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Abstract: The moving average processes Xk =
∑∞

i=−∞ ai+kYi are studied, where {Yi,−∞ < i < ∞} is
a double infinite sequence of negatively dependent random variables under sub-linear expectations,
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1. Introduction

Since Peng [1, 2] initiated the concept of the sub-linear expectations space to study the uncertainty
in probability, many scholars try to investigate the limit theorems under sub-linear expectations.
Zhang [3–5] studied the famous exponential inequalities, Rosenthal’s inequalities, and Donsker’s
invariance principle under sub-linear expectations. Chen and Wu [6] investigated complete
convergence theorems for a moving average process generated by independent random variables
under sub-linear expectations. Under sub-linear expectations, Xu et al. [7], Xu and Kong [8] obtained
complete convergence and complete moment convergence of weighted sums of negatively dependent
random variables under sub-linear expectations. For more limit theorems under sub-linear
expectations, the readers could refer to Zhang [9], Xu and Zhang [10, 11], Wu and Jiang [12], Zhang
and Lin [13], Zhong and Wu [14], Hu et al. [15], Gao and Xu [16], Kuczmaszewska [17], Zhang [5],
Chen [18], Zhang [19], Chen and Wu [20], Xu and Cheng [21, 22], Xu et al. [23], Xu [24, 25], and
references therein.

Guo et al. [26] studied the complete moment convergence of moving average processes under
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negative association assumptions. For more results about complete moment convergence of moving
average processes, the interested reader could refer to Hossenni and Nezakati [27] and references
therein. Motivated by the work of Guo et al. [26], Chen and Wu [6], and Xu et al. [23], we try to
prove complete moment convergence of moving average processes generated by negatively dependent
random variables under sub-linear expectations, complementing the corresponding results obtained in
Guo et al. [26]. The differences between the works of Xu et al. [7], Xu and Kong [8], Xu [24, 25], and
the results in this article are that under sub-linear expectations the comlete convergence of weighted
sums of negatively dependent or extended negatively dependent random variables are studied in Xu et
al. [7], Xu and Kong [8], and Xu [25], the complete convergence of moving average processes
produced by negatively dependent random variables is studied in Xu [24], and the complete moment
convergence of moving average processes generated by negatively dependent random variables is
investigated here. The novelty here is that the results in this paper could imply those in Xu and
Kong [8] and Xu [24] in some sense, and the results here extend the corresponding ones in probability
space.

The rest of this paper is organized as follows. We present some necessary basic notions, concepts
and corresponding properties, and give necessary lemmas under sublinear expectations in the next
section. In Section 3, we present our results, Theorems 3.1–3.3, and the proofs of which are given in
Section 4.

2. Preliminary

Hereafter, we use notions similar to that in the works by Peng [2], Zhang [4]. Assume that (Ω,F )
is a given measurable space. Suppose that H is a set of all random variables on (Ω,F ) fulfilling
ϕ(X1, · · · , Xn) ∈ H for X1, · · · , Xn ∈ H , and each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) is the set of ϕ
fulfilling

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)(|x − y|),∀x, y ∈ Rn

for C > 0, m ∈ N relying on ϕ.

Definition 2.1. A sub-linear expectation E on H is a functional E : H 7→ R̄ := [−∞,∞] fulfilling the
following: for every X,Y ∈ H ,

(a) X ≥ Y implies E[X] ≥ E[Y];

(b) E[c] = c, ∀c ∈ R;

(c) E[λX] = λE[X], ∀λ ≥ 0;

(d) E[X + Y] ≤ E[X] + E[Y] whenever E[X] + E[Y] is not of the form∞−∞ or −∞ +∞.

Definition 2.2. We say that {Xn; n ≥ 1} is stochastically dominated by a random variable X in
(Ω,H ,E), if there exists a constant C such that ∀n ≥ 1, for all non-negative h ∈ Cl,Lip(R),
E(h(Xn)) ≤ CE(h(X)).

V : F 7→ [0, 1] is named to be a capacity if

(a) V(∅) = 0, V(Ω) = 1;
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(b) V(A) ≤ V(B), A ⊂ B, A, B ∈ F .
Furthermore, if V is continuous, then V obeys

(c) An ↑ A yields V(An) ↑ V(A) .

(d) An ↓ A yields V(An) ↓ V(A).

V is said to be sub-additive when V(A
⋃

B) ≤ V(A) + V(B), A, B ∈ F .
In (Ω,H ,E), set V(A) := inf{E[ξ] : IA ≤ ξ, ξ ∈ H}, ∀A ∈ F (cf. Zhang [3]). V is a sub-additive

capacity. Write

CV(X) :=
∫ ∞

0
V(X > x)dx +

∫ 0

−∞

(V(X > x) − 1)dx.

As in 4.3 of Zhang [3], throughout this paper, define an extension of E on the space of all random
variables by

E∗(X) = inf {E[Y] : X ≤ Y,Y ∈ H} .

Then E∗ is a sublinear expectation on the space of all random variables, E[X] = E∗[X], ∀X ∈ H ,
and V(A) = E∗(IA), ∀A ∈ F .

