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Abstract: When a researcher wants to perform a life-test comparison study of items made by
two separate lines inside the same institution, joint censoring strategies are particularly important.
In this paper, we present a new joint Type-I hybrid censoring that enables an experimenter to
stop the investigation as soon as a pre-specified number of failures or time is first achieved. In
the context of newly censored data, the estimates of the unknown mean lifetimes of two different
Rayleigh populations are acquired using maximum likelihood and Bayesian inferential techniques.
The normality characteristic of classical estimators is used to offer asymptotic confidence interval
bounds for each unknown parameter. Against gamma conjugate priors, the Bayes estimators and
related credible intervals are gathered about symmetric and asymmetric loss functions. Since classical
and Bayes estimators are acquired in closed form, simulation tests can be easily made to evaluate the
effectiveness of the proposed methodologies. The efficiency of the suggested approaches is examined
in terms of four metrics, namely: Root mean squared error, average relative absolute bias, average
confidence length, and coverage probability. To demonstrate the applicability of the offered approaches
to real events, two real applications employing data sets from the engineering area are analyzed. As
a result, when the experimenter’s primary goal is to complete the test as soon as the total number of
failures or the threshold period is recorded, the numerical results reveal that the recommended strategy
is adaptable and very helpful in completing the study.
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1. Introduction

If the lifespan of particular items is relatively lengthy and/or the sample size n is large, it is
challenging to continue the examination until all n observations are recorded (full data). The censored
mechanism is a less costly choice for ending the test under predetermined conditions. The hybrid
censoring (HC), by Balakrishnan and Kundu [1], is a combination of Type-I (time) and Type-II (failure)
censoring methods in which the life-testing experiment is stopped when a pre-defined number m (of n)
items fail or a certain time T on the test is reached. The key advantage of employing a HC plan over
standard Type-I or Type-II censoring is that it saves time and money by reducing the projected testing
time and failures seen.

In reliability studies, to evaluate the performance of the lifetime of two competing units coming
from different production lines in the same facility, joint censoring schemes become quite useful
for performing comparative life tests. In this scenario, Balakrishnan and Rasouli [2] proposed
joint Type-II censoring; Su [3] developed jointly Type-I hybrid censoring (JHC-T1) arising from
multiple independent exponential populations; Su and Zhu [4] proposed jointly generalized Type-I
HC; Shafay [5] proposed jointly Type-II HC; and recently, Elshahhat and Abo-Kasem [6] proposed a
jointly generalized Type-II HC plan.

Briefly, the JHC-T1 can be stated as follows: Assume that two items (say, A and B) are created in the
identical factory by two distinct lines of operation (say, L1 and L2). Assume that X = {X1, X2, ..., Xm}

and Y = {Y1,Y2, ...,Yn} are two separate samples of m and n pieces of product A and B, respectively,
that get placed in a life-testing experiment at the same time. Here, we have N = m + n. Assume that
X (Y) are independent and identically distributed (iid) variables from a population with cumulative
distribution function (CDF), FX(·) (FY(·)), and probability density function (PDF), fX(·) ( fY(·)).
Regarding the manufacturing information on the product of interest, the threshold point T is also
assumed to be fixed beforehand. Let G(1) 6 G(2) 6 · · · 6 G(N) be the order statistics of N random
variables {X; Y} = {X1, X2, ..., Xm; Y1,Y2, ...,Yn}.

To perform a life test that doesn’t take more time to complete due to cost constraints, the investigator
decides to perform the proposed censoring. As a result, the collected data (g,z) will consist of one of
the following data forms:

(g; z) =


{
g(1), g(2), ..., g(r); z1, z2, ..., zr

}
, if g(r) 6 T (Case-1);{

g(1), g(2), ..., g(d); z1, z2, ..., zd
}
, if g(r) > T (Case-2),

and zi =

1, if g(i) ∈ X;
0, otherwise

where d represents the size of observed failures before T . More specifically, let mD =
∑D

i=1 zi and
nD =

∑D
i=1(1 − zi) be the number of subjects that failed in X and Y, respectively. Also, let D = m∗ + n∗,

where D ∈ {1, 2, ...,N}, be the effective sample size. The main advantage of the JHC-T1 is that it can
effectively guarantee that the experiment stops the test as soon as a certain number of failures (r) or a
threshold time (T ) is first achieved.

If the JHC-T1 failure times of N specimens are coming from two samples of continuous population
with PDFs fi (·) and CDFs Fi (·) for i = 1, 2, then the joint PDF of θ given g can be expressed as

L (θ| g) = CD

D∏
i=1

[
f1(g(i); θ1)zi f2(g(i); θ2)1−zi

]
[1 − F1(T ∗; θ1)]m−m∗[1 − F2(T ∗; θ2)]n−n∗ , (1.1)
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where θ is a parameter vector, CD = m!n!
(m−m∗)!(n−n∗)! , and T ∗ = g(r)(or T ) for Case-1 (or Case-2). In

Figure 1, a schematic representation of the proposed plan is depicted.
Remark 1. From (1.1), when T → ∞ and r = N, the joint Type-I HC (by Su [3]) reduced to the joint
Type-II censoring (by Balakrishnan and Rasouli [2]).

Figure 1. Schematic representation of the JHC-T1 plan.

In this paper, depending on unit capacity, experimental facilities, and cost restrictions, we explore
a new scheme called JHC-T1, in which the experimenter terminates the test once the predetermined
time (or the predetermined number of failures) is recorded first. Therefore, to the greatest extent of
our understanding, no research has been presented on the estimation problem of population parameters
when lifetime data are acquired via the proposed jointly hybrid censoring. Thus, the novelty of this
work originates from the fact that, in the presence of new JHC-T1 failure times, it is the first time that
two maximum likelihood and Bayesian approaches for the Rayleigh distribution’s parameters of life
have been compared since its inception.

