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Abstract: Currently, most of the ultra-high-dimensional feature screening methods for categorical
data are based on the correlation between covariates and response variables, using some statistics
as the screening index to screen important covariates. Thus, with the increasing number of data
types and model availability limitations, there may be a potential problem with the existence of a
class of unimportant covariates that are also highly correlated with the response variable due to their
high correlation with the other covariates. To address this issue, in this paper, we establish a model-
free feature screening procedure for binary categorical response variables from the perspective of the
contribution of features to classification. The idea is to introduce the Jensen-Shannon divergence to
measure the difference between the conditional probability distributions of the covariates when the
response variables take on different values. The larger the value of the Jensen-Shannon divergence,
the stronger the covariate’s contribution to the classification of the response variable, and the more
important the covariate is. We propose two kinds of model-free ultra-high-dimensional feature
screening methods for binary response data. Meanwhile, the methods are suitable for continuous or
categorical covariates. When the numbers of covariate categories are the same, the feature screening
is based on traditional Jensen-Shannon divergence. When the numbers of covariate categories are
different, the Jensen-Shannon divergence is adjusted using the logarithmic factor of the number
of categories. We theoretically prove that the proposed methods have sure screening and ranking
consistency properties, and through simulations and real data analysis, we demonstrate that, in feature
screening, the approaches proposed in this paper have the advantages of effectiveness, stability, and
less computing time compared with an existing method.
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1. Introduction

Due to the rapid growth of science and technology, ultra-high-dimensional data are more prevalent
in various scientific study fields, including genomics, bio-imaging, and tumor classification. In ultra-
high-dimensional data, the dimensionality of the variables is substantially larger than the sample size,
and there are frequently very few variables among these variables that significantly influence the
response variable. Therefore, it is crucial to screen a set of real covariates for this type of ultra-
high-dimensional data problem. Fan and Lv [1] first proposed the method of ultra-high-dimensional
feature screening and put forward the theory of sure screening, which lays the theoretical foundation
for the ultra-high-dimensional feature screening method. Subsequently, a great deal of research has
been developed for ultra-high-dimensional feature screening.

From the perspective of the model, current ultra-high-dimensional feature screening techniques
are divided into three main categories: Based on parametric modeling assumptions, based on
nonparametric and semiparametric modeling assumptions, and based on model-free assumptions.
Ultra-high-dimensional feature screening based on parametric modeling assumptions: Fan and Lv [1]
first proposed a marginal screening method (SIS) based on Pearson’s correlation coefficient under linear
modeling assumptions, where the magnitude of the absolute value of Pearson’s correlation coefficient
is used to measure the importance of the covariates. Given that the Pearson correlation coefficient is
used to describe the degree of linear correlation between random variables, specific transformations
can be applied to the covariates to account for nonlinear correlations. Therefore, Hall and Miller [2]
proposed the generalized correlation coefficient to describe nonlinear relationships. Li et al. [3]
proposed a robust rank correlation coefficient screening method by applying certain transformations
to the response variables. Relaxing the linear model assumption to generalized linear models,
Fan and Song [4] proposed a screening method based on maximum marginal likelihood estimation
(MMLE-SIS). When there is less a priori knowledge about the model, nonparametric models are more
adaptable than parametric models. Ultra-high-dimensional feature screening based on nonparametric
and semiparametric modeling assumptions: Fan et al. [5] initially developed a marginal nonparametric
screening (NIS) method for variables under the presumption of additive modeling. Liu et al. [6]
proposed a conditional correlation coefficient screening method in the framework of variable coefficient
modeling. In addition to the additive and variable coefficient models, Liang et al. [7] proposed a profile
forward regression (PFR) screening method based on a partially linear model. It is vital to create
model-free hypothetical screening methods with broad applicability when information about the model
is absent. Ultra-high-dimensional feature screening based on model-free assumptions: Zhu et al. [8]
first proposed a ranking screening approach (SIRS) based on covariance. The distance correlation
coefficient (DC)-based screening approach was subsequently proposed by Li et al. [9]. He et al. [10]
proposed the quartile adaptive screening method (QaSIS) by fitting marginal quantile regression. The
correlation between two random vectors can be effectively measured by the Ball correlation, and based
on this property, it can be used to rank predictor vectors. Then, Pan et al. [11] proposed a generic
model-free sure independence screening procedure based on ball correlation, called BCor-SIS. Since
many problems in practice cannot be accurately described by a single model, model-free screening
methods can be applied more widely. Hence, studying a model-free feature screening procedure for
ultra-high-dimensional data is the first focus of this work.

From a data type standpoint, the majority of existing ultra-high-dimensional feature screening
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methods implicitly assume that the response variable is a continuous variable. Yet, ultra-high-
dimensional data with discrete response variables is also frequently found in many areas of scientific
research. For example, in medicine, identifying which genes are correlated with certain types of
tumors is of interest. When the response variable is discrete, Fan and Fan [12] proposed a marginal
t-test screening statistic based on a normal distribution, but its performance is poor for heavy-tailed
distributions or outlier data. For this reason, Mai and Zou [13] proposed the screening method with a
response variable that is a binary based on the Kolmogorov-Smirnov test statistic, which they later
extended to situations where the response variable is multi-categorical. Cui et al. [14] proposed
a new test based on the mean-variance index for testing the independence between a categorical
random variable Y and a continuous random variable X. When all covariates are categorical
variables, Huang et al. [15] developed a screening approach based on Pearson’s cardinality statistic
(PC-SIS). It can be seen that most of the ultra-high-dimensional variable screening methods construct
the corresponding statistical indexes based on the correlation between the covariates and the response
variable. In recent years, some scholars have further searched for new indexes to measure the
relationship between random variables or random vectors. Ni and Fang [16], from the perspective of
the amount of information, proposed a model-less feature screening method for ultra-high-dimensional
variable selection based on information gain (IG-SIS). In information theory, in addition to information
gain, divergence has been widely developed as a useful tool for measuring differences between
information in many fields, such as in the Dempster-Shafer evidence theory: Xiao [17] proposed a
new Belief Jensen-Shannon divergence to measure the discrepancy and conflict degree between the
evidence. A novel reinforced belief divergence measure, known as RB, was created by Xiao [18]
to measure the discrepancy between basic belief assignments in the context of the Dempster-Shafer
evidence theory. Xiao [19] developed a novel generalized evidential Jensen-Shannon divergence that
measures the conflict and discrepancy across several sources of evidence. To measure the disparity and
discrepancy between basic belief assignments in Dempster-Shafer theory, Xiao et al. [20] suggested
and examined a number of generalized evidential divergences. And, as the convergence of information
theory and statistics develops, it is attractive to generalize the divergence to ultra-high-dimensional
feature screening.

This paper primarily examines the feature screening procedure for the binary categorical response
variable according to the state of the current feature screening for ultra-high-dimensional data. Since
most current methods directly measure the specific degree of correlation between the covariates and
the response variable, there may be a potential problem with the existence of a class of unimportant
covariates that are also highly correlated with the response variable due to their high correlation with
the other covariates. And furthermore, in real classification problems, screening out important features
is not the ultimate goal but rather using the features to make classification predictions. Therefore, we
do not directly measure the correlation between the response variable and the covariates, but we start
from the perspective of the contribution of the features to the classification, which is the second focus
of this paper’s work, by introducing the Jensen-Shannon divergence to measure the difference between
the conditional probability distributions of the covariates when the response variables take on different
values, thus reflecting the contribution of the covariates to the classification of the response variables.
The larger the value of the Jensen-Shannon divergence, the stronger the covariate’s contribution to the
classification of the response variable, i.e., the more important the covariate is considered.

In this study, Jensen-Shannon divergence is referred to as JS divergence for readability. The main
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contributions of this paper are as follows:

(1) From the point of view of the contribution of the features to the classification, we examine a model-
free feature screening procedure for binary categorical response variables, which implies less
restrictive assumptions about the data and highlights the importance of features for classification
prediction.

(2) The JS divergence is widely used, which is different from the I, J, and K divergences. JS divergence
does not need the condition of absolute continuity of the probability distributions involved, and it
has the advantages of symmetry, non-negativity, and boundedness [21], so it is very effective to
use JS divergence to measure the differences between probability distributions.

(3) We propose two kinds of feature screening methods for binary response variables in different cases.
When the number of covariate categories is the same, the screening method based on traditional JS
divergence is used. Additionally, when the number of covariate categories is different, we propose
a method to use the logarithmic factor of the number of categories to adjust the JS divergence and
use it for screening variables, defined as AJS-SIS.

The suggested methods’s sure screening and ranking consistency properties are further shown
theoretically and through simulated studies. Furthermore, simulation experiments and real data
analysis show the effectiveness, availability, and practicality of the methods proposed in this paper
in terms of feature screening.

The rest of the paper is organized as follows: Section 2 describes the proposed method; Section 3
demonstrates the screening properties of the proposed method under certain conditions; Section 4
carries out simulation experiments to study the proposed method in comparison with an existing
method; Section 5 is real data analysis; and Section 6 gives the conclusion.

2. Feature screening method

2.1. Basic assumption

Suppose X =
(
xi1, xi2, . . . , xi j

)
is an n × p-dimensional covariate matrix, where X obeys

the assumption of independent identical distribution, and Y = (y1, y2, . . . , yi) is an n × 1-
dimensional binary categorical response variable, where j = 1, 2, . . . , p, i = 1, 2, . . . , n. Let x j ={
x1 j, x2 j, . . . , xi j

}
, i = 1, 2, . . . , n. The probability function of X is denoted by p j,l, the probability

function of Y is denoted by pr, the conditional probability function of Y given x j is denoted by p j,lr,
and the conditional probability function of x j given Y is denoted by plr, j.