Suppose X = (X1, · · · , Xm), Xi ∈ H and Y = (Y1, · · · ,Yn), Yi ∈ H are two random vectors on
(Ω,H ,E). Y is named to be negatively dependent to X, if for ψ1 on Cl,Lip(Rm), ψ2 on Cl,Lip(Rn),
E[ψ1(X)ψ2(Y)] ≤ E[ψ1(X)]E[ψ2(Y)] whenever ψ1(X) ≥ 0, E[ψ2(Y)] ≥ 0, E[|ψ1(X)ψ2(Y)|] < ∞,
E[|ψ1(X)|] < ∞, E[|ψ2(Y)|] < ∞, and either ψ1 and ψ2 are coordinatewise nondecreasing or ψ1 and
ψ2 are coordinatewise nonincreasing (see Definition 2.3 of Zhang [3], Definition 1.5 of Zhang [4]).
{Xn}

∞
n=−∞ is said to be negatively dependent, if Xn+l is negatively dependent to (Xl, Xl+1, · · · , Xl+n−1) for

each n ≥ 1, −∞ < l < ∞.
Suppose X1 and X2 are two n-dimensional random vectors in (Ω1,H1,E1) and (Ω2,H2,E2)

respectively. They are said to be identically distributed if for every ψ ∈ Cl,Lip(Rn),

E1[ψ(X1)] = E2[ψ(X2)].

{Xn; n ≥ 1} is called to be identically distributed if for every i ≥ 1, Xi and X1 are identically distributed.
Throughout this paper, we suppose that E is countably sub-additive, i.e., E(X) ≤

∑∞
n=1 E(Xn) could

be implied by X ≤
∑∞

n=1 Xn, X, Xn ∈ H , and X ≥ 0, Xn ≥ 0, n = 1, 2, . . .. Therefore E∗ is also countably
sub-additive. Moreover V is also countably sub-additive (cf. Zhang [3]). Let C denote a positive
constant which may change from line to line. I(A) or IA is the indicator function of A. The symbol
ax ≈ bx means that there exists two positive constants C1, C2 fulfilling C1|bx| ≤ |ax| ≤ C2|bx|, x+ stands
for max{x, 0}, x− = (−x)+, for x ∈ R, a

∨
b = max{a, b}, for a, b ∈ R.

As in Zhang [4], if X1, X2, . . . , Xn are negatively dependent random variables and
f1(x), f2(x), . . . , fn(x) ∈ Cl,Lip(R) are all non increasing ( or non decreasing) functions, then f1(X1),
f2(X2), . . . , fn(Xn) are negatively dependent random variables.

We cite the following under sub-linear expectations.

Lemma 2.1. (cf. Lemma 4.5 (iii) of Zhang [3]) If E is countably sub-additive under (Ω,H ,E), then
for X ∈ H ,

E|X| ≤ CV (|X|) .
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Lemma 2.2. (cf. Theorem 2.1 in Zhang [4]) Write S k = Y1 + · · · + Yk, S 0 = 0. Suppose that Yk+1 is
negatively dependent to (Y1, . . . ,Yk) for k = 1, 2, . . . , n − 1, or Yk is negatively dependent to
(Yk+1, . . . ,Yn) for k = 0, . . . , n − 1 in sub-linear expectation space (Ω,H ,E). Then for p ≥ 2,

E
[
max
k≤n
|S k|

p
]
≤ Cp

 n∑
k=1

E[|Yk|
p] +

 n∑
k=1

E[|Yk|
2]

p/2

+

 n∑
k=1

[|E(Yk)| + |E(−Yk)|]

p . (2.1)

By Lemma 2.2 of Zhong and Wu [14], the following lemma holds.

Lemma 2.3. Suppose Y ∈ H , r > 0, p > 0, and l(x) is a slowly varying function. (i) Then for any
c > 0,

CV {|Y |rl(|Y |p)} < ∞ ⇔
∞∑

n=1

nr/p−1l(n)V
(
|Y | > cn1/p

)
< ∞.

(ii) Suppose CV {|Y |rl(|Y |p)} < ∞. Then for any θ > 1 and c > 0,
∞∑

k=1

θkr/pl(θk)V
(
|Y | > cθk/p

)
< ∞.

3. Main results

Theorem 3.1. Assume that Xn =
∑∞

i=−∞ ai+nYi, n ≥ 1, where {ai,−∞ < i < ∞} is a sequence of
real numbers fulfilling

∑∞
i=−∞ |ai| < ∞, {Yi,−∞ < i < ∞} is a sequence of negatively dependent

random variables, and {Yi,−∞ < i < ∞} is stochastically dominated by Y in sub-linear expectation
space (Ω,H ,E). Let l(x) be a slowly varying function and 1 ≤ p < 2, r ≥ 1 + p/2. Suppose that
E(Yi) = E(−Yi) = 0 for all −∞ < i < ∞, and CV (|Y |r(1

∨
l(|Y |p))) < ∞. Then

∞∑
n=1

nr/p−2−1/(pt)l(n)CV


max

1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− εn1/(pt)


+ < ∞, for all ε > 0 and t > 1

r , (3.1)

and
∞∑

n=1

nr/p−2l(n)CV


sup

k≥n

∣∣∣∣∣∣∣k−1/p
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− ε


+ < ∞, for all ε > 0 and t > 1

r . (3.2)

