ)|pdΛ(ζ)

)1/p

< ∞, (γ ∈ (0, 1/2], p ∈ (0,∞)) ,

where dΛ = dζ/π is the area measure. Note that, when β =
1−2γ
γ
, we obtain the weighted space. In

addition, the non-normal weighted logarithmic Bergman space is defined as follows [28]:

‖φ‖
B
β
p,log

=

∫
D

(
log

e
1 − |ζ |2

)−β
|φ(ζ)|p

dΛ(ζ)
1 − |ζ |2

1/p

< ∞, (β > 1, p ∈ (0,∞)) .

The two parameter normal weighted logarithmic Bergman space is defined as follows [29]:

‖φ‖
B
β,γ
p,log

=

∫
D

(
log

1
1 − |ζ |

)β
(1 − |ζ |)γ |φ(ζ)|pdΛ(ζ)

1/p

< ∞, (β ≤ 0, γ > −1, p ∈ (0,∞)) .

Finally, the general weighted Bergman spaces have the following structure:

‖φ‖Bp
ω

=

(∫
D

|φ(ζ)|pω(ζ)dΛ(ζ)
)1/p

< ∞, ω ∈ L1(D).

Alternatively, they have the following parametric structure [30]:

‖φ‖Bp

ω]
=

(∫
D

|φ(ζ)|pω](ζ)dΛ(ζ)
)1/p

< ∞, ω](ζ) = ω(ζ)$(ζ)α ∈ L1(D), α ∈ R.

We have the following result of this section:
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Theorem 5.1. Consider the operator ABC∆ν
ζϕm(ζ), where ϕm ∈ Ωm. Then,

(1) ‖ϕm‖Bβp
⇔ ‖ABC∆ν

ζϕm‖Bβp
, β > −1;

(2) ‖ϕm‖Bγp ⇔ ‖
ABC∆ν

ζϕm‖Bγp , γ ∈ (0, 1/2];
(3) ‖ϕm‖Bβp,log

⇔ ‖ABC∆ν
ζϕm‖Bβp,log

, β > 1;

(4) ‖ϕm‖Bβ,γp,log
⇔ ‖ABC∆ν

ζϕm‖Bβ,γp,log
, β ≤ 0, γ > −1;

(5) ‖ϕm‖Bp
ω
⇔ ‖ABC∆ν

ζϕm‖Bp
ω
, ω ∈ L1(D);

(6) ‖ϕm‖Bp

ω]
⇔ ‖ABC∆ν

ζϕm‖Bp

ω]
, ω](ζ) = ω(ζ)$α(ζ) ∈ L1(D), α ∈ R.

Proof. Let ϕm ∈ B
β
p. Assume that

Σm(β, p) := sup
(β,p),|ζ |=r

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|σm(ζ)|pdΛ(ζ)

)1/p

< ∞.

Then, for p ≥ 1, Young’s inequality of the convoluted functions implies that

‖ABC∆ν
ζϕm‖Bβp

=

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|ABC∆ν

ζϕm(ζ)|pdΛ(ζ)
)1/p

=

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|ϕm(ζ) ∗ σm(ζ)|pdΛ(ζ)

)1/p

≤

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|ϕm(ζ)|pdΛ(ζ)

)1/p (
(1 + β)

∫
D

(
1 − |ζ |2

)β
|σm(ζ)|pdΛ(ζ)

)1/p

≤ Σm(β, p)‖ϕm‖Bβp
< ∞.

Thus, ABC∆ν
ζϕm ∈ B

β
p. Conversely, let

λ(β, p) := sup
(β,p),|ζ |=r

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|ςm(ζ)|pdΛ(ζ)

)1/p

< ∞

and assume that ‖ABC∆ν
ζϕm‖Bβp

< ∞. Analogous to σm(ς), define the function ςm(ζ) as follows (see
Figures 1 and 2):

σm(ζ) ∗ ςm(ζ) = ζ +
∑
n=1

ζnm+1 =
ζ

1 − ζm , ζ ∈ D.

Then, Young’s inequality yields

‖ϕm‖Bβp

=

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|ϕm(ζ)|pdΛ(ζ)

)1/p

=

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|ϕm(ζ) ∗

(
ζ

1 − ζm

)
|pdΛ(ζ)

)1/p
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=

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
|ϕm(ζ) ∗ (σm(ζ) ∗ ςm(ζ)) |pdΛ(ζ)

)1/p

=

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
| (ϕm(ζ) ∗ σm(ζ)) ∗ ςm(ζ)|pdΛ(ζ)

)1/p

≤

(
(1 + β)

∫
D

(
1 − |ζ |2

)β
| (ϕm(ζ) ∗ σm(ζ)) |pdΛ(ζ)

)1/p (
(1 + β)

∫
D

(
1 − |ζ |2

)β
|ςm(ζ)|pdΛ(ζ)

)1/p

≤ λ(β, p)‖ABC∆ν
ζϕm‖Bβp

< ∞.

