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Abstract: The study of time-fractional problems with derivatives in terms of Caputo is a recent area
of study in biological models. In this article, fractional differential equations with phytoplankton-
toxic phytoplankton-zooplankton (PTPZ) system were solved using the Laplace transform method
(LTM), the Adomain decomposition method (ADM), and the differential transform method (DTM).
This study demonstrates the good agreement between the results produced by using the specified
computational techniques. The numerical results displayed as graphs demonstrate the accuracy of the
computational methods. The approaches that have been established are thus quite relevant and suitable
for solving nonlinear fractional models. Meanwhile, the impact of changing the fractional order of
a time derivative and time t on populations of phytoplankton, toxic-phytoplankton, and zooplankton
has been examined using graphical representations. Furthermore, the stability analysis of the LTM
approach has been discussed.
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1. Introduction

In science, modeling and making the usability of real-world situations have always been essential.
The nature of rapid shifts in the plankton population is the most important area of research in
marine plankton ecology. The base of the entire aquatic food chain is plankton, phytoplankton
organisms which are present in both freshwater and saltwater environments. They sustain all aquatic
food chains, produce oxygen after absorbing CO2 from their environment, and obtain their food
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through photosynthetic processes, meaning phytoplankton need sunlight for their existence. Primary
production, nitrogen cycling, and food webs all depend on phytoplankton. Due to the rapid cell
reproduction caused by the increasing phytoplankton population, biomass increases rapidly. This kind
of rapid change in phytoplankton population density is known as “bloom”. It is difficult to calculate
the plankton biomass. Plankton population mathematical modelling has become an essential area of
research for both the physical and biological processes involved in plankton ecology. Many other
organisms depend on phytoplankton for sustenance. Several species of phytoplankton, referred to
as toxic phytoplankton, are capable of producing toxins. By preying on phytoplankton, zooplankton
grazers can reduce the phytoplankton population while simultaneously giving other marine animals a
plentiful food source.

Numerous researchers have recently investigated the interaction of phytoplankton, toxic
phytoplankton, and zooplankton. Roy [1] created a mathematical model to explain how non-toxic
and toxic phytoplankton interact when only one nutrient is available. Yunfei et al. [2] developed a
model for harvesting phytoplankton and zooplankton. Janga et al. [3] developed and analyzed models
of nutrient-plankton interaction with a hazardous chemical that influences the rate of development
of phytoplankton, zooplankton, or both trophic levels. Singh et al. [4] investigated the role of
virus infection in a basic phytoplankton and zooplankton model. Zhang et al. [5] showed toxin
avoidance effects on spatiotemporal pattern selection in a nontoxic phytoplankton-toxic phytoplankton-
zooplankton model. Nutrient loss in phytoplankton-nutrient systems was studied and numerically
simulated by Dimitrov et al. [6]. Javedi et al. [7] illustrated dynamic analysis of the time-fractional
order phytoplankton-toxic phytoplankton-zooplankton system. In [8], Veeresha et al. solved the
fractional approach for a mathematical model of the phytoplankton-toxic phytoplankton-zooplankton
system with Mittag-Leffler kernel and explained that the system exists and produces a unique solution.

Due to the memory property of fractional derivatives, the theory and applications of fractional
calculus (FC) have become extremely useful and important in the modeling of biological processes,
applied mathematics, physics, and engineering. Sardar et al. [9] constructed a mosquito-transmitted
disease model using fractional differential equations. In [10], Liu and Chen developed a fractional-
order competition model for love triangles. Javidi et al. [11] created a fractional-order model for
cholera infection. Mahdy et al. [12] developed a numerical approach for solving Emden-Fowler
nonlinear equations. Gepreel et al. [13] studied optimum control, signal flow graph, and system
electrical circuit realization for nonlinear Anopheles mosquito model.

