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Abstract: This paper examines the propagation dynamics of a T-lymphoblastic leukemia virus
type I (HTLV-1) infection model in a stochastic environment combined with an Ornstein-Uhlenbeck
process. In conjunction with the theory of Lyapunov functions, we initially demonstrate the existence
of a unique global solution to the model when initial values are positive. Subsequently, we establish
a sufficient condition for the existence of a stochastic model stationary distribution. Based on this
condition, the local probability density function expression of the model near the quasi-equilibrium
point is solved by combining it with the Fokker-Planck equation. Subsequently, we delineate the pivotal
conditions that precipitate the extinction of the disease. Finally, we select suitable data for numerical
simulation intending to corroborate the theorem previously established.
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1. Introduction

The human T-lymphoblastic leukemia virus (HTLV), the first human retrovirus to have been
discovered in the late 1970s, belongs to the subfamily of retroviral RNA oncoviruses. These viruses
can lead to chronic, lifelong infections, with the main subtypes being type I and type II. Despite
being one of the few examples of human oncogenic viruses, it has received relatively little public
attention [1, 2]. This may be attributable to its relatively low prevalence in high-income countries
and the current high level of societal concern about the HIV epidemic. The most recent estimates of
the total number of individuals infected with HTLV-1 are at least 30 million. Infection with HTLV-1
can result in serious and potentially fatal complications. The virus has been associated with a wide
variety of clinical conditions, most notably adult T-cell leukemia/lymphoma (ATL) and a chronic
and progressive neurological condition known as HTLV-1-associated myelopathy (HAM) [3, 4]. It
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is estimated that less than 5% of individuals infected with HTLV-1 will develop these diseases. At
the same time, the remainder are classified as "healthy carriers" who may also develop symptoms
such as lung and bladder infections. Furthermore, an analysis revealed that HTLV-1 infection was
associated with a 57% increase in all-cause mortality, including several inflammatory conditions such
as uveitis, infectious dermatitis, and polyarthritis. There is currently no treatment for HTLV-1, and
there is a lack of global screening for this infection. Risk assessment is further complicated by the
development of adult T-cell lymphoma or HTLV-associated myelopathy [5–7].

The viral protein Tax is a key antigen expressed by cells effectively infected by HTLV-1. It is
involved in the activation of the transcription of HTLV-1 genes and the proliferation of infected T
cells [8]. Mathematical models can provide insight into the study of the disease, extending earlier
relevant models in conjunction with the role of the viral protein Tax in the process of infection. This
allows for the accounting of the highly dynamic interplay between viral expression and transcriptional
latency. Li M Y and Lim A G [8] have differentiated the class of infected cells into two pools, latent
and active, giving the following model based on HTLV-1 infection:

dx(t)
dt

= λ − dx(t) − βx(t)y(t),

du(t)
dt

= δβx(t)y(t) + ηry(1 −
x + u

K
) − (µ + σ)u(t),

dy(t)
dt

= σu(t) − ay(t),

(1.1)

combining x(t) + u(t) � K and dy(t) = [σu(t) − ay(t)]dt calculates that y(t) <
σK
a

. All parameters
are assumed to be positive constants, and their biological significances are given in Table 1. A transfer
diagram for the described interactions is shown in Figure 1.

Figure 1. Transfer diagram describing the infection dynamics of HTLV-1 in vivo.
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Table 1. Parameter meaning table.

parameter value biological significance
x(t) Number of healthy CD4+ helper T-cells at moment t,
u(t) Number of CD4+ helper T-cells with latent infection (Tax-) at moment t,
y(t) Number of CD4+ helper T-cells with active infection (Tax+) at moment t,
λ CD4+ helper T-cell production rate,
β Infectious transmission coefficient,
δ Proportion of infected target cells surviving infectious transmission,
η Proportion of infected target cells surviving mitotic propagation,
r Tax-driven selective proliferation rate of actively infected target cells,
σ Spontaneous Tax-expression rate,
d Natural mortality of healthy target cells,
µ Natural mortality of latently infected target cells,
a Natural mortality of actively infected targets,
K CD4+ helper T-cell carrying capacity.

Mathematical models provide valuable insights into the complex dynamics of disease
transmission, forming a critical foundation for public health policy. Many scholars have developed
theoretical studies on various deterministic infectious disease models [9–11]. Research on HTLV-1
dynamics has also yielded significant results. Wang and Ma [12]investigated the global kinetics of the
HTLV-1 infection response-diffusion model considering factors such as mitotic division of infected
cells and CTL immune response; Khajanchi et al. [13] investigated a mathematical model of CD8+

T cell response to HTLV-1 and performed a sensitivity analysis to explore the dynamic response to
HTLV-1 infection and its role in the pathogenesis of HTLV-1-associated myelopathy/tropical spastic
paralysis (HAM/TSP); Wang et al. [14] developed a model incorporating two time delays, showing
through numerical simulations that intracellular delays stabilize the infection’s steady state, while
immune response delays can destabilize it. They also noted that intracellular delay affects both the
magnitude and the time required for convergence to the steady state. These studies have significantly
advanced the understanding of HTLV-1 dynamics.

As the complexity of epidemiological modeling increases, researchers are increasingly inclined
to introduce stochastic factors to improve the predictive power and accuracy of models. In recent
years, Bayesian filtering (especially Kalman filtering and particle filtering) has become an important
tool for quantifying and estimating stochasticity in dynamical systems, and has been widely used
especially in epidemiological modelling. Vasileios E Papageorgiou et al. [15] proposed a novel
particle filtering method for assessing the dynamics of monkeypox outbreaks; Calvetti D et al. [16]
focused on Bayesian particle filtering-based dynamic epidemic transmission models, especially for
COVID-19, and the study showed that the algorithm has significant accuracy in estimating the
proportion of latently infected individuals through computer simulations and experiments with real
data; Jos Elfring et al. [17] discussed the popularization and application of the standard algorithm for
particle filtering. On the other hand, Markov methods also have important applications in describing
stochasticity in the spread of infectious diseases, and Artalejo JR et al. [18] provide insights into the
computational methods of stochastic SEIR models and provide powerful tools for analyzing stochastic
behavior during disease transmission. These methods can not only enhance the predictive performance

AIMS Mathematics Volume 9, Issue 12, 36444–36469.



36447

of existing epidemiological models , but can also be applied to other public health problems with
uncertainty and dynamic evolution.

