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Abstract: Some systems were recently put forth by Nguyen et al. as models for studying the
interaction of long and short waves in dispersive media. These systems were shown to possess
synchronized Jacobi elliptic solutions as well as synchronized solitary wave solutions under certain
constraints, i.e., vector solutions, where the two components are proportional to one another. In this
paper, the exact periodic traveling wave solutions to these systems in general were found to be given
by Jacobi elliptic functions. Moreover, these cnoidal wave solutions are unique. Thus, the explicit
synchronized solutions under some conditions obtained by Nguyen et al. are also indeed unique.
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1. Introduction

The following four systems, termed Schrodinger KdV-KdV, Schrédinger BBM-BBM, Schrodinger
KdV-BBM and Schrédinger BBM-KdV, respectively,
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ov ov, o Fv_ 1ou?
ot ox oOx 0x3 2 Ox
were recently advocated in [1, 2] (see also [3]) as more suitable models for studying the interaction
of long and short waves in dispersive media due to their consistent derivation when compared to the

nonlinear Schrodinger-KdV system [4]:

i, + ., + alul’u = —buv,
(1.5)

b 2
Vit CVVy + Vigx = _E(lul )x-

Here, the function u(x, t) is a complex-valued function, while v(x, 7) is a real-valued function and x, t €
R, where ug, i, ag, ay, b and c are real constants with ug, u;, ag, a;, ¢ > 0. For a detailed discussion on
these systems, we refer our readers to the papers [1-3].

A traveling-wave solution to the above four systems is a vector solution (u(x, 1), v(x, t)) of the form

u(x, t) = €PN f(x —or),  v(x, 1) = gx — o), (1.6)

where f and g are smooth, real-valued functions with speed o > 0 and phase shifts B,w € R.
Substituting the traveling-wave ansatz (1.6) into the four systems and separating the real and imaginary
parts, the following associated systems of ordinary differential equations (ODE) are obtained:

g+ fg +aof” + (uo— o —3ayB> - 2bB)f =0,

(B + u1)fg + BagB + b)f” + (w + Buy — Bo — agB> — bB*)f = 0, (1.7)

ff +gg +cg”+(1-0)g =0,

f'g+fg +aiocf” + (uo +2a;Bw — 3a,B*c — o — 2bB)f’ = 0,
(B+u)fg+ BaiBo +b—ayw)f’ + (w+ Buy + a,B*w — a,B*0 — Bo — bB*)f =0, (1.8)
ff +gg +cog” +(1-0)g =0,
flg+ g +aof” + (uo— o —3ayB* = 2bB)f =0,
(B+ u)fg + BagB + b)f” + (w + Buy — Bo — ayB> — bB*)f =0, (1.9)
ff+88 +cog”+(1-0)g =0,
and
flg+ fg' +arof” + (uo + 2a;Bw — 3a;B*c — o — 2bB)f’ = 0,
(B+u)fg+ BaiBo+b—-aw)f’ + (w+ Buy + aB*w - a;B’o— Bo - sz)f =0, (1.10)
ff +gg +cg”+(1-0)g =0.

AIMS Mathematics Volume 9, Issue 2, 2854-2873.



2856

We refer to semi-trivial solutions as solutions where at least one component is a constant (possibly
zero). Of course, the trivial solution (0, 0) is always a solution. In the case when f is a constant multiple
of g, the vector solution is termed a synchronized solution. Among the traveling-wave solutions,
attention is often given to the solitary-wave and periodic solutions due to the roles they sometimes
play in the evolution equations. Solitary waves are smooth traveling-wave solutions that are symmetric
around a single maximum and rapidly decay to zero away from the maximum while periodic solutions
are self-explanatory. Even though less common, the term solitary waves are also sometimes used to
describe traveling-wave solutions that are symmetric around a single maximum, but that approach
nonzero constants as & — =+oo.

The topic of existence of synchronized traveling-wave solutions to these four systems has been
addressed previously [5]. Notice that when f is a constant multiple of g, i.e., u = Av for some
proportional constant A, the three equations in each of the four associated ODEs (1.7)—(1.10) can
be collapsed into four single equations of the form

P =lsf> +kaf*+kif + ko, (1.11)

under certain constraints. In [5], it was shown that the systems possess synchronized solitary waves
with the usual hyperbolic sech?-profile typical of dispersive equations. In [6], a novel approach was first
employed to establish the existence of periodic traveling-wave solutions for these systems, namely, the
topological degree theory for positive operators that was introduced by Krasnosel’skii [7, 8] and used
in several different models [9—11]. The explicit synchronized periodic solutions u = Av, where v is
given by the Jacobi elliptic function

v(x — o) 1= (&) = Cy + Cy en’(aé + B, m), (1.12)

are then obtained by demanding the coefficients in each of the four cases to satisfy certain constraints.
(A brief description of the Jacobi elliptic functions is recalled below.) Neither approach, however,
guarantees uniqueness of the periodic solutions obtained due to several factors, such as the form of v as
a priori assumption because of (1.11) as well as the nature of the topological degree theory approach.

It is worth it to point out that explicit solitary wave solutions have been found for another system
[12,13], the abcd-system

(1.13)

e+ wy + (Wn)x + AWyxxx — bnxxt =0,
W+ 1y + WWy + Clxxx — dwxxt = 0’

where a, b, ¢ and d are real constants satisfying
+b 1(92 1) +d 1(1 6)>0, a+tb+c+d 1
a ==0"-=), ¢ ==(1- a c =z
2 37 2 - 3’

and 6 € [0, 1]. This system is used to model small-amplitude, long wavelength, gravity waves on the
surface of water [14, 15]. Here, n(x, t) and w(x, t) are real valued functions and x,# € R. However, the
existence of periodic traveling-wave solutions for this system are still not well understood. The only
result that we are aware of is for the special case when a = ¢ = 0 and b = d = 1/6, where the solutions
are given in term of the Jacobi elliptic cnoidal function [10].

The manuscript is organized as follows. In Section 2, some facts about the Jacobi elliptic functions
are reviewed and the results are summarized. In Section 3, the explicit cnoidal solutions to the four
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systems are established, and how these solutions limit to the solitary-wave solutions are analyzed.
Section 4 is devoted to discussion of the obtained results. To preserve the self-completeness without
affecting the flow of the paper, some tedious formulae and expressions are delegated to the Appendix.