Theorem 3.2. Suppose that Xn =
∑∞

i=−∞ ai+nYi, n ≥ 1, where {ai,−∞ < i < ∞} is a sequence of real
numbers fulfilling

∑∞
i=−∞ |ai| < ∞, {Yi,−∞ < i < ∞} is a sequence of negatively dependent random

variables, and {Yi,−∞ < i < ∞} is stochastically dominated by Y in sub-linear expectation space
(Ω,H ,E). Let l(x) be a non-decreasing and slowly varying function. Assume 1 ≤ p < 2, r > 1 + p/2.
Suppose that E(Yi) = E(−Yi) = 0, for all −∞ < i < ∞ and CV

(
|Y |1/t(1

∨
l(|Y |p))

)
< ∞. Then

∞∑
n=1

nr/p−2−1/(pt)l(n)CV


max

1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− εn1/(pt)


+ < ∞, for all ε > 0 and t < 1

r , (3.3)

and
∞∑

n=1

nr/p−2l(n)CV


sup

k≥n

∣∣∣∣∣∣∣k−1/p
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− ε


+ < ∞, for all ε > 0 and t < 1

r . (3.4)
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Theorem 3.3. Assume that Xn =
∑∞

i=−∞ ai+nYi, n ≥ 1, where {ai,−∞ < i < ∞} is a sequence of real
numbers fulfilling

∑∞
i=−∞ |ai| < ∞, {Yi,−∞ < i < ∞} is a sequence of negatively dependent random

variables, and {Yi,−∞ < i < ∞} is stochastically dominated by Y in sub-linear expectation space
(Ω,H ,E). Assume that l(x) is a slowly varying function and 1 < p < 2. Suppose E(Yi) = E(−Yi) = 0
for −∞ < i < ∞ and CV (|Y |p(1

∨
l(|Y |p))) < ∞. Then

∞∑
n=1

n−1−1/(pt)l(n)CV


max

1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− εn1/(pt)


+ < ∞, for all ε > 0 and t > 1

p . (3.5)

As in Remark 2.3 of Guo et al. [26] and Remark 1.2 of Li and Zhang [28], by Theorems 3.1, 3.2,
we could obtain the following corollaries.

Corollary 3.1. Under the assumptions of Theorem 3.1, and assume that CV (|Y |r(1
∨

l(|Y |p))) < ∞.
Then

∞∑
n=1

nr/p−2l(n)V

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣ > εn1/p

 < ∞ for ε > 0;

∞∑
n=1

nr/p−2l(n)V

sup
k≥n

∣∣∣∣∣∣∣k−1/p
k∑

i=1

Xi

∣∣∣∣∣∣∣ > ε
 < ∞ for ε > 0.

Corollary 3.2. Under the assumptions of Theorem 3.3, and assume that CV (|Y |p(1
∨

l(|Y |p))) < ∞.
Then

∞∑
n=1

n−1l(n)V

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣ > εn1/p

 < ∞ for ε > 0.

Remark 3.1. In Theorems 3.1, 3.2, 3.3, Corollaries 3.1, 3.2, we all assume that E(Y j) = E(−Y j) = 0,
∀ j ≥ 1. Readers may wonder what the intrinsic difference between the sub-linear expectation and
linear expectation in probability space is? The following example heuristically implies the diffenrence
in some extent. Suppose that Y1 is G-normally distributed, i.e., for a, b > 0, aY1 + bȲ1 and

√
a2 + b2Y1

are identically distributed, where Ȳ1 and Y1 are independent and identically distributed (cf.
Definition 2.2.8 and Remark 2.2.9 of Peng [2]). We know that E(Y1) = E(−Y1) = 0 (cf. Remark 2.2.5
of Peng [2]). Assume that E(Y2

1 ) = 1 > −E(−Y2
1 ) > 0. Then by the Remarks 3 and 14 of Hu [29], we

know that E(Y2n+1
1 ) = E(−Y2n+1

1 ) > 0, ∀n ≥ 1. Hence, for any n ≥ 2, E(Yn
1 ) , −E(−Yn

1 ) (cf.
Proposition 2.2.15 of Peng [2]).

4. Proofs of the main results

Hereafter, as in Chen and Wu [6], we define some useful functions. Assume that 2−1/p < µ < 1,
g(y) ∈ Cl,Lip(R) is a decreasing function for y ≥ 0, 0 ≤ g(y) ≤ 1 for all y and g(y) = 1 if |y| ≤ µ, g(y) = 0
if |y| > 1. We see that

I(|y| ≤ µ) ≤ g(|y|) ≤ I(|y| ≤ 1), I(|y| > 1) ≤ 1 − g(|y|) ≤ I(|y| > µ). (4.1)
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Define g j(y) ∈ Cl,Lip(R), j ≥ 1 such that 0 ≤ g j(y) ≤ 1 for all y and g j

(
|y|

2 j/p

)
= 1 if 2( j−1)/p < |y| ≤ 2 j/p,

g j

(
|y|

2 j/p

)
= 0 if |y| ≤ µ2( j−1)/p or |y| > (1 + µ)2 j/p. We see that

I
(
2( j−1)/p < |Y | ≤ 2 j/p

)
≤ g j

(
|Y |
2 j/p

)
≤ I

(
µ2( j−1)/p < |Y | ≤ (1 + µ)2 j/p

)
, (4.2)

|Y |αg
(
|Y |
2k/p

)
≤ 1 +

k∑
j=1

|Y |αg j

(
|Y |
2 j/p

)
, ∀α > 0, (4.3)

|Y |α
(
1 − g

(
|Y |
2k/p

))
≤

∞∑
j=k

|Y |αg j

(
|Y |
2 j/p

)
, ∀α > 0. (4.4)