In real life, various organisms and populations are inevitably affected by the external
environment. The presence of environmental noise means that parameters such as birth and death rates
are subject to some kind of random perturbation. Several different types of stochastic epidemiological
kinetic models have been developed and extensively studied. There are broadly two approaches in
the existing literature to describe random effects in reality: Either linear perturbations or Ornstein-
Uhlenbeck processes [19–21]. The Ornstein-Uhlenbeck process is a mathematical model that describes
the evolution of random variables with mean-reverting properties. It can be used to simulate dynamical
systems that exhibit short-term fluctuations and long-run convergence to the mean. Edward Allen [22]
reviews two commonly used methods for incorporating environmental change factors into models of
biological systems and concludes that the mean reversion process has some advantages over linear
functions of white noise in modifying environmental change parameters. Zhou Baoquan et al. [23]
formulated and studied a stochastic epidemic model with media coverage and two mean-reverting
Ornstein-Uhlenbeck processes, and investigated the effects of random noise and media coverage on the
spread of epidemics. Cai Yongli et al. [24] showed through their study that the Ornstein-Uhlenbeck
process is a well-established method for introducing stochastic environmental noise into biologically
realistic population dynamics models. Su Tan et al. [25] considered a stochastic SEIV epidemic model
incorporating vaccination and general morbidity and derived a density function around the equilibrium
point. Shi Z, Jiang D [26] studied a stochastic HIV model in which the parameters were perturbed by
the Ornstein-Uhlenbeck process. The process is also described in the literature [27–29].

In this article the infection rate β in the system (1.1) is subject to fluctuations due to environmental
noise, oscillating around the mean value β̄. To model natural fluctuations in the infection rate β over
time or changes in environmental factors, we treat it as a random variable. Define β(t) as a stochastic
process that varies over time [30]:

dβ = α(β̄ − β)dt + θdB(t),

where β̄ is a positive constant representing β(t) averaged over the long term, α denotes the rate of
mean reversion, B(t) stands for Standard Brownian Motion, and θ denotes the intensity of white
noise. In this paper, B(t) is defined on {Ω, {Ft}t≥0,P}, which is a complete probability space with
filtration {Ft}t≥0 satisfying the incremental and right-continuous. F0 contains all P–empty sets. Solving
the above equation gives β(t) = β̄ + (β(0) − β̄)e−αt + θ

∫ t

0
e−α(t−s)dB(s), calculating the expectation and

variance of β(t) separately, we have

E(β(t)) = β̄ + (β(0) − β̄)e−αt,Var(β(t)) = θ2
∫ t

0
e−2α(t−s)ds =

θ2

2α
(1 − α−2αt),

when t → 0+, we have E(β(t)) → β(0) and Var(β(t)) → 0 , and it can be seen that it is reasonable to
use the Ornstein-Uhlenbeck process to describe the evolution of the infection rate β over time under
the influence of noise.

Thus, we can obtain a stochastic kinetic model for HTLV-1 infection:
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dx =
[
λ − dx − β+xy

]
dt,

du =

[
β+δxy + ηry(1 −

x + u
K

) − (µ + σ)u
]

dt,

dy = (σu − ay) dt,

dβ = α
[
β̄ − β(t)

]
dt + θdB(t),

(1.2)

where β+ = max{β(t), 0}, combined with the above analyses, the feasible domain of system (1.2) is

Γ := {(x, u, y, β) ∈ R3
+ × R : x + u ≤ K, y <

σK
a
}.

In this paper, we develop techniques and theory for threshold dynamics of stochastic model (1.2)
incorporating the Ornstein-Uhlenbeck process , including the theory of uniqueness of the existence
of global solutions in Section 2 and sufficient conditions for the existence of a stationary distribution
of the system (1.2) in Section 3. Meanwhile, we further give the solution theory of special algebraic
equations and the exact expression of the local probability density function of the system (1.2), and
finally verify the correctness of our theory using numerical simulations.

2. Existence uniqueness of the global solution

Theorem 2.1 For any initial values (x(0), u(0), y(0), β(0)) ∈ Γ, the system (1.2) has a unique global
solution (x(t), u(t), y(t), β(t)), and is maintained with probability one in Γ.
Proof. It is evident that the coefficients of the system (1.2) satisfy the local
Lipschitz condition. Consequently, there exists a unique solution for t ∈ [0, τe), where τe

represents the moment of explosion [30]. Let Rn = (−n,−n) × (−n,−n) × (−n,−n) × (−n,−n), for
any initial value (x(0), u(0), y(0), β(0)) ∈ Γ, there exists a sufficiently large integer m0

satisfying (ln x(0), ln u(0), ln y(0), β(0)) ∈ Rm0 , for any m ≥ m0, define τm = inf{t ∈

(0, τe)|(ln x(t), ln u(t), ln y(t), β(t)) < Rm}, it is clear that τm is an increasing function concerning
m. In the subsequent proof, we define inf{∅} = +∞, τ∞ = lim

m→+∞
τm ; hence τ∞ ≤ τe. The following

proves that τ∞ = +∞ and thus can show that τe = +∞.
Adoption of the counterfactual: Assumptions τ∞ , +∞, there exists 0 < ε0 < 1 and a positive

constant m∗, T0 > 0 satisfying

P(τm ≤ T0) := P(Gm) ≥ ε, ∀m ≥ m∗, (2.1)

where Gm = {τm ≤ T0|(ln x(t), ln u(t), ln y(t), β(t)) < Rm, t ∈ (0, τm)} , defining non-negative functions

V = x − 1 − ln x + u − 1 − ln u + y − 1 − ln y +
β2

2
,

combined with the Itô formula [30]:

LV = (1 −
1
x

)(λ − dx − β+xy) + (1 −
1
u

)[β+δxy + ηry(1 −
x + u

K
)] − (µ + σ)u + (1 −

1
y

)(σu − ay)

+ αβ(β̄ − β) +
1
2
θ2
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= λ − dx − β+xy −
λ

x
+ d + β+y + δβ+xy + ηry −

ηry(x + u)
K

− (µ + σ)u −
δβ+xy

u
−
ηry
u

(1 −
x + u

K
)

+ µ + σ + σu − ay −
σu
y

+ a + αβ(β̄ − β) +
1
2
θ2

≤ λ + d + β+y + δβ+xy + ηry + µ + σ + σu + a + αβ(β̄ − β) +
1
2
θ2

≤ β+[
σK
a

(1 + δK)] + λ +
ησrK

a
+ d + µ + σ + σK + αβ(β̄ − β) +

1
2
θ2

≤ [αβ̄ +
σK
a

(1 + δK)]|β| − α|β|2 +
ησrK

a
+ λ + d + µ + σ(1 + K) +

1
2
θ2

≤ A +
ησrK

a
+ λ + d + µ + σ(1 + K) +

1
2
θ2 := D,

where
A = sup

β∈R
{[αβ̄ +

σK
a

(1 + δK)]|β| − α|β|2}.