The expression for pr is as follows:

pr = Pr (Y = r) , r = 1, 2,

p̂r =

∑n
i=1 I {yi = r}

n
.

When the covariate x j is a categorical variable, let x j have L categories, L = {1, 2, . . . , L}:

p j,l = Pr
(
x j = l

)
,
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p̂ j,l = Pr
(
x j = l

)
=

∑n
i=1 I

{
xi j = l

}
n

,

p j,lr = Pr
(
x j = l | Y = r

)
,

p̂ j,lr =

∑n
i=1 I

{
xi j = l, yi = r

}∑n
i=1 I {yi = r}

,

plr, j = Pr
(
Y = r | x j = l

)
,

p̂lr, j =

∑n
i=1 I

{
xi j = l, yi = r

}
∑n

i=1 I
{
xi j = l

} .

When the covariate x j is a continuous variable, reference is made to Ni and Fang [16] to cut x j into
categorical data using standard normal distribution quantiles:

p j,l = Pr
(
x j ∈

(
q(J−1), q(J)

])
,

p̂ j,l =

∑n
i=1 I

{
xi j ∈

(
q(J−1), q(J)

]}
n

,

p j,lr = Pr
(
x j ∈

(
q(J−1), q(J)

]
| Y = r

)
,

p̂ j,lr =

∑n
i=1 I

{
xi j ∈

(
q(J−1), q(J)

]}∑n
i=1 I {yi = r}

,

plr, j = Pr
(
Y = r | x j ∈

(
q(J−1), q(J)

])
,

p̂lr, j =

∑n
i=1 I {yi = r}∑n

i=1 I
{
xi j ∈

(
q(J−1), q(J)

]} .
Where q(J) is the J/Jk quantile, and J = 1, 2, ..., Jk, q(0) = −∞, q(JK ) = +∞.

Define two index sets: D is the set of significant covariates, Dc is the set of non-significant
covariates, and |D| = d0 is the number of variables in the set of significant covariates, which is expressed
in set form as

D =
{
j : for some Y = y, F

(
x j | y

)
is related to Y

}
,

Dc = {1, 2, . . . , p} \ D.
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2.2. Information entropy

Information entropy is the information theory Shannon borrowed from the concept of
thermodynamics, where, in 1948, he proposed a measure of the size of the information index and
also gave the mathematical formula [22]. Taking the covariate as a categorical discrete variable
x j ∈ {1, 2, . . . , L} as an example, the information entropy of the covariates x j and Y are given by

H
(
x j

)
= −

L∑
l=1

p j,l log p j,l,

H (Y) = −

R∑
r=1

pr log pr.

Where 0 × log 0 = 0, and the logarithmic base is 2.
Having understood the definition of information entropy, the conditional information entropy of the

covariate x j given the response variable Y is defined as

H
(
x j | Y

)
= −

L∑
l=1

p j,lr log p j,lr,

H
(
Y | x j

)
= −

R∑
r=1

plr, j log plr, j.

2.3. IG-SIS

The information gain is derived from information entropy, which can represent the strength of the
correlation between the covariates and the response variable, and the expression for the information
gain between Y and x j is

IG(Y, x j) =
1

log Jk

(
H(Y) − H(Y | x j)

)
=

1
log Jk

 R∑
r=1

Jk∑
J=1

plr, j log plr, j −

R∑
r=1

pr log pr −

Jk∑
J=1

p j,l log p j,l

 .
IG(Y, x j) represents the difference of the response variable Y between the information entropy and

the conditional information entropy of the given covariate x j. If x j is a significant variable, Y will be
significantly impacted by x j, and thus the value of IG(Y, x j) is larger. Based on this, Ni and Fang [16]
proposed the IG-SIS feature screening method.

The estimate of the information gain about Y and x j is

ˆIG(Y, x j) =
1

log Jk

 R∑
r=1

Jk∑
J=1

p̂lr, j log p̂lr, j −

R∑
r=1

p̂r log p̂r −

Jk∑
J=1

p̂ j,l log p̂ j,l

 . (2.1)

After obtaining the IG values of each covariate and response variable, sort and filter all the variables
by importance and select the top d0 variables to be selected into the set of important variables.

The set of important variables is

D̂ =
{
x j : The first d0 descending ˆIG(Y, x j)

}
.
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2.4. JS-SIS

JS divergence (Jensen-Shannon divergence, abbreviated JSD) is a statistical measure based on
the KL divergence (relative entropy). Assuming that there are two probability distributions G =

Pr
(
x j = l | Y = 1

)
and Q = Pr

(
x j = l | Y = 2

)
for the same random variable x j in space, JS divergence

can measure the degree of difference between these two distributions, and larger JS divergence implies
that the covariates are more important. According to Lin [21], the value of JS divergence is non-
negative, equal to 0 when G = Q, and it is upper bound by 1.

JS divergence is actually a variant form of KL divergence (relative entropy), and KL divergence can
be computed in the following way:

DKL (G ‖ Q) =

p∑
j=1

G log
G
Q

=

p∑
j=1

G log G −
p∑

j=1

G log Q.

Since KL divergence is asymmetric, it cannot accurately measure the real difference between G
and Q. JS divergence solves this problem by constructing the average probability distribution of G
and Q.

Assume that M = 1
2 (G + Q) is the average probability distribution of G and Q. The JS divergence

of G and Q is defined as

e j =JS (G ||Q)

=
1
2

DKL (G ‖ M) +
1
2

DKL (Q ‖ M)

=
1
2

p∑
j=1

G log
( G

M

)
+

1
2

p∑
j=1

Q log
( Q

M

)
=

1
2

p∑
j=1

G log(G) −
1
2

p∑
j=1

G log(M) +
1
2

p∑
j=1

Q log(Q) −
1
2

p∑
j=1

Q log(M)

=
1
2

(H (G,M) − H(G)) +
1
2

(H (Q,M) − H(Q)) .

The estimate of the JS divergence between G and Q is

ê j =JS
(
Ĝ || Q̂

)
=

1
2

(
H

(
Ĝ, M̂

)
− H(Ĝ)

)
+

1
2

(
H

(
Q̂, M̂

)
− H(Q̂)

)
.

(2.2)

The probability distributions G and Q based on continuous covariates are defined as G =

Pr
(
x j ∈

(
q(J−1), q(J)

]
| Y = 1

)
, Q = Pr

(
x j ∈

(
q(J−1), q(J)

]
| Y = 2

)
.

2.5. AJS-SIS

The definition of Eq (2.2) may lead to the incorrect selection of non-significant covariates with
a large number of categories because covariates with more categories may have larger calculated JS
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divergence values, especially when the number of categories involved in each covariate varies. To
address this issue, this paper refers to Ni and Fang [16] applying (log Jk)−1 to construct an adjusted JS
divergence to measure the importance of x j:

w j =e j/ log Jk

=

[
1
2

(H (G,M) − H(G)) +
1
2

(H (Q,M) − H(Q))
]
/ log Jk.

(2.3)

The estimate of the adjusted JS divergence between G and Q is

ŵ j =ê j/ log Jk

=

[
1
2

(
H

(
Ĝ,M

)
− H(Ĝ)

)
+

1
2

(
H

(
Q̂, M̂

)
− H(Q̂)

)]
/ log Jk.

(2.4)

When x j is a categorical variable, Jk equals the number of categories L of x j, and when x j is a
continuous variable, Jk represents the number of categories into which x j is cut by the standard normal
distribution quantile.

3. Theoretical properties

Fan and Lv [1] mentioned that a method is meaningful if a feature screening method has a sure
screening property. It is the basis of feature screening, which means that the probability of all
significant covariates being selected tends to be 1. Therefore, subsequent feature screening methods
that extend the SIS method demonstrate this property, such as those in the articles by Li et al. [9], Cui
and Zhong [14], and Ni and Fang [16].

In addition to the sure screening property, a feature screening method should also have a ranking
consistency property. It means that the feature screening approach is consistent and can guarantee that
the values of all important covariate indexes are ranked before all other unimportant covariates.

These two properties eventually guarantee the usefulness and effectiveness of feature screening
methods.

This subsection will illustrate the theoretical properties of the methods proposed in this paper under
certain conditions, which are as follows:

(C1) p = o(exp(nδ)), δ ∈ (0, 1), which means the variable dimension p is an exponential multiple of
the sample capacity n.

(C2) There exist positive numbers c1, c2, such that 0 < c1 ≤ p j,lr ≤ c2 < 1, ∀l ∈ {1, Jk}, ∀r ∈ {1, 2},
and ∀ j = 1, 2, . . . , p.

(C3) There exist positive c > 0 and 0 ≤ τ < 1/2, such that min
j∈D

e j ≥ 2cn−τ.

(C4) There exists a constant c3 for ∀1 ≤ r ≤ R such that 0 < fk (x | Y = r) < c3, and x is in
the domain of definition of Xk, where fk (x | Y = r) is the Lebesgue density function of Xk under the
condition Y = r.

(C5) There exists a constant c4 and ∀1 ≤ ρ ≤ 1/2 such that fk(x) ≥ c4n−ρ, and x is in the domain
of definition of Xk for ∀1 ≤ k ≤ ρ, where fk(x) is the Lebesgue density function of Xk, and fk(x) is
continuous in the domain of definition of Xk.

(C6) J = max
1≤ j≤p

Jk = O(nκ), κ > 0, ∀1 ≤ τ ≤ 1/2 and ∀1 ≤ ρ ≤ 1/2 with 2τ + 2ρ < 1.
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The above six conditions are frequently found in the literature on ultra-high-dimensional feature
screening methods, such as Fan and Lv [1], Li et al. [9], Cui et al. [14], and Ni and Fang [16].
Condition (C1) indicates that it is a feature screening method used in ultra-high-dimensional problems;
Condition (C2) indicates that the marginal probabilities of the response variable and the covariate are
bounded by an upper and a lower limit to avoid the extreme case of the failure of the screening method;
and Condition (C3) indicates that the values of the indexes belonging to the really important variables
are bounded by a lower value. Condition (C4) ensures that the sample percentile is near to the true
percentile by excluding an extreme case in which some Xk places a huge mass in a tiny range. Condition
(C5) requires the density to have a lower bound of order n−ρ. Condition (C6) ensures that the number
of categories of covariates diverges at a certain rate.

