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1. Introduction

In this paper, we consider the non-autonomous discrete Hamiltonian system

42 u(n − 1) = ∇F(n, u(n)), n ∈ Z, u(n) ∈ RN , (1.1)

where 4u(n) = u(n+1)−u(n), 42u(n) = 4(4u(n)). The gradient with respect to the second variable x of
F(n, x) is denoted by∇F(n, x). Z is the set of integers andR is the set of real numbers, R+ = R∩[0,+∞).
For each a, b ∈ Z with a ≤ b, we define Z [a, b] := Z ∩ [a, b]. We suppose the following condition
always holds for F(n, x).

(A) For any fixed n ∈ Z, F (n, ·) ∈ C1(RN ,R), and for any (n, x) ∈ Z×RN , F(n+T, x) = F(n, x), where
T is a positive integer.

(1.1) is the discretization system of the second-order Hamiltonian system:

ü(t) = ∇F(t, u(t)), a.e. t ∈ [0,T ] . (1.2)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024161


3304

In 1978, Rabinowitz [1] investigated the periodic solutions of system (1.2) with F(t, ·) being
superquadratic at the origin and at infinity by establishing an appropriate variational structure.
Later, Rabinowitz et al. further developed a series of the critical point theories and introduced
the variational method in their celebrated work [2, 3]. Since then, a considerable effort has been
devoted to the study of system (1.2) based on various constraints on the nonlinear term, such as the
sublinear nonlinearity [4, 5], the subconvex condition [6–8], the superquadratic condition [9, 10], the
asymptotically linear condition [11], and the control function condition [12–14].

In 2003, such a powerful tool was firstly applied to discrete system (1.1) by Guo and Yu. Then, some
interesting existence results have also been obtained for discrete system (1.1) with different nonlinear
conditions (see [15–19]). In the case that ∇F(n, x) was bounded, Guo and Yu [16] succeeded to show
that system (1.1) had at least one periodic solution. Considering the case that ∇F(n, x) is unbounded,
specifically when ∇F(n, x) is α-sublinear, i.e.,

|∇F(n, x)| ≤ f (n) |x|α + g(n) ∀ (n, x) ∈ Z [1,T ] × RN (1.3)

where f , g : Z [1,T ] → R+ and α ∈ [0, 1), Xue and Tang [18] established some solvability conditions
by using minimax techniques in critical point theory under the condition

lim
|x|→∞

|x|−2α
T∑

n=1

F(n, x) = +∞ (1.4)

or

lim
|x|→∞

|x|−2α
T∑

n=1

F(n, x) = −∞. (1.5)

When α = 1, inequality (1.3) becomes

|∇F(n, x)| ≤ f (n) |x| + g(n) (1.6)

where ∇F(n, x) is said to be linear. This case has been investigated by Tang and Zhang [19] with
condition (1.4) or (1.5) generalized to

lim inf
|x|→∞

|x|−2α
T∑

n=1

F(n, x) > B1 (1.7)

or

lim sup
|x|→∞

|x|−2α
T∑

n=1

F(n, x) < −B2 (1.8)

where B1 and B2 are two positive constants and α ∈ [0, 1] here.
In 2010, for system (1.2), Zhang and Wang in [12,13] developed a new technique to deal with such

a problem by establishing a class of control functions. By replacing |x|α in assumption (1.3) with a
control function h (|x|), they further generalized some previous results in [4–8]. Moreover, the idea,
which is an effective approach to unify cases α ∈ [0, 1) and α = 1, has recently been expanded in [14].

However, the nonlinear term with a control function condition for discrete system (1.1) is
considerably rare and it seems no similar results have been obtained for this case. Driven by
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references [12–14], in this paper, the main purpose is to develop some new existence results for
discrete system (1.1) with a generalized sublinear condition in the view of control functions. To this
end, we start below with establishing the class of control functions.