Thus, ϕm ∈ B
β
p.

The process is similar for the other above listed cases.

Figure 1. 3D plots of the m-fold symmetric function ζ/(1 − ζm) when m = 1, 2, 3, 4
respectively (the graph was plotted by using Mathematica 13.3).
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Figure 2. 3D plot of the m-fold symmetric function ζ/(1 − ζm) when m = 10, 20, 50, 100
respectively (the graph was plotted by using Mathematica 13.3).

�

Remark 5.2. Figures 1 and 2 present the m-symmetrical behavior of the Koebe function, which is the
extreme function of the convexity in an open unit disk. The Koebe function is an extreme function in a
number of univalent function problems. The m-symmetric Koebe function is a useful mathematical
tool for complex analysis and conformal mapping theory. It helps mathematicians and scientists
to understand and work with conformal mappings, which have numerous applications in physics
and engineering. While it lacks a direct physical interpretation, the characteristics and theorems it
references can be used to solve real-world problems involving complicated shapes and locations.

In the same manner of Theorem 5.1, we have the following result regarding the operator
ABR∆ν

ζϕm(ζ).

Theorem 5.3. Consider the operator ABR∆ν
ζϕm(ζ), where ϕm ∈ Ωm. Then, consider the following:

(1) ‖ϕm‖Bβp
⇔ ‖ABR∆ν

ζϕm‖Bβp
, β > −1;

(2) ‖ϕm‖Bγp ⇔ ‖
ABR∆ν

ζϕm‖Bγp , γ ∈ (0, 1/2];
(3) ‖ϕm‖Bβp,log

⇔ ‖ABR∆ν
ζϕm‖Bβp,log

, β > 1;

(4) ‖ϕm‖Bβ,γp,log
⇔ ‖ABR∆ν

ζϕm‖Bβ,γp,log
, β ≤ 0, γ > −1;

(5) ‖ϕm‖Bp
ω
⇔ ‖ABR∆ν

ζϕm‖Bp
ω
, ω ∈ L1(D);

(6) ‖ϕm‖Bp

ω]
⇔ ‖ABR∆ν

ζϕm‖Bp

ω]
, ω](ζ) = ω(ζ)$α(ζ) ∈ L1(D), α ∈ R.
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6. Applications

Numerous mathematical disciplines, such as complex analysis, functional analysis, harmonic
analysis, operator theory and others, all make use of the Bergman space. It is an invaluable instrument
for comprehending and resolving issues in these sectors because of its adaptability and connections to
diverse mathematical disciplines. A symmetric function is one that does not change when its variables
are permuted. An m-fold symmetric function is a special form of symmetric function in which the
variables are permuted by separating them into m distinct subgroups and permuting the variables within
each subset. The physical meaning of an m-fold symmetric function is determined by the situation.
Here are a handful of samples to demonstrate its significance in many fields:

• In physics, m-fold symmetric functions can describe the action of material properties that maintain
some kind of symmetry when seen from multiple locations or orientations inside the crystal
lattice, particularly in the study of solid-state materials and crystals. When investigating the
electronic band structure of crystals, for example, m-fold symmetric functions can help scholars to
describe the energy levels and wave functions of electrons in the crystal while taking the crystal’s
symmetry into account (see [31]).
• In chemistry, symmetry is important for the classification of molecular structures and their

spectroscopic properties. The symmetry of molecular vibrations, electronic states and other
features can be described by using m-fold symmetric functions. For instance, when evaluating
a molecule’s vibration modes, m-fold symmetric functions can aid in the determination of
which modes are Raman-active or infrared-active, as predicated on their symmetry-related
features (see [32]).
• In engineering, m-fold symmetric functions can be utilized to examine signals or systems

that display specified symmetries, particularly in signal processing and control theory. By
taking advantage of the underlying symmetries, this may simplify system analysis and
implementation (see [33]). Other applications are discussed in [34–37].

In this part, we study the estimate of the fractional equation

∂
(
ABC∆ν

ζϕm

)
(ζ) = ϕm(ζ), (6.1)

when

‖ϕm‖Bp

ω]
=

(∫
D

|ϕm(ζ)|pω](ζ)dΛ(ζ)
)1/p

< ∞.

It is well known that the ∂(.) =
∂(.)
∂ζ

dζ equation has many applications in different fields, including
mathematical physics and fluids.

