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1. Introduction

Fractional differential equations are widely used in various fields of science and
engineering [1–3]. Among the popular fields, we can mention physics models, such as anomalous
diffusion [4], viscoelastic media [5], propagation of acoustic waves in porous media [6], etc. Fractional
calculus is used in control problems, to model dynamic systems in which the current state depends
on the whole history [7], in signal processing [8, 9], in biology for the modeling of neurons [10], in
epidemiology [11], in environmental sciences [12], and in economic models with memory [13].

Differential equations with nonlocal boundary conditions arise in problems of mathematical
modeling of various processes such as heat transfer, chemical diffusion, hydrology, and biochemistry.

Boundary conditions of Samarskii-Ionkin type were originally considered in works [14] for the heat
transfer problem in a tenuous plasma:

wt(x, t) = wxx(x, t), x < 0 < 1, 0 < t < ∞,

w(x, 0) = ϕ(x), w(0, t) = 0,
1∫

0

w(x, t)dx = const.

The last condition means that the total energy of the system is constant. This problem was further
investigated in other works [15, 16]. The nonlocal condition was shown to be equivalent to

wx(0, t) − wx(1, t) = 0,

which means equal heat flows at the ends of the interval. The existence of the solution was proved.
Later, the heat equation with two-point boundary conditions of the general type was considered

in [17]: {
a1wx(0, t) + b1wx(1, t) + a0w(0, t) + b0w(1, t) = 0,
c1wx(0, t) + d1wx(1, t) + c0w(0, t) + d0w(1, t) = 0.

(1.1)

Restricting the class of such conditions to strongly regular boundary conditions allows one to use
the well-established theory for self-adjoined operators and well-known methods [18–20]. In the case of
not strongly regular boundary conditions, the system of eigenfunctions of the spectral problem do not
form a Riesz basis. Thus, these methods cannot be used. In this case, new methods or modifications of
existing methods must be developed.

In [21], the heat problem with nonlocal boundary condition{
wx(0, t) − wx(1, t) − aw(1, t) = 0,
w(0, t) = 0,

0 ≤ t ≤ T,

was considered. It was shown that these conditions are not strongly regular for a , 0. The existence,
uniqueness, and stability of the solution was established.

Work [22] was devoted to solving an initial boundary value problem for a heat equation:

wt(x, t) − wxx(x, t) + q(x)w(x, t) = f (x, t)
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with regular but not strongly regular boundary conditions of the general type (1.1). It was shown
that for the case of the even potential function q(x) = q(1 − x), the considered class of problems can
always be reduced to the sequential solution of two similar problems with strongly regular boundary
conditions. The proof does not depend on whether the system of eigenfunctions of a spectral problem
forms a basis.

Note that the problem of establishing the basis properties of a system of eigenfunctions remains
open so far. For special cases of not strongly regular boundary conditions, the basis property was
confirmed in [23].

Problems for fractional differential equations with local and nonlocal boundary conditions have
been the topic of many works [24–28]. There are many methods for numerical solutions of such
problems, such as the finite difference methods [29], spectral methods [30, 31], etc. For various types
of fractional derivatives, stability, convergence, and solvability of difference schemes were researched
in [32].

One of the methods for solving the initial boundary value problem for a difference equation with
nonlocal boundary conditions was developed in the works [22, 33] and applied to the nonlocal heat
equation with not strongly regular boundary conditions. It consists in reducing the nonlocal difference
problem to a sequential solution of two local difference problems.

In [34], a parallel numerical algorithm was constructed for solving the initial boundary value
problem for the subdiffusion equation with the homogeneous Dirichlet condition. The stability of the
difference scheme was established. Numerical experiments were performed to study the performance
of parallel implementations. These results were used in [35] to develop a parallel numerical algorithm
for solving the inverse problem of identifying the space-dependent source term in the two-dimensional
fractional diffusion equation. To solve the inverse problem, a regularized iterative conjugate gradient
method is used. At each iteration of the method, a finite difference scheme is used to solve the auxiliary
direct initial boundary value problem.

Research on correctness and stability of direct and inverse problems of mathematical physics was
performed in numerous works [36–41].

In this work, we construct a numerical method for solving the initial boundary value problem for
the subdiffusion equation with nonlocal boundary conditions. We solve the problem by reducing it to
two problems with local boundary conditions. The solution of the original problem is found as a sum
of the solutions of the subproblems. These subproblems are solved by using implicit finite difference
schemes. The schemes produce systems of linear algebraic equations (SLAE) that must be solved for
each successive time step. To solve these SLAEs, we utilize the Thomas algorithm. We research the
stability and convergence of the constructed difference schemes and obtain the stability estimates for
the proposed method. To confirm the stability and convergence order of the developed method, we
perform numerical experiments.