Integrating and taking the expectation gives

0 ≤ E[V(x(τm ∧ T0), u(τm ∧ T0), y(τm ∧ T0), β(τm ∧ T0))]

= E[V(x(0), u(0), y(0), β̄)] + E[
∫ τm∧T0

0
LV(x(τ), u(τ), y(τ), β(τ))dτ]

≤ E[V(x(0), u(0), y(0), β̄)] + DT0,

combined with Eq (2.1), for any ξ ∈ Gm, we get V(x(τm, ξ), u(τm, ξ), y(τm, ξ), β(τm, ξ)) outweigh (em −

1 − m) ∧ (e−m − 1 + m) ∧ m2

2 , so

E[V(x(0), u(0), y(0), β(0))] + DT0 ≥ E[V(x(τm ∧ T0), u(τm ∧ T0), y(τm ∧ T0), β(τm ∧ T0))]
≥ E[1Gm(ξ)V(x(τm ∧ T0), u(τm ∧ T0), y(τm ∧ T0), β(τm ∧ T0))]
≥ P(Gm(ξ))V(x(τm, ξ), u(τm, ξ), y(τm, ξ), β(τm, ξ))

≥ ε0[(em − 1 − m) ∧ (e−m − 1 + m) ∧
m2

2
],

let m→ ∞, which gives

+∞ ≤ EV(x(0), u(0), y(0), β(0)) + DT0 < +∞,

this is a contradictory assertion, which invalidates our original assumption, i.e.,τ∞ =

+∞. Therefore, there exists a unique global solution (x(t), u(t), y(u), β(t)) for the system (1.2).

3. Existence of a stationary distribution

In contrast to deterministic models, stochastic models lack positive equilibria. Consequently, this
section will investigate whether the stochastic model (1.2) exhibits a stationary distribution indicative
of the persistence of the epidemic.
Theorem 3.1. If

Rs
0 =

δλσβ̂

a(µ + σ)(d + θσK
2a
√
πα

)
> 1,
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then there exists a stationary distribution for system (1.2). Where

β̂ = (
∫ ∞

−∞

(x ∨ 0)
1
3π(x)dx)3 = (

1
√
π

∫ ∞

−
β̄
√
α

θ

(
θ
√
α

x + β̄)
1
3 e−x2

dx)3.

Proof. Taking the function V1 = − ln u − c1 ln x − c2 ln y, applying the Itô formula yields

LV1 = −
δβ+xy

u
−
ηry
u

(1 −
x + u

K
) + µ + σ − c1

λ

x
+ c1d + c1β

+y − c2
σu
y

+ c2a

≤ −3 3

√
δβ+xy

u
×

c1λ

x
×

c2σu
y
−
ηry
u

(1 −
x + u

K
) + µ + σ + c1d + c1β

+y + c2a

= −3 3
√
δc1c2λσβ+ + c1d + c1[P(t) + β̄]y + c2a −

ηry
u

(1 −
x + u

K
) + µ + σ

≤ −3 3
√
δc1c2λσβ+ + c1d + c1(P(t) ∨ 0)

σK
a

+ c2a + c1β̄y + µ + σ

≤ −3 3
√
δc1c2λσβ+ + c1d +

c1θσK
2a
√
πα

+ c2a + c1β̄y + µ + σ +
c1σK

a
(P(t) ∨ 0 −

∫ ∞

0
x̂π(x)dx)

= −3
3
√
δc1c2λσβ̂ + (3

3
√
δc1c2λσβ̂ − 3 3

√
δc1c2λσβ+) + c1(d +

θσK
2a
√
πα

) + c2a + c1β̄y + µ + σ

+
c1σK

a
(P(t) ∨ 0 −

∫ ∞

0
x̂π(x)dx),

where P(t) = β(t) − β̄, seek to solve

δc1c2λσβ̂

c1c2a(d + θσK
2a
√
πα

)
= c1(d +

θσK
2a
√
πα

) = c2a,

we can have

c1 =
λδσβ̂

a(d + θσK
2a
√
πα

)2
, c2 =

λδσβ̂

a2(d + θσK
2a
√
πα

)
,

consequently

LV1 ≤ −
δλσβ̂

a(d + θσK
2a
√
πα

)
+ µ + σ + c1β̄y + 3 3

√
δc1c2λσ(

3
√
β̂ −

3
√
β+) +

c1σK
a

(P(t) ∨ 0 −
∫ ∞

0
x̂π(x)dx)

= −(µ + σ)(Rs
0 − 1) + c1β̄y + 3 3

√
δc1c2λσ(

3
√
β̂ −

3
√
β+) +

c1σK
a

(P(t) ∨ 0 −
∫ ∞

0
x̂π(x)dx),

where

Rs
0 =

δλσβ̂

a(µ + σ)(d + θσK
2a
√
πα

)
, β̂ = (

∫ ∞

−∞

(x ∨ 0)
1
3π(x)dx)3 = (

1
√
π

∫ ∞

−
β̄
√
α

θ

(
θ
√
α

x + β̄)
1
3 e−x2

dx)3.

The function V2 = V1 +
c1β̄

a
y is taken, and the Itô formula is applied, which yields

LV2 = LV1 +
c1σβ̄

a
u − c1β̄y
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≤ −(µ + σ)(Rs
0 − 1) + c1β̄y + 3 3

√
δc1c2λσ(

3
√
β̂ −

3
√
β+) +

c1σK
a

(P(t) ∨ 0 −
∫ ∞

0
x̂π(x)dx) +

c1σβ̄

a
u − c1β̄

= −(µ + σ)(Rs
0 − 1) + 3 3

√
δc1c2λσ(

3
√
β̂ −

3
√
β+) +

c1σK
a

(P(t) ∨ 0 −
∫ ∞

0
x̂π(x)dx) +

c1σβ̄

a
u.

Taking the function V3 = − ln x − ln y − ln(K − x − u) +
β2

2
, applying the Itô formula yields

LV3 = −
λ

x
+ d + β+y −

σu
y

+ a +
λ

K − x − u
−

dx
K − x − u

−
β+xy

K − x − u
+

δβ+xy
K − x − u

+
ηry
K

−
(µ + σ)u
K − x − u

+ β[α(β̄ − β)] +
θ2

2

≤ −
λ

x
−
σu
y
−

dx
K − x − u

+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B,

where
B = sup

(x,u,y,β)∈R3×R+

{
λ

K − x − u
+

δβ+xy
K − x − u

−
β+xy

K − x − u
+
ηrσ

a
+ d + a}.