The Rayleigh distribution is the simplest probability distribution of wind speed to represent the wind
resource because it requires only knowledge of the average wind speed. It is also utilized in reliability
analysis of radar and microwave networks, image recognition, wind energy modeling, electro-vacuum
device design, wave height modeling in oceanography, acoustics, and magnetic resonance imaging,
among other applications; see Chattamvelli and Shanmugam [7]. From a probability point of view, this
is a subset of the Weibull lifespan model, which Rayleigh proposed while studying acoustic problems.
For this purpose, we consider the Rayleigh lifetime model, which is commonly used in several areas
of statistics. In the context of a hybrid censored sample, the proposed population has been discussed
by Kwon et al. [8], Asgharzadeh and Azizpour [9], and Jeon and Kang [10], among others.

Our primary goal of this study is fourfold:

• Compute the maximum likelihood and asymptotic interval estimators for the unknown mean
lifespan of the test subjects in two samples based on the Rayleigh population with varied scale
parameters.
• Acquire both symmetric and asymmetric Bayes’ estimators as well as two bounds of credible

interval estimators for the same unknown quantities.
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• Using various choices of n, m, r, and T , the performance of the proposed methods is compared
through a Monte-Carlo simulation.
• Two genuine data set-based applications from the engineering sector highlight the ability of two

different Rayleigh populations to accommodate various data types and adapt the given estimation
approaches to actual practical situations.

The rest of the article is arranged as follows: In Section 2, the maximum likelihood estimators
and the asymptotic intervals are obtained. The Bayesian inference along with the credible intervals
are discussed in Section 3, where three loss functions are considered, the square error loss function,
the linear exponential loss function, and the general entropy loss function. Numerical simulation with
the Monte Carlo technique is implemented in Section 4 to assess the performance of the proposed
estimates in terms of root mean square error and average relative absolute biases, and the use of the
probability coverage to assess the interval estimation performance. In Section 5, illustrative examples
from the engineering field are developed. Last, Section 6 concludes the results of the study.

2. Likelihood inference

This section presents the maximum likelihood estimators (MLEs) as well as asymptotic interval
estimators (ACIs) of two Rayleigh population parameters in the presence of such proposed censored
data.

2.1. Maximum likelihood estimators

Suppose the lifetimes X (of size m from facility-line L1) are iid random variables from a Rayleigh
population with a scale parameter ξ1 having the following PDF fX(x; ξ1) and CDF FX(x; ξ1) as

fX(x; ξ1) = 2xξ1e−ξ1 x2
and FX(x; ξ1) = 1 − e−ξ1 x2

, for x, ξ1 > 0, (2.1)

respectively. Similarly, let the lifetimes Y (of size n from facility-line L2) are iid random variables
from another Rayleigh population with a scale parameter ξ2 having the following PDF fY(y; ξ2) and
CDF FY(y; ξ2) as

fY(y; ξ2) = 2yξ2e−ξ2 y2
and FY(y; ξ2) = 1 − e−ξ2 y2

, for y, ξ2 > 0. (2.2)

Substituting (2.1) and (2.2) into (1.1), the likelihood function of ξ1 and ξ2 can be written up to
proportional as

L (ξ1, ξ2| g) ∝ ξm∗
1 ξn∗

2 exp (− (ξ1q1 + ξ2q2)) , (2.3)

where q1 =
∑D

i=1 g2
i zi + (m − m∗) T ∗2 and q2 =

∑D
i=1 g2

i (1 − zi) + (n − n∗) T ∗2. The log-likelihood
function, `(·) ∝ ln L(·), of (2.3) becomes

` (ξ1, ξ2| g) ∝ m∗ ln (ξ1) + n∗ ln (ξ2) − ξ1 q1 − ξ2 q2. (2.4)

Through the differentiation of (2.4) with regard to ξ1 and ξ2, then equating each outcome to zero,
the MLEs ξ̂1 and ξ̂2 of ξ1 and ξ2 can be easily acquired respectively as

ξ̂1 =
m∗

q1
and ξ̂2 =

n∗

q2
. (2.5)
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Remark 2. From (2.5), it is obvious that when
∑D

i=1 zi equals zero (or D), the MLE ξ̂1 (or ξ̂2) does not
exist. Thus, the existence of the MLEs ξ̂i, i = 1, 2 is conditioned on 1 6 m∗ 6 D−1 and 1 6 n∗ 6 D−1.
Remark 3. When T → ∞ and r = N, we extend the results of Al-Matrafi and Abd-Elmougod [11] in
the case of jointly Type-II censoring to jointly Type-I hybrid censoring.

2.2. Asymptotic intervals

To obtain two-sided 100(1−ω)% ACIs of ξ1 and ξ2, the asymptotic normality of their MLEs ξ̂1 and
ξ̂2 is utilized. The 2 × 2 matrix of a Fisher information (say I(·)) is acquired by the negative-expected
of the second-partial derivatives of (2.4) with regard to ξ1 and ξ2 as

Ii j(ξ1, ξ2) = −E
[

∂2

∂ξi∂ξ j
` (ξ1, ξ2| g)

]
, i, j = 1, 2. (2.6)

Following the invariance property of ξ̂1 and ξ̂2, the asymptotic variance-covariance matrix (say
Σ(·) = I−1(·)) of the parameters ξ1 and ξ2 can be easily offered by locally at ξ̂1 and ξ̂2, respectively, as

Σ̂(ξ̂1, ξ̂2) =

[
v̂ar(ξ̂1) 0

0 v̂ar(ξ̂2)

]
(ξ̂1,ξ̂2)

, (2.7)

where v̂ar(ξ̂1) =
ξ̂2

1
m∗ and v̂ar(ξ̂2) =

ξ̂2
2

n∗ . From (2.6), it is clear that I12(·) = I21(·) = 0.
Since the MLEs ξ̂1 and ξ̂2 are asymptotically normally distributed as ξ̂1∼N(ξ1, v̂ar(ξ̂1)) and

ξ̂2∼N(ξ2, v̂ar(ξ̂2)), see Lawless [12], Thus, from (2.7), the 100(1 − ω)% two-sided ACIs for ξ1 and
ξ2 are given, respectively, by

ξ̂1 ∓ zω/2
√

v̂ar(ξ̂1) and ξ̂2 ∓ zω/2
√

v̂ar(ξ̂2),

where zω/2 denotes the (ω/2)th percentage point of the standard normal distribution.