2. Preliminaries and statement of results

For the readers’ convinience, some notions of the Jacobi elliptic functions are briefly recalled

here. Let .
1
v:f —dt, forO<m<1,
0 V1 -—m?sin’t

then v = F(¢, m) or, equivalently, ¢ = F~'(v,m) = am(v, m), which is the Jacobi amplitude. The two
basic Jacobi elliptic functions cn(v, m) and sn(v, m) are defined as

sn(v,m) = sin(¢) = sin (F~'(v,m)) and  cn(v,m) = cos(¢) = cos (F~' (v, m)),

where m is referred to as the Jacobi elliptic modulus. These functions are generalizations of the
trigonometric and hyperbolic functions, which satisfy

sn(v, 0) = sin(v), cn(v, 0) = cos(v),
cn(v, 1) = sech(v), sn(v, 1) = tanh(v).

We recall the following relations between these functions:

sn?(A€,m) = 1 — cn(1€, m),
dn*(A&, m) = 1 — m® + m? cn*(A&, m),

4 cn(Ag, m) = —Asn(A¢, m) dn(A€, m),

dé
% sn(A¢, m) = Aen(A¢, m) dn(Ag, m),
dif dn(A&,m) = —m® A cn(A€, m) sn(A€, m).

In this manuscript, the existence of periodic traveling-wave solutions to the above four associated ODE
systems (1.7)—(1.10) in general are analyzed. The periodic traveling-wave solutions sought here are
given by

f© = dyen’(g,m) and @) = ) hyen’ (g, m), 2.1
r=0 r=0

where d,, h, € R, 4 > 0and 0 < m < 1. Using the above relations, the following is revealed:

% cn” = —rdcn”!sndn,

d2

i cn” = —r[(r + Dm* en’™? +r(1 = 2m*) en” +(r — 1)(m* — 1) en’ 2], (2.2)
d3

& cn” = r2 sndn [(r + D(r + 2)m* en™' +77(1 = 2m*) en’™! +(r = 1)(r — 2)(m* — 1)en’ ™ |,
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where the argument (A&, m) has been dropped for clarity reasons. Notice that each of the above four
associated ODE systems (1.7)—(1.10) involves three equations. Plugging (2.2) into these systems, the
following generic form is obtained:

2n—1

sn(AE, m) dn(Ag, m) ) ki (A, m) = 0,
q=0

2n
> kg enf(ag,m) =0, (2.3)
q=0

2n—-1

sn(AE, m) dn(1¢,m) > ks g cn(A, m) = 0,
q=0

where the subscripts j and ¢ in the coefficient k;, indicate the equation and the power on the cnoidal
function cn, respectively. Notice that as (2.3) must hold true for all (1&, m), it must be the case that
kj, = 0 for each j and q. Moreover, from the third equation in all four systems, the sum (ff” + gg’)
contributes the highest order term of cn?~!. While the next highest order term is from g””’, which
is cn™*!, by balancing these highest order terms, it reveals that when n > 3, the highest order term is

k3o cn® ! = —nA(d® + hY) en® !

Since A,n > 0, requiring k3,,-; = O implies that d, = h, = 0, holding true for all n > 3. Thus, the
periodic traveling-wave ansatz (2.1) reduces to

f(&) =dy + dycn(A€, m) + dy cn*(Aé,m)  and  g(&) = ho + hy cn(A&, m) + hy cn®(A€, m).  (2.4)

Next, by demanding all the coefficients k;, = 0, a set of 13 equations is obtained for each of the
four systems involving 11 unknowns d;, h;, B, 4, w,0 and m with i = 0, 1,2 (Eqs (A1)—(A4)). For the
Schrédinger KdV-KdV and Schrédinger BBM-BBM, the first and last equations in (1.7) and (1.8),
respectively, further yield d; = h; = 0. In particular, the only nontrivial periodic solutions for the
systems (1.1) and (1.2) are of the form

[@) =do+dycn*(A,m) and  g(€) = ho + hy cn*(A€, m). (2.5)

Under these conditions, the sets of 13 equations involving 11 unknowns (Eqs (A1) and (A2)) reduce
to sets of seven equations with nine unknowns. Similarly, for the Schrodinger KdV-BBM system and
the Schrodinger BBM-KdV sytem, the first and last equations in (1.9) and (1.10), respectively, reveal
that #; = 0. Additionally, when substituting #; = 0 into (A3) and (A4), the coefficients k3, and k3 in
both systems require that either d; = 0 or dy = d, = 0. When d; = h; = 0, we have solutions of the
form (2.5), where the sets of 13 equations involving 11 unkowns (Eqs (A3) and (A4)) reduce to seven
equations with nine unknowns. When dy = d, = h; = 0, we have that the only nontrivial periodic
solutions for the systems (1.3) and (1.4) are of the form

f@ =dien(ag,m) and  g(é) = ho + hy cn’(A€, m),

in which case the sets of 13 equations involving 11 unknowns (Egs (A3) and (A4)) reduce to sets of
six equations with eight unknowns.
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The exact, explicit periodic traveling-wave solutions to the four systems (1.1)—(1.4) could then be
established by solving those reduced nonlinear systems with the help of the software Maple. As there
are two degrees of freedom, in principle any pair of two unknowns can be chosen as “free parameters”
so long as solutions can be found consistently. In most physical situations, though, it is more desirable
to think of the wave speed o and elliptic modulus m as “independent” parameters; that is, the cnoidal
solutions are found for fixed elliptic modulus m € [0, 1] and a certain range of wave speed o > 0.
Indeed, for some cases, it is necessary to assume this condition to have solutions. For the Schrodinger
KdV-KdV system (1.1), these nontrivial periodic traveling-wave solutions are established for each
wave speed o > 0 with 2¢ > gy > 0, while for the Schrodinger BBM-BBM system (1.2), o > 0 with
2¢ > a; > 0. For the Schrodinger KdV-BBM (1.3), the range of wave speed is o > 32 > 0, while
for the Schrodinger BBM-KdV (1.4),0 < 0 < i—f Moreover, for all four systems, the coefficients d,
and &, are constant multiples of each other with the ratios being controlled by the coefficients of the
third derivatives in the KdV-KdV and BBM-BBM cases, as well as the wave speed in the KdV-BBM
and BBM-KdV cases. Precisely, their ratio is an expression of only @, and ¢ in the KdV-KdV case; a;
and ¢ in the BBM-BBM case; ag, ¢ and o in the KdV-BBM case; a;, ¢ and o in the BBM-KdV case.