Definition 1.1. We defineH to be the set of functions h ∈ C(R+,R+) with the following properties:

(i) h (s) ≤ h (t) ∀s ≤ t, s, t ∈ R+;

(ii) h (s + t) ≤ C (h (s) + h (t)) ∀s, t ∈ R+,C > 0 is a constant;

(iii) lim
s→+∞

h (s) = +∞;

(iv) lim
s→+∞

h (s)
s

= K, K ≥ 0 is a constant.

Remark 1.2. The fourth property here unifies both cases α ∈ [0, 1) and α = 1, avoiding the
inconvenience of discussing them separately.

In this paper, we always assume that h ∈ H . The main results are stated below.

Theorem 1.3. Suppose F satisfies condition (A) and the following conditions:

(A1) There exist f , g : Z [1,T ]→ R+ such that

|∇F(n, x)| ≤ f (n) h (|x|) + g (n) ∀ (n, x) ∈ Z [1,T ] × RN;

(A2) R0 := 1
4 −

(T 2−1)CK
6T

T∑
n=1

f (n) > 0, where f (n) is defined in (A1) and C,K are the constants defined

in Definition 1.1 for the function h ∈ H;

(A3) There exist N1 > 0 and η1 ∈ C (R+,R+) with η1 (s) − R1h2 (s) → +∞ as s → +∞, where

R1 := 2C2(T 2−1)
3T

 T∑
n=1

f (n)

2

, such that

T∑
n=1

F(n, x) ≥ η1 (|x|) ∀ |x| ≥ N1.

Then system (1.1) has at least one T-periodic solution.

Theorem 1.4. Suppose F satisfies conditions (A), (A1), (A2) and

(A4) There exist N2 > 0 and η2 ∈ C (R+,R+) with η2 (s)−
(

R1
R0

+ R1

)
h2 (s)→ +∞ as s→ +∞, such that

T∑
n=1

F(n, x) ≤ −η2 (|x|) ∀ |x| ≥ N2.
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Then system (1.1) has at least one T-periodic solution.

Remark 1.5. The remarks below are easy to obtain.

(1) As a result, if K = 0, it is always the case that (A2) is true.

(2) It is clear from (A3), (A4), and Definition 1.1 that both η1 (s) and η2 (s)→ +∞ as s→ +∞.

(3) See Example 4.4 in Section 4, for instance, where the function F(n, x) satisfies the conditions of
Theorem 1.3 but not the cases in [18, 19].

The following corollaries can be seen as special cases of Theorems 1.3 and 1.4.

Corollary 1.6. Suppose F satisfies conditions (A), (1.3) with α ∈ (0, 1), and

(A∗3) lim inf
|x|→+∞

|x|−2α
T∑

n=1

F(n, x) >
8
(
T 2 − 1

)
3T

 T∑
n=1

f (n)

2

.

Then system (1.1) has at least one T-periodic solution.

Corollary 1.7. Suppose F satisfies conditions (A), (1.6), (A∗3) with α = 1, and

(A∗2) 1
4 −

T 2−1
3T

T∑
n=1

f (n) > 0.

Then system (1.1) has at least one T-periodic solution.

Corollary 1.8. Suppose F satisfies conditions (A), (1.3) with α ∈ (0, 1), and

(A∗4) lim sup
|x|→+∞

|x|−2α
T∑

n=1

F(n, x) < −
40

(
T 2 − 1

)
3T

 T∑
n=1

f (n)

2

.

Then system (1.1) has at least one T-periodic solution.

Corollary 1.9. Suppose F satisfies conditions (A), (1.6), (A∗2), and

(A∗∗4 ) lim sup
|x|→+∞

|x|−2
T∑

n=1

F(n, x) < −
8R2(T 2 − 1)

3T

 T∑
n=1

f (n)

2

, where R2 := 1 + 1
1
4−

T2−1
3T

∑T
n=1 f (n)

.

Then system (1.1) has at least one T-periodic solution.