3. Bayes paradigm

This section deals with obtaining the Bayes’ point estimators as well as the corresponding credible
intervals of the unknown Rayleigh parameters ξ1 and ξ2 against several loss functions.

3.1. Loss functions

The loss function is significant in statistical analysis since it focuses on estimating precision.
However, the squared-error loss (SEL) is a particularly widely utilized symmetric loss in the literature
for creating a Bayes estimator of an unknown parameter of interest. Njomen et al. [13] studied Bayesian
estimation under different Loss Functions in competing Risks model, Hasan et al. [14] used loss
functions to perform Bayesian estimation for the exponential distribution, and Ali et al. [15] studied
the effect of loss functions on the performance of Bayesian inference under Lindley distribution. If ϑ
is the parameter to be estimated using an estimator ϑ̃, the SEL function (say=s(·)) is defined as

=s(ϑ, ϑ̃) = (ϑ̃ − ϑ)2
. (3.1)

AIMS Mathematics Volume 9, Issue 2, 3740–3762.



3745

Using (3.1), the Bayes estimator ϑ̃S of ϑ is acquired as

ϑ̃S = Eϑ

[
ϑ| g

]
=

∫
Θ

ϑ · π (ϑ| g) dϑ, ϑ ∈ Θ,

where π (ϑ| g) is the posterior PDF of ϑ.
Besides the traditional SEL function, we also use two well-known asymmetric loss functions

called linear-exponential loss (LL) and general-entropy loss (GEL) functions because the SEL is
often inappropriate in reliability estimation, especially when overestimation is more harmful than
underestimation. It is well known that the Bayes estimator in the case of the SEL is the posterior
mean where the overestimation and underestimation are treated equally; see Elshahhat et al. [16].

First, the LL (say =L(·)) is defined as

=L(ϑ, ϑ̃) = eυ(ϑ̃−ϑ) − υ(ϑ̃ − ϑ) − 1, υ , 0. (3.2)

Using (3.2), the Bayes estimator ϑ̃L of ϑ is given by

ϑ̃L = −
1
υ

ln
(
Eϑ

[
e−υϑ

∣∣∣ g]) , υ , 0,

where υ → 0, the LL (3.2) is quite approximately to the SEL (3.1). Another useful asymmetric loss
function is the GEL function, =G(·), is defined as

=G(ϑ, ϑ̃) =

(
ϑ̃

ϑ

)τ
− τ ln

(
ϑ̃

ϑ

)
− 1, τ , 0, (3.3)

where τ is the shape parameter. Using (3.3), the Bayes estimator ϑ̃G of ϑ is given by

ϑ̃G =
(
Eϑ

[
ϑ−τ

∣∣∣ g])−1/τ
, τ , 0,

where τ = −1, both estimators ϑ̃G and ϑ̃S coincided. Further, the minimum error under the GEL
function occurs at ϑ = ϑ̃G.

3.2. Bayes estimators

The prior distribution, which reflects knowledge about an unknown parameter, is an important
aspect of Bayesian inference. Thus, based on several reasons to consider gamma prior, such as: (i)
It provides various density shapes; (ii) It is flexible; (iii) It is fairly straightforward, concise, and may
not lead to a result with a complex estimation issue, we assumed that ξ1 and ξ2 are independently
distributed with gamma random variables with PDFs Gamma(a1, b1) and Gamma(a2, b2), respectively.
On the other hand, one can easily consider other prior information based on the Rayleigh parameter
domain, e.g., Weibull, generalized-exponential, or others.

Hence, the joint prior PDF (say π (·)) of ξ1 and ξ2 is

π(ξ1, ξ2) =
ba1

1 ba2
2

Γ(a1)Γ(a2)
ξa1−1

1 ξa2−1
2 exp

(
−

[
ξ1b1 + ξ2b2

])
, ξ1, ξ2 > 0, (3.4)

where Γ(·) is the complete gamma function.
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From (2.3) and (3.4), the joint posterior PDF (say Π (·)) of ξ1 and ξ2, becomes

Π (ξ1, ξ2| g) = C∗Dξ
a1−m∗−1
1 ξa2−n∗−1

2 exp
(
−

[
ξ1 (b1 + q1) + ξ2 (b2 + q2)

])
, (3.5)

where C∗D =
(b1+q1)a1−m∗ (b2+q2)a2−n∗

Γ(a1−m∗)Γ(a2−n∗) ·

From (3.5), the joint posterior PDF of ξ1 and ξ2 is obtained as a product of two independent gamma
probability densities as ξ1 ∼ Gamma(a1 − m∗, b1 + q1) and ξ2 ∼ Gamma(a2 − n∗, b2 + q2). As a result,
if the improper prior knowledge of ξ1 and ξ2 is available, i.e., ai, bi = 0, i = 1, 2, Eq (3.5) reduced in
proportion to Eq (2.3).

However, using the SEL function (3.1), the Bayes estimators ξ̃1S and ξ̃2S of ξ1 and ξ2 are given,
respectively, by

ξ̃1S =
m∗ + a1

q1 + b1
and ξ̃2S =

n∗ + a2

q2 + b2
.

Similarly, using the LL function (3.2), the Bayes estimators ξ̃1L and ξ̃2L of ξ1 and ξ2 are given,
respectively, by

ξ̃1L = −
m∗ + a1

υ
ln

(
q1 + b1

q1 + b1 + υ

)
and ξ̃2L = −

n∗ + a2

υ
ln

(
q2 + b2

q2 + b2 + υ

)
, for υ , 0.

Again, using the GEL function (3.3), the Bayes estimators ξ̃1G and ξ̃2G of ξ1 and ξ2 are given,
respectively, by

ξ̃1G =

[
Γ(m∗ + a1 − τ)

(q1 + b1)−τΓ(m∗ + a1)

]−1/τ

and ξ̃2G =

[
Γ(n∗ + a2 − τ)

(q2 + b2)−τΓ(n∗ + a2)

]−1/τ

, for τ , 0.