Our approach to the numerical solution of the nonlocal initial boundary value problem is used for
the first time to solve the problem for a time-fractional equation. For simplicity, we consider the
problem for the case of a zero initial value. The proposed numerical method and algorithm presented
below may be applied for more generalized statements of the problem.

The rest of the article is structured as follows: Section 2 describes the statement of the initial
boundary value problem for the subdiffusion differential equation with nonlocal boundary conditions.
Section 3 is devoted to the numerical algorithm for solving the problem. It describes the construction
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of the finite difference scheme for solving the subproblems. It also contains the results on researching
the stability and convergence of the constructed finite difference scheme. Section 4 describes the
performed numerical experiments and discusses their results. Section 5 concludes the article.

2. Problem statement

In this work, we consider numerical algorithms for solving the initial boundary value problem for
the subdiffusion equation with nonlocal boundary conditions. Consider the equation

Dα
t u(x, t) − uxx(x, t) = f (x, t), (2.1)

with initial conditions
u(x, 0) = 0, 0 ≤ x ≤ 1, (2.2)

and the following nonlocal boundary condition [21]{
ux(0, t) − ux(1, t) − au(1, t) = 0,
u(0, t) = 0,

0 ≤ t ≤ T, (2.3)

where a > 0.
Here, we consider the Caputo fractional derivative with order α in the form [42]

Dα
t f (x, t) =

1
Γ(m − α)

t∫
0

f (m)(x, s)
(t − s)α−m+1 ds,

with m = dαe : α ∈ (m − 1,m) , m ∈ N, x > 0.
By attempting to solve the initial boundary value problem (2.1)–(2.3) by using the Fourier method,

we obtain the spectral problem for operator l, which is defined by the differential expression and
boundary conditions:

l(y) ≡ −y′′(x) = λy(x), 0 < x < 1, (2.4)

y′(0) = y′(1) + ay(1), y(0) = 0. (2.5)

Boundary conditions (2.5) are regular but not strongly regular. Therefore, the system of
eigenfunctions of operator l is a complete system, but it does not form a basis in L2(0, 1). The spectral
problem (2.4) and (2.5) has two series of eigenvalues:

λ(1)
k = (2πk)2, k = 1, 2, ....,

λ(2)
k = (2βk)2, k = 0, 1, 2, ...,

where βk are roots of the equation
tan β =

a
2β
, β > 0.

They satisfy the inequalities πk < βk < πk + π/2, k = 0, 1, 2.... For δk = βk − πk with sufficiently
large k, the following inequalities hold:

a
2πk

(
1 −

1
2πk

)
< δk <

a
2πk

(
1 +

1
2πk

)
.
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The eigenvalues of the problem are

y(1)
k (x) = sin(2πkx), k = 1, 2, ..., y(2)

k (x) = sin(2βkx), k = 0.1, 2, ....

The system is almost normalized, but it does not even form a normal basis in L2(0, 1). Therefore,
the direct application of the Fourier method is impossible.

3. Numerical algorithm for solving the problem

3.1. Reducing the nonlocal problem to two local problems

For the numerical solution of problem (2.1)–(2.3), we adapt the algorithm [22]. It was proposed
for nonlocal problems with classical derivatives. The algorithm is based on reducing the nonlocal
differential problem to the successive solving of two problems with Sturm-type boundary conditions.
This method allows one to avoid studying correctness and stability of difference schemes for the
original nonlocal problem, and replace it with studying local difference schemes for the auxiliary
subproblems.

Let us represent the solution u(x, t) as a sum of two functions C(x, t) and S (x, t), such as

u(x, t) = C(x, t) + S (x, t), (3.1)

where
C(x, t) =

u(x, t) + u(1 − x, t)
2

, S (x, t) =
u(x, t) − u(1 − x, t)

2
.

C(x, t) is an even part of function u(x, t) and S (x, t) is an odd part of u(x, t) on the interval 0 ≤ x ≤ 1.
Thus, these functions have the following properties:

C(x, t) = C(1 − x, t), S (x, t) = −S (1 − x, t),

Cx(x, t) = −Cx(1 − x, t), S x(x, t) = S x(1 − x, t).

Then, for the functions C(x, t) and S (x, t), we solve two initial boundary value problems.
Let us obtain the boundary conditions for the subproblems for C(x, t) and S (x, t). From (2.3), we

have  Cx(0, t) + S x(0, t) −
(
Cx(1, t) + S x(1, t)

)
− a

(
C(1, t) + S (1, t)

)
= 0,

C(0, t) + S (0, t) = 0,
0 ≤ t ≤ T.