A straightforward calculation implies that Theorems 1.1–1.4 in [19] are covered by Corollaries
1.6–1.9, respectively, and the above results are improvements in some sense of those in [18, 19].

2. Preliminaries

Let

HT =
{
u : Z→ RN |u(n + T ) = u(n), n ∈ Z

}
,
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which is a Hilbert space with inner product

〈u, v〉 =

T∑
n=1

[(4u(n),4v(n)) + (u(n), v(n))] ∀u, v ∈ HT

and norm

‖u‖ =

 T∑
n=1

[
|4u(n)|2 + |u(n)|2

]
1
2

∀u ∈ HT

where (·, ·) and |·| are the inner product and the norm defined in RN . It is clear that HT is a finite
dimensional space.

The functional ϕ on HT defined by

ϕ(u) =
1
2

T∑
n=1

|4u(n)|2 +

T∑
n=1

F(n, u(n)) (2.1)

is continuously differentiable according to assumption (A). Additionally, one has

〈
ϕ
′

(u), v
〉

=

T∑
n=1

[(4u(n),4v(n)) + (∇F(n, u(n)), v(n))] ∀u, v ∈ HT . (2.2)

With analysis as in [18], we can infer

−

T∑
n=1

(
42u(n − 1), v(n)

)
=

T∑
n=1

(4u(n),4v(n)) ∀u, v ∈ HT . (2.3)

Combining both (2.2) and (2.3), we find that
〈
ϕ
′

(u), v
〉

= 0 for all v ∈ HT , if and only if

42u(n − 1) = ∇F(n, u(n)), n ∈ Z.

As a result, a T -periodic solution of system (1.1) is a critical point of the functional ϕ in HT .

We first introduce two lemmas which will be used in the proofs.

Lemma 2.1. (Lemma 2.1 in [19]) Suppose u ∈ HT and
∑T

n=1 u(n) = 0, then

T∑
n=1

|u(n)|2 ≤
1

4 sin 2 π
T

T∑
n=1

|4u(n)|2

and

‖u‖2∞ ≤
T 2 − 1

6T

T∑
n=1

|4u(n)|2 ,

where ‖u‖∞ := maxn∈Z[1,T ] |u(n)| . The first inequality is known as the discrete Wirtinger’s inequality,
and the second inequality is known as the discrete Sobolev’s inequality.
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For u ∈ HT , let ū = (1/T )
∑T

n=1 u(n) and ũ(n) = u(n) − ū. Then we obtain

T∑
n=1

|ũ(n)|2 ≤
1

4 sin 2 π
T

T∑
n=1

|4u(n)|2 (2.4)

and

‖ũ‖2∞ ≤
T 2 − 1

6T

T∑
n=1

|4u(n)|2 . (2.5)

Lemma 2.2. (Theorem 4.6 in [2]) Suppose Y is a real Banach space with Y = Y1 ⊕ Y2, where Y1 ⊂ Y
is finite-dimensional. Let ϕ ∈ C1(Y,R) satisfy the (PS) condition, if

(i) There exist δ ∈ R and a bounded neighborhood Ω ⊂ Y1 of the origin such that ϕ |∂Ω≤ δ.

(ii) There exists λ ∈ R with λ > δ such that ϕ |Y2≥ λ.

Then ϕ has a critical value b ≥ λ. Additionally, b can be described as

b = inf
g∈Γ

max
u∈Ω̄

ϕ(g(u)) (2.6)

where
Γ =

{
g ∈ C

(
Ω̄,Y

)
| g = id on ∂Ω

}
.

3. Proofs of theorems

Let Ci(i = 1, 2, 3 . . . ) denote various positive constants.