Recently published literature have demonstrated that fractional differential equations are a valuable
tool for modeling. The Laplace transform method (LTM), proposed by Pierre-Simon Laplace in
1986 [14], is the most efficient technique for examining a nonlinear model. For instance, Alharbi [15],
suggested the communicable disease model in biological and physical models. Algehyne [16]
proposed application of fractional calculus on time dilation in special theory of relativity. Sheikh used
Liouville-Caputo fractional derivatives in [17] to evaluate and undertake a quantitative investigation
of sediment loss. The authors of [18] developed a fractional order model for cholera infection.
More recently researchers have employed fractional differential equations to solve biological models
using the Adomain decomposition method (ADM), for instance for the solution of a nonlinear
fractional differential equation [19]. Some authors also used the differential transform method (DTM)
to solve fractional problems. Ifeyinwa et al. [20] used the differential transformation approach
to describe the transmission dynamics of syphilis illness. Kumar et al. [21] used the differential
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transform technique (DTM)-Pade approximation to establish the analytical approximation for the non-
dimensional temperature. Sowmya et al. [22] showed the importance of thermal stress in a convective-
radiative annular fin with magnetic field and heat generation: DTM application. Gamaoun et al. [23]
applied the α-parameterized DTM method to the energy transfer of a fin wetted with ZnO-SAE 50
nanolubricant. In [24] Routaray et al. solved the fuzzy differential transform method for the solution
of the system of fuzzy integro-differential equations arising in the biological model.

In this article, our focus is on numerical solution of the model of phytoplankton-toxic
phytoplankton-zooplankton (PTPZ) system proposed by [25] in Caputo sense:

C
0 Dt

αP(t) = r1P
(
1 −

P
H1

)
− aPT − cPZ

C
0 Dt

αT (t) = r2T
(
1 −

T
H2

)
− bPT − TZ

C
0 Dt

αZ(t) = ePZ − TZ − mZ

(1.1)

where α ∈ (0, 1] is the order of the fractional derivative, P(t) is the density of the phytoplankton
population, T (t) is the density of the toxic phytoplankton population, and Z(t) is the density of the
zooplankton population at any instant in time t. In model (1.1), r1 is the intrinsic growth rate and H1 is
the phytoplankton population’s environmental carrying capacity. The term a reflects the functional
response of zooplankton to phytoplankton grazing, while c denotes the biomass conversion ratio.
r2 is the intrinsic growth rate, H2 is the environmental carrying capacity of the toxic-phytoplankton
population, and b is the zooplankton prediction rate, where the parameters e and m denote the rate of
zooplankton growth and toxic production, respectively. P0(t) = P(0); T0(t) = T (0); Z0(t) = Z(0) are
the initial conditions for the above system.

In many applications fractional calculus provide more accurate models of the physical systems than
ordinary calculus do. Fractional derivatives provide an excellent instrument for the description of
memory and hereditary properties of various materials and processes. In the fractional model (1.1),
the fractional derivatives indicate the speed at which the solution goes to the equilibrium. A fractional
derivative has numerous definitions of order α > 0. The Riemann-Liouville and Caputo definitions
are the two most widely employed. The Caputo definition of the fractional derivative is very useful
in the time domain studies, because the initial conditions for the fractional order differential equations
with the Caputo derivatives can be given in the same manner as the ordinary differential equations with
a known physical interpretation. Here we collect the well-known definitions of Caputo’s fractional
derivatives.

Definition 1. (Fractional derivative in terms of Caputo) The Caputo fractional derivative is a
mathematical concept that generalizes the concept of a derivative to non-integer orders. It is
particularly useful in the field of fractional calculus, which deals with derivatives and integrals of
non-integer order. The Caputo derivative is named after Italian mathematician Michele Caputo, who
introduced it in the 1960s. Suppose f (t) is k-times continuously differentiable function and f (k)(t) is
integrable in [a, t]. For t ∈ [a, b], the Caputo fractional derivative of order α for a function f (t) is
defined as

C
a Dt

α f (t) =
1

Γ(k − α)

∫ t

a

f (k)(τ)
(t − τ)α+1−k dτ (1.2)
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where α is the order of the fractional derivative and can be any positive real number, τ is an integrable
variable, a is a lower limit of integration and can be any real number, Γ(.) refers to the Gamma function,
t > a, and k is a positive integer such that k − 1 < α < k.