Using the properties of C(x, t) and S (x, t), we transform these conditions to contain only values for
x = 0:

Cx(0, t) + S x(0, t) −
(
−Cx(0, t) + S x(0, t)

)
− a

(
C(0, t) − S (0, t)

)
= 0,

S (0, t) = −C(0, t),
0 ≤ t ≤ T ;

Cx(0, t) − aC(0, t) = 0,
S (0, t) = −C(0, t),

0 ≤ t ≤ T.
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Now, let us transform the conditions to contain only values for x = 1:

−Cx(1, t) + S x(1, t) −
(
Cx(1, t) + S x(1, t)

)
− a

(
C(1, t) + S (1, t)

)
= 0,

C(1, t) − S (1, t) = 0,
0 ≤ t ≤ T ;

Cx(1, t) + aC(1, t) = 0,
S (1, t) = C(1, t),

0 ≤ t ≤ T.

Now, for C(x, t), we have a problem with homogeneous boundary conditions of the third kind and
a homogeneous initial condition:

Dα
t C(x, t) −Cxx(x, t) = f C(x, t),

C(x, 0) = 0, 0 ≤ x ≤ 1,
Cx(0, t) − aC(0, t) = 0, 0 ≤ t ≤ T,
Cx(1, t) + aC(1, t) = 0, 0 ≤ t ≤ T,

(3.2)

where f C(x, t) =
(

f (x, t) + f (1 − x, t)
)
/2.

For S (x, t), we have the following problem with the Dirichlet boundary condition and the
homogeneous initial condition: 

Dα
t S (x, t) − S xx(x, t) = f S (x, t),

S (x, 0) = 0, 0 ≤ x ≤ 1,
S (0, t) = −C(0, t), 0 ≤ t ≤ T,
S (1, t) = C(0, t), 0 ≤ t ≤ T,

(3.3)

where f S (x, t) =
(

f (x, t) − f (1 − x, t)
)
/2.

By construction, we can formulate the following statement:

Statement 1. A solution of problem (2.1)–(2.3) can always be equivalently reduced to a sequential
solution of two boundary value problems (3.2) and (3.3) with local boundary conditions.

Thus, to solve problem (2.1)–(2.3), we need first to solve problem (3.2) for C(x, t). Then, knowing
the function C(x, t), we solve problem (3.3), because its boundary conditions depend on C(0, t). Finally,
we obtain the sought function u(x, t) by formula (3.1).

3.2. Discretization and difference schemes

Let us introduce regular grids for x and t with M + 1 and N + 1 points, respectively: i = 0, ...,M,
h = 1/M, xi = ih, n = 0, ...,N, τ = 1/N, tn = nτ. Denote the values of grid functions at grid points as
ui,n = u(xi, tn).

To approximate the Caputo fractional derivative of function u(x, t) (and similarly for functions
C(x, t) and S (x, t)) at the time level n, we use the L1 formula [32, 43]:

Dα
t (ui,n) ≈ σα,τ

n∑
j=1

w(α)
j

(
ui,n− j+1 − ui,n− j

)
,

σα,τ =
1

Γ(2 − α)τα
, w(α)

j = j1−α − ( j − 1)1−α,

n = 1, . . . ,N.

(3.4)
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Using formula (3.4) of order O(τ2−α) and a central difference scheme of order O(h2) to construct an
implicit difference scheme for Eq (3.2), we obtain

σα,τ

n∑
j=1

wα
j

(
Ci,n− j+1 −Ci,n− j

)
=

Ci−1,n − 2Ci,n + Ci+1,n

h2 + f C
i,n + O

(
τ2−α + h2

)
, i = 0, ...,M. (3.5)

Omitting the small term O
(
τ2−α + h2

)
, we obtain the difference equations

σα,τ

n∑
j=1

wα
j

(
Ci,n− j+1 −Ci,n− j

)
≈

Ci−1,n − 2Ci,n + Ci+1,n

h2 + f C
i,n, i = 0, ...,M. (3.6)

Then, let us rearrange

σα,τ

(
Ci,n −Ci,n−1

)
+ σα,τ

n∑
j=2

w(α)
j

(
Ci,n− j+1 −Ci,n− j

)
=

Ci−1,n − 2Ci,n + Ci+1,n

h2 + f C
i,n,

−
1
h2 Ci−1,n +

(
σα,τ +

2
h2

)
Ci,n −

1
h2 Ci+1,n = σα,τ

Ci,n−1 −

n∑
j=2

w(α)
j

(
Ci,n− j+1 −Ci,n− j

) + f C
i,n. (3.7)

The boundary condition at the point x0 = 0 is

Cx(0, t) − aC(0, t) = 0.

To approximate this condition with the order of approximation O(h2), let us obtain the derivative
Cx(0, t). Consider the Taylor series expansion

C(x1, t) −C(x0, t)
h

= Cx(x0, t) +
h
2

Cxx(x0, t) + O(h2).

Substituting Cxx(x0, t) = Dα
t C(x0, t) − f C(x0, t) from (3.2), we obtain

Cx(x0, t) ≈
C(x1, t) −C(x0, t)

h
−

h
2

(
Dα

t C(x0, t) − f C(x0, t)
)
.