3. Exact Jacobi elliptic solutions

For conciseness, let
R=+ Vm* —m? + 1, (3.1

thenR e Rasm € [0, 1].

3.1. Schrodinger KdV-KdV

Setting all k;, = 0 gives us the following set of parameters, whenever 2¢ > ay > 0:

_ aopi—b
B = 2a9
di=h =0,

(m*=2m*R—m?+R+1) N2 c=ag(3 ap*p1>~2 ap bu1—4 ap po—b*+4 )

do = 8 vaoR2(ag—0) J
d, = 3 \/20—a0(3a02y12—2a0 by1—4a0;40—b2+4a0)m2
2= 8 vaoR(ag—c) ’
/’L() = WZ(J_C‘) (6 61031712/,[12 -3 6103/112R + 6002C/112R -3 003/,112 - 4a02bm2y1
+2ap’bu; R — 4 agbeuy R + 2 ag*buy — 8 ap’>m*uy + 4 ap’uo R — 8 ag’Ro- — 2 ap b*m?
+agb’R — 8aycuy R + 8agcRo — 2 b*cR + 8 ag*m? + 4 ap*uy + 4 ap’R + ag b* — 4a02),
h, = 3 (3 ao*ur®~2ag b4 ag po—b>+4 ap)m*
5 =

8 R(ap—c) >

/l — 3a02u12—2a0b,u1—4a0,u0—b2+4a0
16 agpR (ap—c) ’

w = —(aoﬂlz—ﬂlb—ﬂo+0)ﬂ1,
o >0,

me[0,1].

AIMS Mathematics Volume 9, Issue 2, 2854-2873.



2860

Thus, explicit periodic traveling-wave solutions to the Schrodinger KAV-KdV system (u(x, t), v(x, 1)) =
(e@1eB=D f(x — ot), g(x — ot)), given in term of the Jacobi cnoidal function

(&) =do+dryen®(A¢,m) and  g(€) = ho + hy cn®(A€, m)

are established. Notice that Z—z =, /26“—_(’“0 and that as m approaches one, R limits to +1. Whenm = R =

1, the above coefficients simplify to dy = 0 and

Fo_ 1 2.2 2 12 A2
ho = Y (3aoc,ul 2apbcpy + 4ay — 4agcpy — b c — 4ago + 4a0c0'),
a _ 3 m(3a02ﬂ12—2a0bﬂ1—4aoﬂ0—b2+4a0)

2= 8 Vao(ag—c) ’
i;L _ 3(3a02/112—2a0b/41—4a0y0—b2+4a0)

2= 8 (ag—c) ’
;l _ 3a02u12—2aob,u1—4a0yo—b2+4a0

- 16 ag (ap—c) >

= - 2y b -+
W= —\aoM"~ — M Ho T O JH1,

from which one obtains the following solitary-wave solution to system (1.1):

u(x,t) = ei“”eiB(x_"t)f(x —of) and v(x,f) = hy £ ./ o f(x — o),
2c — ap

4a(2)+3a(%cy%—2aobcy1 —4aoc,u0—bzc

, one has Ay = 0, and the

where f(¢) = d, sech?(1¢). Furthermore, when o = Ta0@0=0)
synchronized solitary-wave solution established in [5] is recovered.
When m = —R = 1, the above coefficients simplify to

- V2 c—ao(3 aoz,ulz—Z apbui—4ap yo—b2+4 ao)

do = 4 ao(ar—o) ’
}_l _ 3a3u%—2a%b,u| —4ag,uo —uob2—3u(2)cy%+2uobcp 1 +4a()c;11()+b2c'+4aotr(ao—c)
0 — 4ag (ap—c) ’
(_l _ 3 m(:% a02y12—2a0 bﬂ1—4aoy0—b2+4a0)
27 8 Vao(ao—c) ’
ITL _ 3 (3 aozylz—z ap b,ul —4ao,u()—b2+4 ag)
2= 8 (ap—0) ’
/_l _ _3a02y12—2a0by1—4a0,u0—b2+4ao
- 16 ag (agp—c) ’
— 2
w=- (aom — b —po+ 0)#1,

and one arrives at the solitary-wave solution

u(x, 1) = PG + Fx— o] and  v(uf) =ho+ | 2ca‘)a f(x = ot),
— o

where f(£) = d, sech’(1¢).
Aside from the above nontrivial solutions, system (1.1) also possessess the following trivial and
semi-trivial solutions:

)

ulx,) =0 and v(x,1) = h,

for any hy € R.
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2)

u(x, 1) = e B0g,  and  v(x,t) = hy,

—ayB3—bB%+Bhy+Buo+h
where o = L2 OTH0TEL | for any B, dy, hy, w € R.

B
(3)
1 h
u(x,n) =0 and v(x,t)=—=hy+ = Zho—1+ hy en® (A(x — o), m),
3 3 m?
where A = ﬁ,foranyh2,0'> Oandme[0,1].

3.2. Schrodinger BBM-BBM

Setting all k;, = O gives us the following, whenever 2¢ > a; > 0 and R is as defined in (3.1):

— __dipopu=b
Zala(a1y12+l) ?

dy=h =0,
Va; Qc=ap)(m*+2 m*R-m*—R+1
dp = — G 3 . )(46113#140' —dabudo — aPuin® — 4atuopulPo + 8a o
Saijcr(a]y12+l) (a;—c)
+2a; buyul —4a; bu, o’—4a,,u()0'+4a]0'—b2),

—3m? -
dy = 2 VESD (405000 - 4abuo - atpoin® - 4atuo o + 8a il
8a1Rrr(a1/11 +1) (aj—c)

+2a; bugu; —4a; b,u10'—4a1,u()0'+4a10'—b2),

hy = — (8 arfitro? = 8alcu*Ro? + 8af*m*uto — 4a, i *Ro — 4au o
8aiRo (aj m2+1) (a;—c)

—8abm*uPo —4a’buPRo + 8a;*beu*Ro + 4abuPo — 2 am?ug’

—8amuo p’o — aPuo’ R — 4a’po u*Ro + 16 a iy *Ro + 2 a*cpao’ur *R

+8a;2cuo u1’Ro — 16 a*cui*Ro? + 16 a>mPu>o + aPuo’ > + 4 auo pi’o — 8 aui’Ro
—8au’o +4a*bmPug g — 8a*bm*u; o + 2 a;*bug uy R — 4 a;?buy Ro- — 4 a; bepo g R
+8a; bepy Ro-—2a® buguy +4a’buy o —8a,*>m*uyo —4a;*uyRo + 8a,*>Ro?* + 8a; cug Ro
—8a;cRo?* + 8a*m’o +4a,*uyo —4a,?Ro —2a; b*m? —a; bR + 2b*cR — 4 a0 + a; bz),

-3 (4a13;1140'—4a12hy130‘—a12,u02/112—4a12y0y12(r+8a12y12(r+2a1 bp0ﬂ1—4a1 b,ul a'—4a1;10 o+da; (7'—172)m2

h, =
2 8Ro'(a1,ulz+l)2(a1—c) ’
1= daputo-4albudo—a poi -4 a po pto+8 a2 lo+2 ap buo i —4a; bpy o—4 aj po o+4ay o—b?
~16a1Ro>(aj—c)(as i >+1)’ ’
_ (e p*o—bui—po+o)u
W= ajy pu2+1 ’
o >0,
me[0,1].