Under these six conditions, we give the theoretical properties of the feature screening method JS-
SIS when the response is a binary categorical variable.

Since w j = e j/ log Jk, ŵ j = ê j/ log Jk, and logJk ≥ log 2 ≥ 1/2, it follows that Pr
(∣∣∣w j − ŵ j

∣∣∣ > ε) =

Pr
(∣∣∣e j − ê j

∣∣∣ > ε/2). Therefore, this paper gives the properties of sure screening and ranking consistency
for feature screening using the index e j of the JS divergence and a detailed theoretical proof.

3.1. Sure screening property

To distinguish between types of covariates, discrete covariates are subscripted with j and continuous
covariates are subscripted with k. If the covariate is categorical, L is the number of categories of the
covariate, and if the covariate is continuous, Jk is the number of categories of the covariate.

Theorem 3.1. When the covariates are categorical, in conditions (C1) and (C2), 0 ≤ τ < 1/2, and
there exists a positive number c such that

Pr
(
max
1≤ j≤p

∣∣∣e j − ê j

∣∣∣ > cn−τ
)
≤ 8pL exp

{
−c2n1−2τ

/
2L2

}
and when 0 < δ < 1 − 2τ, Pr(max

1≤ j≤p

∣∣∣e j − ê j

∣∣∣ > cn−τ) → 0, n → ∞. Under conditions (C1)–(C3), when

n→ ∞, there exists a positive number c such that

Pr(D ⊆ D̂) ≥ 1 − 8d0L exp
{
−c2n1−2τ/2L2

}
→ 1.

Theorem 3.1 states that the probability that the set of true covariates D is contained in the set of
simplified covariates D̂ as n → ∞ converges to 1, which means that as the sample size n increases,
eventually all the true covariates can theoretically be filtered out.

Theorem 3.2. When the covariates are continuous variables, there exist positive constants c5, c6, c7

under the conditions (C1), (C4)–(C6), and we have

Pr
(
max
1≤ j≤p

|ek − êk| > c5n−τ
)
≤ 4c6 pJk exp

{
−c7c2

5n1−2ρ−2τ

4J2
k

}
(3.1)

and when n→ ∞

Pr(D ⊆ D̂) ≥ 1 − 4c6d0Jk exp
{
−c7c2

5n1−2ρ−2τ

4J2
k

}
→ 1.
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Theorem 3.3. When the covariates are continuous and categorical covariates coexist, there exists a
positive constant c9 under the conditions (C1), (C2), (C4)–(C6), and we have

Pr
(
max
1≤ j≤p

(∣∣∣e j − ê j

∣∣∣ + |ek − êk|
)
> c9n−τ

)
≤ 8p1L exp

{
−c2

9n1−2τ/8L2
}

+ 4c6 p2Jk exp
{
−c7c2

9n1−2ρ−2τ

16J2
k

} (3.2)

and when n→ ∞,

Pr(D ⊆ D̂) ≥ 1 − 8d1L exp
{
−c2

9n1−2τ/8L2
}
− 4c6d2Jk exp

{
−c7c2

9n1−2ρ−2τ

16J2
k

}
→ 1

where p1 + p2 = p, d1 + d2 = d0.

3.2. Ranking consistency property

Theorem 3.4. When the covariates are categorical, under conditions (C1)–(C3), assume that min
j⊆D

ê j −

max
j⊆Dc

ê j > 0, then we have

Pr
{

lim
n→∞

inf(min
j⊆D

ê j −max
j⊆Dc

ê j) > 0
}

= 1.

Theorem 3.5. When the covariates are continuous variables, under conditions (C1), (C3)–(C6),
assume that min

k⊆D
êk −max

k⊆Dc
êk > 0, then we have

Pr
{

lim
n→∞

inf(min
k⊆D

êk −max
k⊆Dc

êk) > 0
}

= 1.

Theorem 3.6. When the covariates are continuous and categorical covariates coexist, under
conditions (C1)–(C6), assume that min

j⊆D
ê j −max

j⊆Dc
ê j > 0 and min

k⊆D
êk −max

k⊆Dc
êk > 0, then we have

Pr
{

lim
n→∞

inf
(
(min

j⊆D
ê j −max

j⊆Dc
ê j) + (min

k⊆D
êk −max

k⊆Dc
êk)

)
> 0

}
= 1.

A detailed proof of the theoretical part is in the Appendix.

4. Numerical simulation

In this section, we conduct simulation experiments to investigate the variable screening performance
of our proposed methods, in which we analyze the simulation in terms of two main aspects: The type
of distribution of the response variable and the type of the covariate. The methods proposed in this
study are limited to binary response variables and make no assumptions regarding the data types of
the covariates. In practice, four types of covariates are generally encountered: All the covariates are
categorical with the same categories; all the covariates are categorical with different categories; all the
covariates are continuous; both continuous and categorical covariates appear in the data, where the
categories of the categorical variables differ. To examine the validity and viability of the proposed
methods, we created four simulation experiments that tested them using the four kinds of data types
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of the covariates mentioned above. Of these, the similarities are that the response variable is binary
and the type of distribution of the response variable is the same, while the differences are in the type
of covariates and the generation method of the covariates. Besides, to determine whether varying
the number of slices will affect the effectiveness of the suggested methods, we attempt to slice the
continuous variables in the simulation experiments using varying numbers of slices. This can also
provide some references for choosing the optimal categories of the continuous variables in practical
applications.

4.1. Evaluation indexes

Three evaluation indexes were used to compare the effectiveness of the variable screening method.
The first evaluation index is CP, coverage 1, which indicates the proportion of true significant covariates
screened for inclusion in the set of significant covariates. And, with CP ∈ [0, 1], when the value is
closer to 1, the more true significant covariates are selected to be included in the set of significant
covariates. The second evaluation index is CPa, coverage 2, which indicates whether the selected set
of significant covariates contains all the true significant covariates, where CPa= 0, 1, so the average
value of CPa takes the range of [0, 1]. The average value being closer to 1 indicates that the selection of
significant covariates has a higher probability of including all of the actual significant variables. CP1
and CPa1 are used to denote the index values when the first

[
n/ log n

]
variables are screened as the set of

significant covariates, and CP2 and CPa2 are used to denote the index values when the first 2
[
n/ log n

]
variables are selected as the set of significant covariates. The third evaluation index is the MMS, which
represents the minimum model size at which all important variables will be screened and expresses
the performance of the method by calculating the 5%, 25%, 50%, 75%, and 95% quantile points of
the MMS. The value of the quartile of the MMS is in the range of [0, 1], and the lower the value
means that the screening method can select the truly essential variables while reducing dimensionality.
In this paper, the final evaluation index is expressed as the average of the indexes of 100 simulation
experiments. Hence, we calculated the standard deviation, where lower values indicate higher method
stability as well as the feasibility of using the average value for evaluation.

4.2. Simulation experiments and results

4.2.1. Simulation 1

The response variable is binary categorical, all covariates are categorical, and each covariate
has the same number of categories. We refer to the simulation experiment in Ni and Fang [16]
and consider both balanced and unbalanced distributions for the response variable: (1) balanced,
pr = Pr(Y = r) = 1/R, with r = 1, . . . ,R, and R = 2; (2) unbalanced, pr = 2 [1 + (R − r)/(R − 1)] /3R
with max

1≤r≤R
pr = 2 min

1≤r≤R
pr. Define the set of true imporant variables as D, where D = {1, 2, . . . , 10}

with d0 = |D| = 10. Conditional on Y , the relevant categorical covariates are generated as
Pr

(
xi j = (1, 2, 3, 4) | yi = r

)
=

(
θr j/2,

(
1 − θr j

)
/2, θr j/2,

(
1 − θr j

)
/2

)
for 1 ≤ r ≤ R and 1 ≤ j ≤ d0,

where θr j is given in Table 1. And, θr j = 0.5 when 1 ≤ r ≤ R, d0 < j ≤ p. We take the dimensions of
the covariates p = 1000 and p = 2000 with sample sizes of n = 200 and n = 400.
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Table 1. Parameter specification for the simulations.

θr j

j 1 2 3 4 5 6 7 8 9 10
r = 1 0.2 0.8 0.7 0.2 0.2 0.9 0.1 0.1 0.7 0.7
r = 2 0.9 0.3 0.3 0.7 0.8 0.4 0.7 0.6 0.4 0.1

Tables 2 and 3 show that CP and CPa for all methods are higher when Y is a balanced distribution
than when Y is an unbalanced distribution, and the MMS for all methods is closer to the number
of significant variables d0 = 10. When the dimensionality of the covariates is p = 1000, variable
screening performs better than when p = 2000, indicating that, for a given sample size, variable
screening may become more challenging as the dimensionality of the covariates rises. Because all
covariates are 4-categorical data in this simulation, the effects of JS-SIS and AJ-SIS are the same. The
coverage CP and CPa of variable screening in JS-SIS and AJ-SIS are almost the same as in IG-SIS,
except that the MMS in IG-SIS is a little closer to d0 = 10 than in JS-SIS and AJ-SIS. Besides, through
Simulation 1, it can be seen that JS-SIS and AJS-SIS can effectively screen out important variables,
indicating that JS-SIS and AJS-SIS apply to data where the covariates are all categorical variables with
the same category.