Proof of Theorem 1.3. It follows from (A1), (2.5), the Young inequality, and the properties of h(s) that∣∣∣∣∣∣∣
T∑

n=1

[F(n, u(n)) − F(n, ū)]

∣∣∣∣∣∣∣
≤

T∑
n=1

∫ 1

0
|∇F(n, ū + sũ(n))| |ũ(n)| ds

≤

T∑
n=1

∫ 1

0
f (n)h(|ū + sũ(n)|) |ũ(n)| ds +

T∑
n=1

∫ 1

0
g(n) |ũ(n)| ds

≤

T∑
n=1

f (n)C[h(|ū|) + h(|ũ(n)|)] |ũ(n)| + ‖ũ‖∞
T∑

n=1

g(n)

≤C[h(|ū|) + h(‖ũ‖∞)] ‖ũ‖∞
T∑

n=1

f (n) + ‖ũ‖∞
T∑

n=1

g(n)

≤C

 3T
2C(T 2 − 1)

‖ũ‖2∞ +
2C(T 2 − 1)

3T

 T∑
n=1

f (n)

2

h2(|ū|)

 + Ch(‖ũ‖∞) ‖ũ‖∞
T∑

n=1

f (n)
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+ C1

 T∑
n=1

|4u(n)|2


1
2

≤
1
4

T∑
n=1

|4u(n)|2 +
2C2(T 2 − 1)

3T

 T∑
n=1

f (n)

2

h2(|ū|) + C(K ‖ũ‖∞ + C2) ‖ũ‖∞
T∑

n=1

f (n)

+ C1

 T∑
n=1

|4u(n)|2


1
2

≤
1
4

T∑
n=1

|4u(n)|2 +
2C2(T 2 − 1)

3T

 T∑
n=1

f (n)

2

h2(|ū|) +
(T 2 − 1)CK

6T

T∑
n=1

f (n)
T∑

n=1

|4u(n)|2

+ C3

 T∑
n=1

|4u(n)|2


1
2

=

1
4

+
(T 2 − 1)CK

6T

T∑
n=1

f (n)

 T∑
n=1

|4u(n)|2 + C3

 T∑
n=1

|4u(n)|2


1
2

+ R1h2(|ū|). (3.1)

Integrating (2.1) and (3.1), then for any u ∈ HT , we infer

ϕ(u) =
1
2

T∑
n=1

|4u(n)|2 +

T∑
n=1

[F(n, u(n)) − F(n, ū)] +

T∑
n=1

F(n, ū)

≥
1
2

T∑
n=1

|4u(n)|2 −

1
4

+
(T 2 − 1)CK

6T

T∑
n=1

f (n)

 T∑
n=1

|4u(n)|2 −C3

 T∑
n=1

|4u(n)|2


1
2

− R1h2(|ū|) +

T∑
n=1

F(n, ū)

= R0

T∑
n=1

|4u(n)|2 −C3

 T∑
n=1

|4u(n)|2


1
2

︸                                         ︷︷                                         ︸
I1

+

T∑
n=1

F(n, ū) − R1h2(|ū|)︸                      ︷︷                      ︸
I2

=I1 + I2. (3.2)

We continue the proof with the following three cases.

Case 1.
T∑

n=1

|4u(n)|2 → +∞ and |ū| is bounded. From (3.2), (A2), and assumption (A), one has

I1 → +∞ as
T∑

n=1

|4u(n)|2 → +∞, and

I2 is bounded.
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Case 2.
T∑

n=1

|4u(n)|2 is bounded and |ū| → +∞. With the assistance of (A3), we obtain

I1 is bounded, and

I2 ≥ η1(|ū|) − R1h2(|ū|)→ +∞ as |ū| → +∞.

Case 3.
T∑

n=1

|4u(n)|2 → +∞ and |ū| → +∞. Considering the analysis of the previous two situations,

one can infer

I1 → +∞ as
T∑

n=1

|4u(n)|2 → +∞, and

I2 → +∞ as |ū| → +∞.

As ‖u‖ → +∞ if and only if
(
|ū|2 +

∑T
n=1 |4u(n)|2

) 1
2
→ +∞. Then, inequality (3.2) and Cases 1–3 imply

ϕ(u)→ +∞ as ‖u‖ → +∞.