Substitute this expression for derivative Cx(x0, t) and formula (3.4) into the boundary condition

C1,n −C0,t

h
−

h
2

(
σα,τ

n∑
j=1

wα
j

(
C0,n− j+1 −C0,n− j

)
− f C

0

)
− aC0,n = 0.

Let us rearrange the terms:

C1,n −C0,t

h
−

h
2

(
σα,τ

(
C0,n −C0,n−1

)
+ σα,τ

n∑
j=2

w(α)
j

(
C0,n− j+1 −C0,n− j

)
− f C(0, t)

)
− aC0,n = 0.

(
σα,τ +

2
h2 +

2a
h

)
C0,n +

(
−

2
h2

)
C1,n = σα,τ

(
C0,n−1 −

n∑
j=2

w(α)
j

(
C0,n− j+1 −C0,n− j

))
+ f C

0,n. (3.8)
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Similarly, for the boundary condition at the point xM = 1, we obtain a difference equation:(
−

2
h2

)
CM−1,n +

(
σα,τ +

2
h2 +

2a
h

)
CM,n = σα,τ

CM,n−1 −

n∑
j=2

w(α)
j

(
CM,n− j+1 −CM,n− j

) + f C
M,n. (3.9)

Combining all the difference equations for points xi, i = 0, ...,M, we can form the system of (M +1)
linear algebraic equations in the matrix form

(
σα,τ + 2

h2 + 2a
h

) (
− 2

h2

)
· · ·(

− 1
h2

) (
σα,τ + 2

h2

) (
− 1

h2

)
...

...
. . .

...
...(

− 1
h2

) (
σα,τ + 2

h2

) (
− 1

h2

)
· · ·

(
− 2

h2

) (
σα,τ + 2

h2 + 2a
h

)


·



C0,n

C1,n
...

CM−1,n

CM,n


=



FC
0,n

FC
1,n
...

FC
M−1,n
FC,n

M


, (3.10)

where

FC
i,n = σα,τ

Ci,n−1 −

n∑
j=2

w(α)
j

(
Ci,n− j+1 −Ci,n− j

) + f C
i,n,

FC
i,1 = σα,τCi,0 + f C

i,1.

Similarly, we can obtain the difference equations for the function S (x, t) and problem (3.3):

−
1
h2 S i−1,n +

(
σα,τ +

2
h2

)
S i,n −

1
h2 S i+1,n = σα,τ

S i,n−1 −

n∑
j=2

w(α)
j

(
S i,n− j+1 − S i,n− j

) + f S
i,n,

i = 1, ...,M − 1.

(3.11)

Due to the Dirichlet boundary conditions, we have a SLAE of smaller size, M − 1:

(
σα,τ + 2

h2

) (
− 1

h2

)
· · ·(

− 1
h2

) (
σα,τ + 2

h2

) (
− 1

h2

)
...

...
. . .

...
...(

− 1
h2

) (
σα,τ + 2

h2

) (
− 1

h2

)
· · ·

(
− 1

h2

) (
σα,τ + 2

h2

)


·



S 1,n

S 2,n
...

S M−2,n

S M−1,n


=



FS
1,n −

1
h2 C0,n

FS
2,n
...

FS
M−2,n

FS
M−1,n + 1

h2 C0,n


, (3.12)

where

FS
i,n = σα,τ

S i,n−1 −

n∑
j=2

w(α)
j

(
S i,n− j+1 − S i,n− j

) + f S
i,n,

FS
i,1 = σα,τS i,0 + f S

i,1.

Thus, the numerical algorithm for solving problem (2.1)–(2.3) is the following:
At each sequential time level n = 1, 2, ...,N:

(1) Solve system (3.10) for Ci,n, i = 0, ...,M.
(2) Solve system (3.12) for S i,n, i = 1, ...,M − 1.
(3) Compute the values ui,n = Ci,n + S i,n, i = 0, ...,M.
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3.3. Solving the SLAEs

To solve SLAEs (3.10) and (3.12) with tridiagonal matrices, the Thomas algorithm (also known as
the sweep method or elimination method) [44] is used. It is a direct method for systems with special
matrices. For the tridiagonal systems (3.10) and (3.12), we denote the elements of the main diagonal
of the matrices as qi, and the elements of the lower and upper diagonals as pi and ri, respectively. The
algorithm may be written as follows (in the case of system (3.10) for C):

• The forward elimination phase:

α0 = r0/q0,

β1 = FC
0,n/q0,

αi+1 = ri/(qi − piαi), i = 0, 1, ...,M − 1,M,
βi+1 = (FC

i,n + piβi)/(qi − piαi), i = 1, 2, ...,M,M + 1.

(3.13)

• The backward substitution phase:

CM,n = βM+1,
Ci,n = αi+1Ci+1,n + βi+1, i = M − 1,M − 2, ..., 0.