Table 2. Results from Simulation 1 when Y is a balanced distribution.

Method
CP CPa MMS

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95%
balanced Y, p=1000, n=200

JS-SIS 0.998(0.001) 0.999(0.001) 0.98(0.014) 0.99(0.01) 1.45 3.25 5.5 7.75 11.368
AJS-SIS 0.998(0.001) 0.999(0.001) 0.98(0.014) 0.99(0.01) 1.45 3.25 5.5 7.75 11.368
IG-SIS 0.998(0.001) 0.999(0.001) 0.98(0.014) 0.99(0.01) 1.45 3.25 5.5 7.75 11.368

balanced Y, p=1000, n=400
JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.583

AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.583
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.583

balanced Y, p=2000, n=200
JS-SIS 0.992(0.003) 0.996(0.002) 0.92(0.027) 0.96(0.02) 1.45 3.25 5.5 7.75 16.04

AJS-SIS 0.992(0.003) 0.996(0.002) 0.92(0.027) 0.96(0.02) 1.45 3.25 5.5 7.75 16.04
IG-SIS 0.992(0.003) 0.996(0.002) 0.92(0.027) 0.96(0.02) 1.45 3.25 5.5 7.75 16.029

balanced Y, p=2000, n=400
JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.599

AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.599
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.599

The numbers in parentheses are the corresponding standard deviations.
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Table 3. Results from Simulation 1 when Y is an unbalanced distribution.

Method
CP CPa MMS

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95%
unbalanced Y, p=1000, n=200

JS-SIS 0.991(0.003) 0.995(0.002) 0.91(0.029) 0.95(0.022) 1.45 3.25 5.5 7.75 17.113
AJS-SIS 0.991(0.003) 0.995(0.002) 0.91(0.029) 0.95(0.022) 1.45 3.25 5.5 7.75 17.113
IG-SIS 0.992(0.003) 0.995(0.002) 0.92(0.029) 0.95(0.022) 1.45 3.25 5.5 7.75 16.865

unbalanced Y, p=1000, n=400
JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.748

AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.748
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.742

unbalanced Y, p=2000, n=200
JS-SIS 0.981(0.004) 0.989 0.81(0.039) 0.89(0.031) 1.45 3.25 5.5 7.75 24.204

AJS-SIS 0.981(0.004) 0.989 0.81(0.039) 0.89(0.031) 1.45 3.25 5.5 7.75 24.204
IG-SIS 0.982(0.004) 0.989 0.82(0.039) 0.89(0.031) 1.45 3.25 5.5 7.75 23.748

unbalanced Y, p=2000, n=400
JS-SIS 0.999(0.001) 0.999(0.001) 0.99(0.01) 0.99(0.01) 1.45 3.25 5.5 7.75 11.436

AJS-SIS 0.999(0.001) 0.999(0.001) 0.99(0.01) 0.99(0.01) 1.45 3.25 5.5 7.75 11.436
IG-SIS 0.999(0.001) 0.999(0.001) 0.99(0.01) 0.99(0.01) 1.45 3.25 5.5 7.75 11.376

The numbers in parentheses are the corresponding standard deviations.

4.2.2. Simulation 2

The response variables are set the same as in Simulation 1. The covariates were categorical, and
each covariate had a different number of categories, set at 2, 4, 6, 8, and 10. Define the set of important
variables as D =

{
j =

[
j′p/10

]
, j′ = 1, 2, . . . , 10

}
. Referring to the simulation experiment setup in [23],

the latent variables zi =
(
zi,1, . . . , zi,p

)
are generated under the condition yi. Generate covariate xi, j by

f j

(
εi, j + µi, j

)
, where 1 ≤ j ≤ p and f j (·) is the quantile function of the standard normal distribution.

And εi, j ∼ N(0, 1), µi, j = 1.5 × (−0.9)r when j ∈ D, and µi, j = 0 when j < D.
The specific steps for generating covariate data are as follows:

f j

(
εi, j + µi, j

)
= I

(
zi, j > z(

j′′
L

)) + 1,
(
j′′ = 1, 2, . . . , L − 1

)
.

If 1 ≤ j ≤ 400, then L = 2; if 401 ≤ j ≤ 800, then L = 4; if 801 ≤ j ≤ 1200, then L = 6;
if 1201 ≤ j ≤ 1600, then L = 8; if 1601 ≤ j ≤ 2000, then L = 10.

This makes the number of covariates the same for two categorical, four categorical, six categorical,
eight categorical, and ten categorical. We take p = 2000, n = 160, 240, 320.

Table 4 displays the outcomes of the simulation. The performance metrics of all methods
for all conditions are exactly the same; the coverage CP and CPa are 1, and the MMS values are
close to d0 = 10. Furthermore, Simulation 2 indicates that JS-SIS and AJS-SIS apply to data where
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the covariates are all categorical variables with different categories since it clearly shows that these two
methods are effective at selecting significant variables.

Table 4. Results for Simulation 2.

Method
CP CPa MMS

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95%
balanced Y, p=2000, n=160

JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

balanced Y, p=2000, n=240
JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

balanced Y, p=2000, n=320
JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

unbalanced Y, p=2000, n=160
JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

unbalanced Y, p=2000, n=240
JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

unbalanced Y, p=2000, n=320
JS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

The numbers in parentheses are the corresponding standard deviations.

4.2.3. Simulation 3

The response variables are set the same as in Simulation 1. The covariates are continuous variables,
which we use the quantile function of the standard normal distribution to cut into categorical data with
different numbers of slices Jk = 4, 8, 10, respectively, and define the methods corresponding to the
number of slices as JS-SIS-4, AJS-SIS-4, IG-SIS-4; JS-SIS-8, AJS-SIS-8, IG-SIS-8; JS-SIS-10, AJS-
SIS-10, IG-SIS-10. The set of important variables is set up as in Simulation 1. We use the normal
distribution to generate covariates, where xi =

{
xi1, xi2, . . . , xip

}
∈ Rp and xi j( j = 1, 2, . . . , p) are

distributed as N(µi j, 1) with µi =
{
µi1, µi2, . . . , µip

}
. When Y = r and j ∈ D, µi j = (−1)rθr j, otherwise

j < D, µi j = 0. We take p = 5000 and n = 400, 600, 800.
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As can be seen from Tables 5 and 6, there are significant differences in the performance of the
methods only when the sample size is relatively small. Therefore, the simulation results for the specific
analyzed sample size of n = 400 are as follows: By comparing the performance of different methods
applying different numbers of slices, it is found that the CP and CPa values are the same for all three
methods, and only the MMS values are slightly different. Specifically, JS-SIS and AJ-SIS have smaller
MMS values than IG-SIS when Y is a balanced distribution, while IG-SIS has smaller MMS values
than JS-SIS and AJS-SIS when Y is an unbalanced distribution. The performance indexes of JS-SIS
and AJS-SIS are the same because the same number of slices is used for dividing all covariates. By
comparing the two different distributions of Y , it is discovered that when Y is unbalanced, all methods’
CP and CPa values are higher than when Y is balanced, and all methods’ MMS values are lower.
All approaches perform better when smaller slices are applied to continuous variables, according to
comparisons between applications of various slice counts. In addition, it is evident from Simulation 3
that JS-SIS and AJS-SIS are capable of efficiently selecting significant variables, suggesting that they
apply to data in which the covariates are all continuous.

4.2.4. Simulation 4

The response variables are set the same as in Simulation 1. There are two kinds of covariates:
Continuous and categorical, and the treatment of continuous covariates is the same as in Simulation 3.
The set of important variables is D =

{
j =

[
j′p/20

]
, j′ = 1, 2, . . . , 20

}
. To generate the covariates,

the latent variables zi =
(
zi,1, . . . , zi,p

)
are first generated through the normal distribution by the same

process as that used to generate the covariates in Simulation 3. We then refer to [23] and generate
categorical and continuous covariates, where the first 1/4 of the covariates are four categorical, the
middle 1/4 to 1/2 of the covariates are ten categorical, and the remaining 1/2 of the covariates are
continuous. We take p = 5000 and n = 400, 600, 800.

As can be seen from Tables 7 and 8, the results of Simulations 4 and 3 are similar. Therefore, the
simulation results for the specific analyzed sample size of n = 400 are as follows: By comparing the
performance of various methods used with various slice numbers, it is discovered that when Y is a
balanced distribution, the CP and CPa values of the JS-SIS are smaller than those of the AJ-SIS and
IG-SIS and fluctuate more, whereas those of the AJ-SIS and IG-SIS are the same and fluctuate much
less. Regarding the MMS values, the MMS values of JS-SIS, although smaller than those of AJ-SIS
and IG-SIS when the number of slices is large, fluctuate more, while the MMS values of AJ-SIS and
IG-SIS are roughly the same size. By comparing two different distributions of Y , all methods perform
better when Y is unbalanced than when Y is balanced, and all methods show better performance when
the number of slices is small. And, as shown in Simulation 4, JS-SIS and AJS-SIS can effectively
screen for significant variables, which means they are appropriate for data with both continuous and
categorical covariates where the categories of the categorical variables differ.
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Table 5. Results from Simulation 3 when Y is a balanced distribution.