Since HT is a finite dimensional space, by applying the least action principle to the functional ϕ(u)
on HT , we come to the conclusion that system (1.1) has at least one T -periodic solution which is the
minimizer of the functional ϕ(u) on the space HT . �

Proof of Theorem 1.4. We first verify that the (PS) condition holds. Under the assumption that the (PS)
sequence {uk} ⊂ HT satisfies ϕ

′

(uk) → 0 as k → +∞ and {ϕ(uk)} is bounded, as in (3.1), we have for
all k that ∣∣∣∣∣∣∣

T∑
n=1

(∇F(n, uk(n)), ũk(n))

∣∣∣∣∣∣∣
≤

1
4

+
(T 2 − 1)CK

6T

T∑
n=1

f (n)

 T∑
n=1

|4uk(n)|2 + C3

 T∑
n=1

|4uk(n)|2


1
2

+ R1h2(|ūk|). (3.3)

This implies that

‖ũk‖ ≥
〈
ϕ
′

(uk), ũk

〉
=

T∑
n=1

|4uk(n)|2 +

T∑
n=1

(∇F(n, uk(n)), ũk(n))

≥

T∑
n=1

|4uk(n)|2 −

1
4

+
(T 2 − 1)CK

6T

T∑
n=1

f (n)

 T∑
n=1

|4uk(n)|2

−C3

 T∑
n=1

|4uk(n)|2


1
2

− R1h2(|ūk|)
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=

3
4
−

(T 2 − 1)CK
6T

T∑
n=1

f (n)

 T∑
n=1

|4uk(n)|2

−C3

 T∑
n=1

|4uk(n)|2


1
2

− R1h2(|ūk|) (3.4)

for all large k. (2.4) implies that

‖ũk‖ ≤

1 +
1

4 sin2 π
T


1
2

 T∑
n=1

|4uk(n)|2


1
2

. (3.5)

Combining (3.4) and (3.5), we get for all large k that

R1h2(|ūk|) ≥

3
4
−

(T 2 − 1)CK
6T

T∑
n=1

f (n)

 T∑
n=1

|4uk(n)|2 −C4

 T∑
n=1

|4uk(n)|2


1
2

=

1
4
−

(T 2 − 1)CK
6T

T∑
n=1

f (n)

 T∑
n=1

|4uk(n)|2 +
1
2

T∑
n=1

|4uk(n)|2

−C4

 T∑
n=1

|4uk(n)|2


1
2

≥R0

T∑
n=1

|4uk(n)|2 −C5, (3.6)

where

C5 = max
s∈[0,+∞)

{
−

1
2

s2 + C4s
}
.

It is clear that C5 > 0. It follows from (3.6) that

T∑
n=1

|4uk(n)|2 ≤
R1

R0
h2(|ūk|) + C6 (3.7)

for all large k.
If {|ūk|} is unbounded, one may assume that |ūk| → +∞ as k → +∞. Given (3.1), (3.7), and (A4), as

well as the fact that h(s)→ +∞ as s→ +∞ for large k we can obtain

ϕ(uk) =
1
2

T∑
n=1

|4uk(n)|2 +

T∑
n=1

[F(n, uk(n)) − F(n, ūk)] +

T∑
n=1

F(n, ūk)

≤

3
4

+
(T 2 − 1)CK

6T

T∑
n=1

f (n)

 T∑
n=1

|4uk(n)|2 + C3

 T∑
n=1

|4uk(n)|2


1
2

+ R1h2(|ūk|) +

T∑
n=1

F(n, ūk)
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≤

3
4

+
(T 2 − 1)CK

6T

T∑
n=1

f (n)

 (R1

R0
h2(|ūk|) + C6

)
+ C3

(
R1

R0
h2(|ūk|) + C6

) 1
2

+ R1h2(|ūk|) − η2 (|ūk|)

≤

(
R1

R0
+ R1

)
h2(|ūk|) − η2 (|ūk|) + C8 → −∞, as k → +∞. (3.8)

This contradicts the fact that ϕ(uk) is bounded. Therefore, by (3.7), {uk} is bounded. As a result, the
(PS) condition can be verified since HT is finite-dimensional.