3.3. Credible intervals

To construct the two bounds 100 (1−ω)% Bayes credible intervals (BCIs) of ξ1 and ξ2, the posterior
density function (3.5) is used. First, let δ1 = 2ξ1(q1 + b1) and δ2 = 2 ξ2(q2 + b2), where δ1 and δ2 are
positive integers, be two pivots follow χ2 distributions with 2(m∗+a1) and 2(n∗+a2) degrees of freedom,
respectively, see Kundu and Joarder [17].

Hence, 100(1 − ω)% BCIs of ξ1 and ξ2 are offered byχ2
2(m∗+a1), ω2

2(q1 + b1)
,
χ2

2(m∗+a1), 1− ω
2

2(q1 + b1)

 , and

 χ2
2(n∗+a2), ω2

2(q2 + b2)
,
χ2

2(n∗+a2), 1− ω
2

2(q2 + b2)

 ,
respectively, where χ2

v,ω is the ωth percentile the χ2
v distribution.

Remark 4. If the levels of freedom 2(m∗ + a1 and 2(n∗ + a2 cannot be obtained in integers, then the
gamma PDF will be utilized instead of the χ2 distribution to create the BCIs of ξ1 and ξ2 as[

F−1
G

(
ω

2
,m∗ + a1, q1 + b1

)
, F−1

G

(
1 −

ω

2
,m∗ + a1, q1 + b1

)]
,

and [
F−1

G

(
ω

2
, n∗ + a2, q2 + b2

)
, F−1

G

(
1 −

ω

2
, n∗ + a2, q2 + b2

)]
,

respectively, where F−1
G (ω, ν1, ν2) is the ωth percentile of the gamma distribution with shape ν1 and

scale ν2 parameters.
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4. Monte-Carlo study

Comprehensive Monte-Carlo simulations are run to examine the behavior of the suggested
estimation procedures developed in the preceding sections. For fixed T = (1, 2), when ξ1 and ξ2

are taken as (ξ1, ξ2) = (0.5, 0.5) and (0.75,1.5), we simulate 5,000 JHC-T1 samples based on various
tests of n, m, and r such as n = m = 10, 30, and 50. We assign the level of r as a failure percentage
(of each N) such as ( r

N )100% = 30, 50 and 80%. We also assigned (ai, bi) = (0.5, 1) for i = 1, 2,
when (ξ1, ξ2) = (0.5, 0.5) and (a1, a2) = (1.5, 3) and bi = 2 for i = 1, 2, when (ξ1, ξ2) = (0.75, 1.5).
Under SEL, LL(υ(= −3,−0.03,+3)), and GEL(τ(= −2,−0.02,+2)), all offered Bayes estimates are
calculated.

For each scenario, the average estimates (AEs), root mean squared-errors (RMSEs), and average
relative absolute biases (ARABs) of the unknown parameter ξ1 (for instance) are calculated using the
next formulae, respectively, as

AE(ξ̂1) =
1

5000

5000∑
j=1

ξ̂
( j)
1 ,

RMSE(ξ̂1) =

√√√
1

5000

5000∑
j=1

(
ξ̂

( j)
1 − ξ1

)2

and

ARAB (ξ1) =
1

5000

5000∑
j=1

1
ξ1

∣∣∣ξ̂( j)
1 − ξ1

∣∣∣,
where ξ̂( j)

1 is the obtained estimate at the jth sample of ξ1.
Further, the corresponding average confidence lengths (ACLs) and coverage probabilities (CPs)

related to the 95% ACI/BCI estimates of ξ1 are acquired using the following formulae, respectively, as

ACL(ξ1) =
1

5000

5000∑
j=1

(
U(ξ̂( j)

1 ) − L(ξ̂( j)
1 )

)
and

CP(ξ1) =
1

5000

5000∑
j=1

1(
L(ξ̂( j)

1 );U(ξ̂( j)
1 )

) (ξ1),

where 1(·) is the indicator operator and (L(·),U(·)) denotes the lower and upper sides, respectively, of
the ACI (or BCI) of ξ1. Clearly, in a similar fashion, the AEs, RMSEs, ARABs, ACLs, and CPs of ξ2

can be easily offered.
A Heat-Map is a common tool for data visualization. It is known as a data visualization technique in

which each value in a matrix is portrayed by specific colors. So, using this tool via the R programming
language, Figures 2–5 display the simulated results (including RMSEs, ARABs, ACLs, and CPs) of
ξi, i = 1, 2. All simulated findings of ξ1 and ξ2 are reported in the Supplementary File. Briefly, some
numerical results of ξ1 and ξ2 are presented in Tables 1–3. In these tables, the AEs, RMSEs, and
ARABs for each parameter are tabulated in the first, second, and third rows, respectively.
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Table 1. Monte Carlo point results of ξ1 and ξ2 when (ξ1, ξ2) = (0.5, 0.5).

Par. T (m, n) r MLE SEL LL1 LL2 LL3 GEL1 GEL2 GEL3

ξ1 1 (10,10) 6 0.6720 0.6160 0.5940 0.4400 0.3640 0.6980 0.5320 0.3730
0.4930 0.3450 0.4930 0.2620 0.2310 0.4020 0.3020 0.2710
0.6540 0.5000 0.5930 0.4160 0.3940 0.5780 0.4540 0.4570

10 0.6280 0.6040 0.5110 0.4240 0.3680 0.6670 0.5400 0.4170
0.3930 0.3220 0.3320 0.2440 0.2300 0.3590 0.2950 0.2710
0.5580 0.4730 0.4570 0.3940 0.3910 0.5160 0.4380 0.4430

16 0.6230 0.5980 0.5050 0.4230 0.3700 0.6590 0.5370 0.4200
0.3840 0.3170 0.3060 0.2430 0.2310 0.3510 0.2940 0.2750
0.5500 0.4730 0.4440 0.3940 0.3930 0.5130 0.4410 0.4500

2 (10,10) 6 0.6900 0.6290 0.5850 0.4360 0.3630 0.7110 0.5450 0.3770
0.5060 0.3440 0.4900 0.2510 0.2260 0.4050 0.2970 0.2650
0.6490 0.4940 0.5630 0.3990 0.3870 0.5790 0.4420 0.4480