Proof of Theorem 3.1. Here we adopt some ideas from the proofs of Theorem 2.1 in Guo et al. [26].
Write Y (1)

xi = YiI(|Yi| < x) − xI(Yi ≤ −x) + xI(Yi ≥ x), Y (2)
xi = Yi − Y (1)

xi , Y (1)
x = YI(|Y | < x) − xI(Y ≤

−x) + xI(Y ≥ x), Y (2)
x = Y − Y (1)

x for any x ≥ 0 and −∞ < i < ∞. Note that

n∑
k=1

Xk =

n∑
k=1

∞∑
i=−∞

ai+kYi =

∞∑
i=−∞

ai

n∑
k=1

Yi−k =

∞∑
i=−∞

ai

i−1∑
j=i−n

Y j.

We see that

∞∑
n=1

nr/p−2−1/(pt)l(n)CV


max

1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− εn1/(pt)


+

=

∞∑
n=1

nr/p−2−1/(pt)l(n)
∫ ∞

εn1/(pt)
V

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣ > xt

 dx (letting y = (x/ε)t)

=

∞∑
n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
V

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣ > ε ty

 εt y
1
t −1dy

≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1V

max
1≤k≤n

∣∣∣∣∣∣∣
∞∑

i=−∞

ai

i−1∑
j=i−k

Y (2)
x j

∣∣∣∣∣∣∣ ≥ x
ε t

2

 dx

+C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1V

max
1≤k≤n

∣∣∣∣∣∣∣
∞∑

i=−∞

ai

i−1∑
j=i−k

Y (1)
x j

∣∣∣∣∣∣∣ ≥ x
ε t

2

 dx

:= I1 + I2. (4.5)

For I1, observe that r/p−1−1/(pt) > −1 and CV (|Y |rl(|Y |p)) < ∞, by Lemmas 2.2 and 2.3, Markov
inequality under sub-linear expectations, (4.1), (4.4), we get

I1 ≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −2E∗

max
1≤k≤n

∣∣∣∣∣∣∣
∞∑

i=−∞

ai

i−1∑
j=i−k

Y (2)
x j

∣∣∣∣∣∣∣
 dx

≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −2 max
−∞<i<∞

E∗


∣∣∣∣∣∣∣

i−1∑
j=i−n

|Y j|

(
1 − g

(
|Y j|

x

))∣∣∣∣∣∣∣
 dx
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= C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −2 max
−∞<i<∞

E


∣∣∣∣∣∣∣

i−1∑
j=i−n

|Y j|

(
1 − g

(
|Y j|

x

))∣∣∣∣∣∣∣
 dx

≤ C
∞∑

n=1

nr/p−1−1/(pt)l(n)
∞∑

k=n

∫ (k+1)1/p

k1/p
x

1
t −2E

(
|Y |

(
1 − g

(
|Y |
x

)))
dx

≤ C
∞∑

n=1

nr/p−1−1/(pt)l(n)
∞∑

k=n

k1/(pt)−1/p−1E

(
|Y |

(
1 − g

(
|Y |
k1/p

)))

≤ C
∞∑

k=1

k1/(pt)−1/p−1E

(
|Y |

(
1 − g

(
|Y |
k1/p

))) k∑
n=1

nr/p−1−1/(pt)l(n)

≤ C
∞∑

k=1

kr/p−1−1/pl(k)E
(
|Y |

(
1 − g

(
|Y |
k1/p

)))

= C
∞∑

n=0

2n+1−1∑
k=2n

kr/p−1−1/pl(k)E
(
|Y |

(
1 − g

(
|Y |
k1/p

)))
≤ C

∞∑
n=1

2n(r/p−1/p)l(2n)E
(
|Y |

(
1 − g

(
|Y |

2n/p

)))

≤ C
∞∑

n=1

2n(r/p−1/p)l(2n)E∗
 ∞∑

j=n

|Y |g j

(
|Y |
2 j/p

)
≤ C

∞∑
n=1

2n(r/p−1/p)l(2n)
∞∑
j=n

E∗
(
|Y |g j

(
|Y |
2 j/p

))

= C
∞∑
j=1

E

(
|Y |g j

(
|Y |
2 j/p

)) j∑
n=1

2n(r/p−1/p)l(2n)

≤ C
∞∑
j=1

2 jr/pl(2 j)V
{
|Y | > µ2( j−1)/p

}
< ∞. (4.6)

Next we establish I2. By Lemma 2.2, Markov’s inequality under sub-linear expectations, Hölder
inequality, we see that for q ≥ 2,

I2 ≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1x−qE∗

max
1≤k≤n

∣∣∣∣∣∣∣
∞∑

i=−∞

ai

i−1∑
j=i−k

Y (1)
x j

∣∣∣∣∣∣∣
q dx

≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1−qE∗

max
1≤k≤n

∞∑
i=−∞

(|ai|
1−1/q)(|ai|

1/q)