The following are the only requirements for using the saddle point theorem.

(a) For u ∈ RN ⊂ HT , it has ϕ(u)→ −∞ as |u| → +∞ ;

(b) For u ∈ H̃T := {u ∈ HT |ū = 0}, it has ϕ(u)→ +∞ as ‖u‖ → +∞.

In fact, by (A4) and Remark 1.5(2), we conclude that

ϕ(u) =

T∑
n=1

F(n, u) ≤ −η2(|u|)→ −∞ in RN .

Thus, (a) is confirmed.
For condition (b) above, arguing as in (3.1), we get∣∣∣∣∣∣∣

T∑
n=1

[F(n, u(n)) − F(n, 0)]

∣∣∣∣∣∣∣
≤

1
4

+

(
T 2 − 1

)
CK

6T

T∑
n=1

f (n)

 T∑
n=1

|4u(n)|2 + C3

 T∑
n=1

|4u(n)|2


1
2

+ C9 (3.9)

for all u ∈ H̃T . (3.9) implies that

ϕ(u) =
1
2

T∑
n=1

|4u(n)|2 +

T∑
n=1

[F(n, u(n)) − F(n, 0)] +

T∑
n=1

F(n, 0)

≥

1
4
−

(
T 2 − 1

)
CK

6T

T∑
n=1

f (n)

 T∑
n=1

|4u(n)|2 −C3

 T∑
n=1

|4u(n)|2


1
2

+

T∑
n=1

F(n, 0) −C9. (3.10)

By (2.4), in H̃T , one has

‖u‖ → +∞ ⇔

 T∑
n=1

|4u(n)|2


1
2

→ +∞.

Therefore, by (A2) and (3.10), we get ϕ(u) → +∞ as ‖u‖ → +∞ in H̃T , that is, (b) also holds.
Consequently, by using the saddle point theorem (Lemma 2.2), we come to the conclusion that
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system (1.1) has at least one T -periodic solution. �

We will now provide a thorough proof for Corollaries 1.6–1.9.

Proof of Corollary 1.6. For the application of Theorem 1.3, we should define the control function h.
Let

h(s) = sα, α ∈ (0, 1) , C = 2, K = 0,

R0 =
1
4
, R1 =

8
(
T 2 − 1

)
3T

 T∑
n=1

f (n)

2

.

It is easy to check that both (A1) and (A2) hold. For condition (A3), one can derive from (A∗3) that there
exist N1 > 0, ε1 > 0 such that

T∑
n=1

F(n, x) ≥ (R1 + ε1) |x|2α ∀ |x| ≥ N1.

Now, one can take η1(s) = (R1 + ε1) s2α in (A3) , and Corollary 1.6 is verified through Theorem 1.3. �

Proof of Corollary 1.7. Let
h(s) = s, C = 2, K = 1,

R0 =
1
4
−

T 2 − 1
3T

T∑
n=1

f (n), R1 =
8
(
T 2 − 1

)
3T

 T∑
n=1

f (n)

2

.

In this case (A2) is (A∗2), and (A∗3) implies (A3), which is shown in the proof of Corollary 1.6. Therefore,
all conditions of Theorem 1.3 hold and Corollary 1.7 is verified. �

Proof of Corollary 1.8. Similar to the above, let

h(s) = sα, α ∈ (0, 1) , C = 2, K = 0,

R0 =
1
4
, −

(
R1

R0
+ R1

)
= −

40(T 2 − 1)
3T

 T∑
n=1

f (n)

2

.