Taking the function V̄ = MV2 + V3, the function has a minimum point in the feasible domain
V̄(x0, u0, y0, β0), so we make V = V̄ − V̄(x0, u0, y0, β0), applying the Itô formula to it gives

LV ≤ −M(µ + σ)(Rs
0 − 1) +

c1σβ̄M
a

u + 3M 3
√
δc1c2λσ(

3
√
β̂ −

3
√
β+) +

c1σKM
a

(P(t) ∨ 0 −
∫ ∞

0
x̂π(x)dx)

−
λ

x
−
σu
y
−

dx
K − x − u

+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B

:= F(x, u, y, β) + 3M 3
√
δc1c2λσ(

3
√
β̂ −

3
√
β+) +

c1σKM
a

(P(t) ∨ 0 −
∫ ∞

0
x̂π(x)dx), (3.1)

where

F(x, u, y, β) = −M(µ + σ)(Rs
0 − 1) +

c1σβ̄M
a

u −
λ

x
−
σu
y
−

dx
K − x − u

+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B.

Next, we first verify that related properties of F(x, u, y, β), defining bounded closed sets

Dε = {(x, u, y, β)T ∈ Γ : x ≥ ε, u ≥ ε, y ≥ ε2, x + u ≤ K − ε2, |β| ≤
1
ε
} := D̄ε × [−

1
ε
,

1
ε

],

divide the set Γ \ Dε into the following five regions:

Dc
ε,1 = {(x, u, y, β)T ∈ Γ : x < ε},

Dc
ε,2 = {(x, u, y, β)T ∈ Γ : u < ε},

Dc
ε,3 = {(x, u, y, β)T ∈ Γ : y < ε2, u ≥ ε},

Dc
ε,4 = {(x, u, y, β)T ∈ Γ : x + u > K − ε2, x ≥ ε},

Dc
ε,5 = {(x, u, y, β)T ∈ Γ : |β| >

1
ε
},
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meet the conditions:

−M(µ + σ)(Rs
0 − 1) + G1 ≤ −2, (3.2)

−2 +
c1σβ̄M

a
ε ≤ −1, (3.3)

−2 +
c1σβ̄MK

a
−
λ

ε
≤ −1, (3.4)

−2 +
c1σβ̄MK

a
−
σ

ε
≤ −1, (3.5)

−2 +
c1σβ̄MK

a
−

d
ε
≤ −1, (3.6)

−2 +
c1σβ̄MK

a
−

α

2ε2 ≤ −1, (3.7)

where

G1 = sup
β∈R+

{
σK
a
|β| + αββ̄ −

α

2
β2} +

θ2

2
+ B < ∞.

Case 1. Consider the region Dc
ε,1,

F(x, u, y, β) ≤ −M(µ + σ)(Rs
0 − 1) +

c1σβ̄M
a

u −
λ

x
+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B

≤ −
λ

x
− M(µ + σ)(Rs

0 − 1) +
c1σβ̄MK

a
+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B

≤ −2 +
c1σβ̄MK

a
−
λ

ε
≤ −1.

Case 2. Consider the region Dc
ε,2,

F(x, u, y, β) ≤ −M(µ + σ)(Rs
0 − 1) +

c1σβ̄M
a

u +
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B

≤ −M(µ + σ)(Rs
0 − 1) +

c1σβ̄M
a

ε +
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B

≤ −2 +
c1σβ̄M

a
ε ≤ −1.

Case 3. Consider the region Dc
ε,3,

F(x, u, y, β) ≤ −M(µ + σ)(Rs
0 − 1) +

c1σβ̄M
a

u −
σu
y

+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B

≤ −
σu
y
− M(µ + σ)(Rs

0 − 1) +
c1σβ̄MK

a
+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B

≤ −2 +
c1σβ̄MK

a
−
σ

ε
≤ −1.

Case 4. Consider the region Dc
ε,4,

F(x, u, y, β) ≤ −M(µ + σ)(Rs
0 − 1) +

c1σβ̄M
a

u −
dx

K − x − u
+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B
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≤ −
dx

K − x − u
− M(µ + σ)(Rs

0 − 1) +
c1σβ̄MK

a
+
σK
a
|β| + αββ̄ − αβ2 +

θ2

2
+ B

≤ −2 +
c1σβ̄MK

a
−

d
ε
≤ −1.

Case 5. Consider the region Dc
ε,5,

F(x, u, y, β) ≤ −M(µ + σ)(Rs
0 − 1) +

c1σβ̄M
a

u −
α

2
β2 +

σK
a
|β| + αββ̄ −

α

2
β2 +

θ2

2
+ B

≤ −2 +
c1σβ̄MK

a
−

α

2ε2 ≤ −1.

Thus, there exists a sufficiently small ε satisfying that for any (x, u, y, β) ∈ Γ \ Dε there is
F(x, u, y, β) ≤ −1, and it can be demonstrated that there exists a positive constant number H satisfying
the following condition: for any (x, u, y, β) ∈ Dε has

F(x, u, y, β) ≤ H ≤ ∞,

integrate both sides of (3.1) and take the expectation to obtain

0 ≤
EV(x(t), u(t), y(t), β(t))

t
=

EV(x(0), u(0), y(0), β(0))
t

+
1
t

∫ t

0
E(LV(x(s), u(s), y(s), β(s)))ds

≤
EV(x(0), u(0), y(0), β(0))

t
+

1
t

∫ t

0
E(F(x(s), u(s), y(s), β(s)))ds

+ 3M 3
√
δc1c2λσE

[∫ ∞

−∞

(x ∨ 0)
1
3π(x)dx −

1
t

∫ t

0
(β(s) ∨ 0)

1
3 ds

]
+

c1σKM
a

[
1
t

∫ t

0
(P(t) ∨ 0)ds −

∫ ∞

0
x̂π(x)dx

]
,

combining β(t) and the ergodic property of P(t) , it follows that

lim
t→∞

E
[∫ ∞

−∞

(x ∨ 0)
1
3π(x)dx −

1
t

∫ t

0
(β(s) ∨ 0)

1
3 ds

]
= E

[∫ ∞

0
x

1
3π(x)dx

]
−

∫ ∞

0
x

1
3π(x)dx = 0,

lim
t→∞

E
[
1
t

∫ t

0
(P(s) ∨ 0)ds −

∫ ∞

0
x̂π(x)dx

]
= E

[∫ ∞

0
x̂π(x)dx

]
−

∫ ∞

0
x̂π(x)dx = 0,

it can be obtained by taking the lower limit:

0 ≤ lim
t→∞

inf
EV(x(0), u(0), y(0), β(0))

t
+ lim

t→∞
inf

∫ t

0
E(F(x(s), u(s), y(s), β(s)))ds

= lim
t→∞

inf
1
t

∫ t

0
E(F(x(s), u(s), y(s), β(s)))ds

= lim
t→∞

inf
1
t

∫ t

0
E(F(x(s), u(s), y(s), β(s)))1(x(s),(s),y(s),β(s))T∈Dε

ds

+ lim
t→∞

inf
1
t

∫ t

0
E(F(x(s), u(s), y(s), β(s)))1(x(s),(s),y(s),β(s))T∈Γ\Dε

ds

AIMS Mathematics Volume 9, Issue 12, 36444–36469.