10 0.8390 0.6930 0.5330 0.4520 0.3990 0.7440 0.6420 0.5240
0.4970 0.3470 0.3150 0.2290 0.2070 0.3890 0.3090 0.2460
0.7190 0.4950 0.4380 0.3650 0.3500 0.5640 0.4370 0.3640

16 0.9170 0.8590 0.6380 0.5590 0.5040 0.9080 0.8100 0.7050
0.5830 0.4860 0.3930 0.2640 0.2080 0.5330 0.4400 0.3480
0.8570 0.7390 0.4660 0.3610 0.3090 0.8290 0.6520 0.4890

ξ2 1 (10,10) 6 0.6730 0.6210 0.5950 0.4390 0.3630 0.7040 0.5370 0.3750
0.4980 0.3470 0.5200 0.2720 0.2380 0.4060 0.3030 0.2720
0.6550 0.5030 0.6130 0.4320 0.4070 0.5830 0.4530 0.4560

10 0.6330 0.6080 0.5190 0.4300 0.3740 0.6710 0.5440 0.4200
0.3940 0.3200 0.3370 0.2490 0.2310 0.3580 0.2920 0.2690
0.5640 0.4800 0.4650 0.3970 0.3920 0.5240 0.4440 0.4460

16 0.6180 0.5970 0.5080 0.4260 0.3730 0.6580 0.5360 0.4150
0.3750 0.3110 0.3040 0.2390 0.2270 0.3440 0.2870 0.2730
0.5440 0.4600 0.4340 0.3840 0.3850 0.4970 0.4290 0.4480

2 (10,10) 6 0.6920 0.6270 0.5860 0.4370 0.3630 0.7090 0.5430 0.3770
0.5180 0.3490 0.4700 0.2550 0.2270 0.4090 0.3020 0.2680
0.6590 0.4960 0.5710 0.4040 0.3900 0.5800 0.4440 0.4480

10 0.8220 0.7010 0.5360 0.4540 0.4000 0.7520 0.6500 0.5400
0.4780 0.3510 0.3330 0.2350 0.2100 0.3930 0.3110 0.2490
0.6890 0.5090 0.4470 0.3700 0.3530 0.5790 0.4480 0.3670

16 0.9170 0.8620 0.6360 0.5560 0.5010 0.9110 0.8130 0.7080
0.5760 0.4880 0.4470 0.2660 0.2100 0.5350 0.4420 0.3500
0.8550 0.7440 0.4680 0.3600 0.3110 0.8350 0.6570 0.4940
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Table 2. Monte Carlo point results of ξ1 and ξ2 when (ξ1, ξ2) = (0.75, 1.5).

Par. T (m, n) r MLE SEL LL1 LL2 LL3 GEL1 GEL2 GEL3

ξ1 1 (10,10) 6 1.0470 0.8470 0.8950 0.6470 0.5300 0.9550 0.7380 0.5090
0.8700 0.3500 0.5550 0.3030 0.3050 0.4110 0.3180 0.3650
0.7680 0.3620 0.4890 0.3320 0.3520 0.4190 0.3390 0.4180

10 1.0850 0.9600 0.8460 0.6520 0.5480 1.0260 0.8930 0.7500
0.7140 0.4460 0.4660 0.2960 0.2930 0.4920 0.4070 0.3560
0.6490 0.4390 0.4260 0.3230 0.3380 0.4810 0.3990 0.3720

16 1.0540 0.9080 0.8010 0.6670 0.5810 0.9890 0.8270 0.6490
0.6950 0.3790 0.3960 0.2970 0.2860 0.4340 0.3370 0.3120
0.6310 0.3810 0.3830 0.3200 0.3210 0.4370 0.3430 0.3400

2 (10,10) 6 1.0370 0.8600 0.8970 0.6470 0.5300 0.9590 0.7600 0.5440
0.8020 0.3560 0.5620 0.3020 0.3040 0.4140 0.3200 0.3490
0.7040 0.3610 0.4870 0.3310 0.3520 0.4170 0.3350 0.3960

10 1.0580 0.9110 0.8320 0.6460 0.5440 0.9920 0.8300 0.6520
0.6930 0.3780 0.4580 0.2940 0.2930 0.4320 0.3350 0.3080
0.6270 0.3780 0.4130 0.3200 0.3390 0.4350 0.3390 0.3360

16 1.2880 1.1110 0.8410 0.7150 0.6310 1.1740 1.0480 0.9140
0.8000 0.5070 0.3870 0.2680 0.2420 0.5640 0.4530 0.3490
0.7630 0.5190 0.3550 0.2800 0.2710 0.5910 0.4530 0.3400

ξ2 1 (10,10) 6 2.2270 1.8980 2.0410 1.3700 1.0910 1.9830 1.8140 1.6360
1.3500 0.6990 1.1900 0.4620 0.5080 0.7630 0.6400 0.5400
0.5990 0.3500 0.5060 0.2520 0.2960 0.3860 0.3190 0.2730

10 1.9730 1.7600 1.9900 1.4200 1.1500 1.8530 1.6670 1.4700
1.2120 0.5240 1.0600 0.4600 0.4710 0.5890 0.4680 0.4040
0.5340 0.2680 0.4690 0.2470 0.2690 0.3040 0.2410 0.2150

16 2.0230 1.6520 2.0800 1.5300 1.2600 1.7690 1.2850 1.5360
1.0410 0.4570 1.2200 0.5450 0.4570 0.5250 0.4280 0.4120
0.4820 0.2370 0.5180 0.2780 0.2550 0.2720 0.2360 0.2170

2 (10,10) 6 2.0280 1.6760 2.0510 1.3800 1.1000 1.7850 1.5680 1.3350
1.0390 0.4680 1.2100 0.4670 0.5070 0.5360 0.4200 0.4110
0.4800 0.2420 0.5140 0.2530 0.2960 0.2770 0.2200 0.2240

10 1.9660 1.7630 2.0200 1.4400 1.1710 1.8560 1.6710 1.4740
1.1220 0.5220 1.0610 0.4670 0.4660 0.5880 0.4660 0.4000
0.5020 0.2660 0.4860 0.2500 0.2660 0.3030 0.2390 0.2130

16 2.5790 2.1040 2.3600 1.7200 1.4100 2.1890 2.0200 1.8420
1.6640 0.8380 1.4800 0.6210 0.4120 0.9140 0.7650 0.6220
0.7580 0.4330 0.6470 0.3050 0.2240 0.4810 0.3880 0.3080
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Table 3. Monte Carlo interval results of ξ1 and ξ2.