Thus, explicit periodic traveling-wave solutions to the Schrodinger BBM-BBM system
(u(x, 1), v(x, 1)) = (B0 f(x — ot), g(x — 1)), given in term of the Jacobi cnoidal function

f©) =do+dycn®(Aé,m) and  g(€) = ho + hy cn’*(A€, m)
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are established. Notice that ;’—; = 26“_‘(11 . When m = R = 1, the above coeflicients simplify to
dy = —YC (4000 — da’buio - aPpen® - 4auo o +8a u’s

4a10'(a1,ulz+1)2(a1—c)

+2a; bugu; —4a;buyo—-4a,upo +4a;0 - bz),

= e (4arwio - 4abuio - aPuon® - 4auo o +8a

+2a; bugu; —4a;buyoc—-4a,upo +4a;0 - bz),

ho = 4ala(a1,,.i+1)2(a,_c> (4a/'mto? —4afeuo? - 4albuio + 4abeu’o — a o’
—4appo o +8asr o’ + afcu i +4atcpo pito - 8ateu*o? + 2a, bug

~4a;?buy o —2a; beugpy +4a; bepyo —4a*ugo +4a’0? +4a; cugo — 4a; co?

—a; b* + bzc),
~ -3 (4a/3p14(r—4alszl30'—a12/102/112—4a/2yo/1120'+8 a/2p120'+2a1 buo p1—4a; buy o—4aj po oc+4a; o-—bz)

h2 - 80'(a1u12+1)2(a1—c) ’
1= 4apduto-4a;’buido—ar’po’ui> =4 ar’uo i >o+8 ar>ui 2o +2 a; buo pi—4 a buy o—4 a; po o+4 a; o=b?
—16a;0? (a1—c)(a]/112+1)2 ’
w = (a1 pPo—bui—po+a )
ajypu2+1 ’
o >0,

from which one obtains the following solitary-wave solution to system (1.2):

u(x,1) = €PNy + fix—on]  and  v(x D) =g+ /%ﬂx — o),
Cc—da;

where f(¢) = d> sech’(1€).
When m = —R = 1, the above coefficients simplify to dy, = 0 and

d, = —3NuQcza) (4 aruito —4a*budo — atuy’un® — 4atuo o + 8atulo

Sala'(a1u12+1)2(a]—c)
+2a; bugp, —4a; b,uIO'—4a1,uoa'+4a10'—b2),
hy = L ( - 8a uto? + 8atcuto? + 8atuto — 8a*beu o — 16 au o’
—Sala'(a]/.l]2+l) (a;—=c)
—2a;*cup* i — 8 acuo o + 16 a’cuio? + 16 a*ui>o + 4 a; beuopy — 8 ay beuyo

—8a;?0? —8a; cupo +8a; co? + 8a;*o — 2b2c),

- 3 (4(113/,1140'—4a12b/4130’—a12/,t02/112—4a12,uo;4120'+8 a;z,u120'+2 aybuopui—4a; by o—4ayuoo+4da; O'—bz)

h, =
2 80'(01/112+1)2(ll1—0) ’
1= 4dapdudto-4a;’buido—a’po’pi’—4 ar’uo i >o+8 ar > 2o+2a; buo pi—4 a; buy o—4 a; po o+4a; o—b?
164,02 (al—c)(a1y12+l)2 ’
2
aj P o=buy—po+o )
w= _( ) ,

arpu>+1

and one arrives at the solitary-wave solution

u(x,t) = &P f(x — o) and  v(x,f) =ho + IZL f(x— o),
C—da;
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where f(¢) = d, sech?(A¢). Furthermore, when B = % satisfies the following equation:

(a%c,uo,ul - albc)B2 + (2abcuy + 2a,cuy — Zaiu% - Za%)B + (a%,uo,ul + bc —a\b —acupuy) =0,

one has iy = 0, and the synchronized solitary-wave solution established in [5] is recovered.
Aside from the above nontrivial solutions, system (1.2) also possessess the following trivial and
semi-trivial solutions:

(1)
u(x,t) =0 and v(x,1) = hg,

for any hy € R.
(2)

u(x, 1) = e "dy and  v(x,1) = hy,

B2w—bB%+Bhy+Buo+hou +
where o = 422 OIoROTRORITR for any B, dy, hy, w € R.

Ba1 B2+1)
(3)
2 1 hy )
u(x,t)=0 and v(x,H)=-=h+-—+0—1+hcn” (Ax - ot),m),
3 3 m?
where A = 125’;120, for any h,,o00 >0and m € [0, 1].

3.3. Schrodinger KdV-BBM
Setting all k;, = O gives us the following set of parameters, with R as defined in (3.1):

_ aom—b
B = Qa9 °
di=h =0,
dy = (m4—2m2R—m2+R+l)\/2 ca'—a0(3 a02p12—2a0 bp1—4a0,ug—b2+4a0)

0= 8 ao R2(ag—co) ’
d, = 3 V200'7a0(3a02;11272a0bp174a0/407b2+4a0)m2

2= 8 VaoR(ap—co) ’

— 1 2 2 3..2,,.2 3,2 3,2 2 2

]’lo = m(6ao CUq R0'+6a0 m-u —3a0 M1 R—4a0bc;11R0'—3a0 M1 —4(10 bm M1

+2 ap*bu; R — 8 ay cug Ro- + 8 ag cRo? — 2 b?cRo + 2 ap*buy — 8 ap*m’ug + 4 ag*uo R
—8ay’Ro — 2 ayb*m?* + ap b*R + 8 ap’m?* + 4 ap’y + 4 ap’R + agb> — 4 aoz),

_ 3 (3 a()zm 2.2 ap b;ll —4ay /J()—b2+4 a())mz

hy = 8R(ag—co) ’
/l _ 3a02,u12—2a0 b/.l1—4ao;10—b2+4a0
- 16agR (ag—co) ’

w= _(aoﬂlz_ﬂlb_ﬂ0+0-)ﬂ1’
o> 32,

me[0,1].