In this study, we studied a system with complex behavior that exemplified the food chain system
for zooplankton, toxic phytoplankton, and, especially, phytoplankton with a reduced predation rate at
high toxic-phytoplankton density. When we do not have an exact solution for the system, the test for
the correctness of the solution is critical. This model has been solved by many authors for positive
integer order derivatives, but only the equilibrium and stability have been discussed in those papers. In
general, the complexity of a dynamic system will always be determined by the initial conditions, which
could affect every component of the system. In the present work, the authors have solved the model
using three techniques: Laplace transform method (LTM), differential transform method (DTM), and
Adomain decomposition method (ADM) for fractional order derivative to verify how the behavior of
the solution is changing for different values of α. The LTM’s stability analysis is described here. The
authors solve this system using three methods and compare themselves to manifest that all the methods
give very similar results with less computational time.

This research helps young researchers and readers understand the novelty of the proposed strategy
for investigating the numerical solution of complicated nature of real-world problems. Capturing the
essence of an unpredictable system with parametric plots, in particular, plays an important role, and it
also creates interests in many young researchers due to its attractive visual appearance. This work can
be investigated using polynomial-based numerical methods.

The rest of the paper is organized as follows: Section 1 highlights the importance of the PTPZ
system. It also mentions the main objectives or goals of the research, as well as any background
information required for understanding the next parts. The Section 2 details the suggested numerical
technique for approximating solutions to the PTPZ system using three numerical methods: LTM,
ADM, and DTM. The second component will go over solving methods and stability analysis of the
LTM method. It also explains the step-by-step procedure of the numerical method. The proposed
methods are used to solve fractional order PTPZ system about their accuracy and applicability
in Section 3. The contributions of the work are summarized in Section 4, which highlights the
achievements of the proposed method and identifies possible directions for further study. This is
followed by references in the section titled “References”.

2. Solving methods

2.1. Laplace transform method

Laplace transform to Caputo fractional order derivative gives us

L
{
C
0 Dt

α { f (x)}
}

= λαF(λ) −
k−1∑
n=0

λα−n−1 f (n)(0). (2.1)

Using the Laplace transform given by Eq (2.1) and the inverse Laplace transform on both sides of
Eq (1.1), we have the following solutions
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P(t) = P(0) +L−1
{

1
S γ
L
{
r1P(t)

(
1 −

P(t)
H1

)
− aP(t)T (t) − cP(t)Z(t)

}
(s)

}
(t)

T (t) = T (0) +L−1
{

1
S γ
L
{
r2T (t)

(
1 −

T (t)
H2

)
− bP(t)T (t) − T (t)Z(t)

}
(s)

}
(t)

Z(t) = Z(0) +L−1
{

1
S γ
L
{
eP(t)Z(t)

− T (t)Z(t) − mZ(t)
}
(s)

}
(t).

(2.2)

Then, the following iterative formula is proposed

Pn(t) = P(0) +L−1
{

1
S γ
L
{
r1Pn−1

(
1 −

Pn−1

H1

)
− aPn−1(t)

Tn−1(t) − cPn−1(t)Zn−1(t)
}
(s)

}
(t)

Tn(t) = T (0) +L−1
{

1
S γ
L
{
r2Tn−1(t)

(
1 −

Tn−1(t)
H2

)
− bPn−1(t)

Tn−1(t) − Tn−1(t)Zn−1(t)
}
(s)

}
(t)

Zn(t) = Z(0) +L−1
{

1
S γ
L
{
ePn−1(t)Zn−1(t) − Tn−1(t)Zn−1(t)

Zn−1(t) − mZn−1

}
(s)

}
(t).

(2.3)

The approximate solution is assumed to be obtained as a limit where n tends to infinity

P(t) = lim
n→∞

P(n)(t)

T (t) = lim
n→∞

T(n)(t)

Z(t) = lim
n→∞

Z(n)(t).

(2.4)

2.1.1. Stability analysis for LTM method

Theorem 3.1. We show that the recursive approach defined above is stable.
Proof. We make the following assumptions. p, q, and r are three positive constants such that for all

0 ≤ t ≤ T ≤ ∞

‖P(t)‖ < p; ‖T (t)‖ < q; ‖Z(t)‖ < r.
(2.5)

AIMS Mathematics Volume 9, Issue 2, 3349–3368.