(ξ1, ξ2) T (m, n) r ξ1 ξ2 ξ1 ξ2

ACL CP ACL CP ACL CP ACL CP

(0.5,0.5) 1 (10,10) 6 1.411 0.875 1.246 0.906 1.531 0.892 1.324 0.928
10 1.204 0.893 1.174 0.918 1.368 0.902 1.229 0.938
16 1.156 0.903 1.050 0.928 1.213 0.913 1.156 0.949

2 (10,10) 6 1.328 0.882 1.221 0.917 1.461 0.901 1.259 0.931
10 1.166 0.908 1.142 0.924 1.268 0.911 1.145 0.940
16 1.109 0.917 1.040 0.933 1.170 0.918 1.049 0.947

(0.75,1.5) 1 (10,10) 6 2.154 0.804 1.671 0.844 1.897 0.881 1.696 0.907
10 2.061 0.815 1.542 0.856 1.696 0.904 1.545 0.918
16 1.893 0.837 1.473 0.879 1.679 0.908 1.457 0.922

2 (10,10) 6 2.128 0.817 1.616 0.858 1.786 0.900 1.627 0.918
10 2.008 0.828 1.520 0.869 1.656 0.916 1.520 0.934
16 1.779 0.854 1.397 0.897 1.618 0.925 1.379 0.944

From Figures 2–5, we present the following statements:

• The Bayes’ estimation method is better than the frequentist (maximum likelihood) estimation
method, and both are applicable and feasible. It can also be seen that the proposed estimation
methodologies of ξ1 and ξ2 work satisfactorily.
• As n and m increase, the RMSEs and ARABs of all point estimates decrease as expected.

Obviously, to improve numerical results, try increasing the r size.
• As T increases, it is noted that

– The RMSEs and ARABs of all estimates of ξ1 and ξ2 increase.
– The ACLs of 95% ACIs (or BCIs) of ξ1 and ξ2 narrowed down while their CPs grew.

• As ( r
N )100% increases, the RMSEs and ARABs of ξ1 and ξ2 decrease at T = 1 while these

increase at T = 2.
• Bayes estimates, due to additional information provided by gamma prior, performed better than

others.
• When the true value of ξ1 and ξ2 decreases, the proposed point estimates become even better.
• It is also clear that the proposed Bayes estimates using the LL (or GEL) function of ξ1 and ξ2 are

overestimates when υ(or τ) < 0 while these are underestimates when υ(or τ) > 0.
• This result is due to fact that the Bayes estimates under asymmetric type loss have additional

flexibility, due to the shape parameter loss, compared to those obtained based on symmetric type
loss.
• When n and m increase, the ACLs of 95% ACIs/BCIs tend to decrease.
• When ξ1 and ξ2 increase, the ACLs of ACIs/BCIs increase while the corresponding CPs decrease.

Similar behavior is observed when T increases.
• As the failure percentage increases, for fixed n and m, the ACLs and CPs decrease for ACIs/BCIs

of ξ1 and ξ2.
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• Finally, employing the Bayes paradigm to offer point (or interval) estimates of the Rayleigh
population parameters is recommended.
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Figure 2. Heat-Map for outcomes of ξ1 at (ξ1, ξ2) = (0.5, 0.5).
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Figure 3. Heat-Map for outcomes of ξ2 at (ξ1, ξ2) = (0.5, 0.5).
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Figure 4. Heat-Map for outcomes of ξ1 at (ξ1, ξ2) = (0.75, 1.5).
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Figure 5. Heat-Map for outcomes of ξ2 at (ξ1, ξ2) = (0.75, 1.5).
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5. Engineering applications

Two separate engineering scenarios are analyzed to demonstrate how to make use of the suggested
inferential methodologies.

5.1. Insulating fluid

In this application, we shall consider two samples (groups 3 and 6) of size m = n = 10 each from
Nelson [18]. These samples indicate the time required for an insulating liquid exposed to extreme
voltage stresses to break down (in minutes). The failure times of groups 3 (say X) are 1.99, 0.64, 2.15,
1.08, 2.57, 0.93, 4.75, 0.82, 2.06, 0.49, as well as the failure times of groups 6 (say Y) are: 2.12, 3.97,
1.56, 1.34, 1.49, 8.71, 2.10, 7.21, 3.83, 5.13.

To highlight the validity of the Rayleigh population for given datasets, the Kolmogorov-Smirnov (K-
S) statistic (with its P-value) is computed. First, the MLEs with their standard errors (in parentheses)
of the Rayleigh parameters ξi, i = 1, 2 using X and Y datasets are 0.2205(0.0697) and 0.0500(0.0158),
respectively. Thus, the K-S distances with their P-values (in parentheses) from X and Y datasets
become 0.2732(0.375) and 0.2987(0.275), respectively. Hence, we can conclude that the real times
of X and Y come from the Rayleigh populations. For more illustration, using X and Y datasets,
the fitted/empirical distribution functions of Rayleigh populations, probability-probability (PP), and
quantile-quantile (QQ) are displayed in Figure 6. It further confirms the same numerical findings of
K-S statistics.
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Figure 6. Plots of CDF, PP, and QQ using X (top) and Y (bottom) in the insulating liquid
data.
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Moreover, before proceeding, to highlight the superiority of the proposed Rayleigh population
among others, we reexamine it with two well-known models in the literature called Maxwell-
Boltzmann (MB(ξ)) and Muth(ξ) lifetime models. Recently, these competitive models have been
analyzed by Elshahhat et al. [19] and Alotaibi et al. [20], respectively. As a result, Table 4 indicates
that the Rayleigh population is the best from the insulating liquid data compared to others.