∣∣∣∣∣∣∣
i−1∑

j=i−k

Y (1)
x j

∣∣∣∣∣∣∣
q dx

≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1−q

 ∞∑
i=−∞

|ai|

q−1  ∞∑
i=−∞

|ai|E
∗

max
1≤k≤n

∣∣∣∣∣∣∣
i−1∑

j=i−k

Y (1)
x j

∣∣∣∣∣∣∣
q

 dx

≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1−q max

−∞<i<∞
E

max
1≤k≤n

∣∣∣∣∣∣∣
i−1∑

j=i−k

Y (1)
x j

∣∣∣∣∣∣∣
q dx
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≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1−q max

−∞<i<∞

 i−1∑
j=i−n

E
∣∣∣∣Y (1)

x j

∣∣∣∣q dx

+C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1−q max

−∞<i<∞

 i−1∑
j=i−n

E
(∣∣∣∣Y (1)

x j

∣∣∣∣2)
q/2

dx

+C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1−q max

−∞<i<∞

 i−1∑
j=i−n

[∣∣∣∣E (
Y (1)

x j

)∣∣∣∣ +
∣∣∣∣E (
−Y (1)

x j

)∣∣∣∣]
q

dx

:= I21 + I22 + I23.

For I21, take q > max{r, 2}, by Lemma 2.3, (4.1), (4.2) and (4.3), and ∀x > 0, f (·) := | · |qI(| · | ≤
x) + xqI(| · | > x) ∈ Cl,Lip(R), we see that

I21 ≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1−q

(
nE

∣∣∣Y (1)
x

∣∣∣q) dx

≤ C
∞∑

n=1

nr/p−1−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1−q

[
xqE

(
1 − g

(
|Y |
x

))
+ E

(
|Y |qg

(
µ|Y |

x

))]
dx

= C
∞∑

n=1

nr/p−1−1/(pt)l(n)
∞∑

m=n

∫ (m+1)1/p

m1/p
x

1
t −1E

(
1 − g

(
|Y |
x

))
dx

+C
∞∑

n=1

nr/p−1−1/(pt)l(n)
∞∑

m=n

∫ (m+1)1/p

m1/p
x

1
t −1−qE

(
|Y |qg

(
µ|Y |

x

))
dx

≤ C
∞∑

n=1

nr/p−1−1/(pt)l(n)
∞∑

m=n

m
1
tp−1V

{
|Y | > µm1/p

}
+C

∞∑
n=1

nr/p−1−1/(pt)l(n)
∞∑

m=n

m
1
tp−1−q/pE

(
|Y |qg

(
µ|Y |

(m + 1)1/p

))
≤

∞∑
m=1

m
r
p−1l(m)V

{
|Y | > µm1/p

}
+C

∞∑
m=1

m
1
tp−1−q/pE

(
|Y |qg

(
µ|Y |

(m + 1)1/p

)) m∑
n=1

nr/p−1−1/(pt)l(n)

≤ C
∞∑

k=0

2k+1−1∑
m=2k

m
r
p−1−q/pl(m)E

(
|Y |qg

(
µ|Y |

(m + 1)1/p

))

≤ C
∞∑

k=1

2
kr
p −kq/pl(2k)E

(
|Y |qg

(
µ|Y |

2(k+1)/p

))

≤ C
∞∑

k=1

2
kr
p −kq/pl(2k)E

1 +

k∑
j=1

|Y |qg j

(
µ|Y |

2( j+1)/p

)
≤ C

∞∑
k=1

2k(r/p−q/p)l(2k) + C
∞∑

k=1

2
kr
p −kq/pl(2k)

k∑
j=1

E

(
|Y |qg j

(
µ|Y |

2( j+1)/p

))
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≤ C
∞∑
j=1

2 jq/pV
{
|Y | > 2 j/p

} ∞∑
k= j

2k(r/p−q/p)l(2k)

≤ C
∞∑
j=1

2 jr/pl(2 j)V
{
|Y | > 2 j/p

}
< ∞. (4.7)

For I22, we study the following two cases. If r ≤ 2, we take q > 2. Note that r/p− (r/p− 1)q/2 < 1
and r/p − 2 − 1/(pt) + q/2 > −1. We get

I22 ≤ C
∞∑

n=1

nr/p−2−1/(pt)+q/2l(n)
∫ ∞

n1/p
x

1
t −1−q

(
E|Y (1)

x |
2
)q/2

dx

≤ C
∞∑

n=1

nr/p−2−1/(pt)+q/2l(n)
∫ ∞

n1/p
x

1
t −1−qx(2−r)q/2

(
E|Y (1)

x |
r
)q/2

dx

≤ C
∞∑

n=1

nr/p−(r/p−1)q/2−2 (E|Y |r)q/2

≤ C
∞∑

n=1

nr/p−(r/p−1)q/2−2 (CV (|Y |r))q/2 < ∞. (4.8)

If r > 2, we take q > max
{
2p(r/p − 1)/(2 − p), t−1

}
, then r/p − q/p + q/2 < 1. Note that E(Y2) <

CV(Y2) ≤ CCV (|Y |rl(|Y |p)) < ∞ in this case. Therefore, we get

I22 ≤ C
∞∑

n=1

nr/p−2−1/(pt)+q/2l(n)
∫ ∞

n1/p
x

1
t −1−qdx

≤ C
∞∑

n=1

nr/p−2−q/p+q/2l(n) < ∞. (4.9)