(3.14)

The conditions for correctness of this algorithm are the diagonal dominance in the matrix

|qi| ≥ |pi| + |ri|, i = 0, 1, ...,M. (3.15)

This property obviously holds for matrices of systems (3.10) and (3.12).

3.4. Stability of the difference schemes

To justify the proposed algorithm, let us derive estimates of the stability of schemes (3.10) and (3.12)
with respect to the initial data and the right-hand side.

Theorem 1. Suppose {Ci,n | 0 ≤ i ≤ M, 0 ≤ n ≤ N} is the solution of the difference scheme (3.10).
Then, the following estimate holds:

‖Cn‖∞ ≤
1

σα,τw
(α)
n

max
1≤m≤n

‖ fm‖∞ , 1 ≤ n ≤ N, (3.16)

where Cn =
{
C0,n,C1,n, ...,CM,n

}
.

Proof. Rewrite (3.7) as follows:

−
1
h2 Ci−1,n +

(
σα,τ +

2
h2

)
Ci,n −

1
h2 Ci+1,n = σα,τ

Ci,n−1 −

n∑
j=2

w(α)
j

(
Ci,n− j+1 −Ci,n− j

) + f C
i,n.

(
σα,τ +

2
h2

)
Ci,n = σα,τ

n−1∑
j=1

(
w(α)

j − w(α)
j+1

)
Ci,n− j +

1
h2 Ci−1,n +

1
h2 Ci+1,n + f C

i,n.
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Similarly, we can rewrite the difference equations for boundary conditions (3.8) and (3.9):(
σα,τ +

2
h2 +

2a
h

)
C0,n = σα,τ

n−1∑
j=1

(
w(α)

j − w(α)
j+1

)
C0,n− j +

2
h2 C1,n + f C

0,n,

(
σα,τ +

2
h2 +

2a
h

)
CM,n = σα,τ

n−1∑
j=1

(
w(α)

j − w(α)
j+1

)
CM,n− j +

2
h2 CM−1,n + f C

M,n.

Suppose ‖Cn‖∞ = |Cl,n| for some inner point 0 < l < M. Note that
(
w(α)

j − w(α)
j+1

)
> 0 and σα,τ > 0.

Taking the absolute value of both sides and using the triangle inequality, we obtain(
σα,τ +

2
h2

)
‖Cn‖∞ ≤ σα,τ

n−1∑
j=1

(
w(α)

j − w(α)
j+1

) ∥∥∥Cn− j

∥∥∥
∞

+
1
h2 ‖Cn‖∞ +

1
h2 ‖Cn‖∞ +

∥∥∥ f C
n

∥∥∥
∞
.

We can simplify it to

‖Cn‖∞ ≤

n−1∑
j=1

(
w(α)

j − w(α)
j+1

) ∥∥∥Cn− j

∥∥∥
∞

+
1
σα,τ

‖ fn‖∞ .

For the cases of ‖Cn‖∞ = |C0,n| or ‖Cn‖∞ = |CM,n|, we can obtain the same inequality:(
σα,τ +

2
h2 +

2a
h

)
‖Cn‖∞ ≤ σα,τ

n−1∑
j=1

(
w(α)

j − w(α)
j+1

) ∥∥∥Cn− j

∥∥∥
∞

+
2
h2 ‖Cn‖∞ +

∥∥∥ f C
n

∥∥∥
∞
,

(
σα,τ +

2a
h

)
‖Cn‖∞ ≤ σα,τ

n−1∑
j=1

(
w(α)

j − w(α)
j+1

) ∥∥∥Cn− j

∥∥∥
∞

+
∥∥∥ f C

n

∥∥∥
∞
,

‖Cn‖∞ ≤
σα,τ

σα,τ + 2a
h

n−1∑
j=1

(
w(α)

j − w(α)
j+1

) ∥∥∥Cn− j

∥∥∥
∞

+
1

σα,τ + 2a
h

∥∥∥ f C
n

∥∥∥
∞
≤

n−1∑
j=1

(
w(α)

j − w(α)
j+1

) ∥∥∥Cn− j

∥∥∥
∞

+
1
σα,τ

‖ fn‖∞ .

Next, let us use the mathematical induction method. Let

An =
1

σα,τw
(α)
n

max
1≤m≤n

‖ fm‖∞ .

Note that since w(α)
n < w(α)

n−1, An > An−1.
The base case. For n = 1, we have

‖C1‖∞ ≤
1
σα,τ

‖ f1‖∞ ≤ A1.

The induction step. Suppose ‖Ck‖∞ ≤ Ak for 1 ≤ k ≤ n − 1. Consider the case of k = n.