Table 4. Summary fit of the Rayleigh population and its competitors using insulating liquid
groups.

Population MLE(Standard–Error) K-S(P-value)

Group X
Rayleigh 0.2205(0.0697) 0.2732(0.375)

MB 3.0231(0.7805) 0.3562(0.122)
Muth 0.0678(0.1551) 0.3718(0.095)

Group Y
Rayleigh 0.0500(0.0158) 0.2987(0.275)

MB 13.329(3.4417) 0.3792(0.084)
Muth 0.2015(0.1357) 0.7641(0.001)

Using various choices of r, at T = 2.5 (in minutes), three different JHC-T1 samples are generated
and reported in Table 5. Since we lack any prior knowledge about ξ1 and ξ2, the Bayes estimates using
improper gamma priors, i.e., ai = bi = 0, for i = 1, 2, are developed. The Bayes estimates of ξ1 or ξ2

are acquired based on the SEL, LL(υ(= −2,−0.02,+2)), and GEL(τ(= −1,−0.01,+1)) functions. For
calculation convenience, we have set all hyperparameter values to 0.001.

From Table 5, the suggested point and 95% interval estimates of ξ1 and ξ2 are computed; see
Tables 6 and 7, respectively. From Table 6, we can decide that the offered classical and Bayes estimates
of ξ1 and ξ2 are quite similar, as expected. In addition, from Table 7, the 95% credible intervals of ξ1

and ξ2 are also close to those acquired by asymptotic intervals.
To estimate the mean lifetime of the Rayleigh population, the corresponding MLEs of ξ1 and ξ2

based on samples 1–3 are used. Using the invariance property ξ̂1 and ξ̂2, the estimated mean lifetimes√
π

4ξ̂1
and

√
π

4ξ̂2
relative to groups X and Y become (1.5068, 1.3434, 1.2476) and (2.6410, 2.7886,

2.2156) from samples (1, 2, 3) respectively. To sum up, the group X has a higher lifetime compared to
the others. Using the offered Bayes’ estimates of ξ1 and ξ2, the same result may likewise be reached
for the mean lifetime of each group.

Table 5. Three JHC-T1 samples from insulating fluid datasets.

Sample r w(z) (m∗, n∗)

1 7 0.49(1), 0.64(1), 0.82(1), 0.93(1), 1.08(1), 1.34(0), 1.49(0) (5,8)
2 10 0.49(1), 0.64(1), 0.82(1), 0.93(1), 1.08(1), 1.34(0), 1.49(0), 1.56(0), 1.99(1), 2.06(1) (3,7)
3 15 0.49(1), 0.64(1), 0.82(1), 0.93(1), 1.08(1), 1.34(0), 1.49(0), 1.56(0), 1.99(1), 2.06(1), 2.10(0), 2.12(0), 2.15(1) (2,5)
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Table 6. Point estimates of ξ1 and ξ2 from insulating fluid datasets.

Sample Par. MLE SEL LL GEL

υ = −2 υ = −0.02 υ = +2 τ = −1 τ = −0.01 τ = +1

1 ξ1 0.3459 0.3459 0.3723 0.3462 0.3240 0.3459 0.3123 0.2767
ξ2 0.1126 0.1126 0.1195 0.1127 0.1067 0.1126 0.0862 0.0563

2 ξ1 0.4352 0.4352 0.4647 0.4355 0.4102 0.4352 0.4048 0.3730
ξ2 0.1010 0.1010 0.1045 0.1010 0.0977 0.1010 0.0849 0.0673

3 ξ1 0.5046 0.5046 0.5394 0.5049 0.4752 0.5654 0.4744 0.3749
ξ2 0.1600 0.1600 0.1653 0.1601 0.1551 0.1902 0.1448 0.0923

Table 7. Interval estimates of ξ1 and ξ2 from insulating fluid datasets.

Sample Par. ACI BCI

1 ξ1 (0.0427,0.8253) (0.1123,0.7086)
ξ2 (0.0139,0.2687) (0.0136,0.3137)

2 ξ1 (0.1128,0.9277) (0.1750,0.8119)
ξ2 (0.0262,0.2153) (0.0208,0.2432)

3 ξ1 (0.1549,0.9469) (0.2179,0.9098)
ξ2 (0.0491,0.3002) (0.0520,0.3277)

5.2. Mechanical equipment

In this application, from Murthy et al. [21], we consider the time between thirty failures for
repairable mechanical equipment. To illustrate the findings of the paper, we partitioned (randomly)
the complete data into two samples of equal sizes denoted here as groups X and Y, see Table 8.
Using X and Y datasets, the MLEs of ξ1 and ξ2 with their (standard errors) are 0.3487(0.0900) and
0.2299(0.0593), respectively.

To see the validity of the proposed model, the K-S(P-value) for both X and Y samples are
0.2132(0.442) and 0.2003(0.520), respectively. These results showed that the Rayleigh populations fit
the repairable mechanical equipment datasets quite well. In Figure 7, the fitted/empirical distribution
functions of Rayleigh populations as well as PP and QQ plots are displayed based on X and Y. It also
supports the findings of the goodness statistics.

Table 8. Two groups for mechanical equipment dataset.

Group Failure times/hour

X 0.11, 0.45, 0.63, 0.70, 0.71, 0.77, 1.17, 1.23, 1.24, 1.43, 1.74, 1.86, 1.97, 2.23, 4.36
Y 0.30, 0.40, 0.59, 0.74, 0.94, 1.06, 1.23, 1.46, 1.49, 1.82, 2.37, 2.46, 2.63, 3.46, 4.73

AIMS Mathematics Volume 9, Issue 2, 3740–3762.



3758

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF

Group X

F
it
te

d
 R

a
y
le

ig
h

 P
o

p
u

la
ti
o

n

Empirical

Rayleigh

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PP

probability (x)

F
(x

)

0 1 2 3 4

0
.5

1
.0

1
.5

2
.0

2
.5

QQ

quantile (x)

x

1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF

Group Y

F
it
te

d
 R

a
y
le

ig
h

 P
o

p
u

la
ti
o

n

Empirical

Rayleigh

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PP

probability (y)

F
(y

)

1 2 3 4

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

QQ

quantile (y)

y

Figure 7. Plots of CDF, PP, and QQ using X (top) and Y (bottom) in the mechanical
equipments data.