Thus, explicit periodic traveling-wave solutions to the Schrodinger KAV-BBM system (u(x, t), v(x, t)) =
(e“eBE=D £(x — ot), g(x — 1)), given in term of the Jacobi cnoidal function

f©) =do+dycn®(Aé,m) and  g(€) = ho + hy cn’(A€, m)
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are established. Notice that Z—z = ZC(‘;‘iao. When m = R = 1, the above coeflicients simplify to
dyp = 0 and

a _ 342 CO’—a()(3 a()2y12—2a0 by1—4a0,uo—b2+4a())

2= 8 vaog(ap—co) ’

T 2.2 2 2 2 2

hy = m(6a0 cuyco —4apbcuy o —8agcugo +8agco” —2bco—8ay o+ 8ay ),

~ 3(3 a()z,ulz—zao by1—4agu0—b2+4a0)

hz = 5

8(agp—co)

2 _ J3 a02y1272a0 by174ag,uofb2+4ao

16ay (agp—co) ’

w=—(app> = b —po + ),

ap
O->2c’

from which one obtains the following solitary-wave solution to system (1.3):

u(x,t) = e f(x —ot)  and  v(x,0) = ho + | /L fx—o0),
2co — ay

~ ~ ~ 2 _
where (&) = d, sechz(/lg). Furthermore, when o satisfies the condition %:%B“O = "C—;l, one has

ho = 0, and the synchronized solitary-wave solution established in [5] is recovered.
When m = —R = 1, the above coefficients simplify to

3 m(3 aozplz—z ap b,u1—4a0,uo—b2+4a0)

do = 4 ag(ag—co) )
a _ 3 \/2c0'—a0(3a02/112—2a0 b,u1—4ao/10—b2+4ag)
2= 8 Vao(co—ao) ’
hy = ——— (3 ap*cui’oc — 3a’ > —2apb +2ay’bu, — 4 +4 2
0 = Zayco—ap \° G0 CH1I" 0T ao” do bcly 0 Ao Ol o Clo O apco
—b*co + 4 ap’uy — 4ap*o + ag bz),
}_l _ 3(3a02y12—2a0bﬂ1—4agy0—b2+4ao)
2 = 8(co—ap) ’
/_l _ 3ap?u12-2 ag buy—4 ag puo—b*+4 ay
- 16ag (co—agp) ’
— 2
w——@wl—mb—m+0Mb
4
o > 3¢

and one arrives at the solitary-wave solution

u(x,t) = e“eBNdy + f(x—o)] and  v(x,1) = ho £ | /Lf(x — o),
2co — ay

where f(£) = d, sech’(1¢).
Aside from the above nontrivial solutions, system (1.3) also possessess the following trivial and
semi-trivial solutions:

(1)
ulx,t) =0 and v(x,1) = ho,

for any hy € R.
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2)

u(x, t) — eiwleiB(x—(rt)dO and v(x, t) — hO’

a)—uoBS—sz+B/’L0+B,u0+ho/J]
B

where o = , for any B, dy, hy, w € R.

3)

u(x, 1) = e e®Nd cn (A(x — ot),m) and  v(x, 1) = ho + hy cn’ (A(x — ot), m),

9a02c'm2;112—6 ap bcmz,u| —12 ag chy m2-12 ap cmz;zo—3 brem?+2 a02m2+6 apchy , h
y Ny > 0

for any m € [0, 1], where hy =

12 ag cm?

such that 9ay’m?u,> — 6agbm?u; — 4aphom? — 12a9m*uy — 36*m* + 2aph, + 12a,m* < 0;

\/—6 aphym? (9 ap®m?u12—6 ag b’ —4 ag hy m2—12 ag m2uy—-3 b>m%+2 ag hy+12 ay mz) ag 1—b
dl = = 6 ag m? ? B = 2ap ° =
—u1 (6.ag cur®—6 bepy—6 cuo+ao) _ ho _

= , A= Taor? and o = ¢-.

4)
2 1 hy

u(x,t) =0 and v(x, 1) = -3 hy + 32 + 0 — 1+ hyen® (A(x — o1), m),

where A = 12;’#, for any h,,o0 >0andm e [0, 1].

3.4. Schrodinger BBM-KdV

Setting all k;, = 0 gives us the following set of parameters, with R as defined in (3.1):

aj po p1—b

- 2a10'(a/;412+1)’
dy=h; =0,
_ V2cmajo(m*-2m*R-m>+R+1) 304 42003 2.2 2 4 2 2 2.2
dop = ST yaro (e e Y o0 (401 uito —4a;buyio —atpo T —4artpo o+ 8ar o
+2a; bugy —4a1b,u10'—4a1/100'+4a10'—b2),
_ 3m?V2c=a;o 3,4, 20,3 22,2 2 2 2,2
d; = SRW(a,m2+1)2(a,a—c)(4a1 uito —4arbuyo —artpo T —4artpo o+ 8a o
+2a; bug —4a1bu1(T—4a1u00'+4a10'—b2),
hy = -1 ( - 8a*u*Ro?® + 8a*m*u*o? + 4a,*u*Ro? + 8a>cu *Ro?
SaIRU(a1y12+l) (aj o—=c)

~da*uto? - 8alrbm*uPo? + 4a’buPRo? + 4a’budo? - 2a’mPuy’ulo

=8 ar’mug >0 + arpo’i*o R+ 4 a’puo i *Ro? — 16 a* i *Ro = 8 adbep*Ro
+16a,’m?u’o? + augu’o + 4auo 2o + 8aPuRo? — 2 acug’ i *R

—8a;’cug 1*Ro + 16 a;*cu*Ro? — 8 au’o? + 4 a’bmPuyul o — 8 a*bm*u, o
—2a;*buy uRo + 4 a;*buy Ro? — 8 a*>m?uy o + 4a,°ug Ro? — 8a,’?Ro> + 4a; beug iy R
—8aibcuy Ro + 8 a;>m*c? + 4a*uyo? + 4a;*Ro? — 2a,b*m*o + a|b*Ro — 8 a,cug Ro
+8a; cRo? — 4 a;*0? + a|b*o - ZbZCR),
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_ 3 (4a/3,ul40'—4alzby|3(r—a/2;102/112—4a12y0p120'+8 alz,u120'+2a/ bug -4 arbuy oc—4ajpg o+ a; a'—bz)m2

h
2 8R(a1/112+1)2(a1 o—c) ’

1= 4apduto—4ar’buido—ar’uo’ i’ =4 ar’uo pilo+8 aru 2o +2 aj buo =4 arbpy o4 aypo o+4 a; o—b?
16a; Ra'(a1y12+l)2(a1 o—c) ’

w = (a1 pPo—bui—po+o)u

- ajyp?+1 ’
o< %,
a
me[0,1].