Method
CP CPa MMS

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95%
balanced Y, p=5000, n=400

JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.819
AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.819
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.808
JS-SIS-8 0.999(0.001) 0.999(0.001) 0.99(0.01) 0.99(0.01) 1.45 3.25 5.5 7.75 10.787

AJS-SIS-8 0.999(0.001) 0.999(0.001) 0.99(0.01) 0.99(0.01) 1.45 3.25 5.5 7.75 10.787
IG-SIS-8 0.999(0.001) 0.999(0.001) 0.99(0.01) 0.99(0.01) 1.45 3.25 5.5 7.75 10.793
JS-SIS-10 0.997(0.002) 0.999(0.001) 0.97(0.017) 0.99(0.01) 1.45 3.25 5.5 7.75 11.326

AJS-SIS-10 0.997(0.002) 0.999(0.001) 0.97(0.017) 0.99(0.01) 1.45 3.25 5.5 7.75 11.326
IG-SIS-10 0.997(0.002) 0.999(0.001) 0.97(0.017) 0.99(0.01) 1.45 3.25 5.5 7.75 11.337

balanced Y, p=5000, n=600
JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

balanced Y, p=5000, n=800
JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

The numbers in parentheses are the corresponding standard deviations.
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Table 6. Results from Simulation 3 when Y is an unbalanced distribution.

Method
CP CPa MMS

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95%
unbalanced Y, p=5000, n=400

JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.61
AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.61
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.61
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 10.045

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 10.045
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.984
JS-SIS-10 0.999(0.001) 1(0) 0.99(0.01) 1(0) 1.45 3.25 5.5 7.75 10.428

AJS-SIS-10 0.999(0.001) 1(0) 0.99(0.01) 1(0) 1.45 3.25 5.5 7.75 10.428
IG-SIS-10 0.999(0.001) 1(0) 0.99(0.01) 1(0) 1.45 3.25 5.5 7.75 10.33

unbalanced Y, p=5000, n=600
JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

unbalanced Y, p=5000, n=800
JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

AJS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.45 3.25 5.5 7.75 9.55

The numbers in parentheses are the corresponding standard deviations.
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Table 7. Results from Simulation 4 when Y is a balanced distribution.

Method
CP CPa MMS

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95%
balanced Y, p=5000, n=400

JS-SIS-4 0.998(0.001) 0.999(0.001) 0.97(0.017) 0.98(0.014) 1.95 5.75 10.5 15.25 20.112
AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.127
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.126
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.18

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.2
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.2
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.273

AJS-SIS-10 1(0.001) 1(0) 0.99(0.01) 1(0) 1.95 5.75 10.5 15.25 19.34
IG-SIS-10 1(0.001) 1(0) 0.99(0.01) 1(0) 1.95 5.75 10.5 15.25 19.341

balanced Y, p=5000, n=600
JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

balanced Y, p=5000, n=800
JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

The numbers in parentheses are the corresponding standard deviations.

AIMS Mathematics Volume 9, Issue 2, 2874–2907.



2892

Table 8. Results from Simulation 4 when Y is an unbalanced distribution.

Method
CP CPa MMS

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95%
unbalanced Y, p=5000, n=400

JS-SIS-4 1(0.001) 1(0) 0.99(0.01) 1(0) 1.95 5.75 10.5 15.25 19.499
AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.065
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.065
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.123

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.107
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.108
JS-SIS-10 1(0.001) 1(0) 0.99(0.01) 1(0) 1.95 5.75 10.5 15.25 19.122

AJS-SIS-10 1(0.001) 1(0) 0.99(0.01) 1(0) 1.95 5.75 10.5 15.25 19.157
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.144

unbalanced Y, p=5000, n=600
JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.063

AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

unbalanced Y, p=5000, n=800
JS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-4 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
JS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-8 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
JS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

AJS-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05
IG-SIS-10 1(0) 1(0) 1(0) 1(0) 1.95 5.75 10.5 15.25 19.05

The numbers in parentheses are the corresponding standard deviations.

4.3. Computational time cost

As the dimensionality of the data increases, the computational time also increases, so more efficient
algorithms help to improve computational efficiency. We evaluated the computational time costs of the
three methods. The median running time of each algorithm is obtained as a comparison index through
simulation experiments, where the covariate X is set similarly to simulation experiment 2, and Y is
set to a balanced distribution. The set of significant variables is D =

{
j =

[
j′p/10

]
, j′ = 1, 2, . . . , 10

}
AIMS Mathematics Volume 9, Issue 2, 2874–2907.



2893

such that 1/5 of the significant covariates are two categorical, 1/5 are four categorical, 1/5 are six
categorical, 1/5 are eight categorical, and 1/5 are ten categorical. In this simulation experiment, the
control sample size was constant at 400, the dimensionality of the covariates was increased from 1,000
to 10,000 at a rate of 1,000 per increase, and the experiment was repeated 100 times. Then, the median
running time of the three methods in 100 experiments was calculated. All calculations were done on a
Windows 10 computer with an Intel Core i7-8700 3.20 GHz CPU.

Table 9 shows the median values of the running time for the three methods, and it can be seen that,
due to the linear variation of p, the running time also shows a linear trend of variation, increasing as
p increases. The running times of the three methods do not differ much at low dimensions, and as p
increases, the running times of JS-SIS and AJS-SIS are significantly shorter than those of IG-SIS. And,
in every case, JS-SIS has the shortest run time, AJS-SIS has the second shortest run time, and IG-SIS
has the longest run time.

Table 9. Simulation results for calculating the cost of time.

p 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

JS-SIS
1.557

(0.004)
3.127

(0.005)
4.705

(0.006)
6.233

(0.008)
7.847

(0.008)
9.426

(0.009)
11.034
(0.002)

12.644
(0.008)

14.277
(0.011)

15.833
(0.009)

AJS-SIS
1.616

(0.003)
3.234

(0.005)
4.865

(0.006)
6.435

(0.007)
8.118

(0.006)
9.750

(0.008)
11.416
(0.006)

13.089
(0.008)

14.778
(0.009)

16.431
(0.009)

IG-SIS
1.684

(0.003)
3.372

(0.004)
5.703

(0.018)
6.711

(0.007)
8.465

(0.005)
10.178
(0.017)

12.061
(0.009)

13.642
(0.007)

15.398
(0.008)

17.131
(0.008)

The numbers in parentheses are the corresponding standard deviations.

4.4. Comprehensive analysis of simulation results

Overall, the suggested approaches’ CP and CPa values are nearly equal to 1, the quartiles of MMS
are nearly at the model size of the real essential variables, and the standard deviations of CP, CPa,
and computation time are close to 0. This indicates that: (1) our suggested methods are efficient at
screening significant variables; (2) they are very stable; (3) it is feasible to represent the methods’
performance using the average of the indexes; (4) they perform well with a broad range of data
types and can be applied to situations where the data contain categorical covariates with the same
categories, categorical covariates with different categories, continuous covariates, and both continuous
and categorical covariates appearing in the data, where the categories of the categorical covariates
differ.

The specific analysis is as follows: The JS-SIS and AJS-SIS methods proposed in this paper are
very similar to IG-SIS in terms of performance. When the sample size is small, there is a difference in
performance between the methods, and the performance of JS-SIS is affected more by the number of
slices compared to AJ-SIS and IG-SIS, which are more adaptive to the number of slices and are more
robust. However, the performance of all techniques converges to the same as the number of screening
variables or sample size grows. Both CP and CPa increase and converge to 1, the MMS value gets
closer to d0 = 10, and all method performances are independent of the distribution of the response
variable Y and the number of slices.
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5. Real data analysis

5.1. Experimental study with real data

5.1.1. Data description

To assess our proposed method, two popular public datasets [24, 25] for cancer classification were
utilized. The two datasets are high-dimensional, the variables are of continuous type, and the response
variables are binary with values of 0 (normal) and 1 (cancer). The first is the prostate cancer dataset,
where the distribution of response variables is roughly balanced, and the second is the B-cell lymphoma
dataset, where the distribution of response variables is roughly unbalanced. Details about the two
datasets are listed in Table 10.

Table 10. Details of the used datasets.

Dataset type Number of samples Number of variables Classification of samples
Prostate 102 5966 52 Tumor/ 50 Non-tumor
DLBCL 77 6286 58 DLBCL/ 19 FL

5.1.2. Performance evaluation criteria

The dataset is divided into two parts using a 7:3 random ratio, with 70% of the data used as the
training dataset and the other 30% as the test dataset. Then, the number of slices Jk = 4, 8, 10 is taken
to slice the continuous covariates in the training set, respectively. This process can also be thought of
as cross-validation, whereby we choose the number of slices at which the methods perform optimally
as the optimal categories for the continuous variable. On the training set, variables were screened
using the JS-SIS, AJS-SIS, and IG-SIS screening approaches; on the test set, support vector machines
were used to assess how well the variables were classified using these techniques. We utilized ten-fold
cross-validation to reduce the impact of randomly divided data in the dataset on the model accuracy
and repeated it 100 times while testing the classification effect to reduce the random error.

We used two evaluation indexes to assess classification effectiveness: Classification accuracy (CA)
and the geometric mean (G-mean) of specificity (SPE) and sensitivity (SEN).

5.1.3. Results and discussion

Tables 11 and 12 show the categorization effects of the variables screened by applying the JS-
SIS, AJS-SIS, and IG-SIS methods to the two datasets, respectively. CA1 (G-mean1) and CA2 (G-
mean2) denote the index values when the number of screening variables is the first

[
n/ log n

]
and the

first 2
[
n/ log n

]
, respectively.
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Table 11. The results of the Prostate dataset.

Method CA1 CA2 G-mean1 G-mean2
JS-SIS-4 0.884(0.008) 0.964(0.005) 0.873(0.01) 0.968(0.005)

AJS-SIS-4 0.894(0.007) 0.921(0.006) 0.888(0.009) 0.923(0.006)
IG-SIS-4 0.894(0.007) 0.921(0.006) 0.888(0.009) 0.923(0.006)
JS-SIS-8 0.926(0.008) 0.937(0.006) 0.926(0.008) 0.942(0.006)

AJS-SIS-8 0.925(0.007) 0.932(0.006) 0.927(0.008) 0.935(0.006)
IG-SIS-8 0.925(0.007) 0.932(0.006) 0.927(0.008) 0.935(0.006)
JS-SIS-10 0.895(0.01) 0.947(0.006) 0.887(0.011) 0.951(0.006)

AJS-SIS-10 0.896(0.01) 0.94(0.006) 0.897(0.011) 0.94(0.007)
IG-SIS-10 0.898(0.009) 0.94(0.006) 0.897(0.01) 0.94(0.007)

The numbers in parentheses are the corresponding standard deviations.