‖Cn‖∞ ≤

n−1∑
j=1

(
w(α)

j − w(α)
j+1

) ∥∥∥Cn− j

∥∥∥
∞

+
1
σα,τ

‖ fn‖∞ ≤

n−1∑
j=1

(
w(α)

j − w(α)
j+1

)
An− j +

1
σα,τ

‖ fn‖∞

≤

n−1∑
j=1

(
w(α)

j − w(α)
j+1

)
An +

1
σα,τ

‖ fn‖∞ ≤
(
w(α)

1 − w(α)
n

)
An +

1
σα,τ

‖ fn‖∞

= An − w(α)
n

An −
1

σα,τw
(α)
n

‖ fn‖∞

 ≤ An.

Thus, by induction, inequality (3.16) is true for k = 1, 2, ..., n. �
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Similarly, we can obtain an estimate for S .

Theorem 2. Suppose {S i,n | 0 ≤ i ≤ M, 0 ≤ n ≤ N} is the solution of the difference scheme (3.12).
Then, the following estimate holds:

‖S n‖∞ ≤
1

σα,τw
(α)
n

max
1≤m≤n

‖ fm‖∞ , 1 ≤ n ≤ N. (3.17)

Proof. The proof is similar to Theorem 1. For the boundary cases, we utilize the inequality (3.16). �

Now, we can obtain an estimate for approximate solution un = Cn + S n, 0 < n ≤ N, to the base
problem (2.1)–(2.3).

Theorem 3. Suppose {Ci,n, S i,n | 0 ≤ i ≤ M, 0 ≤ n ≤ N} are the solutions of the difference
schemes (3.10) and (3.12).

Then, the following estimate holds:

‖un‖∞ ≤
2

σα,τw
(α)
n

max
1≤m≤n

‖ fm‖∞ , 1 ≤ n ≤ N. (3.18)

Proof. Let us utilize the triangle inequality. Since un = Cn + S n, then ‖un‖∞ ≤ ‖Cn‖∞ + ‖S n‖∞ .

Now, by inequalities (3.16) and (3.17), we have

‖un‖∞ ≤
1

σα,τw
(α)
n

max
1≤m≤n

‖ fm‖∞ +
1

σα,τw
(α)
n

max
1≤m≤n

‖ fm‖∞ =
2

σα,τw
(α)
n

max
1≤m≤n

‖ fm‖∞ .

�

Thus, the difference schemes (3.10) and (3.12) are unconditionally stable with respect to the right-
hand side.

3.5. Convergence of the difference schemes

In [32], it is shown that the approximation schemes used in (3.10) and (3.12) have a truncation error
of order O(τ2−α + h2), i.e., for the error ri,n, there exists a constant c > 0, such that

|ri,n| ≤ c(τ2−α + h2), 0 ≤ i ≤ M, 0 ≤ n ≤ N. (3.19)

Theorem 4. Suppose
{
Ci,n| 0 ≤ i ≤ M, 0 ≤ n ≤ N

}
is the exact solution of problem (3.2) and{

Ci,n| 0 ≤ i ≤ M, 0 ≤ n ≤ N
}

is the solution of difference scheme (3.10). Consider the error

eC
i,n = Ci,n −Ci,n, 0 ≤ i ≤ M, 0 ≤ n ≤ N.

Then, for some c1 > 0, it holds that∥∥∥eC
n

∥∥∥
∞
≤ c1TαΓ(1 − α)(τ2−α + h2), 1 ≤ n ≤ N. (3.20)

AIMS Mathematics Volume 9, Issue 12, 36385–36404.



36396

Proof. Let us subtract Eq (3.6) from (3.5), and, similarly, subtract boundary difference Eqs (3.8)
and (3.9) from the boundary conditions. We obtain the difference scheme for error eC

n:

(
σα,τ + 2

h2 + 2a
h

) (
− 2

h2

)
· · ·(

− 1
h2

) (
σα,τ + 2

h2

) (
− 1

h2

)
...

...
. . .

...
...(

− 1
h2

) (
σα,τ + 2

h2

) (
− 1

h2

)
· · ·

(
− 2

h2

) (
σα,τ + 2

h2 + 2a
h

)


·



eC
0,n

eC
1,n
...

eC
M−1,n
eC

M,n


=



RC
0,n

RC
1,n
...

RC
M−1,n
RC,n

M


,

where

RC
i,n = σα,τ

eC
i,n−1 −

n∑
j=2

w(α)
j

(
eC

i,n− j+1 − eC
i,n− j

) + rC
i,n,

RC
i,1 = σα,τeC

i,0 + rC
i,1.

We can apply Theorem 1 to this scheme and obtain∥∥∥eC
n

∥∥∥
∞
≤

1

σα,τw
(α)
n

max
1≤m≤n

‖rm‖∞ , 1 ≤ n ≤ N.

By (3.19), for some constant c1 > 0, we have∥∥∥eC
n

∥∥∥
∞
≤

c1

σα,τw
(α)
n

(τ2−α + h2).

For the coefficients w(α)
j , the following property holds (see [32, p. 32]):

(1 − α) j−α < w(α)
j < (1 − α)( j − 1)−α.