From (A∗4), there exist N2 > 0, ε2 > 0 such that

T∑
n=1

F(n, x) ≤ −
[(

R1

R0
+ R1

)
+ ε2

]
|x|2α ∀ |x| ≥ N2.

Take η2(s) =
[(

R1
R0

+ R1

)
+ ε2

]
s2α, then Corollary 1.8 can be verified through Theorem 1.4. �

Proof of Corollary 1.9. Let

h(s) = s, C = 2, K = 1, R0 =
1
4
−

T 2 − 1
3T

T∑
n=1

f (n),
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−

(
R1

R0
+ R1

)
= −

1 +
1

1
4 −

T 2−1
3T

∑T
n=1 f (n)

 8(T 2 − 1)
3T

 T∑
n=1

f (n)

2

.

Similar to the process in Corollary 1.8, we can show that both (A2) and (A4) are true, so Corollary 1.9
can be verified through Theorem 1.4. �

4. Examples

In this section, we will illustrate our findings by providing some concrete examples.

Example 4.1. (∇F(n, x) is α-sublinear, α ∈ (0, 1)). Here, we consider the function

F(n, x) = (n − T ) |x|7/4 + (h(n), x) ∀x ∈ RN , n ∈ Z [1,T ]

where h : Z [1,T ]→ RN satisfies h(n + T ) = h(n)∀n ∈ Z. It is easy to obtain

|∇F(n, x)| ≤
7
4
|n − T | |x|

3
4 + |h(n)|

implying that ∇F(n, x) is α-sublinear with α = 3/4. Next, we verify that Theorem 1.4 can be used here.
Actually, let

C = 2, K = 0, f (n) =
7
4
|n − T | ,

h(s) = s
3
4 , η2(s) =

T (T − 1)
2

s7/4 −

T∑
n=1

|h(n)| s

then

R0 =
1
4
> 0, R1 =

8(T 2 − 1)
3T

 T∑
n=1

f (n)

2

and for all T > 1, there exists N2 > 0 such that

T∑
n=1

F(n, x) =

T∑
n=1

(n − T ) |x|7/4 +

T∑
n=1

(h(n), x)

≤ −

T (T − 1)
2

|x|7/4 −
T∑

n=1

|h(n)| |x|


= − η2(|x|) ∀ |x| ≥ N2.

In addition, we have

η2(s) −
(
R1

R0
+ R1

)
h2(s) =

T (T − 1)
2

s7/4 −

T∑
n=1

|h(n)| s − 5R1s3/2 → +∞ as s→ +∞.

These show that the three conditions of Theorem 1.4 are achieved.
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Example 4.2. (∇F(n, x) is weak linear, i.e., ∇F(n, x) grows less than |x| at infinity but more than
|x|α , α ∈ [0, 1)). Here, we give the function

F(n, x) = (T − n)
|x|2

ln
(
100 + |x|2

) ∀x ∈ RN , n ∈ Z [1,T ] .

We can obtain

|∇F(n, x)| ≤ |T − n|

2 |x| ln
(
100 + |x|2

)
+ 2 |x| |x|2

100+|x|2

ln2
(
100 + |x|2

) 
≤4 |T − n|

|x|

ln
(
100 + |x|2

)
for all large x ∈ RN . The weak linearity of ∇F(n, x) is evident, and the results of [18, 19] cannot be
used to solve problem (1.1) with the function F(n, x) in this example. We confirm that this case can be
handled by Theorem 1.3. In fact, take

C = 2, K = 0, f (n) = 4 |T − n| ,

h(s) =
s

ln
(
100 + s2) , η1(s) =

T (T − 1)
2

s2

ln
(
100 + s2)

then

R0 =
1
4
> 0, R1 =

8(T 2 − 1)
3T

 T∑
n=1

f (n)

2

,

T∑
n=1

F(n, x) =
|x|2

ln
(
100 + |x|2

) T∑
n=1

(T − n) =
T (T − 1)

2
|x|2

ln
(
100 + |x|2

) ≥ η1(|x|) ∀x ∈ RN

and

η1(s) − R1h2(s) =
T (T − 1)

2
s2

ln
(
100 + s2) − R1

s2

ln2 (
100 + s2) → +∞ as s→ +∞.