Again, before continuing, we compare the utility of the proposed Rayleigh ensemble with its
competitors Maxwell-Boltzmann (MB(ξ)) and Muth(ξ) lifetime models. Consequently, Table 9 points
out that the suggested Rayleigh population is the best compared to others based on the mechanical
equipment data.

Table 9. Summary fit of the Rayleigh population and its competitors using mechanical
equipment groups.

Population MLE(Standard–Error) K-S(P-value)

Group X

Rayleigh 0.3487(0.0900) 0.2132(0.442)
MB 1.9117(0.4030) 0.2917(0.126)

Muth 0.1635(0.1496) 0.2957(0.117)

Group Y

Rayleigh 0.2299(0.0593) 0.2003(0.520)
MB 2.9004(0.6114) 0.2751(0.170)

Muth 0.0817(0.1308) 0.3268(0.063)
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Using both X and Y datasets, when T = 1.5(hours) and r(= 10, 18, 25), three different JHC-T1
samples are created, see Table 10. Using each JHC-T1 sample, the maximum likelihood and Bayes
estimates of ξ1 and ξ2, for ai = bi = 0.001, i = 1, 2, are computed and listed in Table 11. Under SEL,
LL (for υ(= −2,−0.02,+2)), and GEL (for τ(= −3,−0.03,+3)), the Bayes estimates of ξ1 and ξ2 are
developed. Further, the 95% ACIs/BCIs of ξ1 and ξ2 are calculated and provided in Table 12.

As expected, Tables 11 and 12 showed that the acquired point and 95% interval estimates of ξ1

and ξ2 are similar to each other, as expected. Using the fitted values of ξ̂1 and ξ̂2, the estimated mean
lifetimes of the Rayleigh populations from the groups X and Y become (0.9174, 1.1446, 1.1646)
and (1.1749, 1.2655, 1.2219) under the samples (1, 2, 3), respectively. It can also be seen that the
mean lifetimes of the group Y have a larger lifetime than the others. Using the Bayesian estimates,
the same conclusion about the mean lifetimes can be easily drawn. Since the jointly Type-I hybrid
censoring made a balance between reducing duration tests and observing extreme failures, we therefore
recommend terminating the experiment as soon as the first of g(r) (or T ) reaches.

Table 10. Three JHC-T1 samples from mechanical equipment dataset.

Sample r w(z) (m∗, n∗)

1 10 0.11(1), 0.30(0), 0.40(0), 0.45(1), 0.59(0), 0.63(1), 0.70(1), 0.71(1), 0.74(0), 0.77(1) (9,11)

2 18 0.11(1), 0.30(0), 0.40(0), 0.45(1), 0.59(0), 0.63(1), 0.70(1), 0.71(1), 0.74(0), 0.77(1), (5,7)

0.94(0), 1.06(0), 1.17(1), 1.23(1), 1.23(0), 1.24(1), 1.43(1), 1.46(0)

3 25 0.11(1), 0.30(0), 0.40(0), 0.45(1), 0.59(0), 0.63(1), 0.70(1), 0.71(1), 0.74(0), 0.77(1), (5,6)

0.94(0), 1.06(0), 1.17(1), 1.23(1), 1.23(0), 1.24(1), 1.43(1), 1.46(0), 1.49(0)

Table 11. Point estimates of ξ1 and ξ2 from mechanical equipment dataset.

Sample Par. MLE SEL LL GEL

υ = −2 υ = −0.02 υ = +2 τ = −3 τ = −0.03 τ = +3

1 ξ1 0.9330 0.9330 1.1175 0.9344 0.8123 1.0810 0.8587 0.6087

ξ2 0.5690 0.5690 0.6695 0.5698 0.5007 0.7016 0.5017 0.2585

2 ξ1 0.5995 0.5995 0.6386 0.5999 0.5662 0.6577 0.5707 0.4771

ξ2 0.4904 0.4904 0.5232 0.4907 0.4626 0.5494 0.4610 0.3644

3 ξ1 0.5790 0.5790 0.6153 0.5793 0.5748 0.6351 0.5512 0.4608

ξ2 0.5260 0.5260 0.5593 0.5263 0.4974 0.5824 0.4979 0.4063
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Table 12. Interval estimates of ξ1 and ξ2 from mechanical equipment dataset.

Sample Par. ACI BCI

1 ξ1 (0.1865,1.8473) (0.3424,1.8144)
ξ2 (0.1137,1.1266) (0.1550,1.2471)

2 ξ1 (0.2279,1.0150) (0.2875,1.0243)
ξ2 (0.1865,0.8302) (0.2117,0.8841)

3 ξ1 (0.2201,0.9572) (0.2776,0.9892)
ξ2 (0.1999,0.8696) (0.2405,0.9212)

6. Conclusions

A new type of Type-II hybrid censoring, which enables the investigation of the lifespan of two (or
more) competing goods in the same facility, has been investigated in this study. Various estimation
procedures in the presence of such censoring have been proposed when the lifetimes of experimental
items from two populations have been assumed to follow Rayleigh distributions with different scale
parameters. Besides the maximum likelihood approach, Bayes’ inferential approach has also been
considered. Monte Carlo computations have been run to assess the efficiency of the suggested methods.
The computational results indicate that the acquired estimators of the Rayleigh population parameters
derived from the Bayes method perform quite satisfactorily compared to those derived by the classical
method. Two actual data sets from engineering-related fields have been shown to test the usefulness
of the suggested procedures. To sum up, the use of the asymmetric Bayes paradigm to estimate
the Rayleigh population parameters under jointly Type-I hybrid censoring is recommended. The
conclusions and approach described here may easily be extended to other lifetime groups as a future
study, e.g., gamma, Weibull, or generalized exponential distribution, among others. It is better to
extend the generalized Rayleigh results in Maiti and Kayal [22] to a joint progressive Type-II strategy.
We also hope that the methodologies discussed here will be beneficial to data analysts and reliability
managers.
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