3354

Now we consider a subset of C2 ((a, b) (0,T )) defined by

[k] =

{
n : (a, b)(0,T )→ [k],

1
Γ(α)

∫
(t − η)α−1v(η)u(η)dη < ∞

}
. (2.6)

Now consider the following operator defined as

Θ(P,T,Z) =


r1P(1 − P

H1
) − aPT − cP,

r2T (1 − T
H2

) − bPT − TZ,
ePZ − TZ − mZ.

(2.7)

Then,

=



〈Θ(P,T,Z) − Θ(P1,T1,Z1), (P − P1,T − T1,Z − Z1)〉,
〈r1(P(t) − P1(t))(1 − (P(t)−P1(t))

H1
) − a(P(t) − P1(t))(T (t) − T1(t))

−c(P(t) − P1(t))(Z − Z1(t))〉,
〈r2(T (t) − T1(t))(1 − (T (t)−T1(t))

H2
) − b(P(t) − P1(t))(T (t) − T1(t))

−(T (t) − T1(t))(Z − Z1(t))〉,
〈e(P(t) − P1(t))(Z − Z1(t)) − (T (t) − T1(t))(Z − Z1(t))

−m(Z − Z1(t))〉

(2.8)

where

P(t) , P1(t)
T (t) , T1(t)
Z(t) , Z1(t).

By applying norm and absolute value on both sides, we get

〈Θ(P,T,Z) − Θ(P1,T1,Z1), (P − P1,T − T1,Z − Z1))〉 (2.9)

<





∥∥∥∥∥∥ r1(P(t)−P1(t))(1− (P(t)−P1(t))
H1

)

(P(t)−P1(t))

∥∥∥∥∥∥
−

∥∥∥∥ a(P(t)−P1(t))(T (t)−T1(t))
(P(t)−P1(t))

∥∥∥∥
−

∥∥∥∥ c(P(t)−P1(t))(Z(t)−Z1(t))
(P(t)−P1(t))

∥∥∥∥


‖P(t) − P1(t)‖2 ,


∥∥∥∥∥∥ r2(T (t)−T1(t))(1− (T (t)−T1(t))

H1
)

(T (t)−T1(t))

∥∥∥∥∥∥
−

∥∥∥∥ b(P(t)−P1(t))(T (t)−T1(t))
(T (t)−T1(t))

∥∥∥∥ − (T (t)−T1(t))(Z(t)−Z1(t))
(T (t)−T1(t))

 ‖T (t) − T1(t)‖2 ,


∥∥∥∥ e(P(t)−P1(t))(Z(t)−Z1(t)))

(Z(t)−Z1(t))

∥∥∥∥
−

∥∥∥∥ (T (t)−T1(t))(Z−Z1(t))
(Z(t)−Z1(t))

∥∥∥∥ − ∥∥∥∥m(Z−Z1(t))
(Z−Z1(t))

∥∥∥∥
 ‖Z(t) − Z1(t)‖2

(2.10)

<




∥∥∥∥r1(1 − (P(t)−P1(t))

H1
)
∥∥∥∥ − ‖a(T (t) − T1(t))(P(t) − P1(t))‖
− ‖c(Z(t) − Z1(t))‖

 ‖P(t) − P1(t)‖2
∥∥∥∥r2(1 − (T (t)−T1(t))

H1
)
∥∥∥∥

− ‖b(P(t) − P1(t))‖ − ‖(Z(t) − Z1(t))|‖

 ‖T (t) − T1(t)‖2{
‖e(P(t) − P1(t))‖ − ‖(T (t) − T1(t))‖ − m

}
‖Z(t) − Z1(t)‖2
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where

〈Θ(P,T,Z) − Θ(P1,T1,Z1)〉 <


A ‖P(t) − P1(t))‖2

B ‖T (t) − T1(t))‖2

C ‖Z(t) − Z1(t))‖2
(2.11)

with

A =

∥∥∥∥∥r1(1 −
(P(t) − P1(t))

H1
)
∥∥∥∥∥ − ‖a(T (t) − T1(t))(P(t) − P1(t))‖ ‖−c(Z(t) − Z1(t))‖

B =

∥∥∥∥∥r2(1 −
(T (t) − T1(t))

H1
)
∥∥∥∥∥ − ‖b(P(t) − P1(t))‖ − ‖(Z(t) − Z1(t))‖

C = ‖e(P(t) − P1(t))‖ − ‖(T (t) − T1(t))‖ − m.