Table 11 shows the experimental results for the Prostate dataset. Comparison of the categorical
prediction performance of the three methods when screening different numbers of variables for each
method is as follows: When the number of screening variables is

[
n/ log n

]
, all three methods have

similar CA and G-mean values for the same number of slices, while when the number of screening
variables is 2

[
n/ log n

]
, JS-SIS has significantly higher CA and G-mean values than AJS-SIS and IG-

SIS for the same number of slices, and the CA and G-mean values of AJS-SIS and IG-SIS are the same.
Then, comparing the categorical prediction performance of the three methods for variables screened in
different numbers of slices, it is found that the fluctuation of CA and G-mean values with the number
of slices is higher in JS-SIS than in AJS-SIS and IG-SIS, while the fluctuation of CA and G-mean
values is about the same in AJS-SIS and IG-SIS. Overall, JS-SIS is more impacted by the number
of screens and slices than IG-SIS is, and AJS-SIS and IG-SIS are both impacted in a similar way.
Moreover, regarding the performance of the categorical prediction accuracy of the screened variables,
JS-SIS outperforms AJS-SIS and IG-SIS as the number of variables screened increases, while AJS-SIS
and IG-SIS perform almost as well.

Table 12. The results of the DLBCL dataset.

Method CA1 CA2 Gmean1 Gmean2
JS-SIS-4 0.755(0.015) 0.87(0.013) 0.602(0.034) 0.868(0.014)

AJS-SIS-4 0.779(0.014) 0.87( 0.013 ) 0.629(0.033) 0.868(0.014)
IG-SIS-4 0.725(0.013) 0.85(0.012) 0.546(0.033) 0.819(0.022)
JS-SIS-8 0.756(0.011) 0.887(0.008) 0.659(0.025) 0.85(0.013)

AJS-SIS-8 0.754(0.013) 0.91(0.011) 0.69(0.024) 0.884(0.014)
IG-SIS-8 0.718(0.015) 0.89(0.009) 0.653(0.024) 0.873(0.013)
JS-SIS-10 0.779(0.014) 0.775(0.012) 0.624(0.032) 0.624(0.029)

AJS-SIS-10 0.755(0.015) 0.87(0.011) 0.63(0.028) 0.826(0.019)
IG-SIS-10 0.789(0.012) 0.833(0.013) 0.651(0.029) 0.756(0.022)

The numbers in parentheses are the corresponding standard deviations.

The experimental findings for the DLBCL dataset are displayed in Table 12. Comparing the
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categorical prediction performance of the three methods with different numbers of variables screened
separately, the CA and G-mean values of the three methods are significantly different when the number
of screened variables is

[
n/ log n

]
, respectively. However, when the number of screened variables

is 2
[
n/ log n

]
, AJS-SIS’s CA and G-mean values are significantly higher than those of JS-SIS and IG-

SIS, while JS-SIS and IG-SIS were also significantly different. Comparing the categorical prediction
performance of the three methods for variables screened in different numbers of slices, the fluctuations
of CA and G-mean values are the largest for JS-SIS, while the fluctuations of CA and G-mean values
for AJS-SIS are smaller than for IG-SIS. JS-SIS and AJS-SIS are both more and less affected by the
number of screenings and slices, respectively, as compared to IG-SIS. AJS-SIS outperforms JS-SIS
and IG-SIS in terms of the categorical prediction accuracy of the screened variables.

5.1.4. Comprehensive analysis of real experimental results

Combining the experimental results of the two real datasets, it can be seen that the methods JS-SIS
and AJS-SIS proposed in this paper are very similar to IG-SIS in terms of performance, but AJS-SIS
is more robust in terms of performance than JS-SIS and IG-SIS, where JS-SIS is a little bit weaker in
terms of robustness compared to IG-SIS. Further, all methods perform better in the Prostate dataset than
in the DLBCL dataset. This may be because the DLBCL dataset variables have larger dimensions than
the Prostate dataset variables, but smaller sample sizes than the Prostate dataset variables, which may
make it more challenging to screen the DLBCL dataset variables. Finally, the predictive effectiveness
of the variables screened by all methods improved with the number of variables screened. Overall,
experiments with real data illustrate that our methods can be applied to real datasets.

5.2. Applying methods to real data

Based on both numerical simulations and experiments with real data, it is shown that the methods
proposed in this paper are well able to screen out important variables. Thus, in this section, we
use a biological dataset with detailed information to further explore the specifics of the suggested
approaches for screening variables in practical applications. This dataset is available from the R
package “colonCA” (https://bioconductor.org/packages/release/data/experiment/html/colonCA.html).
Table 13 displays detailed information about the dataset. The sample categories in this dataset are
binary variables, and the gene variables are continuous.

Table 13. Details of the used datasets.

Dataset type Number of samples Number of variables Classification of samples
Colon 62 2000 40 Tumor/ 22 Normal

The results of earlier experiments indicate that good results can be obtained when the number of
variables screened is

[
n/ log n

]
. For this reason, we select the essential variables as

[
n/ log n

]
when

applying the real dataset. Then, the training set and test set were divided in the same manner as the real-
data experiments in Section 5. The significant gene variables were screened on the training set using
the IG-SIS method and our suggested approaches, with the results displayed in Tables 14 and 15,
respectively. Lastly, the test set is utilized to examine the classification effect of the selected gene
variables, as shown in Table 16.
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Table 14. The top
[
n/ log n

]
genes were screened by the JS-SIS method and the AJS-SIS

method based on the Colon dataset.

JS-SIS-4 JS-SIS-8 JS-SIS-10 AJS-SIS-4 AJS-SIS-8 AJS-SIS-10
Hsa.549 Hsa.8147 Hsa.36354 Hsa.549 Hsa.8147 Hsa.36354

Hsa.8147 Hsa.1410 Hsa.1588 Hsa.8147 Hsa.692 Hsa.627
Hsa.1410 Hsa.831 Hsa.2588 Hsa.1410 Hsa.1410 Hsa.8147
Hsa.6814 Hsa.549 Hsa.2715 Hsa.6814 Hsa.831 Hsa.2588
Hsa.1682 Hsa.692 Hsa.549 Hsa.1682 Hsa.549 Hsa.2715
Hsa.1832 Hsa.1588 Hsa.627 Hsa.1832 Hsa.2097 Hsa.1588
Hsa.3016 Hsa.823 Hsa.831 Hsa.3016 Hsa.1588 Hsa.549

Hsa.36689 Hsa.6814 Hsa.6814 Hsa.36689 Hsa.823 Hsa.831
Hsa.544 Hsa.1660 Hsa.1776 Hsa.544 Hsa.6814 Hsa.6814

Hsa.5971 Hsa.733 Hsa.37937 Hsa.5971 Hsa.37937 Hsa.37937
Hsa.2097 Hsa.951 Hsa.31943 Hsa.2097 Hsa.1660 Hsa.37541

Table 15. The top
[
n/ log n

]
genes were screened by the IG-SIS method based on the Colon

dataset.

IG-SIS-4 IG-SIS-8 IG-SIS-10
Hsa.8147 Hsa.8147 Hsa.36354
Hsa.549 Hsa.692 Hsa.8147

Hsa.1410 Hsa.1410 Hsa.627
Hsa.1832 Hsa.831 Hsa.2715
Hsa.6814 Hsa.549 Hsa.2588
Hsa.3016 Hsa.1832 Hsa.1588
Hsa.692.2 Hsa.2097 Hsa.549
Hsa.1682 Hsa.37937 Hsa.831

Hsa.36689 Hsa.823 Hsa.37937
Hsa.544 Hsa.1588 Hsa.6814

Hsa.2291 Hsa.6814 Hsa.31943
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Table 16. The results of the Colon dataset.

Method CA1 Gmean1
JS-SIS-4 0.811(0.012) 0.684(0.025)

AJS-SIS-4 0.801(0.012) 0.657(0.027)
IG-SIS-4 0.769(0.011) 0.557(0.032)
JS-SIS-8 0.759(0.012) 0.606(0.03)

AJS-SIS-8 0.799(0.013) 0.715(0.018)
IG-SIS-8 0.803(0.011) 0.709(0.019)
JS-SIS-10 0.807(0.013) 0.686(0.03)

AJS-SIS-10 0.789(0.01) 0.644(0.025)
IG-SIS-10 0.789(0.01) 0.631(0.027)

The numbers in parentheses are the corresponding
standard deviations.

As can be observed from Tables 14 and 15, “Hsa.549” and “Hsa.6814” are the same gene variables
among the

[
n/ log n

]
gene variables selected by each technique at Jk = 4, 8, 10, indicating that they

might be the most significant gene variables. Then, according to Table 16, from the perspective of
data analysis, it is evident that the Colon dataset exhibits optimal performance for the JS-SIS and AJS-
SIS methods at Jk = 4, and optimal performance for IG-SIS at Jk = 8. Generally, the important gene
variables selected by the proposed methods have good classification prediction performance, indicating
the utility of the proposed methods.