Thus, explicit periodic traveling-wave solutions to the Schrodinger BBM-KdV system
(u(x, 1), v(x,1)) = (“"eB*D f(x — ot), g(x — o°t)), given in term of the Jacobi cnoidal function

f©) =do+dycn®(A,m) and  g(€) = ho + hy cn’(A€, m)

are established. Notice that Z—z = Jzss- Whenm = R = 1, the above coefficients simplify to
dp = 0 and

7 _ 3VZc—aro 3,4 A 2hy e — 20 202 A2 2 2,2

d; = : ala(a1u12+1)2(a1(r—c)(4a] wito —4a; buyo —artpo T —4artpo o+ 8a o

+2a; bug —4a1b,u]0'—4a1,u()0'+4a10'—b2),

hy = -1 (— 8a o +8afuto? + 8acuto? — 16a,’u* 0 — 8a,? beu’o
8a10'(a/;112+1) (aj o—c)
+16a,2u%0? = 2a;%cup’u? — 8a;*cup pi>o + 16 a;*cui >0 — 8 a* o + 4a; beuy
—8a; bcuy o+ 8a;?0? — 8a; cup o + 8a; co? — 2b20),

~ 3 (4a13;1140'—4a;zby13o'—a12/102/412—4a12p0u120'+8a12p120'+2a1 buo 1 —4 a1buy c—4apgo+da; o'—bz)

h2 - 8(a1/112+1)2(a1 o—c) ’
1= daduto-4a;’buido—ar’po’ui> =4 ar’uo wilo+8 arlu 2o +2 a; buo pi—4 aibuy o-4 aypo o+4 a; o=b?
16a1(r(a1/112+1)2(a1 o—c) ’
__ (apPo-bui—poto)u
- aj pu2+1 ’
o< %,

ap

from which one obtains the following solitary-wave solution to system (1.4):

u(x,t) = e f(x —ot)  and  v(x,0) = ho + /L fx—o0),
2c — a0

Fren _ T 2.3 _ __ arpom—b : e
where f(&) = d, sech”(A€). Furthermore, when B = Toar (a2 satisfies the condition

(Za%bc,uf + 2a,bc — Za? c,uo/ﬁ - Za%cuo,ul)B3 + (—4afbc,u? - 4a%cyou% — da bep; — 4ajcuy)B?
+ (Zaiuo,u? + Zafc,uou:f + Zaf,uo,ul + 2a cuop; — Za%b,u% - 2a1b - 2a1bc,u% —2bc)B
+ (2arbuopty — ajpgu; — b*) =0,

one has 7 = 0, and the synchronized solitary-wave solution established in [5] is recovered.
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When m = —R = 1, the above coefficients simplify to

dy = Vicaio dalPuto —4a*bulo - atugiu > —4a;? 20+ 8a,’u o
0 4W(01#12+1)2wm_c)( 1 1"bH 1"Ho M 1"Ho M1 1H

+2a1b,u0,ul —4alb/110'—46l]/100'+46110'—bz),
8 W(u1y12+1) (aj o—=c)
+2a; bug —4a1b,ul<7—4a1,u()0'+4a10—b2),

(4 arpito —4abu’o — aue* i - 4atuo o + 8a o

o = 4“1‘7(‘1/#121“)2(541 O'—C)(4 ai'mio’ —dapcuto? —darbu’c? - aPpl o
—4aruo o’ + 8a’w*o? + 4ay* bep o + aepo’ i + dap* cpo o
—8afcui’o* + 2a,> buo py o —4atbuy 0 —4afug o +4aro? — 2a; bepo
+4a; bepy o — a b*o + 4a; ey o — 4a; co? + bZC),

~ -3 (41113;4140'—4a12by130'—a12,u02;112—4a12/,t0/1120'+8 a12y120'+2a1 buo =4 arbuy o—4apgo+4a; 0'—b2)

h2 - 8(a1y12+1)2(u1 o—c) ’
1= daputo-4a;2budo—a > poui>—4 ar’uo pi>o+8 ar 2o +2 aj buo pi—4 aibuy o—4 aypo o+4 a; o-b?
—16a10'(a1/112+1)2(a1 o—c) ’
__(ap*o-bui—pota)u
- arpu>+1 ’
o<

ap’

and one arrives at the solitary-wave solution

u(x,t) = e“'e®Ndy + f(x —o)]  and  v(x, 1) = ho £ /£ f(x—ot),
2c —a;o

where f(£) = d> sech?(1¢).
Aside from the above nontrivial solutions, system (1.4) also possessess the following trivial and
semi-trivial solutions:

(1)
u(lx,) =0 and v(x,1) = ho,

for any hy € R.

() o
u(x, 1) = e“eBq, and  w(x,1) = hy,
_ alewbez+Bh0+Bp0+hop1+w
where o = B Br1) , for any B, dy, hy, w € R.
(3) o
u(x, 1) = g cn (A(x — ot),m) and  v(x,1) = ho + hy cn? (A(x — ot), m),
where

1

dy =+
! 6 cm?*(ayd + 1)

(3 chym® (8 a;*chy m2u14 -4 a126h2u14 - 24 a12cm2u14 + a]zmz,uoz,ul2

+ 24 a, bcm2p13 + 16 a; ch; mz,ul2 + 24 a, cmz,uo,ul2 —-2ay; bmz,uoul - 8ay Chg/le

12
—48 a; cmz,u]2 + 24 bcmz,ul +b°m* + 8chym®* + 24 cmz,uo —4ch, - 24 sz)) ;
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-1
hy = 24 3h 2 4_12 3h 4_144 20 2 4
0 24 (a12ﬂ14 + 201/112 + 1)a1 cm2( ap; chy m a; chy iy a;“cem-uy