Also, if we consider non-null vector (x1, x2, x3), then we obtain

〈Θ(P,T,Z) − Θ(P1,T1,Z1)〉 <


A ‖P(t) − P1(t))‖ ‖P(t)‖
B ‖T (t) − T1(t))‖ ‖T (t)‖
C ‖Z(t) − Z1(t))‖ ‖Z(t)‖

. (2.12)

Thus, we conclude that the iterative method is stable.

2.2. Adomain decomposition method

The ADM is a popular method for solving differential equations. The method is a powerful
technique that offers quick algorithms for analytic approximate solutions and numerical simulations
in applied sciences and engineering. The fractional ADM is used to solve the PTPZ system.

2.2.1. Description of the method:

We can use the ADM to solve the nonlinear system of Eq (1.1) using the above initial condition and
the given parameters.
Step 1: Consider the fractional order differential equation

C
0 Dt

αs(t) + Ls(t) + Ns(t) = w(t) (2.13)

where C
0 Dt

α is the Caputo fractional derivative, L is the linear differential operator, and N is the non
linear differential operator.

Equation (2.13) can be written as

C
0 Dt

αs(t) = w(t) − Lu(t) − Nu(t). (2.14)

Step 2: Applying the Caputo fractional integral to both sides of Eq (2.14), one can obtain

s(t) = s(0) +C Iα(w − Ls − Ns). (2.15)

Step 3: According to the ADM, the solution s can be examined into an infinite number of components.

s =

∞∑
n=0

sn (2.16)
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and the nonlinear term becomes

Ns =

∞∑
n=0

An (2.17)

where An Adomian polynomials can be expressed as

An =
1
n!

 dn

dλn N[
∞∑

n=0

λnsn]


λ=0

(2.18)

∞∑
n=0

sn =C Iα(w − L(
∞∑

n=0

sn) −
∞∑

n=0

An). (2.19)

Step 4: After substituting the initial condition s(0) in Eq (2.19), we can find s0, s1, s2, · · ·

Step 5: Then, the approximate solution becomes

s(t) = sn +

∞∑
n=0

sn. (2.20)

Now, utilizing the basic definition of the ADM, we apply the fractional ADM approach to solve the
PTPZ system (1.1) and we get

L1(P) = r1P,N1(P) = −r1P
( P
H1

)
− aPT − cPZ

L2(T ) = r2T,N2(T ) = −r2P
( P
H1

)
− bPT − TZ

L3(Z) = mZ,N2(T ) = ePZ − TZ

where P0,T0,Z0 be the initial conditions

An =
1
n!

 dn

dλn N1(P)[
n∑

i=0

λnPn,

n∑
i=0

λnTn,

n∑
i=0

λnZn]


λ=0

Bn =
1
n!

 dn

dλn N2(T)[
n∑

i=0

λnPn,

n∑
i=0

λnTn,

n∑
i=0

λnZn]


λ=0

Cn =
1
n!

 dn

dλn N3(Z)[
n∑

i=0

λnPn,

n∑
i=0

λnTn,

n∑
i=0

λnZn]


λ=0

Pn+1 =
1

Γ(α)

∫ t

0
(t − θ)α−1L1(P(n),T (n),Z(n))dθ +An(t)

Tn+1 =
1

Γ(α)

∫ t

0
(t − θ)α−1L2(P(n),T (n),Z(n))dθ + Bn(t)

Zn+1 =
1

Γ(α)

∫ t

0
(t − θ)α−1L3(P(n),T (n),Z(n))dθ + Cn(t).