36454

≤ H lim
t→∞

inf
1
t

∫ t

0
P{(x(s), u(s), y(s), β(s)) ∈ Dε}ds − lim

t→∞
inf

1
t

∫ t

0
P{(x(s), u(s), y(s), β(s))T ∈ Γ \ Dε}ds

≤ −1 + (H + 1) lim
t→∞

inf
1
t

∫ t

0
P{(x(s), u(s), y(s), β(s))T ∈ Dε}ds,

consequently

lim
t→∞

inf
1
t

∫ t

0
P(s, x(s), u(s), y(s), β(s),Dε)ds ≥

1
H + 1

> 0,

therefore, there is a stationary distribution for the system (1.2).

4. Probability density function

The study of stationary distributions has significant implications for disease. The calculation of
the density function in the vicinity of the quasi-equilibrium point in the presence of such distributions
can assist in the study of the distribution of disease at a given moment in time.

First we set the quasi-equilibrium point to (x∗, u∗, y∗, β̄), let X1 = x − x∗, X2 = u − u∗, X3 =

y − y∗, X4 = β − β̄, solving for the Jacobi matrix yields
−β+y − d 0 −β+x −xy
δβ+y − ηry

K −
ηry
K − (µ + σ) δβ+x + ηr(1 − x+u

K ) δxy
0 σ −a 0
0 0 0 −α

 , (4.1)

then the linearized system can be written as:
dX1 = (−a11X1 − a13X3 − a14X4)dt,
dX2 = (−a21X1 − a22X2 + a23X3 + a24X4)dt,
dX3 = (a32X2 − a33X3)dt,
dX4 = −a44X4dt + θdB(t),

(4.2)

where
a11 = d + β̄y∗, a13 = β̄x∗, a14 = x∗y∗, a21 =

ηry∗

K
− δβ̄y∗,

a22 =
ηry∗

K
+ µ + σ, a23 = β̄δx∗ + ηr(1 −

x∗ + u∗

K
), a24 = δx∗y∗, a32 = σ, a33 = a, a44 = α,

rewriting the above system of equations into the form of a matrix equation

dX(t) = AX(t)dt + GdB(t),

where

X(t) = (X1, X2, X3, X4)T , A =


−a11 0 −a13 −a14

−a21 −a22 a23 a24

0 a32 −a33 0
0 0 0 −a44

 , G = diag(0, 0, 0, θ).
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There exists a unique probability density function Φ(X1, X2, X3, X4) for the system in the vicinity
of the quasi-equilibrium point, the form of which can be obtained by the following Fokker-
Planck equation [31]:

∂Φ(X(t), t)
∂t

+
∂

∂X
[AX(t)Φ(X(t), t)] −

θ2

2
∂2Φ(X(t), t)

∂X2
4

= 0, (4.3)

Φ(X1, X2, X3, X4) can be described by a quasi-Gaussian distribution

Φ(X1, X2, X3, X4) = ce−
1
2 (X1,X2,X3,X4)P(X1,X2,X3,X4)T

,

where, c is a constant satisfying the normalization condition
∫

R4 Φ(X1, X2, X3, X4)dX1dX2dX3dX4 = 1,
and the real symmetric matrix P satisfies PG2P + AT P + PA = 0 , defining that P−1 = Σ, the above
equation can be rewritten as

G2 + AΣ + ΣAT = 0. (4.4)

Theorem 4.1 If Rs
0 > 1, and satisfies

(d + ȳ∗)(
ηry∗

K
+ µ + σ + a) + a(

ηry∗

K
+ µ + σ) − σ[β̄x∗ + ηr(1 −

x∗ + u∗

K
)] > 0,

a(d + β̄y∗)(
ηry∗

K
+ µ + σ) − σ(d + β̄y∗ + β̄x∗)[β̄δx∗ + ηr(1 −

x∗ + u∗

K
)] > 0,

the normal probability density function Φ(x, u, y, β) of the solution of system (1.2) in the vicinity of the
quasi-equilibrium point can be expressed as

Φ(x, u, y, β) = (2π)−2|Σ|−
1
2 exp[−

1
2

(x − x∗, u − u∗, y − y∗, β − β̄)Σ−1(x − x∗, u − u∗, y − y∗, β − β̄)T ]

where Σ is a positive definite matrix, and

Σ = ρ2
1(Q1J)−1Σ2[(Q1J)−1]T = ρ2

2(Q2L)−1Σ4[(Q2L)−1]T ,

ρ1 = −a14a1a6θ, ρ2 = −a14a2a3θ, J = J3J2J1, L = J4J2J1,

J1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , J2 =


1 0 0 0
0 1 0 0
0 a24

a14
1 0

0 0 0 1

 , J3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −

a3
a1

1

 , J4 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

Q1 =


−a14a1a6 a6(a1a5 − a1a11) + a1a6a7 a6(a2

5 + a1a4 + a2a6) + a7(a5a6 + a6a7) t1

0 a1a6 a5a6 + a6a7 a2
7 + a2a6

0 0 a6 a7

0 0 0 1

 ,

Q2 =


k1 k2 k3 k4

0 a2a3 −a2a22 − a2a33 a2
22 + a2a32

0 0 a2 −a22

0 0 0 1

 ,
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the exact form of Σ2, Σ4 will be given in the proof.
Proof. First, we determine that the matrix A is a Hurwitz matrix, computing the characteristic
polynomials of A as follows:

ϕA(λ) = |λE − A| =

∣∣∣∣∣∣∣∣∣∣∣
λ + a11 0 a13 a14

a21 λ + a22 −a23 −a24

0 −a32 λ + a33 0
0 0 0 λ + a44

∣∣∣∣∣∣∣∣∣∣∣
= (λ + a44)[λ3 + (a11 + a22 + a33)λ2 + (a11a22 + a11a33 + a22a33 − a23a32)λ

+ (a11a22a33 − a13a21a32 − a11a23a32)]
= (λ + a44)(λ3 + d1λ

2 + d2λ + d3),

combining the conditions gives

d1 > 0, d2 > 0, d3 > 0, d1d2 − d3 > 0.