6. Conclusions

In this research, we established a model-free feature screening procedure based on JS divergence for
binary categorical response variables, implying less restrictive data assumptions. We also suggested
two different feature screening techniques for binary response variables in various scenarios. When
the number of categories for each covariate is the same, the method based on JS divergence is used.
Additionally, when the number of categories in each covariate is different, we investigated the AJ-SIS
method for screening variables, which uses the logarithmic factor of the number of categories to adjust
the JS divergence, which is used for feature screening. Afterward, theoretical proof showed that JS-SIS
and AJS-SIS have sure screening and ranking consistency properties. Then, the screening performance
of the proposed methods was evaluated through simulation experiments and real data analysis, which
showed their effectiveness, availability, and practicality. It is also evident that a variety of data may be
widely applicable to our suggested approaches and that they have good screening performance when
the data contains categorical covariates, continuous covariates, and both continuous and categorical
covariates appearing in the data. We suggested experimenting with several different numbers of
slices and applying cross-validation to determine the optimal categories for continuous variables when
dealing with continuous covariates. We can see that, in feature screening, the performance of the
proposed methods JS-SIS and AJS-SIS in this paper is similar to IG-SIS. But, AJS-SIS performs
better than IG-SIS when the covariates have a varying number of categories, particularly when the
sample size is small. Moreover, in terms of computational time, JS-SIS and AJS-SIS are both shorter
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than IG-SIS. In addition to this, our method’s perspective is appealing, and since JS divergence
does not require the probability distributions to be absolutely continuous and has the advantages
of symmetry, non-negativity, and boundedness, it can measure the differences between probability
distributions very effectively. Finally, the methods proposed in this work only take into account
situations when the response variable is binary, although, in reality, multicategorical responses are
very frequent. Therefore, we will extend JS-SIS and AJS-SIS to situations in which the response
variable is multicategorical in our future research.
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Appendix

To prove Theorem 3.1, the following four lemmas are first introduced.

Lemma 1. Suppose that x1, x2, . . . , xn are mutually independent random variables with sample size n
and Pr(xi ∈ [ai, bi]) = 1, 1 ≤ i ≤ n, where ai, bi are constants. Let x̄ = 1/n

∑n
i=1 xi. Then there exists a

constant t for which the following inequality holds:

Pr(|x̄ − E(x̄) ≥ t|) ≤ 2 exp

−2nt2
/ n∑

i=1

(bi − ai)2

 .
The proof of Lemma 1 is given in [26].

Lemma 2. Suppose a and b are two bounded random variables, and there exist constants
M1 > 0,M2 > 0 such that |a| ≤ M1, |b| ≤ M2. Given a sample size n, the estimates corresponding to
a, b can be obtained as Â, B̂. Suppose that, ∀ε ∈ (0, 1), there exist positive constants c1, c2 and s such
that

Pr
(∣∣∣Â − a

∣∣∣ ≥ ε) ≤ c1

(
1 −

εs
c1

)n

,

Pr
(∣∣∣B̂ − b

∣∣∣ ≥ ε) ≤ c2

(
1 −

εs
c2

)n

.

Then, we have

Pr
(∣∣∣ÂB̂ − ab

∣∣∣ ≥ ε) ≤ C1

(
1 −

εs
C1

)n

,

Pr
(∣∣∣Â2 − a2

∣∣∣ ≥ ε) ≤ C2

(
1 −

εs
C2

)n

,

Pr
(∣∣∣∣(Â − a

)
−

(
B̂ − b

)∣∣∣∣ ≥ ε) ≤ C3

(
1 −

εs
C3

)n

,

where, C1 = max {2c1 + c2, c1 + 2c2 + 2c2M1, 2c2M2}, C2 = max {3c1 + 2c1M1, 2c2M2}, C3 =

max {2c1, 2c2, c1 + c2}.
Furthermore, assuming that b is bounded and non-zero, and that there exists M3 > 0 such that

|b| ≥ M3, then we have

Pr
(∣∣∣∣∣∣ ÂB̂ − â

b̂

∣∣∣∣∣∣ ≥ ε
)
≤ C4

(
1 −

εs
C4

)n

where C4 = max {c1 + c2 + c5, c2/M4, 2c2M1/(M2M4)}, c5 > 0 and M4 > 0.
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The proof of Lemma 2 is given in [15].

Lemma 3. When the covariates are categorical, we know that e j ≥ 0. Only if Pr
(
x j = l | Y = 1

)
=

Pr
(
x j = l | Y = 2

)
, we have e j = 0, that is, Y and x j are independent.

Proof of Lemma 3: Let G = Pr
(
x j = l | Y = 1

)
, Q = Pr

(
x j = l | Y = 2

)
, M = 1

2 (G + Q). Define
f (x) = x log(x). Since f (x) is a hypoconvex function, and through Jensen’s inequality, we can get

H(M) = −

p∑
j=1

M log(M)

= −

p∑
j=1

f (M)

≥ −

 p∑
j=1

1
2

f (G) +

p∑
j=1

1
2

f (Q)


=

1
2

H(G) +
1
2

H(Q).

Thus,

e j =
1
2

p∑
j=1

G log(G) −
1
2

p∑
j=1

G log(M) +
1
2

p∑
j=1

Q log(Q) −
1
2

p∑
j=1

Q log(M)

= −
1
2

p∑
j=1

(G + Q)
(

G
G + Q

log(M) +
Q

G + Q
log(M)

)
+

1
2

p∑
j=1

G log(G) +
1
2

p∑
j=1

Q log(Q)

= −
1
2

p∑
j=1

(G + Q) log(M) +
1
2

p∑
j=1

G log(G) +
1
2

p∑
j=1

Q log(Q)

=H(M) −
1
2

H(G) −
1
2

H(Q)

≥0.

So, e j is larger than or equal to 0. The equation holds if and only if G = Q. And, when G = Q,

Pr(x j = l) = Pr(Y = 1)G + Pr(Y = 2)Q
=G

=Q.

By the condition of independence, it can be inferred that Y and x j are independent. Thus, when there is
a nonlinear relationship between Y and x j, the conditional probability distribution between them will
not satisfy independence, and thus the JS divergence will be larger than zero.

Lemma 4. When the covariates are continuous, it follows from the proof of Proposition 2.2 in [16]
that for a continuous variable X, there exists a sequence {xm,m = 1, 2, . . . } such that xm is a quantile
of X and limn→∞ xm = X, and there exist Jk and J such that x = q(J). Then, Pr (X ≤ x | Y = r) = J/Jk

does not depend on r. There is e j ≥ 0, and when Y and x j are independent, e j = 0.
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The proof of Lemma 4 is similar to the proof of Proposition 2.2 in [16], so it is omitted here.
Proof of Theorem 3.1:

e j =JS (G ||Q)

=
1
2

p∑
j=1

G log
( G

M

)
+

1
2

p∑
j=1

Q log
( Q

M

)
=

1
2

p∑
j=1

G log(G) −
1
2

p∑
j=1

G log(M) +
1
2

p∑
j=1

Q log(Q) −
1
2

p∑
j=1

Q log(M)

=
1
2

(H (G,M) − H(G)) +
1
2

(H (Q,M) − H(Q)) .

According to the definitions of e j and ê j we have∣∣∣e j − ê j

∣∣∣ =
1
2
|[(H (G,M) − H(G))) + (H (Q,M) − H(Q))]

−
[(

Ĥ (G,M) − Ĥ(G)
)

+
(
Ĥ (Q,M) − Ĥ(Q)

)]∣∣∣∣
=

1
2

∣∣∣∣(H (G,M) − Ĥ (G,M)
)

+
(
H (Q,M) − Ĥ (Q,M)

)
−

(
H(G) − Ĥ(G)

)
−

(
H(Q) − Ĥ(Q)

)∣∣∣∣
≤

1
2

∣∣∣H (G,M) − Ĥ (G,M)
∣∣∣ +

1
2

∣∣∣H (Q,M) + Ĥ (Q,M)
∣∣∣

+
1
2

∣∣∣H(G) − Ĥ(G)
∣∣∣ +

1
2

∣∣∣H(Q) − Ĥ(Q)
∣∣∣

and

Pr
(∣∣∣e j − ê j

∣∣∣ > ε) ≤Pr
(
1
2

∣∣∣∣∣∣H (G,M) − Ĥ (G,M)
∣∣∣ +

∣∣∣H (Q,M) + Ĥ (Q,M)
∣∣∣

+
∣∣∣H(G) − Ĥ(G)

∣∣∣ +
∣∣∣H(Q) − Ĥ(Q)

∣∣∣∣∣∣ > ε)
≤Pr

(∣∣∣H (G,M) − Ĥ (G,M)
∣∣∣ > ε

2

)
+ Pr

(∣∣∣H (G) − Ĥ (G)
∣∣∣ > ε

2

)
+ Pr

(∣∣∣H (Q,M) − Ĥ (Q,M)
∣∣∣ > ε

2

)
+ Pr

(∣∣∣H (Q) − Ĥ (Q)
∣∣∣ > ε

2

)
=:E j1 + E j2 + E j3 + E j4.
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Next, we prove that E j1 ≤ 2L exp
{
−nε2

/
2L2

}
.

Pr
(∣∣∣H (G,M) − Ĥ (G,M)

∣∣∣ > ε

2

)
= Pr


∣∣∣∣∣∣∣∣

L∑
l=1

p̂
(
x j = l|Y = 1

)
log

 p̂
(
x j = l|Y = 1

)
+ p̂

(
x j = l|Y = 2

)
2


−

L∑
l=1

p
(
x j = l|Y = 1

)
log

 p
(
x j = l|Y = 1

)
+ p

(
x j = l|Y = 2

)
2


∣∣∣∣∣∣∣∣ > ε

2


≤Lmax

l
Pr


∣∣∣∣∣∣∣∣p̂

(
x j = l|Y = 1

)
log

 p̂
(
x j = l|Y = 1

)
+ p̂

(
x j = l|Y = 2

)
2


− p

(
x j = l|Y = 1

)
log

 p
(
x j = l|Y = 1

)
+ p

(
x j = l|Y = 2

)
2


∣∣∣∣∣∣∣∣ > ε

2L

 .
Using the sample frequency to estimate the probability, we have

p̂
(
x j = l | Y = 1

)
=

n∑
i=1

I
(
xi j = l

)
I (yi = 1)

/ n∑
i=1

I (yi = 1) ,

p̂
(
x j = l | Y = 2

)
=

n∑
i=1

I
(
xi j = l

)
I (yi = 2)

/ n∑
i=1

I (yi = 2) ,

p
(
x j = l | Y = 1

)
= E

(
I
(
xi j = l

)
I (yi = 1)

) /
p (I (yi = 1)) ,

p
(
x j = l | Y = 2

)
= E

(
I
(
xi j = l

)
I (yi = 2)

) /
p (I (yi = 2)) .