(2.21)
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2.3. Differential transform method

Zhou [40] was the first to use the differential transform approach in electrical circuit analysis to
solve linear and nonlinear initial value problems. This DTM approach yields a polynomial-based
analytical answer. For large orders, the Taylor series technique is computationally time-consuming.
The differential transform is an iterative method for solving ordinary or partial differential equations
with analytic Taylor series.

2.3.1. Description of the method

To solve a nonlinear system of equations, we can utilize the DTM approach. The DTM approach
can be used to turn the original function into a transformed form.

m(x) = n(x) ± p(x)→ mα(k) = Nα(k) ± Pα(k)

m(x) = Dα
x0

(x)→ mα(k) =
Γ(α(k + 1) + 1)

Γ(αk + 1)
.

We apply the fractional differential transform method to solve the PTPZ system. Using the basic
definitions of the fractional one-dimensional differential transform and the associated transform of
Eq (1.1), we obtain the following system for h = 0, 1, 2, · · · :

P(h + 1) =
Γ(αh+1)

Γ((αh+1)+1) [r1Pα(k) − r1
H1

(Pα(k))2 − a
∑k

l=0 Pα(l)
Tα(k − l) − c

∑k
l=0 Pα(l)Zα(k − l)]

T (h + 1) =
Γ(αh+1)

Γ((αh+1)+1) [r2Tα(k) − r1
H1

(Tα(k))2 − b
∑k

l=0 Pα(l)
Tα(k − l) −

∑k
l=0 Tα(l)Zα(k − l)]

Z(h + 1) =
Γ(αh+1)

Γ((αh+1)+1) [e
∑k

l=0 Pα(l)Zα(k − l) −
∑k

l=0 Tα(l)
Zα(k − l) − mZα(k)].

3. Illustrative examples

Consider the fractional order PTPZ system

C
0 Dt

αP(t) = r1P
(
1 −

P
H1

)
− aPT − cPZ

C
0 Dt

αT (t) = r2T
(
1 −

T
H2

)
− bPT − TZ

C
0 Dt

αZ(t) = ePZ − TZ − mZ.

(3.1)

Using the initial conditions and parameters listed below, we obtain P(0) = 0.2,T (0) = 0.1,Z(0) =

0.1, r1 = 0.08, r2 = 0.22, a = 0.1, b = 0.8, c = 1.35, e = 0.63,m = 0.8,H2 = 0.13,H1 = 1 The required
equation is then solved using one of three numerical approaches.

3.1. LTM

The solution to Eq (3.1) will be illustrated by applying the LTM for α = 1. Thus, the solution comes
out as:
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P(t) =0.2 − 0.016200000000000006t − 0.0006480000000000002t2

+ 0.0005665771384615386t3 + 0.000011331542769230774t4

+ 5.925436681846158 × 10−6t5 − 4.183228561449681 × 10−6t6;

T (t) =0.1 − 0.020923076923076923t + 0.0023015384615384616t2

− 0.00006996478834774692t3 + 3.848063359126079 × 10−6t4

− 0.000013346399828129273t5 + 1.8739294893357527 × 10−7t6 + · · ·

Z(t) =0.1 + 0.0826t + 0.033344965384615385t2 + 0.00910609442504931t3

+ 0.001817355249533436t4 + 0.00037651454173505325t5+

3.7302622658569283637t6 + · · ·

3.2. ADM

After solving Eq (3.1) with the ADM for special case α = 1, the solution becomes:

P(t) =0.2 − 0.016200000000000006t − 0.010156069230769234t2−

0.0022094140688362924t3 − 0.00013043237784143895t4+

0.00008140810965506208t5 + 0.000034053372326079534t6 + · · ·

T (t) =0.1 − 0.020923076923076923t + 0.00047728994082840t2

− 0.0007056276349567592t3 + 9.684641495565019 × 10−6t4

− 6.9670189216597284 × 10−6t5 + 3.75550650323141 × 10−6t6 + · · ·

Z(t) =0.1 + 0.0826t + 0.03464965384615385t2 + 0.00960609442504931t3

+ 0.001917355249533436t4 + 0.00027651454173505325t5+

0.00002622658569283637t6 + · · ·

3.3. DTM

Using the DTM approach, the solution for the specific case α = 1 and the initial conditions
P0,T0,Z0 = 0.2, 0.1, 0.1 is as follows:

P(t) =0.2 − 0.016200000000000059t − 0.01015606925674534t2−

0.002209414068786754t3 − 0.00013897637784143895t4+

0.000081408105678506208t5 + 0.00003405337876079534t6 + · · ·

T (t) =0.1 − 0.02092305692307577t + 0.000477289945666840t2

− 0.0007056276349565678t3 + 9.684641495566754 × 10−6t4

− 6.9670189456597284 × 10−6t5 + 3.75550656323141 × 10−6t6 + · · ·

Z(t) =0.1 + 0.0826t + 0.03464945584615385t2 + 0.009606094422334931t3

+ 0.001917355339533436t4 + 0.00027651454173305325t5+

0.00002622653369283637t6 + · · ·
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4. Results and discussion

The aim of the numerical simulation is to observe the dynamics of the phytoplankton, toxic-
phytoplankton, and zooplankton graphically. The numerical simulation uses the initial values,
P(0),T (0),Z(0) = 0.2, 0.1, 0.1. In this section, we describe numerical simulations of the model
given by Eq (1.1) using the above numerical methods. We investigate the dynamical behavior of
the model with fractional order α = 0.65, 0.95, 1. The parameter values in the simulations are
r1 = 0.08, r2 = 0.22, a = 0.1, b = 0.8, c = 1.35, e = 0.63,m = 0.8,H2 = 0.13,H1 = 1. Figure 1 displays
the numerical simulation of our model’s specific solutions as a function of time for α = 1, for the
behavior of phytoplankton plants, toxic phytoplankton, and zooplankton for LTM, ADM, and DTM.
Figure 2 illustrates the actions of phytoplankton plants for various values of α = 0.65, 0.95, 1. Figure 3
depicts the dynamics of toxic phytoplankton. Figure 4 demonstrates the activity of zooplankton using
the PTPZ model using the LTM, ADM, and DTM for different values of α = 0.05, 0.1.0.15. Figure 5
illustrates the actions of phytoplankton plants for various values of α = 0.05, 0.1.0.15. Figure 6
shows the dynamics of toxic phytoplankton. Figure 7 depicts the activity of zooplankton using the
PTPZ model using the LTM, ADM, and DTM for different values of α = 0.05, 0.1.0.15. Table 1
shows the approximate phytoplankton plant values for various approaches and α = 0.65, 0.95, 1
values. Table 2 displays the approximate toxic-phytoplankton plant values for several approaches
and α = 1, 0.65, 0.95 values. Table 3 shows the approximate zooplankton plant values for several
approaches and α = 1, 0.65, 0.95 values. From the figures, the dynamic behavior shows that the
growth of the populations of phytoplankton, toxic phytoplankton, and zooplankton are converging to
equilibrium point for decreasing the values of α. It is clear that the approximate solutions depend
continuously on the fractional derivative α. Table 4 displays the CPU time used for solving the PTPZ
system for M = 5. The computer used for obtaining the results in this paper is an ASUS laptop with
Processor (CPU) Ryzen 5 (3500U), and RAM(8GB), using (Mathematica Software).

The numerical results in this case indicated that the approximate solutions for different α are
similar using these three numerical methods. This accuracy gives us high confidence in the validity
of this problem and reveals an excellent agreement of engineering accuracy. According to the results,
all three offered methods gave rise to exact solutions. According to this viewpoint, the parameter
α is significant in computational approaches and can be utilized to acquire fresh perspectives into
generalized biological models.
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Figure 1. Aproximate value for α = 1.
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Figure 2. Aproximate value of phytoplankton plant for α = 0.65, 0.95, 1.
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Figure 3. Aproximate value of toxic-phytoplankton for α = 0.65, 0.95, 1.
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Figure 4. Aproximate value of zooplankton for α = 0.65, 0.95, 1.
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Figure 5. Aproximate value of phytoplankton plant for α = 0.05, 0.1, 0.15.
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Figure 6. Aproximate value of toxic-phytoplankton for α = 0.05, 0.1, 0.15.
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Figure 7. Aproximate value of zooplankton for α = 0.05, 0.1, 0.15.