Take the primitive matrix J1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , calculate and obtain

A1 = J1AJ−1
1 =


−a44 0 0 0
−a14 −a11 0 −a13

a24 −a21 −a22 a23

0 0 a32 −a33

 ,

continuing with the elementary transformations, take the matrix J2 =


1 0 0 0
0 1 0 0
0 a24

a14
1 0

0 0 0 1

 , calculate

and obtain

A2 = J2A1J−1
2 =


−a44 0 0 0
−a14 −a11 0 −a13

0 a1 −a22 a2

0 a3 a32 −a33

 ,
where

a1 =
a22a24

a14
−

a11a24

a14
− a21, a2 = a23 −

a13a24

a14
, a3 = −

a24a32

a14
,

since a3 must not be zero, we discuss whether a1 is zero in the following:
(I) a1 , 0
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Take the primitive transformation matrixJ3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −

a3
a1

1

 , calculate and obtain

A3 = J3A2J−1
3 =


−a44 0 0 0
−a14 −a11 a4 −a13

0 a1 a5 a2

0 0 a6 a7

 ,
where

a4 = −
a3a13

a1
, a5 =

a13(a23 −
a13−a24

a14
)

a1
− a22,

a6 = a32 −
a3(a33 + a3(a23 −

a13a24
a14

))

a1
+

a3a22

a1
, a7 = −a33 −

a3(a23 −
a13a24

a14
)

a1
.

Noting that J = J3J2J1, then Eq (4.4) can be rewritten as

JG2JT + (JAJ−1)(JΣJT ) + (JΣJT )(JAJ−1)T = 0, (4.5)

rewriting Eq (4.5) yields
G2

1 + A3Σ1 + Σ1AT
3 = 0,

let Y4 = X4, Y3 = a6X3 + a7X4, Y2 = dY3, Y1 = dY2, so the calculation yields the standard R1 matrix
for A3 as

Q1 =


−a14a1a6 a6(a1a5 − a1a11) + a1a6a7 a6(a2

5 + a1a4 + a2a6) + a7(a5a6 + a6a7) t1
0 a1a6 a5a6 + a6a7 a2

7 + a2a6

0 0 a6 a7

0 0 0 1

 , (4.6)

where
t1 = a7(a2

7 + a2a6) + a6(a2a5 + a2a7 − a1a13),

therefore, the calculation can be obtained

Q1A3Q−1
1 =


−n1 −n2 −n3 −n4

1 0 0 0
0 1 0 0
0 0 1 0

 ,
according to the invariance of the matrix elementary transformation, the characteristic polynomial is
also invariant. Hence, we obtain

n1 = a11 + a22 + a33 + a44 = d1 + a44,

n2 = a11a33 + a22a33 + a11a22 − a23a32 + a11a44 + a22a44 + a33a44 = d2 + d1a44,

n3 = a11a22a33 − a13a21a32 − a11a23a32 + a11a22a44 + a11a33a44 + a22a33a44 − a23a32a44 = d3 + d2a44,
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n4 = a11a22a33a44 − a13a21a32a44 − a11a23a32a44 = d3a44,

we can know that
Q1G2

1QT
1 = diag((a14a1a6θ)2, 0, 0, 0),

let
Q1A3Q−1

1 = D, ρ1 = −a14a1a6θ, Σ2 = ρ−2
1 Q1Σ1QT

1 , G0 = diag(1, 0, 0, 0),

rewrite the equation Q1G2
1QT

1 + (Q1A3Q−1
1 )(Q1ΣQT

1 ) + (Q1ΣQT
1 )(Q1A3Q−1

1 )T = 0 to read

G2
0 + DΣ2 + Σ2DT = 0,

calculation can be obtained

Σ2 =



n2n3 − n1n4

2(n1n2n3 − n2
3 − n2

1n4)
0 −

n3

2(n1n2n3 − n2
3 − n2

1n4)
0

0
n3

2(n1n2n3 − n2
3 − n2

1n4)
0 −

n1

2(n1n2n3 − n2
3 − n2

1n4)
−

n3

2(n1n2n3 − n2
3 − n2

1n4)
0

n1

2(n1n2n3 − n2
3 − n2

1n4)
0

0 −
n1

2(n1n2n3 − n2
3 − n2

1n4)
0

n1n2 − n3

2n4(n1n2n3 − n2
3 − n2

1n4)


computing

n1n2n3 − n2
3 − n2

1n4 = n1(n2n3 − n1n4) − a2
3

= (d1 + a44)(d1d2 − d3)a2
44 + d3(d1d2 − d3) + d2(d1d2 − d3)a44 > 0,

thus, Σ2 is a positive definite matrix, since

Σ1 = ρ2
1Q−1

1 Σ2(Q−1
1 )T , Σ1 = JΣJT ,

therefore
Σ = ρ2

1(Q1J)−1Σ2[(Q1J)−1]T

is also positive definite.
(II) a1 = 0

Take the primitive transformation matrixJ4 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , calculate and obtain

A4 = J4A2J−1
4 =


−a44 0 0 0
−a14 −a11 −a13 0

0 a3 −a33 a32

0 0 a2 −a22

 ,
noting that L = J4J2J1, Eq (4.4) can be rewritten as

LG2LT + (LAL−1)(LΣLT ) + (LΣLT )(LAL−1)T = 0, (4.7)
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rewriting Eq (4.7) yields
G2

2 + A4Σ3 + Σ3AT
4 = 0,

let Y4 = X4, Y3 = a2X3 − a22X4, Y2 = dY3, Y1 = dY2, so the calculation yields the standard R1 matrix
for A4 as

Q2 =


k1 k2 k3 k4

0 a2a3 −a2a22 − a2a33 a2
22 + a2a32

0 0 a2 −a22

0 0 0 1

 , (4.8)

where
k1 = −a14a2a3, k2 = −a2(a3a11 + a3a33) − a2a3a22,

k3 = a2(a2
33 − a3a13 + a2a32) + a22(a2a22 + a2a33), k4 = −a22(a2

22 + a2a32) − a2(a22a32 + a32a33).