Theorem 6.1. Consider the Eq (6.1). Then, it admits a solution satisfying the finite inequality∫
D

∣∣∣∣ (ABC∆ν
ζϕm

)
(ζ)

∣∣∣∣p (
ω](ζ)

)p/2
dΛ ≤ C1

∫
D

|ϕm(ζ)|p
(
ω](ζ)

)p/2
$p(ζ)dΛ, (6.2)

where ω is the decreasing weight. Furthermore,

sup
ζ∈D

∣∣∣∣ (ABC∆ν
ζϕm

)
(ζ)

∣∣∣∣ (ω](ζ)
)1/2
≤ C2 sup

ζ∈D

|ϕm(ζ)|
(
ω](ζ)

)1/2
$(ζ), (6.3)

where C1,C2 are positive constants.
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Proof. It is enough to prove that∫
D

|ϕm(ζ)|p
(
ω](ζ)

)p/2
$p(ζ)dΛ < ∞.

Define an analytic function on the disk D(r0), where

r0 := $(ξ0) ≤ r < 1,

as follows:
Ψ(ξ) = ω(ξ)−1/2, ξ ∈ D(r0).

Let χn be a partition covering the disk D(rn), rn ≤ r < 1 with |χn(ξ)| < 1. Suppose that

Fn(ϕm)(ξ) := Ψ(ξn)
∫
D

ϕm(ξ)χn(ξ)
(ξ − ζ)Ψ(ξn)

dΛ(ξ).

According to the Cauchy-Pompeiu formula, we get

∂Fn(ϕm)(ζ) = ϕm(ζ)χn(ζ), n = 1, 2, ....

Then, it can be extended by the power series

F(ϕm)(ζ) =

∞∑
n=1

Fn(ϕm)(ζ).

Thus, we obtain

∂F(ϕm)(ζ) =

∞∑
n=1

∂Fn(ϕm)(ζ) =

∞∑
n=1

ϕm(ζ)χn(ζ) = ϕm(ζ)
∞∑

n=1

χn(ζ) = ϕm(ζ).

Assume that ∫
D

∣∣∣∣∣∣∣
∞∑

n=1

(
Ψ(ζn)χn(ξ)

(ξ − ζ)Ψ(ξn)

)
[ω](ξ)]−1/2[ω](ζ)]1/2

∣∣∣∣∣∣∣ dΛ(ξ)
$(ξ)

≤ 1 (6.4)

and ∫
D

|Ψ(ζ)|
|ξ − ζ |

[ω](ζ)]1/2dΛ(ζ) ≤ [$(ξ)]1+ α
2 , ξ ∈ D(rn). (6.5)

We aim to show that ∫
D

|Fϕm(ζ)|p[ω]]p/2dΛ(ζ) ≤
∫
D

|ϕm(ζ)|p[ω]]p/2$p(ζ)dΛ(ζ).

According to Hölder’s inequality, we obtain∣∣∣∣∣∣∣
∫
D

∞∑
n=1

(
Ψ(ζn)χn(ξ)

(ξ − ζ)Ψ(ξn)

)
[ω](ξ)]−1/2[ω](ζ)]1/2

(
ϕm(ξ)[ω](ξ)]1/2

)∣∣∣∣∣∣∣
p
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≤

∫
D

∣∣∣∣∣∣∣
∞∑

n=1

(
Ψ(ζn)χn(ξ)

(ξ − ζ)Ψ(ξn)

)
[ω](ξ)]−1/2[ω](ζ)]1/2

∣∣∣∣∣∣∣ ∣∣∣ϕm(ξ)[ω]]1/2(ξ)
∣∣∣p [$(ξ)]p−1dΛ(ξ)


×

∫
D

∣∣∣∣∣∣∣
∞∑

n=1

(
Ψ(ζn)χn(ξ)

(ξ − ζ)Ψ(ξn)

)
[ω](ξ)]−1/2[ω](ζ)]1/2

∣∣∣∣∣∣∣ dΛ(ξ)
$(ξ)

p−1

≤

∫
D

∣∣∣∣∣∣∣
∞∑

n=1

(
Ψ(ζn)χn(ξ)

(ξ − ζ)Ψ(ξn)

)
[ω](ξ)]−1/2[ω](ζ)]1/2

∣∣∣∣∣∣∣ ∣∣∣ϕm(ξ)[ω]]1/2
∣∣∣p [$(ξ)]p−1dΛ(ξ)

 .
Now, in view of Fubini’s theorem, and by using the inequalities (6.4) and (6.5), we have∫

D

∣∣∣∣∣∣∣
∞∑

n=1

(
Ψ(ζn)χn(ξ)