Combining (4.8) and (4.9) results in I22 < ∞.
For I23, we take q > 2. Observe that r ≥ 1 + p/2 > p. By E(Yi) = E(−Yi) = 0, Proposition 1.3.7 of

Peng (2019), and Lemma 2.1, we see that

I23 ≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∞∑

k=n

∫ (k+1)1/p

k1/p
x

1
t −1−q max

−∞<i<∞

 i−1∑
j=i−n

[
E

∣∣∣∣Y (1)
x j − Y j

∣∣∣∣ + E
∣∣∣∣−Y (1)

x j + Y j

∣∣∣∣]
q

dx

≤ C
∞∑

n=1

nr/p−2−1/(pt)l(n)
∞∑

k=n

∫ (k+1)1/p

k1/p
x

1
t −1−q max

−∞<i<∞

 i−1∑
j=i−n

E
∣∣∣∣Y (1)

x j − Y j

∣∣∣∣
q

dx

≤ C
∞∑

n=1

nr/p−2−1/(pt)+ql(n)
∞∑

k=n

∫ (k+1)1/p

k1/p
x

1
t −1−q

(
E|Y |

(
1 − g

(
|Y |
x

)))q

dx

≤ C
∞∑

k=1

k
1
tp−1−q/p

(
E|Y |

(
1 − g

(
|Y |
k1/p

)))q k∑
n=1

nr/p−2−1/(pt)+ql(n)

≤ C
∞∑

k=1

k1/(pt)−1−q/p
(
E|Y |rl(|Y |p)/

(
k(r−1)/pl(k)

))q
kr/p−1−1/(pt)+ql(k)
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≤ C
∞∑

k=1

k−(r/p−1)(q−1)−1/l(k)q−1 (CV {|Y |rl(|Y |p)})q < ∞. (4.10)

Hence, by (4.5) and (4.6)–(4.10), we establish (3.1).
Now we prove (3.2). By r/p > 1 and the countable sub-additivity of V, we obtain

∞∑
n=1

nr/p−2l(n)CV


sup

k≥n

∣∣∣∣∣∣∣k−1/p
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− ε


+

=

∞∑
n=1

nr/p−2l(n)
∫ ∞

ε

V

sup
k≥n

∣∣∣∣∣∣∣k−1/p
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

> x

 dx

=

∞∑
j=0

2 j+1−1∑
n=2 j

nr/p−2l(n)
∫ ∞

ε

V

sup
k≥n

∣∣∣∣∣∣∣k−1/p
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

> x

 dx

≤ C
∞∑
j=0

2 j(r/p−1)l(2 j)
∫ ∞

ε

V

sup
k≥2 j

∣∣∣∣∣∣∣k−1/p
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

> x

 dx

≤ C
∞∑
j=0

2 j(r/p−1)l(2 j)
∞∑
`= j

∫ ∞

ε

V

 sup
2`≤k≤2`+1

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

> x2`/(pt)

 dx

≤ C
∞∑
`=0

2`(r/p−1)l(2`)
∫ ∞

ε

V

 sup
2`≤k≤2`+1

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

> x2`/(pt)

 dx

≤ C
∞∑

n=0

nr/p−2l(n)
∫ ∞

ε′
V

 sup
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

> xn1/(pt)

 dx (letting ε′ = ε2−1/(pt))

≤ C
∞∑

n=0

nr/p−2−1/(pt)l(n)
∫ ∞

ε′n1/(pt)
V

 sup
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

> x

 dx

≤ C
∞∑

n=0

nr/p−2−1/(pt)l(n)CV


max

1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− ε′n1/(pt)


+ < ∞. (4.11)

Hence (3.2) is proved. �

Proof of Theorem 3.2. As in the proof of Theorem 3.1, it is sufficient to prove that I1 < ∞, I21 < ∞,
I22 < ∞, I23 < ∞. Indeed, observe that r/p − 1 − 1/(pt) < −1 yields

∑∞
n=1 nr/p−1−1/(pt) < ∞. Therefore,

by the proofs of (4.6) and (4.4), and Lemma 2.3, we get

I1 ≤ C
∞∑

k=1

k1/(pt)−1/p−1E

[
|Y |

(
1 − g

(
|Y |
k1/p

))] k∑
n=1

nr/p−1−1/(pt)l(n)

≤ C
∞∑

k=1

k1/(pt)−1/p−1E

[
|Y |

(
1 − g

(
|Y |
k1/p

))]
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= C
∞∑

n=0

2n+1−1∑
k=2n

k1/(pt)−1/p−1E

[
|Y |

(
1 − g

(
|Y |
k1/p

))]
≤ C

∞∑
n=1

2n(1/(pt)−1/p)E

[
|Y |

(
1 − g

(
|Y |

2n/p

))]

≤ C
∞∑

n=1

2n(1/(pt)−1/p)E∗

 ∞∑
j=n

|Y |g j

(
|Y |
2 j/p

) ≤ C
∞∑
j=1

E∗
[
|Y |g j

(
|Y |
2 j/p

)] j∑
n=1

2n(1/(pt)−1/p)

≤ C
∞∑
j=1

2 j/(pt)E

[
g j

(
|Y |
2 j/p

)]
≤ C

∞∑
j=1

2 j/(pt)V
{
|Y | > µ2( j−1)/p

}
< ∞.