Since, in this case, a1 = 0, i.e., a21 =
a22a24

a14
−

a11a24

a14
, the calculation therefore reduces to

Q2A4Q−1
2 =


−n1 −n2 −n3 −n4

1 0 0 0
0 1 0 0
0 0 1 0

 ,
n1–n4 is defined as above; calculate and obtain

Q2G2
2QT

2 = diag((a14a2a3θ)2, 0, 0, 0),

let
Q2A4Q−1

2 = D, ρ2 = −a14a2a3θ,Σ4 = ρ−2
2 Q2Σ3QT

2 ,G0 = diag(1, 0, 0, 0),

rewrite the equation Q2G2
2QT

2 + (Q2A4Q−1
2 )(Q2ΣQT

2 ) + (Q2ΣQT
2 )(Q2A4Q−1

2 )T = 0 as

G2
0 + DΣ4 + Σ4DT = 0,

the calculation gives Σ4 = Σ2; similarly, in this case

Σ3 = ρ2
2Q−1

2 Σ4(Q−1
2 )T , Σ3 = LΣLT ,

thus
Σ = ρ2

2(Q2L)−1Σ4[(Q2L)−1]T

is also positive definite.
Combining the above two cases, the expression for the probability density function near the quasi-

equilibrium point is

Φ(x, u, y, β) = (2π)−2|Σ|−
1
2 exp[−

1
2

(x − x∗, u − u∗, y − y∗, β − β̄)Σ−1(x − x∗, u − u∗, y − y∗, β − β̄)T ].
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5. Disease extinction

In addition to the aforementioned considerations, the study of the conditions that lead to the
extinction of infectious diseases will also play a significant role in the subsequent treatment and control
of these diseases. This section will present the conditions that result in the extinction of diseases.
Theorem 5.1 Let (x(t), u(t), y(t), β(t)) be a solution of model (1.2) with any initial value
(x(0), u(0), y(0), β(0)) , if

Re
0 =

σ

µ + σ
(δβ̄K + ηr +

δKθ
√
πα

) < 1,

then we have lim
t→∞

u(t) = lim
t→∞

y(t) = 0, i.e., the infection of system (1.2) will become exponentially
extinct in the long run.
Proof. Constructor W(t) = u(t) +

µ + σ

σ
y(t) , next we apply the Itô formula to ln W,

L(ln W) =
1
W

dW =
1
W

(du +
µ + σ

σ
dy)

=
1
W

[δβ+xy + ηry(1 −
x + u

K
) − (µ + σ)u + (µ + σ)u −

(µ + σ)a
σ

y]

≤
y
W

[δβ+x + ηr −
(µ + σ)a

σ
] ≤

y
W

[δβ̄x + ηr −
(µ + σ)a

σ
] +

δxy
W

(β+ − β̄)

≤
σ

µ + σ
[δβ̄K + ηr −

(µ + σ)a
σ

] +
σδK|β − β̄|
µ + σ

, (5.1)

integrating Eq (5.1) from 0 to t and dividing both sides by t yields

ln W(t) − ln W(0)
t

≤
σ

µ + σ
[δβ̄K + ηr −

(µ + σ)a
σ

] +
σδK
µ + σ

(
1
t

∫ t

0
|β(τ) − β̄|dτ), (5.2)

combining this with the powerful number theorem for martingale yields

lim
t→∞
E(

1
t

∫ t

0
|β(τ) − β̄|dτ −

θ
√
πα

) = 0, (5.3)

taking the upper limit of Eq (5.2) and combining it with Eq (5.3) yields

lim sup
t→∞

ln W(t)
t

≤
σ

µ + σ
[δβ̄K + ηr −

(µ + σ)a
σ

] +
σδKθ

(µ + σ)
√
πα

= a(Re
0 − 1) < 0, (5.4)

where

Re
0 =

σ

µ + σ
(δβ̄K + ηr +

δKθ
√
πα

) < 1.

Therefore, we have lim
t→∞

W(t) = 0, i.e., lim
t→∞

u(t) = lim
t→∞

y(t) = 0, implying that both latently infected
as well as actively infected cells of the system (1.2) will be exponentially extinct in the long term . The
theorem is proved.
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6. Numerical simulation

In the numerical simulation, discretization of stochastic models is a very important and significant
step, and the choice of discretization method has a great impact on the accuracy, stability, and
computational efficiency of the numerical solution. The common numerical discretization methods
are the Euler-Markov method and the Milstein method.

The Euler-Markov method is the simplest and most widely used method for discretizing the
SDE. It is a first-order approximation that uses the discretized form of the SDE to update the solution
at each step, and includes both deterministic drift and random noise terms, but its accuracy is limited
to first-order convergence of the step sizes. Milstein’s method is a higher-order method (second-order
convergence) with a higher accuracy compared to Euler-Markov’s method, and in addition to the drift
and diffusion terms, Milstein’s method also includes an additional term. In addition to the drift and
diffusion terms, the Milstein method includes an additional term to account for the interaction between
the random noise and the diffusion coefficients. This additional term improves the approximation of the
solution, especially for complex SDEs where the influence of the noise term is large. In this section, we
use the Milstein method [32, 33], and the discretized equations are as follows:



x j+1 = x j +
[
λ − dx j − β+ j, 0x jy j

]
∆t,

u j+1 = u j +

[
β+ jx jy j + ηry j(1 −

x j + u j

K
) − (µ + σ)u j

]
∆t,

y j+1 = y j +
(
σu j − ay j

)
∆t,

β j+1 = β j + α
[
β̄ − β j(t)

]
∆t + θ

√
∆tξ j +

θ2

2
(ξ2

j − 1)∆t,

(6.1)

where, (x j, u j, y j, β j)T is the corresponding value for the jth iteration of Eq (6.1), ∆t denotes the time
increment, and ξ j represents an independent Gaussian random variable.

Example 6.1 Select the parameter values in Table 2; in the absence of infection, the normal CD4+

helper T-cell count averages 1000 cells/mm3 [8], and we consider a target cell carrying capacity of 800
cells/mm3. Calculate the conditions for the existence of a stationary distribution.

β̂ = (
1
√
π

∫ ∞

−4.4721
(0.002236x + 0.01)

1
3 e−x2

dx)3 ≈ 0.009914,

Rs
0 =

δλσβ̂

a(µ + σ)(d + θσK
2a
√
πα

)
≈

0.25 × 10 × 0.03 × 0.009914
0.2 × 0.04 × 0.07596

≈ 1.22795 > 1,

calculations show that, under this set of parameters, there is a stationary distribution for system (1.2),
implying that uninfected cells, latently infected cells, and actively infected cells will persist near the
quasi-equilibrium point. It is clear from Figure 2 that there is a stationary distribution of the system
around the quasi-equilibrium point x∗ = 63.586, u∗ = 98.179, y∗ = 14.727.
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Figure 2. Stationary distribution of the system (1.2) with initial values x(0) = 200, u(0) =

10, y(0) = 1, β(0) = 0.01, left panel represents the deterministic system as well as the
phenomenon of stochastic system variations, right panel represents the histogram of the
frequency distribution of the stochastic system in the vicinity of the quasi-equilibrium point.