+ a13m2,u02,u12 + 24 a;zbcm2u13 + 48 a;*ch, mz,ul2 + 24 alzcmz,uoulz - 2a12bm2u0,u1
-24 Cl]ZChglLtlz — 288 a; czmz,u]2 + 24 a, bcm2u1 +a; b*m* +24a;ch,m® + 24 a, cmz,uo
~ 124, chy - 144.m?);

any h, > 0 such that 8 a;>ch, m*u,* — 4 a;*chopn® — 24 a>em®uy* + a>m?uy’u ® + 24 a; bem?u,® +
16 a; chy m*ui* + 24 a; cmPuo > — 2a; bm*ugpuy — 8a; chopy? — 48 a; em*ui® + 24 bem*u, +

P’ + 8chym® + 24 em’py — dchy = 24em’ > 0; B = UL ) = (Gt w =
—0aj ¢ 2 a a —0cC
lll( 6a; é;ll;z:_bly)l; 1H0—6 ); o= i_[c; and any m € [0,1].
4)
2 1 hy ,
u(x,t)=0 and v(x,H)=—-=hy+=-—=+0—-1+hycen” (Ax - ot),m),

3 3 m?

where A = 12f#,foranyhz,a'>Oandme [0,1].

4. Conclusions

The periodic traveling wave solutions for the four systems (1.1)—(1.4) were found. Our results
showed that all periodic solutions to the four systems were given by (1.6) and (2.4). These cnoidal
solutions were limited to the solitary-wave solutions when m — 1. This was expected since it is well
known that the ODE equation

fP=laf’ +kf>+kf+k

has a unique solitary-wave solution as well as a periodic cnoidal solution, and that the periodic cnoidal
solution limits to the solitary-wave solution when the Jacobi elliptic modulus m approaches one.
Consequently, we obtained solitary-wave solutions for all four systems as the byproducts. All of
the synchronized solitary-wave solutions established in [5] are special cases of those obtained here.
Another direct consequence was that the synchronized periodic solutions previously obtained in [6]
are indeed unique, a fact that wasn’t established therein. Since those synchronized periodic solutions
approach the synchronized solitary-wave solutions obtained in [5], it would be interesting to know
whether these synchronized solitary-wave solutions are also indeed unique. This question was not
pursued here.

Figure 1 below shows some graphs for the cnoidal wave solutions for the four systems (1.1)—(1.4).
Recall that a traveling-wave solution to the above four systems is a vector solution (u(x, 1), v(x, 1)) of
the form

u(x, t) = B f(x — o), v(x, 1) = g(x — o),

where f and g are smooth, real-valued functions with speed oo > 0 and phase shifts B,w € R. For
ease of graphing, the imaginary terms in u(x, t) were supressed, as they define a phase shift and, thus,
a rotation of the real function f, which is graphed below. For all four vector solutions, m = % and
R = g were chosen, while the remaining parameters were then fixed to ensure real solutions and are
listed here; KAV-KdV: o0 =2, ag = 1, b=-1, ¢ =3, gy =1, yy = ;; BBM-BBM: 0 = 1, a; =
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Lb:—],c:%,lu():l,,ul:1;KdV—BBMZO':%, ao:],b:—l,c:%,/.l():l,/.ll:%;
BBM-KdV:o =1 a, =1, b=-1, ¢c = 3, to = 1, u; = ;. The graphs are now listed below, with
2 2 grap

u(x, t) in blue and v(x, f) in green.

1
1

(a) Cnoidal solution for the KdV-KdV (b) Cnoidal solution for the BBM-BBM
system. system.

0.4+

0 .2—_

T n_g.:
0.4+
-6

(¢) Cnoidal solution for the KdV-BBM (d) Cnoidal solution for the BBM-KdV

system. system.

Figure 1. Graphs of some cnoidal solutions for the four systems.
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Appendix
For the Schrodinger KAV-KdV system (1.1), the k;, in (2.3) are:

kiz=42%ayd, m* — %dg h;,

kio = Ragdyn? - Ldyhy - L do .

kig=dragB* =8 agdom* + 3dy bB+ $dyag > — Ydohy — Y dihy — S dohg
—3dopo+1doo,

kio=1Bagd; — Y A*apd;m?* + 1 Bbd; + ; P agd; — dohy — tdihg— §djpio + £ d; 0,

ky4 = —18 Bayd, 1> m* — 6 bdy > m*> + Bd, h; + d; hy 1,

ky3 = =6 Bagd; > m* — 2bd; > m* + Bd; hy + Bdy hy + d; hy py + do hy uy,

kyy, = —B*apd, + 24 Bayd, A* m* — B*bd, — 12 Bayd, 2> + 8 bdy, A* m* + Bdy hy + Bd; h;
+ Bdy hy + Bds ptg — Bdy o — 4 bdy A2 + dp hy gty + dy hy sy + do o gty + dy , (A1)

ky, = —B%apd; + 6 Bayd; A*> m* — B*bd; — 3 Bayd; 2> + 2bd; > m* + Bdyh,
+ Bd; hy+ Bd; g — Bd; o — bd; 2> +dohy g +d; hopy + d; w,

kyo = —B*apdy — 6 Bayd, 2> m* — B*bd, + 6 Bayd; 2> — 2 bd, > m* + Bdy hy
+ Bdypo — Bdyo + 2 bd, A% + dyhyuy + dy w,

kiz = 5 do’ + L hy? — 2 chm?,

kay = —L 2 chym?+ Lddy+ L hy b,

k3,1 :—lAZChg-i-z/lZCthz-l-ld0d2+thhg—Lh20'+Ld]2+lh12+Lh2,
3 3 12 12 12 24 24 12

k3o = f—zﬂzchlm2+ 21—4d0d1 + 2‘_4}10}11 - 21—4h10-— 21—4/12ch1 + ihl-
For the Schrodinger BBM-BBM system (1.2), the &, in (2.3) are:

kizg=—-3dyhy + 422 a;dym*o,

kip=-1dihy—1dh; + % a;dymPo,

kii=32Bbdy—tdohy—tdihj—Ydyhg—tdopo+3dro+ 3% a;dro + Brajdy o
—2Ba;dyw -3 22 a;dy mPo,

kio=1Bbd;—tdoh;— tdihg— tdipo+¢dio+ 3 Ba;dio—3Bajdw (A2)
- %/lzaldjm20'+%/12a1d10',