So, we have

Pr
(∣∣∣∣p̂ (

x j = l | Y = 1
)
− p

(
x j = l | Y = 1

)∣∣∣∣ > ε1

)
= Pr


∣∣∣∣∣∣∣

n∑
i=1

I
(
xi j = l

)
I (yi = 1)

/ n∑
i=1

I (yi = 1) − E
(
I
(
xi j = l

)
I (yi = 1)

) /
p (I (yi = 1))

∣∣∣∣∣∣∣ > ε1


=: Pr

(∣∣∣∣∣S n

Tn
−

sn

tn

∣∣∣∣∣ ≥ ε1

)
and because S n, Tn is an estimate of sn, tn, it follows from Lemmas 1 and 2 that

Pr (|S n − sn| > ε2) ≥ 2 exp
{
−2nε2

2

}
,

Pr (|Tn − tn| > ε2) ≥ 2 exp
{
−2nε2

2

}
.
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Thus, there is a convergence of p̂
(
x j = l | Y = 1

)
by probability to its probability function

p
(
x j = l | Y = 1

)
, that is

Pr
(∣∣∣∣p̂ (

x j = l | Y = 1
)
− p

(
x j = l | Y = 1

)∣∣∣∣ > ε1

)
≤ 2 exp

{
−2nε2

1

}
.

Similarly, p̂
(
x j = l | Y = 2

)
also converges to p

(
x j = l | Y = 2

)
.

It can also be shown that log
(
p̂
(
x j = l | Y = 1

))
converges probabilistically to

log
(
p
(
x j = l | Y = 1

))
. Let p̂∗ = p̂

(
x j = l | Y = 1

)
, p∗ = p

(
x j = l | Y = 1

)
:

Pr
(∣∣∣log ( p̂∗) − log (p∗)

∣∣∣ > ε3

)
= Pr

(∣∣∣log((p̂∗ − p∗) + p∗) − log(p∗)
∣∣∣ > ε3

)
≤Pr

(∣∣∣∣∣log(p∗) +
1
p∗

(p̂∗ − p∗) + o(p̂∗ − p∗) − log(p∗)
∣∣∣∣∣ > ε3

)
≤Pr (| p̂∗ − p∗| > ε3 p∗ − o( p̂∗ − p∗))

Thus, we can get that log
(
p̂
(
x j = l | Y = 1

))
converges to log

(
p
(
x j = l | Y = 1

))
with probability.

In a similar proof, we can get that log(p̂
(
x j = l | Y = 2

)
) converges to log(p

(
x j = l | Y = 2

)
) with

probability and log
(

p̂(x j=l|Y=1)+p̂(x j=l|Y=2)
2

)
converges to log

(
p(x j=l|Y=1)+p(x j=l|Y=2)

2

)
with probability.

Thus, we can obtain E j1 ≤ 2L exp
{
−nε2

/
2L2

}
. Similarly, the other three parts can be proved:

E j2 ≤ 2L exp
{
−nε2

/
2L2

}
, E j3 ≤ 2L exp

{
−nε2

/
2L2

}
, E j4 ≤ 2L exp

{
−nε2

/
2L2

}
.

Thus, for 0 < ε4 < 1, there is

Pr
(∣∣∣e j − ê j

∣∣∣ > ε4

)
≤ 8L exp

{
−nε2

4

/
2L2

}
. (1)

For 0 ≤ τ < 1/2, there exists a positive number c with

Pr
(∣∣∣e j − ê j

∣∣∣ > cn−τ
)
≤ 8L exp

{
−c2n1−2τ

/
2L2

}
(2)

and then

Pr
(
max
1≤ j≤p

∣∣∣e j − ê j

∣∣∣ > cn−τ
)
≤ Pr

 p⋃
j=1

∣∣∣e j − ê j

∣∣∣ > cn−τ


≤ p Pr
(∣∣∣e j − ê j

∣∣∣ > cn−τ
)

≤ 8pL exp
{
−c2n1−2τ

/
2L2

}
.

(3)

By (3), for 0 < δ < 1 − 2τ, we have

Pr
(
max
1≤ j≤p

∣∣∣e j − ê j

∣∣∣ > cn−τ
)
→ 0 (4)
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with n→ ∞. Thus, by (4), we have

Pr(D ⊆ D̂) ≥ Pr(
∣∣∣e j − ê j

∣∣∣ > cn−τ,∀ j ∈ D)

≥ Pr
(
max

j∈D

∣∣∣e j − ê j

∣∣∣ > cn−τ
)

≥ 1 − d0 Pr(
∣∣∣e j − ê j

∣∣∣ > cn−τ)

≥ 1 − 8d0L exp
{
−c2n1−2τ

/
2L2

}
.

(5)

Therefore, Pr(D ⊆ D̂)→ 1, with n→ ∞.
Thus, by Theorem 3.1 the sure screening property holds under conditions (C1)–(C3).

Proof of Theorem 3.4:
Since min

j∈D
e j −max

j∈Dc
e j > 0, there exists δ > 0 such that min

j∈D
e j −max

j∈Dc
e j = δ, and then we have

Pr
(
min
j∈D

ê j ≤ max
j∈Dc

ê j

)
= Pr

(
min
j∈D

ê j −max
j∈Dc

e j ≤ max
j∈Dc

ê j −max
j∈Dc

e j

)
= Pr

(
min
j∈D

ê j −min
j∈D

e j + δ ≤ max
j∈Dc

ê j −max
j∈Dc

e j

)
= Pr

(
min
j∈D

ê j −min
j∈D

e j −max
j∈Dc

ê j + max
j∈Dc

e j ≤ −δ

)
= Pr

(∣∣∣∣∣∣
(
min
j∈D

ê j −max
j∈Dc

ê j

)
−

(
min
j∈D

e j −max
j∈Dc

e j

)∣∣∣∣∣∣ ≥ δ
)

≤ Pr
(
max
1≤ j≤p

∣∣∣e j − ê j

∣∣∣ ≥ δ/2)
≤ 8pL exp

{
−nδ2

/
2
}
.

From Fatou’s Lemma, we have

Pr
{

lim
n→∞

inf
(
min
j∈D

ê j −max
j∈Dc

ê j

)
≤ 0

}
≤ lim

n→∞
Pr

{(
min
j∈D

ê j −max
j∈Dc

ê j

)
≤ 0

}
= 0.

So,

Pr
{

lim
n→∞

inf
(
min
j∈D

ê j −max
j∈Dc

ê j

)
≤ 0

}
= 1. (6)

Thus, Theorem 3.4 holds.
Proof of Theorem 3.2: Let Fk(x | y) be the cumulative distribution function of (Xk,Y) and F̂k(x | y) be
the empirical cumulative distribution function of (Xk,Y). Then, by the proof of Lemma A.2 in [16], we
can similarly show that, under conditions (C4) and (C5), ∀ε5 > 0, 1 ≤ r ≤ R, 1 ≤ J ≤ Jk, we have

Pr
(∣∣∣F̂k(q̂k,(J) | r) − Fk(qk,(J) | r)

∣∣∣ > ε5

)
≤ c6 exp

{
−c7n1−2ρε2

5

}
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where c6 = 3c8 and c7 = min
{
1/2, c2

4/2c2
3

}
are positive constants.

Thus, F̂k(q̂k,(J) | r) converges to Fk(qk,(J) | r) with probability. The proof of the other parts is the
same as in Theorem 3.1. Then, for 0 < ε6 < 1, we have

Pr (|ek − êk| > ε6) ≤ 4c6Jk exp
{
−c7n1−2ρε2

6

4J2
k

}
. (7)

Equation (7) is similar to the proof process of Eq (1) and will not be proved here.
Under condition (C6), there exists a constant c5 such that

Pr
(
max
1≤ j≤p

|ek − êk| > c5n−τ
)
≤ Pr

 p⋃
j=1

|ek − êk| > c5n−τ


≤ p Pr
(
|ek − êk| > c5n−τ

)
≤ 4c6 pJk exp

{
−c7c2

5n1−2ρ−2τ

4J2
k

}
.

(8)

With n→ ∞, we have

Pr
(
max
1≤k≤p

|ek − êk| > c5n−τ
)
→ 0

Pr(D ⊆ D̂) ≥ Pr(|ek − êk| > c5n−τ,∀k ∈ D)

≥ Pr
(
max
k∈D
|ek − êk| > c5n−τ

)
≥ 1 − d0 Pr(|ek − êk| > c5n−τ)

≥ 1 − 4c6d0Jk exp
{
−c7c2

5n1−2ρ−2τ

4J2
k

}
.

(9)

Therefore, Pr(D ⊆ D̂)→ 1, n→ ∞.
Thus, the proof of Theorem 3.5 is similar to that of Eq (6), and we have

Pr
{

lim
n→∞

inf
(
min
k∈D

êk −max
k∈Dc

êk

)
≤ 0

}
= 1. (10)

Theorems 3.3 and 3.6 combine Theorems 3.1, 3.2, 3.4 and 3.5, and the proof process is similar to
them, so they will not be proven in detail.
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