For I22, I23, we take q > max{t−1, 2(r − p)/(2 − p), 2 + 2(1/t − r)/p}. By the proofs of (4.8), (4.9)
and (4.10), we can obtain I22 < ∞, I23 < ∞.

For I21, take q > max{2, t−1}, by the proof of (4.7), and (4.3), we see that

I21 ≤ C
∞∑

m=1

m1/(pt)−q/p−1E

[
|Y |qg

(
µ|Y |

(m + 1)1/p

)] m∑
n=1

nr/p−1−1/(pt)l(n)

≤ C
∞∑

k=0

2k+1−1∑
m=2k

m1/(pt)−q/p−1E

[
|Y |qg

(
µ|Y |

(m + 1)1/p

)]

≤ C
∞∑

k=1

2k(1/(pt)−q/p)E

[
|Y |qg

(
µ|Y |

2(k+1)/p

)]

≤ C
∞∑

k=1

2k(1/(pt)−q/p)E

1 +

k∑
j=1

|Y |qg j

(
µ|Y |

2( j+1)/p

)
≤ C

∞∑
k=1

2k(1/(pt)−q/p) + C
∞∑

k=1

2k(1/(pt)−q/p)
k∑

j=1

E

[
|Y |qg j

(
µ|Y |

2( j+1)/p

)]

≤ C
∞∑
j=1

2 jq/pV
{
|Y | > 2 j/p

} ∞∑
k= j

2k(1/(pt)−q/p)

≤ C
∞∑
j=1

2 j/(tp)V
{
|Y | > 2 j/p

}
< ∞.

�

Proof of Theorem 3.3. By the proof of (4.5), we get

∞∑
n=1

n−1−1/(pt)l(n)CV


max

1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣∣∣
1/t

− εn1/(pt)


+

≤ C
∞∑

n=1

n−1−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1V

max
1≤k≤n

∣∣∣∣∣∣∣
∞∑

i=−∞

ai

i−1∑
j=i−k

Y (2)
x j

∣∣∣∣∣∣∣ ≥ x
ε t

2

 dx
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+C
∞∑

n=1

n−1−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −1V

max
1≤k≤n

∣∣∣∣∣∣∣
∞∑

i=−∞

ai

i−1∑
j=i−k

Y (1)
x j

∣∣∣∣∣∣∣ ≥ x
ε t

2

 dx

:= J1 + J2. (4.12)

Observe that pt > 1 and CV
(
|Y |1/tl(|Y |p)

)
< ∞, by Markov’s inequality under sub-linear expectations

and Lemmas 2.2, 2.3, (4.4), we have

J1 ≤ C
∞∑

n=1

n−1−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −2E∗ max

1≤k≤n

∣∣∣∣∣∣∣
∞∑

i=−∞

ai

i−1∑
j=i−k

Y (2)
x j

∣∣∣∣∣∣∣ dx

≤ C
∞∑

n=1

n−1/(pt)l(n)
∞∑

k=n

∫ (k+1)1/p

k1/p
x

1
t −2E(|Y (2)

x |)dx

≤ C
∞∑

n=1

n−1/(pt)l(n)
∞∑

k=n

∫ (k+1)1/p

k1/p
x

1
t −2E

(
|Y |

(
1 − g

(
|Y |
x

)))
dx

≤ C
∞∑

k=1

k1/(tp)−1/p−1E

(
|Y |

(
1 − g

(
|Y |
k1/p

))) k∑
n=1

n−1/(pt)l(n)

≤ C
∞∑

k=1

k−1/pl(k)E
(
|Y |

(
1 − g

(
|Y |
k1/p

)))

= C
∞∑

n=0

2n+1−1∑
k=2n

k−1/pl(k)E
(
|Y |

(
1 − g

(
|Y |
k1/p

)))
≤ C

∞∑
n=1

2(1−1/p)nl(2n)E
(
|Y |

(
1 − g

(
|Y |

2n/p

)))

≤ C
∞∑

n=1

2(1−1/p)nl(2n)E∗
 ∞∑

j=n

|Y |g j

(
|Y |
2 j/p

)
≤ C

∞∑
j=1

E∗
(
|Y |g j

(
|Y |
2 j/p

)) j∑
n=1

2(1−1/p)nl(2n)

≤ C
∞∑
j=1

2 jl(2 j)V
{
|Y | > µ2−1/p2 j/p

}
< ∞. (4.13)

For J2, as in the proof of I2, choose q = 2, by (2.1), we get

J2 ≤ C
∞∑

n=1

n−1−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −3 max
−∞<i<∞

 i−1∑
j=i−n

E(|Y (1)
x j |

2)

 dx

+C
∞∑

n=1

n−1−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −3 max
−∞<i<∞

 i−1∑
j=i−n

[
|EY (1)

x j | + |E(−Y (1)
x j )|

]
2

dx

= : J21 + J22.
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By Lemma 2.3, (4.1), (4.3), we conclude that