Thus, ∥∥∥eC
n

∥∥∥
∞
≤

c1

σα,τ(1 − α)n−α
(τ2−α + h2) ≤

c1Γ(2 − α)τα

(1 − α)n−α
(τ2−α + h2)

≤
c1(1 − α)Γ(1 − α)τα

(1 − α)n−α
(τ2−α + h2) ≤ c1tαn Γ(1 − α)(τ2−α + h2)

≤ c1TαΓ(1 − α)(τ2−α + h2), 1 ≤ n ≤ N.

�

Similarly, we can obtain an estimate for the error eS
i,n = S i,n − S i,n, 0 ≤ i ≤ M, 0 ≤ n ≤ N.

Theorem 5. Suppose
{
S i,n| 0 ≤ i ≤ M, 0 ≤ n ≤ N

}
is the exact solution of problem (3.3) and{

S i,n| 0 ≤ i ≤ M, 0 ≤ n ≤ N
}

is the solution of the difference scheme (3.12).
Then, for some c2 > 0, it holds that∥∥∥eS

n

∥∥∥
∞
≤ c2TαΓ(1 − α)(τ2−α + h2), 1 ≤ n ≤ N. (3.21)

Now, consider the error between the solution of the original problem and the approximate solution
obtained by the proposed numerical algorithm.
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Theorem 6. Suppose
{
ui,n| 0 ≤ i ≤ M, 0 ≤ n ≤ N

}
is the exact solution of problem (2.1)–(2.3) and{

Ci,n, S i,n| 0 ≤ i ≤ M, 0 ≤ n ≤ N
}

are the solutions of the difference schemes (3.10) and (3.12). Let

ei,n = ui,n − ui,n, 0 ≤ i ≤ M, 0 ≤ n ≤ N,

where ui,n = Ci,n + S i,n and ui,n = Ci,n + S i,n.
Then, for some c3 > 0, it holds that

‖en‖∞ ≤ c3TαΓ(1 − α)(τ2−α + h2), 1 ≤ n ≤ N. (3.22)

Proof. By Theorems 4 and 5, we have

‖en‖∞ = ‖un − un‖∞ =
∥∥∥Cn −Cn + S n − S n

∥∥∥
∞
≤

∥∥∥Cn −Cn

∥∥∥
∞

+
∥∥∥S n − S n

∥∥∥
∞

=
∥∥∥eC

n

∥∥∥
∞

+
∥∥∥eS

n

∥∥∥
∞
≤ c1TαΓ(1 − α)(τ2−α + h2) + c2TαΓ(1 − α)(τ2−α + h2)

≤ c3TαΓ(1 − α)(τ2−α + h2).

The proof is complete. �

In the next section, we perform numerical experiments to confirm the convergence order.

4. Numerical experiments

The test problem is as follows:

Dα
t u(x, t) − uxx(x, t) = f (x, t),

u(x, 0) = 0, 0 ≤ x ≤ 1,{
ux(0, t) − ux(1, t) + au(1, t) = 0,
u(0, t) = 0,

0 ≤ t ≤ 1,

where

f (x, t) =
Γ (m + 1)

Γ (m + 1 − α)
tm−α

[
x2 (1 − x)2

− ax2 + (2 + a) x
]

+ 2tm [6x (1 − x) − 1 + a] .

The analytical solution is u (x, t) = tm
[
x2 (1 − x)2

− ax2 + (2 + a) x
]
.

For subproblems C(x, t) and S (x, t), the right-hand terms are

f C (x) =
Γ (m + 1)

Γ (m + 1 − α)
tm−α

[
x2 (1 − x)2 + ax (1 − x) + 1

]
+ 2tm [6x (1 − x) − 1 + a] ,

f S (x) =
Γ (m + 1)

Γ (m + 1 − α)
tm−α [2x − 1] .

The analytical solutions for S (x, t) and C(x, t) are

C (x, t) = tm
(
x2 (1 − x)2 + ax (1 − x) + 1

)
,

S (x, t) = tm (2x − 1) .
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4.1. Experiment 1: convergence in time

Experiment 1 was performed for the parameter values α = 0.5, m = 2, and a = 1. To estimate
the order of convergence in time, we solved the test problem for grid sizes N = 64, 128, 256, 512, and
1024. To reduce the impact of the space step h = 1/M, we used the fixed value M = 4096. Thus,
τ2−α > h2 for all values of τ = 1/N.

Table 1 shows the absolute errors δ1(τ) =
∥∥∥u(1, t) − uτ(1, t)

∥∥∥
∞

of the approximate solution uτ(1, t)

obtained for step size τ, as well as the mixed relative errors δ2(τ) =
‖u(1,t)−uτ(1,t)‖∞

1+‖u(1,t)‖∞
for various dimensions

N of the computational grid. It also contains the convergence orders log(δ(τ1)/δ(τ2))
log(τ1/τ2) for both errors.