Table 1. Numerical results of phytoplankton plants for α = 0.65, 0.95, 1.

α t DTM ADM LTM

1
0.1 0.19827621769852 0.19827621745652 0.19827621456952
0.2 0.19633590258642 0.19633590156992 0.19633590158642
0.3 0.19416546573372 0.19416546573586 0.19416544569372

0.65
0.1 0.19500976189226 0.19500976189568 0.19500976256226
0.2 0.19117644432775 0.19117644432789 0.19117644432126
0.3 0.18733494309661 0.18855494309661 0.18733494390876

0.95
0.1 0.19800123535421 0.18945035253321 0.18945035253347
0.2 0.19586627058323 0.19586622596500 0.19586627576567
0.3 0.19351510113475 0.19351512698475 0.19351511236475
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Table 2. Numerical results of toxic-phytoplankton plants for α = 0.65, 0.95, 1.

α t DTM ADM LTM

1
0.1 0.09791176526401 0.09791176058951 0.09791176048201
0.2 0.09582884469827 0.09582884465685 0.09582884469845
0.3 0.0937445678511 0.09374245932511 0.09374712652511

0.65
0.1 0.09480925450322 0.09480925455467 0.09480925678322
0.2 0.09182562363828 0.09182562363786 0.09182562367543
0.3 0.14107716308949 0.14117716308949 0.14108896308949

0.95
0.1 0.09760954744007 0.09791561107829 0.09843126047825
0.2 0.09538735364362 0.09512345364362 0.09538234364382
0.3 0.09322183268611 0.09322183268611 0.09356434258734

Table 3. Numerical results of zooplankton for α = 0.65, 0.95, 1.

α t DTM ADM LTM

1
0.1 0.10861629715978 0.10861629715978 0.10861629715978
0.2 0.11798599284080 0.11798599284080 0.11798599209780
0.3 0.12817405502123 0.12817405502456 0.12817405456266

0.65
0.1 0.12388995574050 0.12388995698059 0.12388995574050
0.2 0.14107265808941 0.14107716308949 0.14107716304569
0.3 0.15787192318989 0.15787192318981 0.15787192318982

0.95
0.1 0.10995231212813 0.10995451212813 0.10995231245698
0.2 0.12017725114568 0.12017725124569 0.12017725121258
0.3 0.13110908139799 0.13110908139800 0.13110908139800

Table 4. CPU time for M = 5.

LTM DTM ADM
0.246 /s 0.243/s 0.289/s

5. Conclusions

The study of nonlinear systems is always an important area in research due to their essence of
understanding the behavior of real-world problems and models. In this paper, we solve the time
fractional PTPZ system numerically using three numerical methods (LTM, ADM, and DTM) to solve
the time fractional PTPZ system, which deals with the impact of toxic phytoplankton on zooplankton
and phytoplankton in the sea. We have applied the Laplace transform method to show that the method
is stable for the required system and the stability analysis of ADM and DTM can be demonstrated in the
same way. The research demonstrates that the three techniques involve less computational work and
provide quantitative, similar outcomes. From the figures, the dynamic behavior shows that the growth
of the populations of phytoplankton, toxic phytoplankton, and zooplankton converges to equilibrium
point for decreasing the values of α. The approximate solutions P(t), T (t), and Z(t) are displayed in
figures show that the concentrations of phytoplankton, toxic-phytoplankton, and zooplankton all reach
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their equilibrium values as time passes. An important feature of the fractional-order model is that it
controls the speed at which the solution to equilibrium is reached.

These types of studies can help us to investigate more interesting consequences of the system
with specific parameters and assumptions related to initial conditions. Furthermore, it opens the
door for innovation in the concept of examining and predicting more properties and behaviors of the
corresponding systems and mathematical models that exemplify real-world problems. Finally, we
observe that the PTPZ system can exhibit complex dynamical behavior. Furthermore, the proposed
method could be used in a broader class of biological systems, such as mathematical modeling of
infectious disease dynamics, as well as other key fields of study including economics, finance, and
engineering.
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