Therefore, all the conditions of Theorem 1.3 are achieved.

Example 4.3. (∇F(n, x) is linear). Here, we give the function

F(n, x) =
T − n
100

|x|2 ∀x ∈ RN , n ∈ Z [1,T ] .

It is clear to see that
|∇F(n, x)| ≤

|T − n|
50

|x|

which suggests that ∇F(n, x) is linear. Choosing

C = 2, K = 1, f (n) =
|T − n|

50
,
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h(s) = s, η1(s) =
T (T − 1)

200
s2

then if T ∈ {2, 3}, we have

R0 =
1
4
−

T 2 − 1
3T

T∑
n=1

f (n) > 0,

R1 =
8
(
T 2 − 1

)
3T

 T∑
n=1

f (n)

2

<
T (T − 1)

200
.

Moreover, we have

T∑
n=1

F(n.x) = |x|2
T∑

n=1

T − n
100

=
T (T − 1)

200
|x|2 ≥ η1 (|x|) ∀x ∈ RN ,

η1(s) − R1h2(s) =
T (T − 1)

200
s2 − R1s2 → +∞ as s→ +∞.

These show that the three conditions of Theorem 1.3 hold.

Example 4.4. (F(n, x) does not satisfy (A∗3) ). Here, we give the function

F(n, x) =

(
T + 1

2
− n

)
|x|7/4 + (2T − n) |x|3/2 + ln

(
1 + |x|2

)
∀x ∈ RN , n ∈ Z [1,T ] .

One may easily confirm that

|∇F(n, x)| ≤
7
8
|T + 1 − 2n| |x|3/4 +

3
2
|2T − n| |x|1/2 +

2 |x|
1 + |x|2

≤
7
8

(|T + 1 − 2n| + ε) |x|3/4 +
9T 3

ε2 + 1

where ε > 0. As can be shown from the above inequality, ∇F(n, x) is α-sublinear with α = 3/4. Let

C = 2, K = 0, f (n) =
7
8

(|T + 1 − 2n| + ε) ,

h(s) = s3/4, η1(s) =
T (3T − 1)

2
s3/2 + T ln

(
1 + s2

)
then R0 = 1/4 > 0 and we can choose ε > 0 such that

R1 =
8
(
T 2 − 1

)
3T

 T∑
n=1

f (n)

2

=
T (3T − 1)

2
.

Additionally, one has

T∑
n=1

F(n, x) =
T (3T − 1)

2
|x|3/2 + T ln

(
1 + |x|2

)
≥ η1 (|x|) ∀x ∈ RN ,
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η1(s) − R1h2(s) =
T (3T − 1)

2
s3/2 + T ln

(
1 + s2

)
− R1s3/2

=T ln
(
1 + s2

)
→ +∞ as s→ +∞.

Therefore, by Theorem 1.3, system (1.1) has at least one solution that is T -periodic. However, since
F(n,x) does not satisfy (A∗3), for

lim inf
|x|→+∞

|x|−2α
T∑

n=1

F(n, x) =
T (3T − 1)

2

[18, 19] can not be applied in this case.

5. Conclusions

This paper is concerned with the existence of periodic solutions for a class of non-autonomous
discrete Hamiltonian systems. In general, the study of non-autonomous Hamiltonian systems on
discrete cases is less carried out than the analogous analysis on continuous cases. The main feature
of our problem is that two main theorems and several corollaries for a non-autonomous discrete
Hamiltonian systems. Here, using a kind of control function argument together with the least action
principle and the saddle point theorem, we show that the problem admits at least one T -periodic
solution. We also point out that our hypotheses here are more general under sublinear conditions.
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