Table 1. Errors of the solutions and order of convergence in time for various grid sizes.

N Absolute error δ1 Order Mixed relative error δ2 Order
64 7.55 × 10−4 — 2.52 × 10−4 —
128 2.69 × 10−4 1.49 8.98 × 10−5 1.49
256 9.59 × 10−5 1.49 3.20 × 10−5 1.49
512 3.40 × 10−5 1.49 1.13 × 10−5 1.49
1024 1.20 × 10−5 1.50 4.00 × 10−6 1.50

4.2. Experiment 2: convergence in space

Experiment 2 was performed for the parameter values α = 0.5, m = 2, and a = 1. To estimate
the order of convergence in space, we solved the test problem for grid sizes M = 64, 128, 256, 512,
and 1024. To reduce the impact of the time step τ = 1/N, we used the fixed value N = 16,384. Thus,
h2 > τ2−α for all values of h = 1/M.

Table 2 shows the absolute errors δ1(h) =
∥∥∥u(x, 1) − uh(x, 1)

∥∥∥
∞

of the approximate solution uh(x, 1)

obtained for step size h, as well as the mixed relative errors δ2(h) =
‖u(x,1)−uh(x,1)‖∞

1+‖u(x,1)‖∞
for various

dimensions M of the computational grid. It also contains the convergence orders log(δ(h1)/δ(h2))
log(h1/h2) for both

errors.

Table 2. Errors of the solutions and order of convergence in space for various grid sizes.

M Absolute error δ1 Order Mixed relative error δ2 Order
64 3.19 × 10−4 — 1.06 × 10−4 —
128 7.97 × 10−5 2.00 2.66 × 10−5 2.00
256 1.98 × 10−5 2.01 6.60 × 10−6 2.01
512 4.80 × 10−6 2.04 1.60 × 10−6 2.04
1024 1.06 × 10−6 2.18 3.53 × 10−7 2.18

Figure 1 shows the exact and approximate solutions u (x, 1) at the final instant t = T = 1, as well as
the auxiliary solutions S (x, 1) and C(x, 1) obtained for the grid sizes M = 4096 and N = 1024. Solid
graphs are exact solutions and dots are approximate ones.
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Figure 1. Solutions at the final instant t = T = 1. The blue graph is S (x, 1), the red one is
C (x, 1), and the green one is u (x, 1). Solid lines represent the exact solution and dots are the
approximate solution.

Figures 2(a)–(c) show the surface plots for C(x, t), S (x, t), and u(x, t) obtained for the grid sizes
M = 4096 and N = 1024. Solid graphs are the exact solutions and dots are the approximate ones.
Figure 2(d) shows the plot of error δ(x, t) = u(x, 1) − u(x, 1).

a b

c d

Figure 2. Results of numerical experiments for grid size M = 4096 and N = 1024. A solid
surface is the exact solution and dots are the approximate one. (a) Surface plot of C(x, t); (b)
surface plot of S (x, t); (c) surface plot of u(x, t); (d) surface plot of error δ = (u(x, t)−u(x, t)).
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Let us discuss the results of Experiments 1 and 2.

(1) In Experiments 1 and 2, the finer the grid is for x or t, the lower the errors of the solutions. This
confirms the stability and convergence of the difference schemes (3.10) and (3.12).

(2) In Experiment 1, the computed convergence order is 1.5 in time for α = 0.5.
(3) In Experiment 2, the convergence order is 2 in space.
(4) This coincides with the theoretical convergence order for the difference schemes based on the L1

formula for the Caputo time derivative and central difference scheme for space.
(5) In the future, we plan to utilize higher-order approximations for the Caputo fractional

derivative [45–47].

5. Conclusions

In this work, we have constructed a numerical algorithm for solving the initial boundary value
problem for the subdiffusion equation with nonlocal boundary conditions. The algorithm consists
of reducing the nonlocal problem to the successive solving of two subproblems with local boundary
conditions. The solution of the original problem has been found as a sum of the solutions of the
subproblems. To solve the subproblems, the implicit difference schemes have been constructed.
For solving systems of linear algebraic equations, we have applied the Thomas algorithm. We
have established the unconditional stability and obtained the convergence estimates of the difference
schemes. We have conducted numerical experiments to study the constructed algorithm. The numerical
results show the stability and convergence of the algorithm. The experiments confirm that the order of
convergence of the proposed method coincides with the theoretical one.

In the future, we plan to adapt our approach to subdiffusion equations with more generalized
formulations (1.1) of not strongly regular boundary conditions and nonzero initial conditions. We plan
to adapt our approach to two-dimensional problems. Our approach for solving the initial boundary
value problems may also be utilized in numerical algorithms for solving the inverse problems for
nonlocal subdiffusion equations.
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