Example 6.2 In this section, we use numerical simulation to study the effect of other parameters
on the system (1.2). First, we set K = 500, and the rest of the parameters are the same as in
Table 2. Based on this, we study the effect of three different δ on the latent infected and active infected
cells, δ = 0.04, δ = 0.25 and δ = 0.35. Respectively, bringing them into Re

0 , we can obtain the
following results:

when δ = 0.04 , Re
0 =

0.03
0.04

(0.04 × 0.01 × 500 + 0.135 +
0.04 × 500 × 0.001

√
0.2 × π

) = 0.27 < 1,

when δ = 0.25 , Re
0 =

0.03
0.04

(0.25 × 0.01 × 500 + 0.135 +
0.25 × 500 × 0.001

√
0.2 × π

) = 1.157 > 1,

when δ = 0.35 , Re
0 =

0.03
0.04

(0.35 × 0.01 × 500 + 0.135 +
0.35 × 500 × 0.001

√
0.2 × π

) = 1.579 > 1.

By calculating that under the first set of parameter values, the disease will go to extinction, and
under the next two sets of parameter values, the disease will persist. Figure 3 illustrates this
point; at the same time, looking at Figure 3 , it is not difficult to see that, under the premise of the
disease’s persistence, with the δ getting bigger, u(t) and y(t) will be maintained around a larger
value. Biologically speaking, the more susceptible cells become latent through infection, the more
cells will be transformed into active infection, so our simulation results are reasonable.
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(a) (b)

Figure 3. The state of the system (1.2) with initial values x(0) = 50, u(0) = 20, y(0) =

10, β(0) = 0.01 under different δ for u(t) and y(t) .

Example 6.3 It is of paramount importance to study the transition time of an infected cell from
its initial state x(0), u(0), y(0) to a sustained state x(s), u(s), y(s) and finally to an extinct state
(x(e), u(e), y(e)), which can be referred to as the first passage time (FPT) [34]. The first passage time
represents the time required for a random trajectory to reach another state for the first time; the average
value of the FPT becomes the MFPT [35, 36].

In this section, we choose N = 500 and perform 500 cycles to obtain the average time required
for the system (1.2) to reach a stationary distribution for the first time under different α and
θ, respectively, with the rest of the parameters remaining the same as those in Table 2, and the plotted
images are shown in Figure 4. The average time required to reach extinction for the first time in the
system (1.2) with different α and θ is shown in Figure 5 for the first set of parameters chosen from
Example 6.2.

Table 2. Table of parameter values.

Parameter Value Source Parameter Value Source
λ 10 cells/mm3/day [8, 37, 38] β̄ 0.01 cells/mm3/day [40]
d 0.01 day−1 [8, 37] δ 0.25 [8]
η 0.9 [8] r 0.15 day−1 [8]
K 800 cells/mm3 Estimated µ 0.01 day−1 [8]
σ 0.03 day−1 [8] a 0.2 day−1 [36]
α 0.2 day−1 [39] θ 10−3 mm3/cells/day3/2 [29]
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Figure 4. The average first arrival time is calculated by transferring from the initial state (x,
u, y) = (200, 10, 1) to the stationary distributed state (63.586, 98.179, 14.727).

Figure 5. The average first arrival time is calculated by transferring from the initial state (x,
u, y) = (200, 10, 1) to the extinction state.

Example 6.4 In this section, we investigate the impact of random factors on disease
extinction, maintaining all other parameters constant, and observing the change in Re

0 for different
values of [α, θ]. As illustrated in Figure 6, Re

0 decreases as α increases or θ decreases. This
implies that as the rate of regression to the mean increases or as the noise intensity decreases, the
disease is effectively controlled and tends to become extinct. This is a realistic and biologically
significant outcome.
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Figure 6. The color phase diagrams illustrate the variation trends of Re
0 with respect to

different values of α and θ, which are constrained to the interval [0.1, 0.5]× [0.0001, 0.0041].

7. Conclusions

The objective of this paper is to investigate the dynamical impact of the Ornstein-Uhlenbeck
process on the HTLV-1 model. A number of different and suitable Lyapunov functions were constructed
to prove the conclusions drawn. The following paragraphs present the main results of this study:

(i) For the stochastic model, after considering the perturbations, we show that for any initial
value, there exists a unique solution to the system (1.2);

(ii) By establishing a series of suitable Lyapunov functions, we prove the existence of a unique
stationary distribution for the system at Rs

0 > 1 and perform numerical simulations to verify the
results, see Figure 2 ;

(iii) After proving the existence of a stationary distribution, we give a concrete expression for the
local normal density function corresponding to the stochastic system (1.2) in the neighborhood of the
quasi-equilibrium state, provided that the conditions are satisfied;

(iv) The threshold condition Re
0 for disease extinction is given, see Figure 3, and the effects of

mean reversion rate α and noise intensity θ on this condition are also investigated, see Figure 6;
(v) 500 simulations were performed to obtain the average elapsed time for the stochastic system

to reach the stationary distribution state for the first time as well as the extinction state for different
initial values as well as parameters, see Figures 4 and 5.

It is important to note that this study has certain limitations. First, we have focused on modeling
the parameter infectivity β to follow the Ornstein-Uhlenbeck process. However, the model could be
made more realistic by assuming that other parameters in the system (1.1) also satisfy the Ornstein-
Uhlenbeck process. Moreover, we have derived local probability density expressions for the stochastic
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system near the quasi-equilibrium point, but a global probability density expression remains an open
question. Additionally, further investigation is needed to determine whether other types of stochastic
disturbances might be more appropriate for this problem.

In the paper, we use β+ = max{β(t), 0} to ensure non-negativity of the infection rate in the
system. However, the non-negativity of the infection rate can also be ensured by considering the
Ornstein-Uhlenbeck process that includes a logarithmic transformation, i.e., d ln β(t) = α(ln β̄ −
ln β(t))dt + θdB(t) , for which we will carry out related work to investigate this. In addition, discussion
work considering the effect of adding multiple Ornstein-Uhlenbeck processes on the model results is
also underway.
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