ko4 = =18 Ba; dy > m*c + 6 a; dy > m*w — 6 bdy 2> m* + Bd, hy + dy hy py,

kyz = =6 Ba; d; > m*o +2a;d; > m*w — 2bd; > m?* + Bd; hy + Bd, h;
+dihypy + dy by,
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kyr = 6 Ba;dy > m*o + 6 (—B(—m2 + 1)+Bm2)aj d2/120'—6B(—m2 + 1)a1 d, o
—2a;d, ¥ m*w—-Ba;d,o + B*a;dyw -2 (2m2— l)a]dlezw+2 (—m2 + 1)a1d2/12w
+2bd, 2> m* + Bd, uy + Bdyhy +d; hy i + ds ho iy — B*bds + dy w — Bd, o
+dyhypty + Bd; by + Bdy hg +2 (2m? = 1) bdy A2 = 2 (—m? + 1) bd, 22,

ko =3Baydy 2mPo =3 B(-m? +1)a;dy X 0 - a; dy P mPw + Bla; d; w
—Ba;d; o+ (-m® + 1)a; dy 2 w + bd; P m? — B*bd; + Bdy h,

+ Bd; ho + Bd, pto — Bdy o + dy hy pty + dy hopuy + dy w — (—m® + 1) bd; 22,

koo = —B%a;dyo + B*a; dy w + dy w — B*bdy + Bdy hy + Bdy g — Bdy o
+dohopy +6B(-m? +1)a;dy X o =2 (-m* + 1) aydy P w +2 (—m? + 1) by 22,

kyz = 24 chy > m*o — 2dy* — 2 hy?,

ksp = 622 chymo—3d;d> — 3 hy hy,

kyy = =16 chy > m*o + 8ch, o —2dyds —d;* —2hohy — hi* + 2hy 0 — 2 hy,

k3,0 = —2/12C]’L1m20'+/12Ch10'—d0d1 —hoh; + h;o — h;.

For the Schrodinger KAV-BBM system (1.3), the &, in (2.3) are:

ks =42%ayd, m* - %dg hy,

kip = 2agd;m* - %d; h, — %dzh},

ko =drap B — S Ragdsm? + 2 dsbB + S dyag > — L dphy — Ly hy = L dy g
—tdruo+3dr o,

kio =3 Bagd; — 3 A*apd;m® + ; Bbd; + ; P agd; — dohy — ¢ dihg— ¢ djjio + £ d; 0,

ky4 = —18 Baydy 2> m* — 6 bdy > m* + Bd, hy + d; hy 1,

ky3 = =6 Bagd; > m* — 2bd; > m* + Bd; hy + Bdy hy + d; hy py + do hy uy,

kyy = —Bapd, + 24 Baydy 2> m* — B*bd; — 12 Bay dy 2> + 8 bd, 2> m* + Bdy h; + Bd; h;
+ Bdy hy + Bdo i — Bds 0 — 4 bddy A2 + do hy 1y + dy hy 1y + do oy + do @, (A3)

kyy = —B%apd; + 6 Bayd; 2> m* — B*bd; — 3 Bayd; 2> + 2bd; > m* + Bdyh;
+Bd; hy + Bd; g — Bd; o — bd; A> + dyhypuy +d; houy + d; w,

kyo = —B%apdy — 6 Bagd, 2> m* — B*bdy + 6 Baydy 2> — 2 bdy > m* + Bdy hy
+Bdy 1o — Bdy o + 2bd, 2> + dy ho ity + dy w,

kiz = Ld® + L hy® — 4 2% chymPo,

ksp = 1didy+ 3 hyhy — 2 chymPo,

k3,1 = %d()dg'l‘%hohg—%th’-%/lZCh20'+%d12+%h12+%h2+%/12Ch2m20',

k3’0: éhj—é/IZCI’UO"l'édod]+éh0h1-éh10’+%/12Ch1m20'.
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For the Schrodinger BBM-KdV system (1.4), the k;, in (2.3) are:

kiz=-%2dyhy +4 2 a;d mo,
kip = —%d, h, — %dz h;+ A%a;d, m?o,
kiy = 2Bbdy = Ldohy = Ldihy — L dyhy -t dopg + Lo
+ ‘3—‘/12a1d20+32a1d20'—%Bajdgw— g/lzajdgmzo',
kio = %Bbd; - %doh] —%d,ho—%dhuo+%d10'+ %Bza]dja
—1Ba;djw— 3 a;dym*o + ; A a;d; o,
ky4 = =18 Ba; d, P> mPo +6a;d, > mPw — 6bd, > m? + Bdy hy + ds ho
ko3 = —6Ba,;d,; PmPo+2a,d, Pm*w—-2bd; > m* + Bd, h, + Bdy b
+dihapy +da by,
kyn = 6 Ba, d, X mPo + 6 (—B(—m2 + 1) +Bm2)a1 d2/120'—6B(—m2 + l)a] d, o
—2a;,d, PmPw-Ba,dyo+B*a;dyw -2 (2m2— 1)a1d2/12w
+2 (=m? + 1) a; dy > w + 2 bdy > m? + Bd 1o + B hy + dy by py + dy ho (A4)
— B?d; + dyw — Bdy 0 + dohy 1y + Bd; by + Bdy ho +2 (2m* = 1) bdy 2°
=2 (=m? + 1) bdy 22,
ko1 =3 Ba;d,; /12m20'—3B(—m2 + l)a] dio—a;d Pm*w+Ba;d;w
- Ba;d, o+ (—m2 + l)al d; *w+bd, *>m*— B*bd, + Bdy h,;
+ Bd; ho + Bd, o — Bdy o+ do hy pty + dy oy + dy w — (—m? + 1) bd; 22,
koo = —Ba;dyo + B*a; dy w + dy w — B*bdy + Bdy hy + Bdy o — Bdy o
+dohopy + 6 B(-m? +1)a;dy 2o =2 (-m* + 1) aydy P w +2 (—m? + 1) by 22,
ki =5 do” + 5 hy? — 2 chym?,
ksp=—3 A2 chym® + §d;dy + 3 hy o,

_ _1352 2 32 2 1 1 1 1 2 1 2 1
k371——§/1 Ch2+§/1 chym +Ed0d2+§h0h2—ﬁh20'+ﬁd1 +ﬂh1 +Eh2’

—_ 1 32 2 1 1 1 1 32 1
kg,o—ﬁ/l ch;m +ﬁdod1+ﬁh0h1—ﬂh]0'—ﬂ/l C]’l]%‘ﬁh].
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