J21 = C
∞∑

n=1

n−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −3E

(
|Y (1)

x |
2
)

dx

= C
∞∑

n=1

n−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −3

[
x2E

(
1 − g

(
|Y |
x

))
+ E|Y |2g

(
µ|Y |

x

)]
dx

= C
∞∑

n=1

n−1/(pt)l(n)
∞∑

m=n

∫ (m+1)1/p

m1/p
x

1
t −1E

(
1 − g

(
|Y |
x

))
dx

+C
∞∑

n=1

n−1/(pt)l(n)
∞∑

m=n

∫ (m+1)1/p

m1/p
x

1
t −3E|Y |2g

(
µ|Y |

x

)
dx

≤ C
∞∑

m=1

m
1
tp−1E

(
1 − g

(
|Y |

m1/p

)) m∑
n=1

n−1/(pt)l(n)

+C
∞∑

m=1

m
1
tp−

2
p−1E|Y |2g

(
µ|Y |

(m + 1)1/p

) m∑
n=1

n−1/(pt)l(n)

≤ C
∞∑

m=1

l(m)V
{
|Y | > µm1/p

}
+ C

∞∑
m=1

m−
2
p l(m)E|Y |2g

(
µ|Y |

(m + 1)1/p

)

= C
∞∑

n=0

2n+1−1∑
m=2n

m−
2
p l(m)E|Y |2g

(
µ|Y |

(m + 1)1/p

)
≤ C

∞∑
n=1

2(1−2/p)nl(2n)E|Y |2g
(

µ|Y |
(2)(n+1)/p

)

≤ C
∞∑

n=1

2(1−2/p)nl(2n)E

1 +

n∑
j=1

|Y |2g j

(
µ|Y |

(2)( j+1)/p

)
≤ C

∞∑
n=1

2(1−2/p)nl(2n) + C
∞∑

n=1

2(1−2/p)nl(2n)
n∑

j=1

E

[
|Y |2g j

(
µ|Y |

(2)( j+1)/p

)]

≤ C
∞∑
j=1

22 j/pV
{
|Y | > 2 j/p

} ∞∑
n= j

2(1−2/p)nl(2n)

≤ C
∞∑
j=1

2 jl(2 j)V
{
|Y | > 2 j/p

}
< ∞.

By E(−Yi) = E(Yi) = 0, Proposition 1.3.7 of Peng (2019), (4.1), and Lemma 2.1, we see that

J22 ≤ C
∞∑

n=1

n−1−1/(pt)l(n)
∫ ∞

n1/p
x

1
t −3

[
nE|Y |

(
1 − g

(
|Y |
x

))]2

dx

= C
∞∑

n=1

n1−1/(pt)l(n)
∞∑

k=n

∫ (k+1)1/p

k1/p
x(1/t)−3

[
E|Y |

(
1 − g

(
|Y |
k1/p

))]2

dx
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≤ C
∞∑

k=1

k1−2/pl(k)
[
E|Y |

(
1 − g

(
|Y |
k1/p

))]2

≤ C
∞∑

k=1

k1−2/pl(k)
[
CV

(
|Y |

(
1 − g

(
|Y |
k1/p

)))]2

≤ C
∞∑

k=1

k1−2/pl(k)
[
CV

(
|Y |I

(
|Y | > µk1/p

))]2

≤ C
∞∑

k=1

k1−2/pl(k)

∫ µk1/p

0
V

(
|Y | > µk1/p

)
dy +

∫ ∞

µk1/p
V (|Y | > y) dy

2

≤ C
∞∑

k=1

kl(k)
[
V

{
|Y | > µk1/p

}]2
+ C

∞∑
k=1

k1−2/pl(k)
[∫ ∞

µk1/p
V {|Y | > y} dy

]2

≤ C
∫ ∞

1
xl(x)V2

{
|Y | > µx1/p

}
dx

+C
∫ ∞

1
x1−2/pl(x)dx

∫ ∞

µx1/p
V {|Y | > y} dy

∫ y

µx1/p
V {|Y | > z} dz

≤ C
∫ ∞

1
(xl(x)V {|Y |pl(|Y |p) > Cxl(x)})V {|Y |p > Cx} dx

+C
∫ ∞

µ

V {|Y | > y} dy
∫ y

µ

V {|Y | > z} dz
∫ (z/µ)p

1
x1−2/pl(x)dx

≤ C
∫ ∞

1
V {|Y |p > Cx} dx

+CC
∫ ∞

µ

V {|Y | > y} dy
∫ y

µ

V {|Y | > z} z2p−2l(zp)dz

≤ CCV {|Y |p} + CC
∫ ∞

µ

V {|Y | > y} dy
∫ y

µ

E(|Y |p)
zp zpzp−2l(zp)dz

≤ C + C
∫ ∞

µ

V {|Y | > y}CV{|Y |p}yp−1l(yp)dy

≤ CCV {|Y |pl(|Y |p)} < ∞.

Hence, (3.5) is proved. �

5. Conclusions

We have obtained new results about complete moment convergence for maximal partial sums of
moving average processes produced by negatively dependent random variables under sub-linear
expectations. Results obtained in our article generalize those for negatively dependent random
variables in probability space, and Theorems 3.1–3.3 complement the results of Xu et al. [7, 23], Xu
and Kong [8], and Xu [24] in some sense.
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