(ξ − ζ)Ψ(ξn)

)
ω](ξ)]−1/2[ω](ζ)]1/2

(
ϕm(ξ)[ω](ξ)]1/2

)
$p−1(ξ)

∣∣∣∣∣∣∣
p

dΛ(ζ)

≤

∫
D

∫
D

∞∑
n=1

∣∣∣∣∣∣
(

Ψ(ζn)χn(ξ)
(ξ − ζ)Ψ(ξn)

)
[ω](ξ)]−1/2[ω](ζ)]1/2

∣∣∣∣∣∣ ∣∣∣∣(ϕm(ξ)[ω](ξ)]1/2
)∣∣∣∣p $p−1(ξ)dΛ(ξ)

 dΛ(ζ)

≤

∫
D

∣∣∣∣(ϕm(ξ)[ω](ξ)]1/2
)∣∣∣∣p $p−1(ξ)

∫
D

∞∑
n=1

∣∣∣∣∣∣
(

Ψ(ζn)χn(ξ)
(ξ − ζ)Ψ(ξn)

)
[ω](ξ)]−1/2[ω](ζ)]1/2

∣∣∣∣∣∣ dΛ(ζ)

 dΛ(ξ)

≤

∫
D

∣∣∣∣(ϕm(ξ)[ω](ξ)]1/2
)∣∣∣∣p $p−1(ξ)

 [ω](ξ)]−1/2

Ψ(ξn)

∫
D

∞∑
n=1

∣∣∣∣∣∣
(

Ψ(ζn)
(ξ − ζ)

)∣∣∣∣∣∣ [ω](ζ)]1/2dΛ(ζ)

 |χn(ξ)|dΛ(ξ)

≤

∞∑
n=1

∫
D(rn)

∣∣∣∣(ϕm(ξ)[ω](ξ)]1/2
)∣∣∣∣p $p−1(ξ)

(
[ω](ξ)]−1/2

Ψ(ξn)

∫
D

∣∣∣∣∣∣
(

Ψ(ζn)
(ξ − ζ)

)∣∣∣∣∣∣ [ω](ζ)]1/2dΛ(ζ)
)
|χn(ξ)|dΛ(ξ)

≤

∞∑
n=1

∫
D(rn)

∣∣∣∣(ϕm(ξ)[ω](ξ)]1/2
)∣∣∣∣p $p−1−α/2(ξ)

(∫
D

∣∣∣∣∣ Ψ(ζn)
(ξ − ζ)

∣∣∣∣∣ [ω](ζ)]1/2dΛ(ζ)
)

dΛ(ξ)

≤

∞∑
n=1

∫
D(rn)

∣∣∣∣(ϕm(ξ)[ω](ξ)]1/2
)∣∣∣∣p $p(ξ)dΛ(ξ)

≤

∫
D

∣∣∣∣(ϕm(ξ)[ω](ξ)]1/2
)∣∣∣∣p $p(ξ)dΛ(ξ) < ∞,

where

maxξ
[ω](ξ)]−1/2

Ψ(ξn)
≤ 1

and χn(ξ) is considered for D(rn), rn < 1 with |χn(ξ)| < 1. Then, we obtain (6.2). Since ϕm ∈ B
p
ω]
,

Theorem 5.1 yields (6.3).
The proof is completed. �

7. Conclusions

Working on a specific kind of class of analytic functions with the m-fold symmetry feature
in a complex domain, we expanded the fractional differential operator. We have illustrated a
set of geometric properties of this operator including the uniform starlike and uniform convex
shapes (Theorem 4.5). Sufficient conditions on this operator are presented to be starlike in terms
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of double (κ,m)-symmetric-conjugate points (Theorems 4.10 and 4.11). Under some conditions, the
operator preserves some integral formulas (Theorem 4.9). Sharpness for some geometric properties has
been indicated. Applications in the field of fractional differential equations are presented to determine
the geometric behavior of the solutions in an open unit disk (Example 4.12). The final aim of this
work was to study the symmetry of fractional differential operator in Bergman spaces for a symmetric
domain. We suggest that the applications can to find the solution of the ∂-equation whenever ϕm ∈ B

p
ω]
.

To summarize, the use of fractional derivatives of complex variables is a particular mathematical
technique that involves applying fractional calculus to complex functions. They are applied in a
variety of scientific and technical disciplines whereby complex systems or events must be investigated
and simulated. A fractional derivative in the complex plane can be converted to a fractional Laplacian
operator in some instances, which is a generalization of the Laplacian operator for real variables. Other
properties can be considered in the future by using different classes of analytic functions, including the
class of meromorphic functions, multi-valent functions and harmonic functions.
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